

| メタデータ | 言語: jpn                           |
|-------|-----------------------------------|
|       | 出版者:                              |
|       | 公開日: 2008-01-25                   |
|       | キーワード (Ja):                       |
|       | キーワード (En):                       |
|       | 作成者: 池谷, 仙之, 和田, 秀樹, 大森, 真秀       |
|       | メールアドレス:                          |
|       | 所属:                               |
| URL   | https://doi.org/10.14945/00000274 |

静岡大学地球科学研究報告 13 (1987年7月) 67頁~111頁 Geosci. Repts. Shizuoka Univ., 13 (July, 1987), 67-111

# 浜名湖のボーリング柱状試料について

池谷 仙之\*・和田 秀樹\*・大森 真秀\*

On the Boring Core Sediments from Hamana Lake

Noriyuki IKEYA,\* Hideki WADA\* and Maho OHMORI\*

For the purpose of elucidating the environmental changes, boring core samples of the lake sediments were collected from four sites in Hamana Lake, Shizuoka Prefecture, Central Japan. Cores from the four sites of 85H-1, 2, 3, and 86H-4 are 16.45 m, 41.46 m, 50.45 m and 23.96 m long, respectively. The cored sediments are all of Holocene age, and the bottoms of all four holes reached the boundary between Holocene and Pleistocene. The lithofacies of the boring core samples were described in detail. The geological age of the samples were determined by tephrochronological and <sup>14</sup>C methods.

A preliminary acoustic survey was done in the northen part of the lake. A distinct sound scattering layer was observed at 2-3m subbottom in the central part of the basin.

#### I.緒 言

浜名湖は日本太平洋側第一の汽水湖(水域面積 68.8 km<sup>2</sup>)として知られ、また、この広大な水域を 取り巻く自然を舞台に、太古より活発な人類活動が 営まれてきた。この浜名湖はいつごろ生まれ、そし てどのような変遷をたどって現在に至っているので あろうか。その起源は、おそらく第四紀の最大海面 降下時(約18000年前)に深く下刻された谷地形に求 められ、その後海面上昇に伴い各種の堆積物が厚く 埋積して、現在見られる様な海岸線の入り組んだ古 浜名湾が形成されたと推定される。湖の形状を呈し たのは、その後古天竜川が流出した多量の堆積物が 沿岸流によって湾口部に運ばれ、湾口が次第に狭め られたことによると考えられる.こうしたことから、 埋積している湖の堆積物中には海水準の変動の記録 のほかに、湖内の、そして湖を取り巻く後背地の様々 な地学的環境の変遷の記録が残されているに違いな い.一方,この堆積作用は現在もなお続行しており, この湖もやがては埋め立てられ,次第に陸化してい く運命にあると考えられる。現在の浜名湖は,その 南部で汀線と平行に発達する浜堤によって,ほぼ閉 鎖されており,今切口と呼ばれる狭い湖口により外 海との海水交換が行われている。過去の浜名湖の環 境も海水準の変動や地殻変動に伴うこれらの浜堤の 消長に大きく左右されたであろう。この湖はその形 成過程において,ある時は湖口部が沿岸流による砂 しの発達で閉鎖され,海水の流入が断たれて淡水化 し,またある時は地震による津波などによって,そ の湖口部の地形はしばしば変えられたことも知られ ている。

このような "浜名湖の生いたち"を地史的に明ら かにするために、"浜名湖の起源と地史的変遷に関す る総合研究"(文部省科学研究費補助金による総合研

1987年3月23日受理

<sup>\*</sup> 静岡大学理学部地球科学教室 Institute of Geosciences, School of Science, Shizuoka University, Shizuoka 422.

究 A) が1985年より3ケ年計画で組織された.本稿 では、この研究プロジェクトによって掘削された、 湖内における4本の湖底ボーリングについて、その 概要と得られた湖底堆積物の柱状資料の層序,相層 などの基礎的な記載を行った。今後これらのコアー を用いて詳細な分析が行われるであろう各種の研究 の基礎試料としての便をはかろうとするものである。



Fig. 1. Location map of the drillhole in Hamana Lake.

#### II. 浜名湖の地形と底質

地 形: Fig. 1 に示されるように,浜名湖は多くの付 属湖を持ち,その形状は複雑に入り組んでいる.湖 の総面積約69 km<sup>2</sup> に対して,湖岸線は103 km にもお よぶ.湖底の地形は周辺の地質構造と密接に関係し て,その等深線は北東-南西方向を長軸とする三列 の舟底型盆地からなり,湖の北半部は水深 6 - 12 m と比較的深く,南半部は4 m 以下と浅い.特に湖口部 付近は1 m 以下の浅瀬からなり,湖内への海水の流入 を妨げている.そのため人工的に水路(ミヨ)が浚 谋されている.また,南西方向に突き出た村櫛半島 によって隔てられた湖東部地域(庄内湖)では湖底 はほぼ平坦で2-3 m の水深からなる.

