		- 書式変更:書式なし、行間:2行
1	Mathematical Equivalence of Geometric Mean Fitness with	書式変更: 段落番号:現在の位置から 開始
2	Probabilistic Optimization under Environmental UncertaintyNatural	書式変更: フォント : (英) Times New Roman, 14 pt, 太字
3	Selection under Environmental Uncertainty: a Canonical Form of	
4	Probabilistic Optimization	書式変更: フォント:14 pt
5	The evolution of prime number intervals in periodical cicades	書式変更: フォント:16 pt
0	The evolution of prime number intervals in periodical electrons, 2	
6		
7	•-	書式変更: 書式なし、行間: 2 行, タ ブ位置: -5.39 字(なし) + -2.7 字 + 0 字 + 2.7 字 + 5.39 字 + 8.09 字 + 10.79 字 + 13.49 字 + 16.18 字 +
8		$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
9	Jin Yoshimura ^{1,2,3} *:*_ Yumi Tanaka ⁴ , Tatsuya Togashi ²² , Shigehide Iwata ¹ and Kei-ichi	春式変更: 左揃え, 行間 : 2 行 春式変更: フォントの色 : 自動
10	Tainaka ¹ Yumi Tanaka ⁴ , and Kei ichi Tainaka ⁴	春式変更: 上付き
		書式変更: 行間 : 2 行
11	Jin Yoshimura ^{1, 2, 3} * [#] , Taro Hayashi ⁴ *, Kei-ichi Tainaka ¹ <u>a</u> And Chris Simon ⁴ —	
12	* Equally contributed.	
13	⁴ Department of Systems Engineering, Shizuoka University, Hamamatsu 432-8561, Japan.	
14	² Marine Biosystems Research Center, Chiba University, Uchiura, Amatsu Kominato, Chiba-	
15	299-5502, Japan	
16	³ Department of Environmental and Forest Biology, State University of New York College of	
17	Environmental Science and Forestry, Syracuse, New York 13210 USA	
18	⁴ Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT-	

19	06269-3043-USA	
20	# To whom correspondences should be addressed at Dept. Systems Engineering, Shizuoka-	
21	University, 3-5-1 Johoku, Hamamatsu 432-8561, Japan. E-mail: jin@sys.eng.shizuoka.ac.jp	
22		書式変更: 左揃え,行間: 2 行, タブ位 置: -5.39 字, 左揃え + -2.7 字, 左 揃え + 0 字, 左揃え + 2.7 字, 左揃え + 5.39 字, 左揃え + 2.7 字, 左揃え
23	¹ Department of Systems Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu	+ 10.79 \pm , \underline{E} \underline{m} $\hat{\lambda}$ + 13.49 \pm , \underline{E} \underline{m} $\hat{\lambda}$ + 16.18 \pm , \underline{E} \underline{m} $\hat{\lambda}$ + 18.88 \pm , \underline{E} \underline{m} $\hat{\lambda}$ + 21.58 \pm , \underline{E} \underline{m} $\hat{\lambda}$ + 24.27 \pm , \underline{E} \underline{m} $\hat{\lambda}$ + 26.97 \pm , \underline{E} \underline{m} $\hat{\lambda}$ + 24.27
24	<u>432-8561, Japan</u>	29.67 \hat{F} , \underline{L} \hat{m} , \hat{z} + 32.36 \hat{F} , \underline{L} \hat{m} , \hat{z} + 35.06 \hat{F} , \underline{L} \hat{m} , \hat{z} + 37.76 \hat{F} , \underline{L} \hat{m} , \hat{z} + 40.46 \hat{F} , \underline{L} \hat{m} , \hat{z} + 43.15 \hat{F} , \underline{L}
25	²² Marine Biosystems Research Center, Chiba University, 1 Uchiura, Kamogawa, Chiba 299-5502	(書式変更: 左揃え, 行間 : 2 行
26	Japan	
27	³ Department of Environmental and Forest Biology, State University of New York College of	
28	Environmental Science and Forestry, Syracuse, New York 13210, USA	
29	⁴ School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-honcho,	
30	Himeji 670-0092, Japan	
31		
32	*Corresponding author: Jin Yoshimura (jin@sys.eng.shizuoka.ac.jp)	
33	Other authors: Yumi Tanaka (nd08x012@stshse.u-hyogo.ac.jp)	
34	Tatsuya Togashi (togashi@faculty.chiba-u.jp)	
35	Shigehide Iwata (f5645023@ipc.shizuoka.ac.jp)	書式変更: フォントの色:自動 書式変更: 英語(米国)
36	Kei-ichi Tainaka (tainaka@sys.eng.shizuoka.ac.in)	

42	Abstract						
43	Natural selection can be considered as optimising fitness. Because 'mean' fitness is maximized with	1	書式変	更: フ	オントの	D色:自	動
44	respect to the genotypes of carriers, traditional theory can be viewed as a statistical theory of natural						
45	selection. Probabilistic optimisation is a way to incorporate such uncertainty into optimality analyses						
46	of natural selection, where environmental uncertainty is expressed as a probability distribution. Its						
47	canonical form is a weighted average of fitness with respect to a given probabilistic distribution.						
48	This concept should be applicable to three different levels of uncertainty: (1) behavioural variations						
49	of an individual, (2) individual variations within a generation, and (3) temporal change over						
50	generations (geometric mean fitness). The former two levels are straightforward with many						
51	empirical evidences, but the last category, the geometric mean fitness, has not well understood. Here						
52	we studied the geometric mean fitness by taking its logarithm, where the log growth rates become						
53	the fitness value. By further transforming the log growth rates, the fitness of log growth rates						
54	becomes its linear function. Therefore, a simple average of these distributions becomes the fitness						
55	measure across generations and consideration of variance discount or the entire probability						
56	distributions becomes unnecessary. We discuss some characteristic features of probabilistic						
57	optimization in general. Our view is considered a probabilistic view of natural selection, in contrast						
58	with the We try to understand what can be viewed as fitness under environmental uncertainty, and	1	書式変	更 :フ	オントの)色: 自	動
59	how and when does the solution change from those expected from the traditional statistical view of						

60	natural selection. Environmental uncertainty can be expressed as a probability distribution.		
61	Probabilistic optimisation is a way to incorporate such uncertainty into optimality analyses of natural		
62	selection. A canonical form of probabilistic optimization is a weighted average of fitness with		
63	respect to a given probabilistic distribution. This concept can be applicable to three different levels		
64	of uncertainty: (1) behavioural variations of an individual, (2) individual variations within a		
65	generation, and (3) temporal change over generations (geometric mean fitness). Discrepancy		
66	between genetic and phenotypic optima often tends to increase with the variance of a probability		
67	distribution that is a measure of the degree of uncertainty. For geometric mean fitness, if the		
68	probabilistic distribution of generational fitness follows lognormal distribution, its average becomes		
69	<u>a measure of fitness, irrespective of its variance.</u>); (書式変更: フォントの色:自動 書式変更: フォント:太字,フォント の色:自動
70			
71	Keywords: fitness criteria, weighted average, variableunpredictable environments, geometric mean	/	書式変更: フォント : 10.5 pt, 英語 国) 書式変更: フォント : 10.5 pt
72	fitness, probabilistic optimization ty distribution		書式変更: フォント: 10.5 pt, フォン の色: 自動
73	Background: Two hypotheses compete to explain the evolution of prime number *		春式変更: フォント : 10.5 pt 春式変更: フォント : 10.5 pt, フォン の色 : 白動
74	reproductive intervals (life cycles) among periodical cicadas: the <u>1)</u> anti-predatory		書式変更: フォント: 10.5 pt
75	hypothesis and 2) hybridization one. The anti-predatory hypothesis claims that		(書式変更:本文) (書式変更:フォント・大字)
76	prime number intervals help to protect cicadas from being overwhelmed by their		THAX: JAVE AT
77	produces. The hybridization hypothesis claims that prime numbers greatly reduce.		
78	the chance of hybridization among cicade broads		
70	Cool: To test the hybridization hypothesis using a simulation model	1	書式変更: フォント:太字
19	Goal, to test the hyperturbulation hypernesis using it simulation model.		書式変更: フォント:太字
80	Models: A deterministic, discrete population model with three parameters: larval	10	

書式変更: 国)	フォント	:	10.5 pt, 英語(米
書式変更:	フォント	:	10.5 pt
書式変更: の色:自動	フォント 動	:	10.5 pt, フォント
書式変更:	フォント	:	10.5 pt
書式変更: の色:自動	フォント 動	:	10.5 pt, フォント
書式変更:	フォント	:	10.5 pt
書式変更:	本文		
書式変更:	フォント	:	太字

1	書式変更:	フォント	:	太字
-{	書式変更:	フォント	:	太字

81	survival per year; clutch size; emergence success. Reproductive intervals from ten-				
82	years to twenty years compete for survival in the simulations. The model makes-				
83	threetwo key assumptions: a Mendelian genetic system, and random mating among				
84	sympatric or parapatric broods of different life cycle lengths, and integer				
85	population sizes. In addition, longer-interval phenotypes have larger broods but-				
86	suffer higher total mortality than shorter-interval broods. We keep track of all	1	書式変更: 太字	フォント : Time	es New
87	population sizes of all pure intervals and hybrids with birth year. The life-cycle		書式変更:	フォント: 太字	:
88	length of hybrids is assumed to be Mendelian inheritance with shorter-cycle-	1	書式変更: 太字	フォント : Time	es New
89	dominance.		書式変更:	フォント:太字	:
90	Results: Non-prime number reproductive intervals rapidly disappear. Then the	1	書式変更:	フォント:太字	:
91	19-year phenotype is gradually eliminated by the 13- and 17-year phenotypes. The				
92	13- and 17-year phenotypes may coexist. The selection of 13- or 17-year intervals-				
93	happens only when populations are at the verge of extinction.	1	書式変更:	フォント:(日)	ΜS
94	Keywords: Periodical cicadas, prime number intervals, 13 /17 year, co-emergence,	1	書式変更:	フォント: 太字	:
95	hybridization, extinction threshold, frequency dependence, discrete population model				
96		·	書式変更:	左揃え、行間:	2 行
90					