底 質:浜名湖の底質は環境を規制する諸要因と強い相関を示している。湖内に突き出した岬の延長部分にあたる湖底および湖北沿岸の浅瀬は、古生層からなる岩盤またはそれらのレキからなり、外洋沿岸水の影響を強く受けた水深の浅い湖南部地域および湖東沿岸部には、淘汰の良い砂が分布する。湖央深部と付属湖には主として陸水により供給された比較的淘汰の良いシルトが沈積している。この湖央深部は、夏期、湖水の成層によって無酸素状態となり、硫化水素が発生する。また、都田川の河口部には淘汰の悪い砂レキが堆積している。(詳しくは IKEYA and HANDA, 1972 を参照)

#### III. 音波探査による湖底堆積層の予察

湖底ボーリングを能率よく実施するため、また、 ボーリング地点の選定にあたって、予め湖内の沖積 層の厚さ、すなわち沖積層の基底の深度をおおよそ 推定する必要があった。しかし、湖岸平野部におけ る既存ボーリングの資料から、湖中央部までの基底 を推定することは不可能であった。そこで、音波探 査により湖底下の地質構造を解析することとした。 浜名湖のような浅海で、しかも硫化水素が発生する ような環境の海域では、一般的によい音波記録が得 られないことが予想された。しかし、浜名湖の基盤 が硬い古生層から成ることから軟質な沖積層との境 界はかなり明瞭であると予想され、その基盤の反射 記録があるいは得られるであろうと考え、音波探査 を行った。

調査域:水深5m以深を連続的に保つ湖央部と引佐 細江地域にかけて,Fig.2に示す北東-南西方向の3 測線とそれに直行する6測線(測線間隔は0.8-1.4 km,総延長32.5 km)に沿って実施された。

使用機器:NE-19C2 GEO SONAR (日本電気 KK 製).送信エネルギーは標準200 Joule,発信方式は水 中花火放電発信法,中心周波数は600 Hz,分解能約2 mのものを使用した.音響測深機は PS-10 型を使用 し,東京湾平均海面を基準とした.船速は約0.5kt で あった.

調査期間:1985年8月31日-9月1日(湖央部では 夏期,バクテリアによって硫化水素が発生すること が知られており,音波探査の時期としては最悪であ ると考えられたが,ボーリングの実施時期の都合上 止むを得ずこの時期に行った.)

調査結果:Fig.3に示すように,湖底下の地質構造が 読み取れた測線の総延長は全測線の4分の1(約7.9 km)で,そのほとんどは本湖の調査域の周辺部地域 に限られる。即ち,湖央の周辺部(北および北西沿 岸部と本湖中央部の湖棚より急深となる水深10m以 浅の地域)である。これらの地域の底質は細砂また は泥質砂から成る。それ以外の9測線のほとんどの 区域で音波散乱層が発生し,散乱層以深の湖底下の 地質情報は得られていない(ここで見られた音波散 乱層は湖底の多重反射が幾重にも連続するタイプの ものではない)。この現象は,潟湖や内湾の,含水率 が高く有機質を多く含む泥質堆積物に生じやすく, 浜名湖でも水深約10m以深の,泥質堆積物が分布し ている地域で,湖底下2-6.5m付近に生じている。

音波探査の記録から湖底下の地層はつぎの3層に 区分される.

i層:沿岸近接部と湖央の湖棚部を除く全測線において,湖底面と音波散乱層との間2-6.5mに淡い記録として現れ,きわめて軟弱な泥質の表層堆積物から成る.

ii 層:ほとんどの調査区域で本層の上面付近に音波 散乱層が分布し、それより下部の情報を読み取るこ とはできないが、湖棚の縁辺部および湖の沿岸部で はこの散乱層がないため比較的よい反射記録が得ら れている.記録中には希に内部反射面が現れるが、



Fig. 2. Track and key stations of the acoustic survey in the northern part of Hamana Lake.

所々に強い反射面がみられ,砂層の挾在を示している. その他には顕著な構造はみられない.本層は主とし て細砂または泥質砂から成ると推定される.これら の砂質堆積物は,調査区域周辺部から湖央部に向かっ てしだいに軟弱な泥質堆積物に移化していると推定 される.層厚は平均約30 m で,L-5 測線の115測点 付近(本湖北岸)で最も薄く10m,また,C-3 測線 の152測点付近(湖棚縁辺部)で最も厚く35 m 存在す る.

iii層:湖棚の縁辺部と湖の沿岸部においてのみ記録 が得られている。本層の上面は強い反射面として記 録され、小規模(5m程度)な谷地形や起伏が見られ る。基底部の記録は得られていないので、本層の厚 さは不明である。本層には部分的に強い反射面が現 れ、これによって上下の2層に区分される。全体と して細かな平行反射面が記録され砂層と泥層との互 層から成ると推定される。 上部層-レキ質堆積物が記録された地域は、本湖北 岸のC-1測線1および2測点と本湖中央部のL-3測線88および89測点の上部層である。また、岩盤 が本湖東岸のL-2測線69測点付近に記録された。 下部層-本層が記録された地域は本湖北岸のL-1, L-3測線、本湖湖棚中央部のL-4測線、本湖西岸 のC-2測線で、いずれも砂層と泥層との互層から成 ると推定される。

音波散乱層について:音波探査による海底地質調査 が進むにつれて,日本各地の内湾でも,厚く堆積し たシルト層の上面やその内部でこの現象が頻繁に発 生していることが明らかになってきた.建設省国土 地理院(1981)によれば,音波散乱現象が発生する 原因としてつぎのようなことがあげられている.音 波散乱層の分布する海域では,海底下に埋没谷や埋 没盆地があり,これを埋める堆積物として腐植土層 が分布し,そこから発生するガスが上部の粘土質か





ら成る海成軟弱層 (海底下 2 −5 m) に閉じ込められ ることによって生ずる. 仙台湾でこのガスを分析し た結果, CH₄の濃度が高いことが知られた. こうし た散乱現象がみられる場合, 音波は散乱層の下位に はほとんど透過しないと考えられる. 浜名湖の場合 もこれと同様の原因が考えられるが, この現象をさ らに解明するため, これらの層準のガスと間隙水を 採取し, その分析を行うこととした.

#### IV. 湖底ボーリング

ボーリング位置の選定について:音波探査の結果は 沖積層の基底を全体的に把握するには至らなかった が,比較的良い情報が得られ、少なくとも40-50 m の厚さの湖底堆積物が存在する本湖中央部の湖棚縁 辺部をひとつの候補地とした。また、もうひとつの 候補地としては、泥質堆積物が厚く堆積していると 予想される本湖の最深部(水深12 m)を選んだ。こ れらの候補地における沖積層の基底の深度について は全く未知であり、調査費用の範囲内(コアーの総 長100 m)まで掘削することとした。両候補地におい ては、沖積層の基底深度が浅い場合を考慮し、また、 湖内全域についての考察ができるように、上記の中 間地点と庄内湖の奥部の2地点を予備の候補地とし た。

ボーリングの方法等:湖内のボーリングはロータリー 式オイルフィードボーリング機械を用い,堆積物が 非常に軟らかいか,または,多少締まっているかに よって次の2つの方法(1)と(2)を用い,連続コアーの 回収につとめた。また,機械ボーリングの費用節約 のため,表層部の一部は人力によるブルームサンプ ラー(3)を用いた。

(1) 固定ピストン式シンウォールサンプラー:内 径74 mm. N 値が5以下の軟らかい堆積物の場合, ステンレスパイプにピストンをつけ,パイプの荷重 で堆積物中に押し込む方法で行った.85H-1および 86H-4では,堆積物がほとんどシルト質であったた め,全コアーについてシンウォールサンプラーを用 いた.85H-2および85H-3では表層数 m の軟ら かい堆積物のみを本法で採取した.コアーの回収率 は95-100%で,回収されたコアーは試料の水分の蒸 発,膨張,移動等を防ぐために溶かしたパラフィン (松脂3%混入)を厚さ約5 cm 程度, 試料の上面に流 しこんで堆積物を密封し,水平に保って運搬した. 試料はステンレスパイプ1本ごとに専用の押し出し 器(P1.1-6)で押し出し,塩ビ製の樋の上に乗せ て分割した.

(2) トリプルチューブサンプラー:内径84 mm. 三重管構造で,塩ビ管に試料を採取する方法で,砂 質や,やや締まったシルト,粘土質の地層に用いた. 試料は,塩ビ管に入った状態で得られ,溶かしたパ ラフィンを厚さ約5 cm 試料の上面に流しこんで固定 し,移動させた.試料の分割は塩ビ管(厚さ3 mm) のみを電動鋸で縦に切断,2分割し,一方の塩ビ管 を剝ぎ取ることでコアーを露出させ,分割した.本 法では,1 m 毎の掘削長のうち,先端部のボーリング シューの部分約13 cm 程の試料は,塩ビ管内に入らな い仕掛になっている.この部分は,ボーリング現場 で,外気に触れないよう窒素ガスを流した容器の中 に入れ,その中でプラスチック容器に密封,間隙水 抽出用試料とし,残りをビニール袋に保存した.

(3) ブルームサンプラー:内径23 mm. 泥炭試料 採取用に考案された軽量のサンプラー(太田, 1983) で,通常,未固結の軟質な地層に使用されている. 本サンプラーは,陸上で沖積層を掘削するのに適し ており,25 cm ずつ試料を採取することができるが, 湖底で使用したのはこれが最初であろう.86H-4B に おいて湖底より6 m までを本サンプラーを用いて,人 力で掘削した.

(4) BAT 法による間隙水とガス試料の採取:間隙 水およびガス試料の採取には BAT 法を用いた.BAT 法はスウェーデン・BAT 社が地下水のモニターと採 水のために開発した装置で,セラミックスのフィ ルターを付けたチップを堆積物中に押し込み,この チップと,あらかじめ真空にした試験管とを接続針 を通して合体し,試料を得る方法である.

湖底下の堆積物が粘土質の場合,一日の作業終了 後,BATの先端部分を約50 cm 堆積物に押し込み, 真空にした試験管を降ろして合体させ,そのまま一 昼夜放置し翌朝回収する.堆積物が砂質の場合には, 50-70 cmBAT を押し込み,粘土の団子を入れて不 透明層をつくる.以下粘土質の時と同様の操作を行 う.