1	書式変更: 太字	フォント	:	Times	New	Roman,
-(書式変更:	フォント	:	太字		
1	書式変更: 太字	フォント	:	Times	New	Roman,
-(書式変更:	フォント	:	太字		
{	書式変更:	フォント	:	太字		

. {	書式変更:	フォント	:	(日)	MS	明朝	
. 1	書式変更:	フォント	:	太字			

97	1. INTRODUCTION	et.		F
98	Periodical cicadas are among the most remarkable of insects, known for their long,			F:
99	perfectly synchronized life cycles and the explosive emergence of the adults (Marlatt, 1907;			
100	Alexander and Moore, 1962; Dybas and Davis, 1962; Lloyd and Dybas, 1966; Simon 1988; Williams and Simon-			
101	1995). Two types of life cycle are known, 17_ and 13_ year, both prime numbers. The			
102	emergence of periodical_cicadas is perfectly synchronized in each locality; no little			
103	emergence is seen except emergence years (occasional stragglers are seen one or four-		_	
104	years early or late Marshall 2001. The periodical cicadas also show very strong site-	11	1 =	1
105	tenacity (Williams and Simon 1995) and a strong tendency for aggregation (Simon et al. 1981).		20	0
106	INTRODUCTION	ii H	hi	10 18
107	Natural selection is often viewed as a statistical process, maximizing the expected or mean		ge di	e is
108	reproductive success of individuals carrying a certain gene or genotype (Darwin, 1859; Fisher, 1930).	1 100 11 1 100 11 1 1001 11 1 1001 11 1 1001 11	E	n
109	The expected reproductive success is then called 'mean' fitness. In this sense, we can refer to	1 WH 11 1 WH 11 1 WH 11 1 WH 11 1 WH 11		
110	standard theory as a 'statistical' theory of natural selection. In order to analyze the optimality of a			
111	phenotypic trait based on mean fitness, most traditional theories of natural selection almost			
112	invariably assume constant and predictable environments.		「書」	
113				
114	However, for almost all organisms in the wild, environments are variable and unpredictable			
115	(Yoshimura and Clark, 1993). Both abiotic components of environments, such as weather, and biotic.			
116	components, such as the locations of competitors and predators are always unpredictable to the			
117	organisms to some extent. In this sense, environmental uncertainty is an unavoidable factor for all			

書式変更:フォント:太字

書式変更:フォント:(日)ゥ **書式変更:**本文

コメント [CS1]: Marshall, D. C. 2001. Periodical cicada (Homoptera: Cicadidae) life cycle variations, the historical emergence record, and the geographic stability of brood distributions. Annals of the Entomological Society of America. Ann. Entomol. Soc. Amer. 94: 386-399.

書式変更:	フォント:	太字
書式変更:	フォント:	(日) ウ
書式変更:	フォント:	Times New Roman
書式変更:	フォント:	(日) ゥ
書式変更:	フォント:	Times New Roman
書式変更:	フォント:	(日) ゥ
書式変更:	フォント:	Times New Roman
書式変更:	左揃え,行	間: 2 行

118	living systems if they are to persist and evolve through time. Accordingly the statistical theory of
119	natural selection needs to incorporate factors and constraints associated with optimization processes
120	(Parker and Maynard Smith, 1990; Williams, 1992). Here environmental uncertainty is one of the
121	most influential and common factors affecting natural selection, as it changes the statistical
122	(mean-fitness) concepts of optimisation (Yoshimura and Shields, 1987; Frank and Slatkin, 1989;
123	Cohen, 1993). However, probabilistic/stochastic modelstheories are widely scattered in various
124	fields of ecology and evolution without any generalisation. Many of them are not accessible to
125	empirical researchers because of mathematical difficulty and complexity that is and technical details
126	inherent in each specific model. We should also note that the problem of uncertainty is extremely
127	well documented in foraging behaviour both from the theoretical and empirical standpoints (for
128	example, see Stephens and Krebs, 1986; Real and Caraco, 1986). However, the generalization and
129	conceptual developments of the effects of uncertainty in all levels are still lacking.
130	
131	In order to understand the basic properties of uncertainty, we need a probabilistic perspective for
132	natural selection, a synthetic or integrated view of the effects of uncertainty on natural selection. We
133	can classify environmental uncertainty into three categories based on the level of integration: (1)
134	short-term temporal change experienced by an individual (individual level within a generation), (2)
135	phenotypic variation among individuals (population level within a generation) and (3) population

136	fluctuation across generations due to long-term environmental changes (cross-generation level) First-
137	we describe three major categories of uncertainty: (1) the variable daily experience of an individual,
138	(2) variation among individuals and (3) long term fluctuations across generations (Yoshimura and
139	Shields, 1992; Yoshimura, 1995). It is important to know how these uncertainties can be
140	incorporated into optimality analyses of natural selection. The mathematical Next I will explain the
141	principles of probabilistic optimization in these categories are -all in how uncertainty can be
142	incorporated into optimality analyses. A canonical form of probabilistic optimization is a some form
143	ofsimple weighted average with respect to a given probabilistic distribution. It can be considered a
144	canonical form of probabilistic optimization under uncertainty (Yoshimura 1995). The fitness
145	measure across generations (the third category) is the geometric mean fitness (or the expected
146	multiplicative growth rate) (Lewontin and Cohen, 1969). Certainly, by taking the logarithm, the
147	geometric mean fitness becomes a weighted average of the population growth rates (Yoshimura and
148	Clark, 1991). However, the exact mathematical equivalence of geometric mean fitness is not yet well
149	understood.
150	
151	This short paper deals with the mathematical nature of geometric mean fitness and its mathematical
152	equivalence with other forms of probabilistic optimization. Here, we first explain in the section of
153	theoretical rationale, the weighted average used for the first two categories of uncertainty at the level

書式変更:フォントの色:赤

154	of an individual and a population in a single generation. We then show that the geometric mean	
155	fitness can be transformed a simple weighted average of the logarithm of multiplicative growth rates.	
156	We further shows that the logarithm of the growth rates becomes an exact value of fitness. The	
157	variance discount is not necessary in this logarithmic form of geometric mean fitness. This formula-	
158	is conceptually true for any type of optimization under uncertainty. Next I describe three major-	
159	categories of uncertainty: (1) the variable daily experience of an individual, (2) variation among	
160	individuals and (3) long term fluctuations across generations. Lastly I discuss briefly the	
161	characteristics of the effects of uncertainty on natural selection.	
162	•	書式変更: 行間 : 2 行)
163		
164	2. THE THEORETICAL RATIONALE	書式変更: フォント:12 pt
165	2.1 UNCERTAINTY AT INDIVIDUAL LEVEL	
166	An individual experiences temporal changes in environments. An individual lives in daily changing	
167	environments, unstable and unpredictable in many aspects. How an individual behaves, grows and	
168	reproduces in such changing environments has often been dealt as a problem of optimisation in	
169	behavioral and physiological ecology (Krebs and Davies, 1993; Sibly and Calow, 1986; Mangel and	
170	Clark, 1988; Stephens and Krebs, 1986; Real and Caraco, 1986). Here the underlying principle can	
171	be illustrated as follows: individual animal forages for varying, and thus unpredictable amounts of	

172	food daily. Daily food amounts are then expressed as a probability distribution. The overall fitness of	
173	an individual associated with a given phenotype is a weighted sum of all the fitnesses of daily food	
174	intake during its life time (Yoshimura and Shields, 1992; Yoshimura, 1995). The optimum based on	
175	the overall fitness is a probabilistic optimum that is different from the fitness at the average food	
176	intake, a deterministic optimum.	
177		
178	We first consider the fitness of an individual associated with a phenotype y. Here the notation is	書式変更: フォント:斜体
179	listed in Table 1. The fitness $w_i(y)$ of an individual associated with a phenotype y is a weighted sum	
180	of all possible environmental fitnesses $f_i(x,y)$ with the distribution of the environments $h_i(x)$, shown	
181	in the equation (1) of Table 1.	
182		
183	For an illustrative example, we consider daily uncertainty in foraging animals (Fig. 1) (Yoshimura,	
184	<u>1995</u>). Let <i>x</i> be daily food amounts as an environmental factor, where $x = 0$ in the worst environment	
185	and $x = 100$ in the best environment, and $f_i(x,y)$ be the fitness of an individual with a phenotype y in	
186	environment x. Naturally $f_{x}(x,y)$ is an increasing function of x (Fig. 1a). The difference in phenotype	
187	y indicates what kind of food environments an individual is adapted for: if $y = 10$, an individual is	
188	adapted for bad environments, i.e., fitness is fairly similar for bad and good environments (10 <x<50< td=""><td></td></x<50<>	
189	and x>50). However, if $y = 50$, an individual is adapted for good environments, i.e., fitness is low	

190	(zero) for bad environments (x<50) and extremely high for good environments (x>>50). The fitness
191	function $f_{y}(x,y)$ for phenotypes y in a given environment x is a function with a peak (Fig. 1b).
192	
193	Suppose that the probability distribution of daily food abundance $h_i(x)$ is approximated by a
194	distribution with mean $E(x) = 50$ (Fig. 1c). Then the fitness $w_j(y)$ of an individual associated with a
195	phenotype y is an weighted sum of all possible environmental fitnesses $f_{i}(x,y)$ by their distribution
196	<u>$h_{\underline{p}}(x)$ (equation (1) of Table 1). The probabilistic optimum $Y_{\underline{p}}$ is then defined on the phenotypic.</u>
197	fitness $w_d(y)$ as: $w_d(Y_p) = \max w_d(y)$ (Fig. 1d). In contrast, the deterministic optimum Y_d is the optimal
198	phenotype in the average environment, that is $f_2(M, Y_d) = \max_{d} f_2(M, y)$, where M (=50) is the
199	expectation of x, i.e., $M = \int h_1(x) dx$ (Fig. 1d). In this case, the probabilistic optimum Y_p (=30.89) is
200	always smaller than the optimum in the average environment Y_d (=33).
201	
202	In foraging theories, the concept of risk-sensitivity has been specifically developed to deal with daily
203	uncertainty in food acquisition by animals (Caraco, 1980; Stephens and Krebs, 1986; Real and
204	Caraco, 1986). This body of theory and empirical studies reveal that animals often show sensitivity
205	to the variance and skewness of a temporal distribution of foods (Caraco et al., 1980; Caraco and
206	Chasin, 1984). This demonstrates that not only the mean, but also the entire distribution of food
207	availability is important for the evolution of animal behaviour. The expected utility theory used in