(5) 回収堆積物からの間隙水の抽出:ボーリング コアーのシュー部分と、85H-1Bコアー、更に、86 H-4 掘削時にアクリルパイプをつきさして採取した 間隙水用コアー(湖底下60 cm)から,押し出し法に よる間隙水の抽出を行った。抽出法は、油圧式ピス トンにより堆積物を圧縮(約200 kg/cm<sup>2</sup>)し、メン ブランフィルターを通して漏出する間隙水をポリエ チレンシリンジに捕集した。こうして得られた間隙 水の10 ml を熱処理済みのアンプルにとり,アルゴン ガス置換して封入しアミノ酸分析用とした。また10 mlを別にシリンジにとり、栓をして化学分析用試料 とした。更にのこりの間隙水を同位体分析用試料と してアンプルに封入した. ボーリング地点と掘削状況 (Fig. 1, Pl. 1-1, 2): 85H-1 : 1985年12月4日~8日 位 置:本湖最深部(35°45'59"N, 137°35'31"E). 水 深:約12 m. 方 法:シンウォールサンプラー (全コアー) 掘削深度:湖底より16.75 m. 回収コアー:湖底より1.45~16.75 m. 間隙水採集深度:湖底より4m,9.9m. 85H-1B:1985年12月10日 位 置:85H-1の北方約1m. 水 深:約12m. 方 法:シンウォールサンプラー (全コアー) 掘削深度:湖底より1.22m. 回収コアー:湖底より0.32~1.22 m. 85H-2 : 1985年12月13日~21日 位 置:85H-1の南方約1.7km (34°45′03"N. 137°35'31" E). 水 深:約5m. 方 法:シンウォールサンプラー (0~4.9m) トリプルチューブサンプラー (4.9 m~) 掘削深度:湖底より41.72 m. 回収コアー:湖底より0~41.64m. BAT間隙水採集深度:湖底より12.40m, 26.80m, 33.50m. 85H-3 : 1985年11月15日~30日 位 置:85H-2の南西方向約4.5 km (34°43'57" N, 137°33'54"E).

水 深:シンウォールサンプラー (0~0.8 m)

- トリプルチューブサンプラー (0.8m~) 掘削深度:湖底より50.45 m. 回収コアー:湖底より0~50.45m. BAT間隙水採集深度:湖底より9.70 m, 19.80 m, 32.30 m, 44.20 m, 50.75 m. **\***0.8~8.5 mまでは2 mのチューブを使用,また 8.5m~では1mのチューブを使用. 85H-3B: 1985年12月1日~2日 位置:85H-3の南東方向約1mの位置。 水 深:約5m. 方 法:シンウォールサンプラー (0~0.8 m) トリプルチューブサンプラー (0.8 m~) 掘削深度:湖底より9.70m. 回収コアー:湖底より0~9.55m. \*全コアーについて1mのチューブを使用. 86H-4:1986年9月28日~10月2日 位 置:庄内湖奥部(34°44'44"N,137°38'21"E). 水 深:約3m. 方 法:シンウォールサンプラー (全コアー) 掘削深度:湖底より24.50 m. 回収コアー:湖底より4~24.50 m. 86H-4B:1986年9月29日~30日 位 置:86H-4の北西方向約2m. 水 深:約3m. 方 法:ブルームサンプラー 掘削深度:湖底より6.0 m. 回収コアー:湖底より0.4~5.98 m (6) ボーリングコアーの分割方法:コアー試料の 深度は、一本毎の試料の上面が掘削開始深度に一致 するものとした. 試料回収率が100%より低い場合は, 試料の掘削によるショートニングは起きていないと 考え、試料の実際の長さの不足分は、欠損とした。 試料の分割は, Fig. 4 に示すように, 地球化学的分析 および軟 X 線解析用に20 cm,その他の分析用に5 cm 毎の単位で行った。尚、コアの外表面は試料のコン
- タミネーションを避けるために 1-2 mm 削りとられた。分割した試料の番号と量,研究対象と試料の送 付先を以下に示す.



Fig. 4. Scheme of subdivision of the unit core for sampling for various scientific researches. L1 is for geochemical samples. L2 for the archive, Rx for the X-ray photograph, and R1-2 for sedimentological and micropaleontological samples.

| 試料<br>番号 | 間隔                | 研究対象                                                  | 研 究 者<br>(試料送付先) |
|----------|-------------------|-------------------------------------------------------|------------------|
| L 1      | 0 — 5 cm          | C 同位体, C / N 比                                        | 中井信之<br>(名古屋大学)  |
|          | 5 — 10 <b>cm</b>  | 保存(85H - 1につい<br>ては有機地球化学)                            | 小椋和子<br>(都立大学)   |
|          | 10-15 <b>cm</b>   | 保存                                                    |                  |
|          | 15 — 20 <b>cm</b> | 保存                                                    |                  |
| L 2      | 0 — 5 cm          | C/S比,S分析                                              | 松本英二<br>(地質調査所)  |
|          | 5 - 10cm          | 保存                                                    |                  |
|          | 10-15cm           | 保存                                                    |                  |
|          | 15 — 20 <b>cm</b> | 保存                                                    |                  |
| RX       | 0 — 20cm          | 軟X線による堆積構造<br>の解析試料.透明プラ<br>スチックケース<br>(5×20×1cm)に採取. | 大塚謙一<br>(静岡大学)   |
| R 1      | 0 — 5 cm          | 有孔虫                                                   |                  |
|          |                   | 介形虫                                                   | 池谷仙之<br>(静岡大学)   |
|          |                   | 軟体動物                                                  | 松島義章<br>(神奈川県博)  |