208	risk-sensitive foraging (Caraco, 1980; Real and Caraco, 1986) is a specific form of weighted average,
209	in which the fitness function is an increasing function of the amount of food. In dynamic
210	programming, in every time step of decision-making, the overall fitness of an individual is calculated
211	from the weighted average of individual fitnesses of all possible states (Mangel and Clark, 1988).
212	We should note that the risk-sensitive foraging has been empirically (in fields and laboratories)
213	demonstrated well in many animals, such as the seminal work of yellow-eyed juncos by Caraco and
214	others (Caraco et al., 1980),
215	
216	2.2 UNCERTAINTY AT POPULATION LEVEL
217	Phenotypic variation among individuals of a population is common in many traits, such as body size.
218	Such individual variation arises because environments differ among individuals. Therefore,
219	environmental uncertainty may also appear as phenotypic variation in a population. Most important
220	cases are when phenotypic variation occurs as a result of cumulative effects of past environmental
221	differences
222	
223	Here probabilistic optimization can be stated as follows (Yoshimura and Shields, 1987, 1995).
224	Actual (observed) survivorship and reproduction is determined by the phenotype of an individual for
225	a given environment. Therefore, phenotype is the criterion for realised (observed) fitness. Because of

226	this, we often compare observed mean phenotypes with optimal phenotypes as a measure of	
227	achievement of optimality (adaptation) by natural selection (Price and Waser, 1979; Roff, 1981).	
228	However, the comparison based on this (deterministic) phenotypic optimum is not valid if there is	
229	variation in phenotypes. The evolutionary criterion of fitness is the genotypes that are selected	
230	through natural selection. For a given genotype, phenotypic variation is expressed as a probability	
231	distribution. The fitness of a genotype is the weighted sum of the fitnesses of all the phenotypes	
232	associated with the genotype, the probabilistic genetic optimum. We can then compare the observed	
233	mean phenotype with this genetic optimum.	
234		
235	The mathematical expression of the fitness $w_p(z)$ of an individual associated with a genotype is	
236	shown in the equation (2) of Table 1. It is the weighted sum of all the phenotypic fitnesses $f_p(y)$	春式変更: フォント:斜体
237	multiplied by the distribution of phenotypes $h_{\underline{p}}(y, z)$ (equation (2) of Table 1). If the phenotype x is	
238	discrete, e.g., clutch size, then $w_p(z)$ becomes the summation (equation (3) of Table 1). This is the	
239	weighted average of discrete phenotypes at the population level within a generation.	
240		
241	An illustrative example is the phenotypic variation in body size (Fig. 2) (Yoshimura, 1995). Let	
242	phenotypic fitness f_p be a function of body size y, i.e., $f_p = f_p(y) = w_p(y)$, with a single peak (Fig. 2a:	
243	dotted line), and $h_p(y, z)$ be a probability distribution of body size y for a given genotype z (Fig. 2b).	

244	Suppose that genotype z controls the mean body size of a normal distribution with a constant.
245	variance (Fig. 2b: three genotypes are shown). We assume here that the mean body size can shift
246	continuously by changing genotypes. Then the fitness of the genotype $w_p(z)$ is the weighted sum of
247	all the phenotypic fitnesses $f_p(y)$ with their distribution $h_p(y, z)$ (Fig. 2a: solid line; equation (2) of
248	Table 1). Here the phenotypic optimum Y_{max} represents the trait that achieves the highest.
249	<u>reproductive success in the environment, i.e., $f(Y_{max}) = \max f(y)$. In contrast, the genotypic</u>
250	optimum Z_{max} is the trait selected by natural selection, i.e., $w_p(Z_{max}) = \max w_p(z)$. In general, the two
251	optima differ in their values. In this example, the genetic optimum Z_{max} is always smaller than
252	phenotypic optimum Y _{max} (Fig. 1a).
253	
254	The discrepancy between genetic and phenotypic optima can be illustrated as follows: Suppose that
255	2 meters is the optimum height for a man, but that if he is more than 2 meters tall (even slightly) he
256	tends to kill himself by banging into the tops of door frames. A critical point is that genotypes
257	determine the height only on average, because their environments vary. We have to consider all the
258	individuals for a given genotype. For people associated with an average 2-meter genotype, nearly
259	half of them become more than 2 meters tall and are knocked out by the door frame. Therefore, the
260	optimal average height (genotype) is actually smaller than 2 meters. For this optimal genotype, most

262	will be lost due to their being >2 meters in height. In other words, the deterministic optimum height
263	lies above the probabilistic genetic optimum.
264	
265	More generally, it is well known that there is a discrepancy between phenotypic and genetic optima
266	in most genetic systems because of various genetic constraints, such as segregation, recombination
267	and mutation (Crow and Kimura, 1970), and because of environmental variation (Mountford, 1968;
268	Lalonde, 1991). For example, in quantitative traits like body size, the phenotypes of offspring vary
269	from parental phenotypes. The discrepancies between phenotypic and genetic optima have been
270	observed in the pollen dispersal of a plant (Price and Waser, 1979) and the body size of a fruit fly,
271	Drosophila melanogaster (Roff, 1981; Yoshimura and Shields, 1995).
272	
273	The current analyses focus on the uncontrolled phenotypic variation. However, individual variation
274	may be induced as an adaptive response (Pigliucci, 2001; Dewitt and Scheiner, 2004). Phenotypic
275	plasticity may thus increase the fitness of a population (Via and Lande, 1985). In this case, we have
276	diversification of phenotypes with respect to environmental factors. Many individual variations are
277	indeed adaptive variations (Dewitt and Scheiner, 2004). Clutch size variation may be an adaptive
278	plasticity. In the great tit, the variation in clutch size is partly reflecting the parental ability of rearing
279	young (Pettifor et al., 1988). Inducible defence is very common in many organisms (e.g., DeWitt,

280	1998). Probabilistic optimization scheme is also useful in conceptualizing the fitness maximization	
281	of such adaptive responses (DeWitt and Yoshimura 1998).	
282		
283	The body-size example is a case when phenotypic variation appears on the target trait for which we	
284	evaluate the optimality. However, it may also appear in correlated traits, which in turn affect the	
285	optimality of the target trait. Here phenotypic correlation can be either positive or negative.	
286	Allometry (e.g., in body size) is an example of a positive correlation (Schmidt-Nielson, 1984).	
287	Negative correlation is often known as a trade-off (Roff, 1992; Stearns, 1992). It is important that	
288	phenotypic variation in such correlated traits can affect the optimality of the target traits. For	
289	example, if there is a trade-off between current clutch size and future reproduction (via parental	
290	survivorship), anticipated variation in future reproduction should be accounted for through the	
291	current clutch size (Yoshimura and Shields, 1992; Lalonde, 1991).	
292		
293	•	(書式変更: 行間: 2 行
294	2. THE PRINCIPLE OF OPTIMIZATION	(書式変更: 左揃え, 行間 : 2 行
295	The principle of probabilistic optimisation is a weighted average of fitnesses (or fitness potentials)	
296	according to their probability distributions (Yoshimura and Shields, 1992; Cohen, 1993). Suppose-	
297	that we measure the fitnesses of an individual over some range of temperatures, where temperature	

298	changes over time. Obviously we may just consider the fitness of an individual at the mean	
299	temperature. This represents a deterministic optimum, as in the mean fitness concept. However, it	
300	does not account for temperatures other than at one point, the mean temperature. Hence the best way	
301	to evaluate the fitness of an individual is the weighted average of fitnesses according to the	
302	distribution of temperature. This expectation accounts for the entire temperature distribution and	
303	gives a correct estimate of the fitness without any error.	
304		
305	<u>A canonical form of probabilistic optimization is given as follows. Let $x a$ and $y \beta$ be individual.</u>	書式変更: 左揃え, 行間 : 2 行, タブ位 置: 2.7 字, 左揃え + 1.71 字(なし)
306	and collective trait values, respectively. For example, if ax is a phenotype value, then βy is a	
307	genotype value associated with a distribution of phenotype value $-\alpha x$. Suppose f(αx , βy) is the	
308	fitness potential function of ax given βy . Then the canonical form of fitness $w(\beta y)$ is given as:	
309	$\frac{w(\beta) = \int f(\alpha, \beta)h(\alpha, \beta)d\alpha}{(1)}$	書式変更: 左揃え, 行間 : 2 行
310	where $f(\alpha, \beta) f(x, y)$ and $h(\alpha, \beta)h(x, y)$ are the fitness potential and the probability distribution of	
311	trait values $x a$ and βy , respectively. Depending on the situation given these two functions may be	
312	those of a single variable ax , such that, $f = f(ax)$ and $h = h(ax)$.	
313		
314	In other words, the overall fitness is the expectation (weighted average) of all individual fitnesses (or	
315	fitness potentials) associated with each value (probabilistic optimum); this expectation is different	

316	from the fitness for the mean value (deterministic optimum). Weighted averages appear as an-
317	underlying concept in any stochastic and probabilistic modelling for uncertainty, not only at the
318	individual level, but also at the population and generation levels. I will discuss how weighted
319	average fitnesses and mean value fitnesses differ in three different levels later.
320	
321	3. THE LOGARITHMIC FORM OF GOEMETRIC MEAN FITNESS
322	Fitness varies over generation times. Natural populations often fluctuate widely due to long-term
323	environmental changes in weather and other environmental factors (Andrewartha and Birch, 1954).
324	Similarly, the multiplicative growth rates of a genotype in a population should also vary according to
325	environmental conditions. Here, variation in growth rates might play an important role in the
326	evolution of many phenotypic traits (Philippi and Seger, 1989; Bulmer, 1994; Yoshimura and Clark,
327	1991). In order to assess the effect of the variation in growth rates on natural selection, we have to
328	evaluate the long-term growth rate of a genotype. Here the appropriate concept of fitness is the
329	average (expected) growth rate per generation. This average is called geometric mean fitness,
330	because it is the geometric mean of multiplicative growth rates (Lewontin and Cohen, 1969;
331	Yoshimura and Clark, 1991).
332	
333	Mathematically geometric mean fitness can be derived from the population growth as follows.