| R 2 a | 0 — 1 cm      | 珪藻         | 阿久津浩<br>(小山南高)<br>鹿島 薫<br>(東京大学) |
|-------|---------------|------------|----------------------------------|
| R 2 b | 0 — 1 cm      | 渦べん毛藻      | 松岡数充<br>(長崎大学)                   |
| R 2 c | 0 — 1 cm      | 花粉         | 松下まり子<br>(神戸大学)                  |
| R 2 d | 1 5 <b>сы</b> | 粒度分析       | 木宮一邦<br>(静岡大学)                   |
| ВАТ   |               | 間隙水およびガス分析 | 加藤義久<br>(東海大学)                   |
|       |               |            | 石 <b>塚</b> 明男<br>(東京大学)          |
|       |               |            | 和田秀樹<br>(静岡大学)                   |

#### V. 柱状試料の記載

浜名湖本湖の3地点および庄内湖1地点から得ら れたボーリング柱状試料の全体的岩相記載は,Fig.5 のようにまとめられた。浜名湖の4地点を通じて観 察された鍵層となる火山灰は,Ah(鬼界-アカホヤ) のみであった。Os(大沢スコリア)とKgp(カワゴ 平パミス)は85H-1,86H-4から検出され,今後の 試料検討によっては,全地点から発見される可能性 がある.また,85H-3(44.59m)からOKI(ウルルン ー隠岐)が確認された.

詳細な岩相記載は Fig. 6(2)~(28)に示した.本 図の記載方法については, Fig. 6-(1)に示した.

#### 謝 辞

本研究は、文部省科学研究費補助金(総合研究 A) 課題番号<60300012>によって行われたものである。 東京都立大学 町田 洋教授、奈良教育大学 西田 史朗教授には、鬼界-アカホヤおよびウルルン-隠 岐火山灰の鑑定をしていただいた。

<sup>14</sup>C年代測定に関しては,名古屋大学 中井信之教 授,中村俊夫博士のデータを,コアーの記載中に添 付させていただいた.

湖上におけるボーリング作業,ボーリングコアー の分割にあたっては,阿久津浩(静大理・現在栃木 県立小山南高校),阿部泰行(静大),鹿島薫(東大) の各氏にご協力をいただいた。また,ボーリング作 業中は,東京大学農学部浜名湖水産実験所の施設を 利用させていただいた。このほか総合研究の分担者 各位の御協力を頂いた。

静岡大学鮫島輝彦,岡田博有教授には本稿を査読 していただいた.以上の方々に心より感謝する.

文献 IKEYA, N. and T. HANDA (1972), Surface sediments in

Hamana Lake, the Pacific coast of Central Japan. *Rep. Fac. Sci. Shizuoka Univ.* 7, 129–148.

建設省国土地理院(1981)海底地質調査における音波散乱 現象の検討.国土地理院技術資料.**D**-1, No.115, 127 pp.

太田陽子(1983), 掘削法による完新世海成段丘の形成過 程に関する研究.昭和57年度科学研究費補助金(総合研 究 A)研究成果報告書. 87 pp.



Fig. 5. Summary of the stratigraphic correlation of the cored sediments in Hamana Lake.

#### 池谷仙之・和田秀樹・大森真秀



Fig. 6(1) Key to symbols used on L. Hamana lithologic core descriptions summary forms.

76



Fig. 6(2) Lithologic description of L. Hamana boring core 85H-1 (0.00m-6.00m): \* 1-1(1.49-2. 90m) Massive greenish grey silt. Many fragmental phytoclasts. H<sub>2</sub>S smell. \* 1-2(2.90-4.10m) Massive grey silt. Many fibrous phytoclasts. H<sub>2</sub>S smell. \* 1-3(4.41-5.30m) Grey silt, occasionally yellowish grey. Many fibrous phytoclasts. H<sub>2</sub>S smell. \* 1-4(5.31-6.20m) Grey silt, occasionally brownish grey. Many fragmental phytoclasts.



Fig. 6(3) Lithologic description of L. Hamana boring core 85H-1 (6.00m-12.00m): \* 1-5(6.38-8. 09m) Grey silt, occasionally including brownish and light grey silt layers (0.2-2 mm in thickness) with lamination. Many fine phytoclasts. \* 1-6(8.20-9.90m) Grey silt, including black and light grey layers (1-3 mm in thickness) with lamination. Scattered with fragmental phytoclasts. \* 1-7(10.00-11.41m) Brownish grey, occasionally with dark and light grey lamination. Fragmental phytoclasts occasionally found. \* 1-8(11.41-12.60m) Brownish grey silt, occasionally with light grey and brown lamination.