334	Geometric mean fitness is a specific form of probabilistic optimization, where the fitness function is	
335	<u>a logarithm of population growth rates. Consider the population dynamics of a given genotype (z) for</u>	
336	an organism with discrete generations: $N_{2}(t+1) = r_{2}(t) N_{2}(t)$, for $t = 0, 1, 2,,$ where $N_{2}(t)$ is the	
337	population size and the fitness of a genotype z, $r_z(t)$, is expressed as the population growth rate at	
338	generation t. Then the population size at generation t is given by:	
339	$N_{z}(t) = r_{z}(0)r_{z}(1)\cdots r_{z}(t-1)N_{z}(t-1) = \left(\prod_{i=0}^{t-1} r_{z}(i)\right)N_{z}(0) $ (7)	書式変更: フォント : Times New Roman, 斜体, フランス語(フランス), 文字位 置下げる 15 pt
340	The geometric mean fitness is then defined as an average population growth rate per generation:	
341	$G(z) = \prod_{i=0}^{t-1} r_z(i)^{(1/t)}$. Suppose that the population growth rate $r_z(i)$ is randomly drawn from a	書式変更: フォント: Times New Roman, 斜体,英語(英国),文字位置下げる 8 pt
342	probability distribution $h_g(r, z)$ for a given genotype z. Then the geometric mean fitness is expressed	
343	by the probability distribution $h_{g}(r, z)$ as:	
344	$G(z) = \prod_{w} w^{h_g(w,z)} $ (8)	書式変更: フォント: Times New Roman, 斜体,英語(英国),文字位置下げる 14 pt
345	Here genotypes with the highest geometric mean fitness (max $G(z)$) should be selected through.	
346	natural selection. Taking logarithm of equation (8), we get the arithmetic form (weighted average) of	
347	the fitness under generational uncertainty (equation (1) of Table 2, Fig. 3), where the notations are	
348	shown in Table 2. Here the probabilistic optimization is a weighted average with the weight $f_{g}(r) =$	
349	log (r) (Fig 3a, 3b). This formula is fully equivalent with fitness at the level of an individual and a	
350	population (equations (1) and (2) of Table 1).	
351		

352	This example indicates that variation in growth rates decreases geometric mean fitness. Because of
353	this, the geometric mean fitness is often approximated with mean and variance using a
354	variance-discount method (Fig. 4) (Frank and Slatkin, 1989; Gillespie, 1977; Yoshimura and Clark,
355	1991). Such approximation clearly depicts the effect of variance. As in the previous calculus
356	example, variance in population growth rate r reduces the geometric mean fitness. Even if the mean
357	<u><i>r</i> is smaller, if the variance of <i>r</i> is smaller, the geometric mean fitness can be higher (Fig. 4).</u>
358	
359	However, ironically such approximation concentrates only on the effects of mean and variance and
360	ignores the entire distribution of growth rates. In addition, the approximation also assumes the
361	normal distribution of growth rate with small variance (Yoshimura and Jansen, 1996). Therefore, it is
362	not applicable to a case when variance is large or when extinction is a prominent possibility. This is
363	evident from the logarithmic function in geometric mean fitness: the weight of negative growth is
364	much higher than the weight of positive growth, because the logarithm drops faster on the negative
365	side, than increases in the positive side. In the limit, if fitness falls to zero in any generation,
366	arithmetic mean fitness will still be positive, but geometric mean fitness will be zero.
367	
368	What is the probability distribution best fit to the distribution of population growth rates?
369	Multiplicative population growth rate r is a nonnegative variable. Therefore, normal distribution that

370	can take negative values is not appropriate. In this sense, lognormal distribution is more appropriate	
371	or at least applicable. Here we show the geometric mean fitness becomes extremely simple when the	
372	lognormal distribution is assumed in population growth rates. Let population growth rate r follows a	
373	lognormal distribution such that	
374	$P(r; m_z, \sigma_z) = \left(\frac{1}{r\sqrt{2\pi\sigma_z}}\right) \exp\left(-\frac{(\log(r) - m_z)^2}{2\sigma_z^2}\right) $ (9)	書式変更: フォント: Times New Roman, 斜体, 英語 (英国), 文字位置下げる 17 pt
375	<u>Where</u> $P(r) = P(r; m_z, \sigma_z)$ is the probability distribution of <i>r</i> with mean m_z , and variance σ_z for	書式変更: フォント: Times New Roman, 斜体,英語(英国),文字位置下げる 5 pt
376	genotype z. Then the logarithmic form of geometric mean fitness (equation (1) of Table 2) can be	
377	solved analytically and reduces to the mean of the lognormal distribution m_{z_2} , such that (see	
378	Appendix for derivation):	
379	$w_g(z) = \log G(z) = \log G(m_z, \sigma_z) = m_z = E_z \{\log(r)\}$ (10)	書式変更: フォント: Times New Roman, 斜体,英語(英国),文字位置下げる 7 pt
380	It has been believed that variance is important in adaptation in stochastic environments. However, it	書式変更: タブ位置: 35.79 字, 左揃え + 37.76 字(なし)
381	may be an artefact of our use of multiplicative population growth rates.	
382		
383	We should note that the current derivation is not necessary for any distribution of log growth rates.	
384	The correct measure of the fitness at the generation level is the simple 'arithmetic' mean of	
385	logarithmic population growth rates, such that $w_g(z) = E\{\log(r_i)\}$. In this measure, variance and the	- 春式変更: フォント: 斜体 (なし)
386	shape of the probability distribution does not affect the overall fitness over generation time.	
387		
-		

406	We first consider the fitness of an individual associated with a phenotype.	
407	Denote the following variables and functions:	
408	<u>y:an environmental factor for an individual</u>	
409	<u>x:the phenotype of an individual</u>	
410	$\int_{\mathcal{C}} \frac{\psi(y y;x)}{ y } = \frac{fitness of an individual with phenotype x in environment y}{ y }$	書式変更: 下付き
411	h _e d(y): probability distribution of environment y	書式変更: 下付き
412	<u>f(x): fitness of an individual with phenotype x</u>	
413	Then the fitness $f(x)$ of an individual associated with a phenotype x is a weighted sum of all possible.	
414	environmental fitnesses $v(y,x)$ with the distribution of the environments $d(y)$:	
415	$f(x) = \int_{x \in D(y \setminus x)} v(y; x) d(y) dy $ (2)	書式変更: 英語(米国) 変更されたフィールド コード
416	where $D(y;x)$ is the domain of environments y for a given phenotype x. This is a weighted average.	~
417	of fitness measures at the individual level.	
418		
419		
	Next we consider the fitness of an individual associated with a genotype from the fitness of	
420	Next we consider the fitness of an individual associated with a genotype from the fitness of $\frac{1}{2}$	
420 421	Next we consider the fitness of an individual associated with a genotype from the fitness of phenotypes $f(x)$. Denote the following variable and functions: $\frac{x}{x}$ a genotype	
420 421 422	Next we consider the fitness of an individual associated with a genotype from the fitness of phenotypes f(x). Denote the following variable and functions: s: a genotype h(x;z): probability distribution of phenotypes x for a given genotype z	
420421422423	Next we consider the fitness of an individual associated with a genotype from the fitness of phenotypes f(x). Denote the following variable and functions: s: a genotype. h(x;z): probability distribution of phenotypes x for a given genotype z w(z): fitness of a genotype z (within a generation)	

424	The fitness of a genotype $w(z)$ is then the weighted sum of all the phenotypic fitnesses $f(x)$.	
425	multiplied by the distribution of phenotypes $h(x;z)$:	
426	$w(z) = \int_{x \in H(x;z)} f(x)h(x;z)dx $ (3)	
427	where $H(x;z)$ is the domain of phenotypes x for a given phenotype z. If the phenotype x is discrete,	
428	e.g., clutch size, then $w(z)$ becomes the summation:	
429	$\underline{w(z)} = \sum_{x \in H(x;z)} \underline{f(x)h(x;z)} $ (4)	書式変更: 左揃え,行間: 2 行,タブ位 置: 13.49 字(なし)
430	This is the weighted average of discrete phenotypes at the population level within a generation.	書式変更: 左揃え, 行間 : 2 行
431		
432	Lastly we consider geometric mean fitness as the long-term fitness of a genotype across generations.	
433	Denote the following variable and functions:	
434	w: fitness per generation measured as multiplicative growth rates	
435	p(w; z): the probability distribution of fitnesses w for a genotype z	
436	G(z): the geometric mean fitness of a genotype z	
437	g(z): the logarithm of the geometric mean fitness	
438	Then the geometric mean fitness of a genotype is the expected long term growth rate for a given-	
439	genotype:	
440	$\underline{G(z)} = \sum_{w} w^{p(w;z)} $ (5)	
441	Here maximizing $G(z)$ is same as maximizing its logarithm $g(z)$ and the latter is equal to the discrete.	