Fig. 6(4) Lithologic description of L. Hamana boring core **85H-1 (12.00m-18.00m)**: \* 1-9(12.66-14. 24m) Grey silt, occasionally with brown, light grey and black lamination. Fragmental phytoclasts occasionally contained. \* 1-10(14.26-15.80m) Massive grey silt, occasionally slightly sandy silt. Shell fragments frequently contained. \* 1-11(15.80-16.20m) Grey silt, contaixing sandstone pebbles( $\phi$ 0.5-2.0cm). Many shell fragments of gastropoda and pelecypoda contained.



Fig. 6(5) Lithologic description of L. Hamana boring core 85H-1B (0.00m-6.00m): \* 1B-1 (0.32-1. 22m) Dark green greenish grey silt, occasionally with black and light grey lamination. Scattered with shell fragment &. H<sub>2</sub>S smell.



Fig. 6(6) Lithologic description of L. Hamana boring core 85H-2 (0.00m-6.00m): \* 2-1 (0.32-0. 62m) Dark grey massive silt, with dark grey fine sand layers. Phytoclasts and shell fragments occasionally contained. H<sub>2</sub>S smell. \* 2-2 (2.00-2.45m) Massive dark grey silt, with fine qrained sandy patches. Scattered with fragmental phytoclasts and shell fragments. H<sub>2</sub>S smell. \* 2-3 (2. 45-3.20m) Massive dark grey silt. Many shell fragments contained. H<sub>2</sub>S smell. \* 2-4 (3.20-3.75m) Dark grey massive sandy silt. Many fibrous phytoclasts and shell fragments found. H<sub>2</sub>S smell. \* 2-5 (5.36-5.76m) Greenish black fine sand. Scattered with wood chips.



Fig. 6(7) Lithologic description of L. Hamana boring core **85H-2 (6.00m-12.00m):** \* 2-6 (7.01-7. 65m) Massive silt. Shell fragments occasionally found.

.



浜名湖のボーリング柱状試料について

Fig. 6(8) Lithologic description of L. Hamana boring core 85H-2 (12.00m-18.00m).



Fig. 6(9) Lithologic description of L. Hamana boring core **85H-2 (18.00m-24.00m)**: **\*** 2-7 (22.30-22. 74m) Alternation of dark greenish grey fine sand and tuffaceous medium sand, with silt layers (1-2cm in thickness), 22.53-22.65m subbottom. Scattered with fragmental phytoclasts.



Fig. 6(10) Lithologic description of L. Hamana boring core **85H-2 (24.00m-30.00m)**: **\*** 2-8 (28.62-29.07m) Alternation of fine sand layers (1-2.5cm in thickness) and thinner laminated silt layers (2-10cm in thickness).



Fig. 6(11) Lithologic description of L. Hamana boring core 85H-2 (30.00m-36.00m): \* 2-9(30.29-30.94m) Dark greenish grey silt, occasionally with light olive grey patches. Upper half of silt consists of thin lamination. \* 2-10 (33.00-33.18m) Massive greenish grey silt. Shell fragments concentrated in the uppermost part. \* 2-11 (33.89-35.80m) Massive dark greenish grey silt. Shell fragments contained.





Fig. 6(12) Lithologic description of L. Hamana boring core 85H-2 (36.00m-42.00m): \* 2-12 (36.89-38.00m) Massive dark greenish silt. Many shell fragments contained. \* 2-13 (38.00-38.25m) Dark greenish grey silt, occasionally with fine sand layers (1-3cm in thickness). Fragmental phytoclasts. \* 2-14 (38.37-38.85m) Dark greenish grey silt, with many fine sand layers (2-10cm in thickness). Phytoclasts and shell fragments found occasionally.



Fig. 6(13) Lithologic description of L. Hamana boring core 85H-3 (0.00m-6.00m): \* 3-1 (0.00-0. 30m) Dark greenish grey silt. Many shells (pelecypoda) at the depth of 0.00-0.20m are found.
\* 3-2 (0.30-0.50m) Dark grey fine sand. Irregular boundary of silt and sand layers is found at the depth of 0.30m. \* 3-3 (4.80-5.60m) Dark grey fine sand. Fragmental phytoclasts (5.07m subbottom) and dense phytoclasts layers (5.12-5.19m subbottom).



Fig. 6(14) Lithologic description of L.Hamana boring core 85H-3 (6.00m-12.00m).



Fig. 6(15) Lithologic description of L. Hamana boring core 85H-3 (12.00m-18.00m): \* 3-4 (12.80-12.97m) Dark greenish grey fine sand. Carbonized fragmental phytoclasts. \* 3-5 (13.55-14.32m) Dark greenish grey fine sand. Scattered with fragmental phytoclasts. \* 3-6 (14.72-16.12m) Dark greenish grey fine micaceous sand. Fragmental phytoclasts contained. \* 3-7 (16.90-17. 11m) Dark greenish grey fine micaceous sand with silty layers (0.5-1cm in thickness) in the lower part.



Fig. 6(16) Lithologic description of L. Hamana boring core 85H-3 (18.00m-24.00m): \* 3-8 (19.55-20.10m) Dark greenish grey fine sand with clay clasts at the depths of 19.80m and 20.02m. Alternation of silt and fine sand layers in the lower part. Shell fragments are detected in the upper most part. \* 3-9 (20.85-24.00m) Dark greenish grey fine sand with thinner silty layers (less than 1cm in thickness). Contain fragmental phytoclasts in depth of 23.08m.