442	weighted average of the logarithmic fitnesses log (w) with their distribution $-p(w;z)$:
443	$g(z) = \log G(z) = \sum_{w} p(w; z) \log(w) = E\{\log(w)\} $ (6)
444	This is the weighted average of fitnesses at the generation level.
445	
446	The principle of probabilistic optimisation is a weighted average of fitnesses (or fitness potentials)
447	according to their probability distributions (Yoshimura and Shields, 1992; Cohen, 1993). A canonical
448	form of probabilistic optimization is then given as follows. Let α and β be individual and
449	collective trait values, respectively. For example, if a is a phenotype value, then β is a genotype
450	value associated with a distribution of phenotype value α . Suppose $f(\alpha, \beta)$ is the fitness potential
451	function of α given β . Then the canonical form of fitness $w(\beta)$ is given as:
452	$w(\beta) = \int f(\alpha, \beta) h(\alpha, \beta) d\alpha $ (11)
453	where $f(\alpha, \beta)$ and $h(\alpha, \beta)$ are the fitness potential and the probability distribution of trait values
454	α and β , respectively. Depending on the situation given these two functions may be those of a single
455	variable α , such that, $f = f(\alpha)$ and $h = h(\alpha)$.
456	
457	In other words, the overall fitness is the expectation (weighted average) of all individual fitnesses (or
458	fitness potentials) associated with each value (probabilistic optimum); this expectation is different
459	from the fitness for the mean value (deterministic optimum). Weighted averages appear as an

460	underlying concept in any stochastic and probabilistic modelling for uncertainty, not only at the		
461	individual level, but also at the population and generation levels.		
462			
		·	書式変更: 左揃え, 行間 : 2 行, タブ位
463	We should also note that these uncertainties can be incorporated into the unified fitness at the		置: 2.7 字(なし)
464	generation level (Yoshimura and Shields, 1992). The integration of the individual-level fitness into		
465	the population-level fitness is given by $f_n(y) = w_n(y)$, in equations (1) and (2) of Table 1. The fitness	1	書式変更: フォント:斜体
		ĺ.	生式変更・ フォント ・ 斜休
466	measure at the population level $w_p(z)$ should be transformed into the multiplicative population	1	
467	growth rate <u>r</u> for each generation. For example, if $w_p(z)$ is defined as the growth rate per individual		書式変更: フォント:斜体
468	adult, then simply, $r = w_p(z)$. However, if it is measured as a number of offspring/adult individual, as		
100			
469	is often seen, then $r = \{w_{\underline{p}}(z)^{*}(number of adult) + (number of surviving adult)\}/(number of adult) at$	į	書式変更: 左揃え,行間: 2 行
470	a generation.		書式変更: フォント : 10.5 pt, (特殊) Times New Roman, 英語 (米国)
		11	書式変更: フォント : 10.5 pt, (特殊) Times New Roman
471			書式変更: フォント : 10.5 pt, (特殊) Times New Roman, 英語 (米国)
472	We can also estimate the effect of uncertainty on the outcome of natural selection. How 4. LEVELS	111	書式変更: フォント: 10.5 pt, (特殊) Times New Roman
			春式変更 : フォント : 10.5 pt, (特殊) Times New Roman, 英語 (米国)
473	OF UNCERTAINTY		書式変更: フォント : (特殊) Times New Roman, 英語 (米国)
474	4.1 UNCERTAINTY AT INDIVIDUAL LEVEL		書式変更: フォント:太字(なし),(特殊) Times New Roman,英語(米国)
			書式変更: フォント : (特殊) Times New Roman, 英語 (米国)
475	<u>An individual experiences temporal changes in environments. An individual lives in daily changing</u>		書式変更: フォント : 10.5 pt, 太字(な し), (特殊) Times New Roman, フラン ス語 (フランス)
476	environments, unstable and unpredictable in many aspects. How an individual behaves, grows and		書式変更: フォント : 10.5 pt, (特殊) Times New Roman, フランス語 (フラン ス)
177		- \\`	書式変更: フォント:(特殊)Times New
411	reproduces in such changing environments has often been dealt as a problem of optimisation in-	i i i	Roman, フランス語 (フランス)

496	•	 書式変更: フォント : (特殊) Times New Roman, フランス語 (フランス)
497	Suppose that the probability distribution of daily food abundance $d(y)$ is approximated by a-	
498	distribution with mean $E(y) = 50$ (Fig. 1c). Then the fitness f(x) of an individual associated with a	 書式変更: フォント: (特殊) Times New Roman, フランス語 (フランス)
400		 書式変更: フォント: (特殊) Times New Roman, フランス語 (フランス)
499	prienotype x is an weighted sum of all possible environmental litnesses $v(y,x)$ by their distribution-	
500	$\frac{d(y)}{d(y)}$ (equation (2)). The probabilistic optimum x_p is then defined on the phenotypic fitness $f(x)$ as:	書式変更: フォント: (特殊) Times New Roman, フランス語 (フランス)
501	$f(x_{\mu}) = \max f(x)$ (Fig. 1d). In contrast, the deterministic optimum x_{μ} is the optimal phenotype in the	 TACX: 12 (17) 11mes New Roman, フランス語 (フランス) 書式変更: フォント: (特殊) Times New
-		Roman, フランス語 (フランス) 春式変更: フォント: (特殊) Times New Roman, フランス語 (フランマ)
502	average environment, that is $f(M, x_d) = \max - f(M, x)$, where $M (= 50)$ is the expectation of y, i.e., M.	
503	= $\int d(y) dy$ (Fig. 1d). In this case, the probabilistic optimum x_p (=30.89) is always smaller than the	書式変更: フォント: (特殊) Times New Roman, フランス語 (フランス)
504	optimum in the average environment x_{i} (=33)	晋丸次史 ・ノオント:(符妹) Times New Roman, フランス語(フランス) 書式変更: フォント:(特殊) Times New
		Roman, フランス語 (フランス) 書式変更: フォント: (特殊) Times New
505		noman, ノフンス語 (フフンス) 書式変更: フォント : (特殊) Times New Roman, フランス語 (フランス)
506	In foraging theories, the concept of risk sensitivity has been specifically developed to deal with daily.	書式変更: フォント : (特殊) Times New Roman, フランス語 (フランス)
507	uncertainty in food acquisition by animals (Stephens and krebs, 1986; Real and Caraco, 1986). This-	春式変更: フォント: (特殊) Times New Roman, フランス語 (フランス)
		膏式変更: フォント: (特殊) Times New Roman, フランス語 (フランス)
508	body of theory reveals that animals often show sensitivity to the variance and skewness of a	青式変更: フォント: (特殊) Times New Roman, フランス語 (フランス)
509	temporal distribution of foods. This demonstrates that not only the mean, but also the entire	膏式変更: フォント : (特殊) Times New Roman, フランス語 (フランス)
510	distribution of food availability is important for the evolution of animal behaviour. The expected	
010		書式変更: フォント:(些碑) Timos Now
511	utility theory used in risk sensitive foraging (Real and Caraco, 1986) is a specific form of weighted	 Roman, フランス語 (フランス) 事式変更: フォント: (特殊) Times New
512	average, in which the fitness function is an increasing function of the amount of food. In dynamic-	Roman, フランス語(フランス)
513	programming, in every time step of decision making, the overall fitness of an individual is calculated	

514	from the weighted average of individual fitnesses of all possible states (Mangel and Clark, 1988),	11	書式変更: フォント : (特殊) Times New Roman, フランス語 (フランス)
			書式変更: フォント : (特殊) Times New Roman, フランス語 (フランス)
515		ì	書式変更: フォント : (特殊) Times New Roman, フランス語 (フランス)
	+	1	書式変更: フランス語(フランス)
516	<u>42</u>	1	書式変更: 行間: 2行
517	UNCERTAINTY AT POPULATION LEVEL		書式変更: フォント : 10.5 pt, 太字 (な し), (特殊) Times New Roman, フラン ス語 (フランス)
518	Phenotypic variation among individuals of a population is common in many traits, such as body size.		書式変更: フォント : 10.5 pt, (特殊) Times New Roman, フランス語 (フラン ス)
		25	【 書式変更: 左揃え,行間 : 2 行
519	Such individual variation arises because environments differ among individuals. Therefore.		書式変更: フォント : (特殊) Times New Roman, フランス語 (フランス)
520	environmental uncertainty may also appear as phenotypic variation in a population. Most important		書式変更: フォント : (特殊) Times New Roman, フランス語 (フランス)
0_0			書式変更: フォント:(特殊)Times New Roman, フランス語(フランス)
521	cases are when phenotypic variation occurs as a result of cumulative effects of past environmental		書式変更: フォント : (特殊) Times New Roman, フランス語(フランス)
	di Commona		書式変更: フォント : (特殊) Times New Roman, フランス語 (フランス)
922	<u>unrerences.</u>		書式変更: フォント : (特殊) Times New Roman, フランス語 (フランス)
523			
524	Here probabilistic optimization can be stated as follows (Yoshimura and Shields, 1987). Actual		書式変更: フォント : (特殊) Times New Roman, フランス語 (フランス)
			書式変更: フォント: (特殊) Times New Roman, フランス語 (フランス)
525	(observed) survivorship and reproduction is determined by the phenotype of an individual for a		
-00			
526	given environment. Therefore, phenotype is the criterion for realised (observed) fitness. Because of		
527	this, we often compare observed mean phenotypes with optimal phenotypes as a measure of		
528	achievement of optimality (adaptation) by natural selection (Price and Waser, 1979; Roff, 1981).		書式変更: フォント: (特殊) Times New Roman, フランス語 (フランス)
			官以及C ・フォント・((特殊) Times New Roman, フランス語 (フランス)
529	However, the comparison based on this (deterministic) phenotypic optimum is not valid if there is		
530	variation in phenotypes. The evolutionary criterion of fitness is the genotypes that are selected.		
531	through natural selection. For a given genotype, phenotypic variation is expressed as a probability		