Fig. 6(17) Lithologic description of L. Hamana boring core 85H-3 (24.00m-30.00m): \* 3-10 (24.00-25.70m) Greenish black fine sand with thinner silty layers (less than 1cm in thickness) in the upper and lower parts. Fibrous phytoclasts are found at the depth of 24.09m and 25.04m. \* 3-11 (25. 75-27.67m) Dark greenish grey fine sand with thinner silt layers (1cm in thickness) in the uppermost and lowermost parts. \* 3-12 (27.67-28.19m) Dark greenish grey massive silt. \* 3-13 (29.60-30.69m) Medium bluish grey sandy silt occasionally with dark greenish grey fine sand layers (2-6cm in thickness) and light bluish grey silt layers (less than 1cm in thickness). Fragmental phytoclasts in the upper half.





Fig. 6(18) Lithologic description of L. Hamana boring core 85H-3 (30.00m-36.00m): \* 3-14 (30. 70-31.67m) Alternation of medium bluish grey sandy silt (4-7cm in thickness), dark greenish grey fine sand (3-10cm in thickness) and massive silt (5cm in thickness). \* 3-15 (34.80-35.30m) Dark greenish grey massive silt with dark yellowish blue silt layers or patches (1-2cm in thickness) at 34.90, 34.95, 35.03, 35.12, and 35.74m subbotom.



Fig. 6(19) Lithologic description of L. Hamana boring core 85H-3 (36.00m-42.00m): \* 3-16 (36.84-37.68m) Dark greenish grey massive silt occasionally with thinner fine sand layers (less than 1cm in thickness) in the upper half. Scattered with fine shell fragments. \* 3-17 (40.10-42.34m) Dark greenish grey massive silt occasionally with olive grey silt layers or patches (1-3mm in thickness). Scattered with fine shell fragments.

94





Fig. 6(20) Lithologic description of L. Hamana boring core 85H-3 (42.00m-48.00m): \* 3-18 (42.40-43.47m) Greenish black massive silt with olive grey silt patch at 42.95-43.00m subbottom. Fine shell fragments layer at the depth of 42.75 and 43.05m are contained. \* 3-19 (45.60-46.75m) Dark greenish massive silt. Many shell fragments contained. \* 3-20 (47.80-48.72m) Brownish black silt with olive black thinner silt layers (less than 2mm in thickness) and silt clast in the uppermost part. Scattered with carbonized fine fragmental phytoclasts and slightly large plant fragments.

池谷仙之・和田秀樹・大森真秀



Fig. 6(21) Lithologic description of L. Hamana boring core 85H-3 (48.00m-54.00m).

96



Fig. 6(22) Lithologic description of L. Hamana boring core 85H-3B (0.00m-6.00m): \* 3B-1 (0.00-0.70m) Dark grey medium to fine massive sand. Many shell fragments are found in the lowermost part. \* 3B-2 (0.80-5.40m) Greenish black fine massive sand, with greenish black silty sand layer at the depth of 2.43-2.60m. Many shell fragments are found at depth of 0.82-0.92, 1.10-1.32m and 1.80-1.90m subbottom. Phytoclasts in the depth of 1.45m.



Fig. 6(23) Lithologic description of L. Hamana boring core **85H-3B (6.00m-12.00m): \*3B-3 (8.70-**9.37m) Dark greenish grey medium sand.



Fig. 6(24) Lithologic description of L. Hamana boring core 86H-4 (0.00m-6.00m): \* 4-1(4.00-5. 63m) Greenish black massive silt. Scattered with fine phytoclasts, shell fragments and pebbles.
\* 4-2 (5.66-7.06m) Greyish olive green silt, occasionally intercalated by black and brown laminae (less than 1mm in thickness). Fine shell fragments, fragmental phytoclasts pebbles and fish bone are contained.



Fig. 6(25) Lithologic description of L. Hamana boring core 86H-4 (6.00m-12.00m): \* 4-3 (7.06-9. 07m) Olive black silt, intercalated by many brownish grey laminae (less than 2mm in thickness) in the lower half. \* 4-4 (7.75-8.73m) Dark greenish grey silt, intercalated by brownish laminae (less than 2mm in thickness). Burrows are found at the depth of 8.12-8.22 and 8.26-8.29. Many shell fragments scattered in the whole core. \* 4-5 (8.73-8.87m) Olive black silt, intercalated rhythmically by light grey laminae (3mm in thickness). Many shell fragments found. \* 4-5 (8.73-8.87m) Olive black silt, intercalated rhythmically by light grey laminae (3mm in thickness). Many shell fragments found. \* 4-6 (9.00-10.97m) Dark greenish grey massive silt. Abundant fine shell fragments and phytoclasts contained. (continued)



Fig. 6(26) Lithologic description of L. Hamana boring core 86H-4 (12.00m-18.00m): \* 4-9 (16.20-18.40m) Dark greenish grey massive silt, intercalated by weak thinner laminae (less than 2mm in thickness). A burrow is found at the depth of 18.00-18.08m. Many shell fragments and fine phytoclasts contained.