532	distribution. The fitness of a genotype is the weighted sum of the fitnesses of all the phenotypes		
533	associated with the genotype, the probabilistic genetic optimum (equation (3)). We can then compare	1	書式変更: フォント:(特殊)Times New Roman, フランス語(フランス)
			書式変更: フォント : (特殊) Times New Roman, フランス語 (フランス)
534	the observed mean phenotype with this genetic optimum,		書式変更: フォント: (特殊) Times New Roman, フランス語 (フランス)
535			書式変更: フォント : (特殊) Times New Roman, フランス語 (フランス)
			書式変更: フォント : (特殊) Times New Roman, フランス語 (フランス)
536	Phenotypic variation in body size is mathematically expressed as follows (Fig. 2). Let phenotypic		書式変更: フォント: (特殊) Times New Roman, フランス語(フランス)
537	fitness f be a function of body size x, i.e., $f = f(x)$, with a single peak (Fig. 2a; dotted line), and		書式変更: フォント: (特殊) Times New Roman, フランス語 (フランス)
			書式変更: フォント: (特殊) Times New Roman, フランス語 (フランス)
538	$\frac{h(x,z)}{x}$ be a probability distribution of body size x for a given genotype z. Suppose that genotype z-		書式変更: フォント: (特殊) Times New Roman, フランス語 (フランス)
539	controls the mean body size of a normal distribution with a constant variance (Fig. 2b; three-	``	書式変更: フォント: (特殊) Times New Roman, フランス語 (フランス)
		<u> </u>	書式変更: フォント: (特殊) Times New Roman, フランス語 (フランス)
540	genotypes are shown). We assume here that the mean body size can shift continuously by changing	Ň	書式変更: フォント : (特殊) Times New Roman, フランス語 (フランス)
541	genotypes. Then the fitness of the genotype $w(z)$ is the weighted sum of all the phenotypic fitnesses		
542	f(x) with their distribution h(x,z) [Fig. 2a: solid line) [equation (3)], Here the phenotypic optimum		書式変更: フォント: (特殊) Times New Roman, フランス語 (フランス)
			書式変更: フォント : (特殊) Times New Roman, フランス語 (フランス)
543	x_{max} represents the trait that achieves the highest reproductive success in the environment, i.e.,		書式変更: フォント: (特殊) Times New Roman, フランス語 (フランス)
544	$f(x_{max}) = max f(x)$. In contrast, the genotypic optimum z_{max} is the trait selected by natural selection,		書式変更: フォント: (特殊) Times New Roman, フランス語 (フランス)
			書式変更: フォント : (特殊) Times New Roman, フランス語 (フランス)
545	i.e., $w(z_{max}) = \max w(z)$. In general, the two optima differ in their values. In this example, the genetic-		書式変更: フォント : (特殊) Times New Roman, フランス語 (フランス)
546	optimum z _{mex} is always smaller than phenotypic optimum x _{mex} (Fig. 1a),		書式変更: フォント: (特殊) Times New Roman, フランス語 (フランス)
		·	書式変更: フォント: (特殊) Times New Roman, フランス語 (フランス)
547		, N	書式変更: フォント : (特殊) Times New Roman, フランス語 (フランス)
548	<u>The discrepancy between genetic and phenotypic optima can be illustrated as follows: Suppose that</u>		書式変更: フォント : (特殊) Times New Roman, フランス語 (フランス)
549	2 meters is the optimum height for a man, but that if he is more than 2 meters tall (even slightly) he-		

550	tends to kill himself by banging into the tops of door frames. A critical point is that genotypes		
551	determine the height only on average, because their environments vary. We have to consider all the		
552	individuals for a given genotype. For people associated with an average 2 meter genotype, nearly-		
553	half of them become more than 2 meters tall and are knocked out by the door frame. Therefore, the		
554	optimal average height (genotype) is actually smaller than 2 meters. For this optimal genotype, most-		
555	people are suboptimal, but their loss of fitness is much less than killing themselves; and a very few-		
556	will be lost due to their being >2 meters in height. In other words, the deterministic optimum height		
557	lies above the probabilistic genetic optimum,		書式変更: フォント:(特殊)Times New Roman,フランス語(フランス)
558	<u>۸</u>		書式変更: フォント: (特殊) Times New Roman, フランス語 (フランス)
559	More generally, it is well known that there is a discrepancy between phenotypic and genetic optima		書式変更: 行間: 2 行
560	in most genetic systems because of various genetic constraints, such as segregation, recombination		
561	and mutation (Crow and Kimura, 1970), and because of environmental variation (Mountford, 1968;	Ę	書式変更: フォント: (特殊) Times New Roman, フランス語 (フランス) 書式変更: フォント: (特殊) Times New
562	Lalonde, 1991), For example, in guantitative traits like body size, the phenotypes of offspring vary		Roman, フランス語(フランス) 書式変更: フォント:(特殊)Times New Roman, フランス語(フランス)
563	from parental phenotypes		書式変更: フォント: (特殊) Times New Roman, フランス語 (フランス) 事式変更: フォント: (特殊) Times New
564			Koman, ノランス語 (ノランス)
565	The body size example is a case when phenotypic variation appears on the target trait for which we	><	書式変更: フォント: (特殊) Times New Roman, フランス語 (フランス) ま式変更: 左揃え 行間: 2 行
566	evaluate the optimality. However, it may also appear in correlated traits, which in turn affect the		
567	optimality of the target trait. Here phenotypic correlation can be either positive or negative.		