(continued) \* 4-7 (10.97-11.70m) Dark greyish olive shilt, occasionally intercalated by brownish thinner laminae (less than 2mm in thickness). Scattered with fragmental phytoclasts. \* 4-8 (11.70-16.00m) Greyish olive green silt, intercalated by olive grey thinner laminae (less than 2 mm in thickness) in the upper and lower parts. Scattered with fine phytoclasts.



Fig. 6(27) Lithologic description of L. Hamana boring core 86H-4 (18.00m-24.00m): \* 4-10 (18.70-19.75m) Greenish black massive silt with light grey silty sand and fine sand patches. Many shell (gastropoda), fine phytoclasts and concretions of silt contained. Burrows are found at the depth of 19.75m. \* 4-11 (20.45-22.38m) Dark greenish fine massive sand. Many shell fragments, spine of echinoderms, pebbles, and wood chips. A burrow is found at the depth of 20.05-20.15m. \* 4-12 (22.70-23.36m) Brownish black fine sand with many burrows. Wood chips and fine phytoclasts contained. \* 4-13 (23.73-23.96m) Brownish black sandy silt with coarse sand and pebbles.

102





Fig. 6(28) Lithologic description of L. Hamana boring core 86H-4B (0.00m-6.00m).

Plate 1. Drill operations on Hamana Lake and the cores recovered.

- 1-1: Working platform on the 85H-3 station (5m in water depth). Four iron legs of 20 meters in length are adjustable to water depths and set up on the lake bottom. The platform can be towed, as it is to the working station as floated.
- 1-2: Working platform set up by supporting logs on the 86H-4 station (3m in water depth).
- 1-3: Lowering the BAT system (water sampler) in order to collect interstitial water at the 85H-2 station (5m in water depth). Water sampler was set at the bottom of the drillhole. Interstitial water percolates into a glass tube through a ceramic filter over one night.
- 1-4: Sampling by the "Bloom core sampler" ( $\phi 23 \text{ mm}$ ) and the mechanical boring at the 86H-4 station (3m in water depth).
- 1-5: Columnar samples recovered by the "triple tube" and "thin wall" samplers from the Hamana Lake. Both sampling tubes devised with polybinyl chloride and blass, respectively, were filled with sediments.
- 1-6: Cored sediments were recovered from the blass tube (thin wall sampler) by a "piston-type squeezing apparatus". A core containing sediments was cut into 20 cm sections for the sake of various scientific research works.





Plate 2. Selected volcanic tuff layers found in 85H-1. 2. 3. and 86H-4 cores.

- 2-1: Os (Osawa scoria) (6.52m subbottom. 7 mm in thickness) and Kgp (Kawago-daira pumice) (6.57m subbottom. 3 mm in thickness) in the core 85H-1.
- 2-2: Os and Kgp tephras found in the core 85H-1.
- 2-3: Os (4.86m subbottom. 3 mm in thickness) and Kgp (4.95m subbottom. 2 mm in thickness) in the core 86H-4.
- 2-4: Oki (Urleung-Oki tephra) (44.58m subbottom. 30 mm in thickness) in the core 85H-3.
- 2-5: Ah (Kikai-Akahoya tephra) (8.98m subbottom. 10 mm in thickness) in the core 85II-2.
- 2-6: Ah (14.25m subbottom. 15 mm in thickness) in the core 85H-1.
- 2-7: Ah (15.75m subbottom. 10 mm in thickness) in the core 86H-4.





9.09m

44.70m

浜名湖のボーリング柱状試料について

107

15.80m

14.40m

- Plate 3. Photographs of sedimentary structure and fossils observed in the cores 85H-1 and 85H-2.
  - 3-1: Brownish dark grey and light grey lamination in the grey silt (85H-1.  $6.70 \sim 6.90$ m subbottom).
  - 3-2: Black and light grey lamination in the grey silt (85H-1.  $8.20 \sim 8.40m$  subbottom).
  - 3-3: Phytoclasts (dark layers and clods) and shell fragments (white spots) found in the silty sand (85H-2.  $4.07 \sim 4.19m$  subbottom).
- 3-4: Phytoclasts (dark layers and clods) and shell fragments (white spots) found in the fine silt (85H-2. 7.17~7.29m subbottom).
  - 3-5: Silt layers in the fine sand containing many shell fragments (white spots) (85H-2, 12.50m subbottom).
  - 3-6: Alternation of silt and sand (85H-2. 25.97~26.08m subbottom). Many shell fragments (white spots) are found in the sand layers.

Plate 3



Plate 4. Photographs of sedimentary structures and fossils in the core 85H-3.

- 4-1: Dense phytoclasts (dark parts) found in the fine sand  $(5.10 \sim 5.20 \text{m subbottom})$ .
- 4-2: Thinner silt layers (3 mm in thickness) in the fine sand (21.17~21.90m subbottom).
- 4-3: Wavy silt layers in the fine sand  $(25.77 \sim 25.90 \text{ m subbottom})$ .
- 4-4: Alternation of silt and sand layers (33.08~33.20m subbottom).
- 4-5: Sand patches containing shell fragments in the sandy silt (36.21~36.33m subbottom).
- 4-6: Silt clods and shell fragments (white spots) in the massive silt ( $38.44 \sim 38.57$ m subbottom).