568 Allemetry (e.g., in body size) is an example of a positive correlation (Schmidt Nielon, 1921) Fixes: 7 + 2 × 1 (GH2) Times New Example of 2 + 2 × 1 (GH2) Times New Exam				
569 Nessive correlation is often known as a trade of (Roff, 1992; Stearne, 1992). It is important that form, 72728 (7972). (4980) Times New form, 72728 (7972). 570 phenotypic variation in such correlated traits can affect the optimality of the target trait. Exc reamule, if there is a trade off between current clutch size and future reproduction (via parental. anarycomhig) anticipated variation in future reproduction should be accounted for through the request clutch size (Vochingra and Skields, 1992, Lalande, 1991). #XXXXX (7972). 571 anarycomhig) anticipated variation in future reproduction should be accounted for through the request clutch size (Vochingra and Skields, 1992, Lalande, 1991). #XXXXX (7972). 573 aurection traits of the reproduction should be accounted for through the request clutch size (Vochingra and Skields, 1992, Lalande, 1991). #XXXXX (7972). 574 #XXXXX (7972). #XXXXX (7972). 575 #211NCERTAINTY AT GENERATION LEVER, Primes were transmission times. Yatural populations after flaturate wideh and target reproduction should have reproduction should have reproduction and Direh 1951). #XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	568	Allometry (e.g., in body size) is an example of a positive correlation (Schmidt Nielson, 1984).		書式変更: フォント : (特殊) Times New Roman, フランス語 (フランス)
SectionNegative correlation is such correlated insistence of the control barSection <th< td=""><td></td><td></td><td></td><td>書式変更: フォント: (特殊) Times New Roman, フランス語 (フランス)</td></th<>				書式変更: フォント: (特殊) Times New Roman, フランス語 (フランス)
State: $7 + 2 + 1 \in [982]$ Times Nov Komm. $7 + 2 \times 3^{11} = 7 + 2 \times 1^{11} \in [982]$ Times Nov Komm. $7 + 2 \times 3^{11} = 7 + 2 \times 1^{11} \in [982]$ Times Nov Komm. $7 + 2 \times 3^{11} = 7 + 2 \times 1^{11} \in [982]$ Times Nov Komm. $7 + 2 \times 3^{11} = 7 + 2 \times 1^{11} \in [982]$ Times Nov Komm. $7 + 2 \times 3^{11} = 7 + 2 \times 1^{11} \in [982]$ Times Nov Komm. $7 + 2 \times 3^{11} = 7 + 2 \times 1^{11} \in [982]$ Times Nov Komm. $7 + 2 \times 3^{11} = 7 + 2 \times 1^{11} \in [982]$ Times Nov Komm. $7 + 2 \times 3^{11} = 7 + 2 \times 1^{11} \in [982]$ Times Nov Komm. $7 + 2 \times 3^{11} = 7 + 2 \times 1^{11} \in [982]$ Times Nov Komm. $7 + 2 \times 3^{11} = 7 + 2 \times 1^{11} = 1^{11} \times $	569	Negative correlation is often known as a trade of (Roff, 1992; Stearns, 1992). It is important that		春式変更: フォント: (特殊) Times New Roman, フランス語 (フランス)
axample. if there is a trade off between current clutch size and future reproduction (via parental. antrivorship). anticipated variation in future reproduction should be accounted for through the: aurrent clutch size (Yophigner) and Shields, 1992. Lalonds, 1991). S74 S75 L1 UNCTRITATION 1 AVIEL S76 L1 UNCTRITATION 1 AVIEL S77 aurrent clutch size (Yophigner) and Shields, 1992. Lalonds, 1991). S76 L1 UNCTRITATION 1 AVIEL S77 aurrent clutch size (Yophigner) and Shields, 1992. Lalonds, 1991). S77 L1 UNCTRITATION 1 AVIEL S77 aurrent clutch size (Yophigner) and Shields, 1992. Lalonds, 1991). S77 L1 UNCTRITATION 1 AVIEL S77 aurrent clutch size (Yophigner) and Shields, 1992. Lalonds, 1991). S77 aurrent clutch size (Yophigner) and Shields, 1991. S77 aurrent clutch size (Yophigner) and Shields, 1992. Lalonds, 1991. S77 aurrent clutch size (Yophigner) and Shields, 1991. S77 aurrent clutch size (Yophigner) and Shields, 1992. Lalonds, 199	570	phenotypic variation in such correlated traits can affect the optimality of the target traits. For		書式変更: フォント : (特殊) Times New Roman, フランス語 (フランス)
572 sarvivorship1 anticipated variation in future reproduction should be accounted for through the 573 current clutch size (Yoshimure and Shields, 1992, Lalonde, 1991). 574 Fig. 7 + 2 > 1: (B#R) Times New 575 current clutch size (Yoshimure and Shields, 1992, Lalonde, 1991). 576 Fig. 7 + 2 > 1: (B#R) Times New 577 same. 72 > 2 + 2 > 1: (B#R) Times New 576 Finese varies over generation times. Natural populations often fluctuate widely due to long term. 577 environmental changes in weather and other environmental factors (Andrewarthe and Birch, 1951). 578 Similarly, the multiplicative growth rates of a genotype in a population should also vary according to man. 72 > 2 × B: (72 > 2). 579 environmental conditions. Here, variation in growth rates might play an important role in the: 580 evolution of many phenotypic traits (Philippi and Seger, 1989, Bulmer, 1991, Yoshimure and Clark, Renn., 72 > 2 × B: (72 > 2). 581 1991). In order to assess the effect of the variation. This average is called geometric mean fitness: 582 evaluate the long term growth rate of a genotype. Here the appropriate concept of fitness is the man. 79 > 2 × B: (72 > 2). 583 herease it is the geometric mean of multiplicative growth rates of a genotype. Here the appropriate concept of fitness is the man. 79 > 2 × B: (72 > 2). 584	571	example, if there is a trade off between current clutch size and future reproduction (via parental		
573 eurrent clutch size (Yophingra and Shielda, 1992; Lalonda, 1991). 第次変更: フォント: (特殊) Times New Remain, フランス語 (フランス). 574 第次変更: フォント: (特殊) Times New Remain, フランス語 (フランス). 第次変更: フォント: (特殊) Times New Remain, フランス語 (フランス). 575 4.3 UNCERTAINTY AT GENERATION LEVEL. 第次変更: フォント: (特殊) Times New Remain, フランス語 (フランス). 576 Fitnesse varies over generation times. Natural populations often fluctuate widely due to long-term. 第次変更: フォント: (bfk) Times New Remain, フランス語 (フランス). 577 environmental changes in weather and other environmental fastors (Andrewarthe and Birch, 1951). 第次変更: フォント: (bfk) Times New Remain, フランス語 (フランス). 578 Similarly, the multiplicative growth rates of a genotype in a population should also vary according to evolution of many phenotypic traits (Philippi and Seger, 1989) Bulmer, 1994, Yoshimura and Clark. 第次変更: フォント: (bfk) Times New Roman, フランス語 (フランス). 580 evolution of many phenotypic traits (Philippi and Seger, 1989) Bulmer, 1994, Yoshimura and Clark. 第次変更: フォント: (bfk) Times New Roman, フランス語 (フランス). 581 1991] In order to assess the effect of the variation in growth rates on natural selection, we have technes, 79 and 79 an	572	survivorship), anticipated variation in future reproduction should be accounted for through the		
574 Bit X SUE: 7 + 2 × 1: (BRA) Times New Roman, 79 × XB: (79 × X) 575 A 2 UNCERTAINTY AT CENERATION LEVEL Bit X SUE: 7 + 2 × 1: (D, 5 pt, XP (AL)), (BRA) Times New Roman, 79 × XB: (79 × X) 576 Fitness varies over generation times. Natural perulations often fluctuate widely due to long term Bit X SUE: 7 + 2 × 1: (D, 5 pt, KP2 (AL)), (BRA) Times New Roman, 79 × XB: (79 × X) 577 environmental changes in weather and other environmental factor; (Andrewarthe and Birch, 1951) Bit X SUE: 7 + 2 × 1: (BRA) Times New Roman, 79 × XB: (79 × X) 578 Similarly, the multiplicative growth rates of a genotype in a population should also vary according to Roman, 79 × XB: (79 × X) Bit X SUE: 7 + 2 × 1: (BRA) Times New Roman, 79 × XB: (79 × X) 579 environmental conditions. Here, variation in growth rates might play an important role in the Bit X SUE: 7 + 2 × 1: (BRA) Times New Roman, 79 × XB: (79 × X) 579 environmental conditions. Here, variation in growth rates on natural selection, we have to Bit X SUE: 7 + 2 × 1: (BRA) Times New Roman, 79 × XB: (79 × X) 581 19911: In order to access the effect of the variation in growth rates on natural selection, we have to Bit X SUE: 7 + 2 × 1: (BRA) Times New Roman, 79 × XB: (79 × X) 582 evaluate the long term growth rate of a genotype. Here the appropriate concept of fitness is the: Roman, 79 × XB: (79 × X) 584 because it is the geometric mean of multiplicative growth rates (Yashimura and Clark,	573	current clutch size, (Yoshimura and Shields, 1992; Lalonde, 1991).		書式変更: フォント : (特殊) Times New Roman, フランス語 (フランス)
 A A DATE OF A DAT			· · · · ·	書式変更: フォント: (特殊) Times New Roman, フランス語 (フランス)
575 4.3 UNCERTAINTY AT GENERATION LEVEL. Filess varies over generation times. Vatural populations often fluctuate widely due to long term. Filess varies over generation times. Vatural populations often fluctuate widely due to long term. 576 Filess varies over generation times. Vatural populations often fluctuate widely due to long term. Filess varies over generation times. Vatural populations often fluctuate widely due to long term. 577 environmental changes in weather and other environmental factors (Andrewartha and Dirch. 1951). Filess varies over generation times. Vatural population should also vary second term. 578 similarly, the multiplicative growth rates of a genotype in a population should also vary second to the variation in growth rates might play an important role in the Filess varies of a genotype in a population should also vary second to the variation in growth rates might play an important role in the 580 evolution of many phenotypic traits (Philippi and Seger, 1989, Bulmer, 1994, Yoshimura and Clark, Filess is the 581 19911. In order to assess the effect of the variation in growth rates on natural selection, we have to Filess is the 582 evaluate the long term growth rate of a genetype. Here the appropriate concept of fitness is the Filess is the 583 average (expected) growth rate of a genetype. Here the appropriate concept of fitness is the Filess is the 584 because it is the geometric mean of multiplicative growth rates (Yoshimura a	574			書氏変更: フォント · (特殊) limes New Roman, フランス語 (フランス)
576 Fitness varies aver generation times. Natural populations often fluctuate widely due to long term Fitness varies aver generation times. Natural populations often fluctuate widely due to long term environmental changes in weather and other environmental factors (Andrewartha and Birch, 1951). Fitness wares generation times. Natural populations often fluctuate widely due to long term main set wares aver generation times. Natural populations often fluctuate widely due to long term main set wares aver generation times. Natural populations often fluctuate widely due to long term set widely due to long term set wares (1992). main set wares aver generation times. Natural populations often fluctuate widely due to long term set wares (1992). main set wares aver generation times. Natural population should also vary according to more average (1992). main set wares average (1992). main set wares average (1992). set wares average (1992). set wares average the effect of the variation in growth rates on natural selection, we have to set wares (1992). set wares average (1992). set wareage (1992). set wareage (199	575	<u>4.3 UNCERTAINTY AT GENERATION LEVEL</u>		含式変更・ ノオント · 10.5 pt, 太子 (な し), (特殊) Times New Roman, フラン ス語 (フランス)
577 minimulation mathematic factors (Andrewarthe and Birch, 1954). 第式変更: フォント: (特殊) Times New Roman, フランス語 (フランス) 578 Similarly, the multiplicative growth rates of a genotype in a population should also vary according to environmental conditions. Here, variation in growth rates might play an important role in the environmental conditions. Here, variation in growth rates might play an important role in the evolution of many phenotypic traits (Philippi and Seger, 1989; Bulmer, 1994; Yoshimura and Clark, 1991). In order to assess the effect of the variation in growth rates on natural selection, we have to evaluate the long term growth rate of a genotype. Here the appropriate concept of fitness is the evaluate the long term growth rate of a genotype. Here the appropriate concept of fitness is the evaluate the long term growth rate of a genotype. Here the appropriate concept of fitness is the evaluate the long term growth rate of a genotype. Here the appropriate concept of fitness is the evaluate the long term growth rate of a genotype. Here the appropriate concept of fitness is the evaluate the long term growth rate of a genotype. Here the appropriate concept of fitness is the evaluate the long term growth rate of a genotype. Here the appropriate concept of fitness is the evaluate the long term growth rate of a genotype. Here the appropriate concept of fitness is the evaluate the long. factors: The second term of the second term of	576	Fitness varies over generation times. Natural populations often fluctuate widely due to long term		書式変更: フォント: 10.5 pt, (特殊) Times New Roman, フランス語 (フラン ス)
Similarly, the multiplicative growth rates of a genotype in a population should also vary according to	577	environmental changes in weather and other environmental factors (Andrewartha and Birch 1954)		書式変更: フォント: (特殊) Times New Roman, フランス語 (フランス)
 Similarly, the multiplicative growth rates of a genetype in a population should also vary according to environmental conditions. Here, variation in growth rates might play an important role in the environmental conditions. Here, variation in growth rates might play an important role in the evolution of many phenotypic traits (Philippi and Seger, 1989; Bulmer, 1994; Yoshimura and Clark, 1991), In order to assess the effect of the variation in growth rates on natural selection, we have to evaluate the long term growth rate of a genotype. Here the appropriate concept of fitness is the evaluate the long term growth rate of a genotype. Here the appropriate concept of fitness. because it is the geometric mean of multiplicative growth rates (Yoshimura and Clark, 1991; Lewontin and Cohen, 1969). Evantin and Cohen, 1969). 				春式変更 : フォント: (特殊) Times New Roman, フランス語 (フランス)
 stype in the second state of a genotype. Here the appropriate concept of fitness is the second state of a genotype. Here the appropriate concept of fitness. evaluate the long term growth rate of a genotype. Here the appropriate concept of fitness. evaluate the long term growth rate of a genotype. Here the appropriate concept of fitness. because it is the geometric mean of multiplicative growth rates (Yoshimura and Clark, 1991; 1991). factor is the geometric mean of multiplicative growth rates (Yoshimura and Clark, 1991; 1992). factor is the geometric mean of multiplicative growth rates (Yoshimura and Clark, 1991; 1992). factor is the geometric mean of multiplicative growth rates (Yoshimura and Clark, 1991; 1992). factor is the geometric mean of multiplicative growth rates (Yoshimura and Clark, 1991; 1992). factor is the geometric mean of multiplicative growth rates (Yoshimura and Clark, 1991; 1992). factor is the geometric mean of multiplicative growth rates (Yoshimura and Clark, 1991; 1992). factor is the geometric mean of multiplicative growth rates (Yoshimura and Clark, 1991; 1992). factor is the geometric mean of multiplicative growth rates (Yoshimura and Clark, 1991; 1992). factor is the geometric mean of multiplicative growth rates (Yoshimura and Clark, 1991; 1992). factor is the geometric mean of multiplicative growth rates (Yoshimura and Clark, 1991; 1992). factor is the geometric mean of multiplicative growth rates (Yoshimura and Clark, 1991; 1992). factor is the geometric mean of multiplicative growth rates (Yoshimura and Clark, 1991; 1992). factor is the geometric mean of multiplicative growth rates (Yoshimura and Clark, 1991; 1992). factor is the geometric mean of multiplicative growth rates (Yoshimura and Clark, 1991; 1992). factor is the geometric mean of multiplicative growth rates (Yoshimura and Clark, 1991). factor	578	Similarly, the multiplicative growth rates of a genotype in a population should also vary according to		貴氏変更 : フォント · (特殊) limes New Roman, フランス語 (フランス)
 ketage: it is the geometric mean of multiplicative growth rates (Yoshimura and Clark, 1991; Lewontin and Cohen, 1969; Lewontin and Co	579	environmental conditions. Here, variation in growth rates might play an important role in the		Roman , フランス語 (フランス)
581 1991). In order to assess the effect of the variation in growth rates on natural selection, we have to 年式変更 : フォント : (特殊) Times New Roman, フランス語 (フランス) 582 evaluate the long term growth rate of a genotype. Here the appropriate concept of fitness is the 年 式変更: フォント : (特殊) Times New Roman, フランス語 (フランス) 583 average (expected) growth rate per generation. This average is called geometric mean fitness. 春式変更 : フォント : (特殊) Times New Roman, フランス語 (フランス) 584 because it is the geometric mean of multiplicative growth rates (Yoshimura and Clark, 1991; 春式変更 : フォント : (特殊) Times New Roman, フランス語 (フランス) 585 Lewontin and Cohen, 1969); 春式変更 : フォント : (特殊) Times New Roman, フランス語 (フランス)	580	evolution of many phenotypic traits. (Philippi and Seger, 1989; Bulmer, 1994; Yoshimura and Clark.		書式変更: フォント : (特殊) Times New Roman, フランス語 (フランス)
1331 12211 In order to assess the effect of the variation in growth rates on natural screence, we have to 582 evaluate the long term growth rate of a genotype. Here the appropriate concept of fitness is the 583 average (expected) growth rate per generation. This average is called geometric mean fitness. 584 because it is the geometric mean of multiplicative growth rates (Yoshimura and Clark, 1991; 585 Lewontin and Cohen, 1969; 586 Lewontin and Cohen, 1969; 687 Fitzer: 7オント: (特殊) Times New Roman, フランス語 (フランス)	591	1001). In order to access the offset of the variation in growth rates on natural calcular, we have to		書式変更: フォント : (特殊) Times New Roman, フランス語 (フランス)
582 evaluate the long term growth rate of a genotype. Here the appropriate concept of fitness is the 583 average (expected) growth rate per generation. This average is called geometric mean fitness. 584 because it is the geometric mean of multiplicative growth rates (Yoshimura and Clark, 1991; Lewontin and Cohen, 1969). 585 Lewontin and Cohen, 1969).	501			
583 average (expected) growth rate per generation. This average is called geometric mean fitness. 584 because it is the geometric mean of multiplicative growth rates (Yoshimura and Clark, 1991; 585 Lewontin and Cohen, 1969; 687 Eatlogeneration and Cohen, 1969; 688 Figure 1969; 689 Sample 2000; 680 Figure 2000; 681 Sample 2000; 682 Sample 2000; 683 Sample 2000; 684 Sample 2000; 685 Sample 2000; 686 Sample 2000; 687 Sample 2000; 688 Sample 2000; 689; Sample 2000; 680; Sample 2000; 680; Sample 2000; 680; Sample 2000; 680; Sample 2000; 690; Sample 2000; 690; Sample 2000; 690; Sample 2000; 690; Sample	582	evaluate the long term growth rate of a genotype. Here the appropriate concept of fitness is the		
584 because it is the geometric mean of multiplicative growth rates (Yoshimura and Clark, 1991; 書式変更: フォント: (特殊) Times New Roman, フランス語 (フランス) 585 Lewontin and Cohen, 1969). 書式変更: フォント: (特殊) Times New Roman, フランス語 (フランス) 書式変更: フォント: (特殊) Times New Roman, フランス語 (フランス) 電式変更: フォント: (特殊) Times New Roman, フランス語 (フランス)	583	average (expected) growth rate per generation. This average is called geometric mean fitness.		
585 Lewontin and Cohen, 1969)。 書式変更: フォント: (特殊) Times New Roman, フランス語 (フランス) 書式変更: フォント: (特殊) Times New Roman, フランス語 (フランス)	584	because it is the geometric mean of multiplicative growth rates (Yoshimura and Clark, 1991;		書式変更: フォント: (特殊) Times New Roman, フランス語 (フランス)
585 Lewontin and Cohen, 1969) Frage Frage Fra			1	書式変更: フォント: (特殊) Times New
	585	Lewontin and Cohen, 1969		roman, フランス語 (フランス) 書式変更: フォント : (特殊) Times New Roman, フランス語 (フランス)

586	*		書式変更: フォント : (特殊) Times New Roman, フランス語 (フランス)
587	The principle of probabilistic optimisation (equation (1)) appears in the concept of geometric mean-		書式変更: フォント:(特殊)Times New Roman, フランス語(フランス)
-		(書式変更: フォント:(特殊)Times New Roman, フランス語(フランス)
588	thess, as follows: Variation in growth rates is expressed as a probability distribution, and geometric-		
589	mean fitness is a specific form of weighted sum of all growth rates within the distribution (equation _		春式変更: フォント: (符烁) Times New Roman, フランス語 (フランス)
590	(5)); This becomes evident when we take the logarithm of the geometric mean fitness, which is the		書式変更: フォント:(特殊)Times New Roman,フランス語(フランス)
591	usual arithmetic mean of logarithmic growth rates (equation (6)).		書式変更: フォント:(特殊)Times New Roman,フランス語(フランス)
592			書式変更: フォント : (特殊) Times New Roman, フランス語 (フランス) 書式変更: フォント : (特殊) Times New
			Roman, フランス語 (フランス)
593	Mathematically geometric mean fitness can be derived from the population growth as follows.		
594	Geometric mean fitness is a specific form of probabilistic optimization, where the fitness function is		書式変更: フォント:(特殊)Times New Roman, フランス語(フランス)
595	a logarithm of population growth rates. Consider the population dynamics of a given genotype (z) for		
596	an organism with discrete generations: $N_{\pm}(t+1) = w_{\pm}(t) N_{\pm}(t)$, for $t = 0, 1, 2, \dots, N_{\pm}(t)$ is the		書式変更: フォント : (特殊) Times New Roman, フランス語(フランス)
			書式変更: フォント : (特殊) Times New Roman, フランス語 (フランス)
597	population size and the fitness of a genotype z, $w_{s}(t)$, is expressed as the population growth rate at		
598	generation t. Then the population size at generation t is given by:		
500	$N(t) = m(0)m(1) = m(t-1)N(t-1) = \left(\frac{t-1}{1}m(t)\right)N(0)$ (7)		書式変更: フォント : (特殊) Times New Roman
999	$W_{z}(t) = W_{z}(0)W_{z}(1) - W_{z}(t-1)W_{z}(t-1) = \left(\prod_{i=0}^{1} W_{z}(i)\right)W_{z}(0) = (1)$	1	書式変更: フォント : (特殊) Times New Roman, フランス語 (フランス)
600	The geometric mean fitness is then defined as an average population growth rate per generation;		書式変更: フォント: (特殊) Times New Roman, フランス語 (フランス)
601	$G(z) = \prod_{i=0}^{t-1} w_z(i)^{(1/t)}$. Suppose that the population growth rate $w_z(i)$ is randomly drawn from a	_	下ハスズ・ ノォンド・(竹林) IIInes New Roman, フランス語(フランス) 書式変更: フォント:(特殊) Times New
			Roman 書式変更: フォント: (特殊) Times New Roman,フランス語 (フランス)
602	probability distribution $p(w, z)$ for a given genotype z. Then the geometric mean fitness is expressed		
603	by the probability distribution p(w, z) as:		

604	$\underline{G(z)} = \prod w^{p(w;z)} $ (8)		書式変更: フォント : (特殊) Times New Roman
	<i>w</i>		書式変更: フォント : (特殊) Times New Roman, フランス語 (フランス)
605	Here genotypes with the highest geometric mean fitness (max G(z)) should be selected through		書式変更: 左揃え,行間 : 2 行,タブ位 置: 29.79 字,左揃え + 31.79 字(な し)
606	natural selection. Taking logarithm of equation (8), we get:		書式変更: フォント : (特殊) Times New Roman, フランス語 (フランス)
		1	書式変更: 左揃え, 行間 : 2 行
607	$\frac{\log G(z) = \int p(w; z) \log(w) dw}{2}$		書式変更: フォント : (特殊) Times New Roman, フランス語(フランス)
608	Here the probabilistic optimization (equation (1)) is a weighted average with the weight $f(w) = \log_{10} w$		書式変更: フォント: (特殊) Times New Roman
			書式変更: フォント: (特殊) Times New Roman, フランス語 (フランス)
609	(₩)		書式変更: フォント : (特殊) Times New Roman, フランス語 (フランス)
610			書式変更: フォント : (特殊) Times New Roman, フランス語 (フランス)
611	As in the previous examples, geometric mean fitnesses lie below arithmetic mean fitnesses in-	, 1 ⁻¹	音八変更: フォント:(特殊) limes New Roman, フランス語(フランス)
010			
612	variable environments. The difference between geometric mean and arithmetic mean fitnesses		
613	increases when environments fluctuates strongly, because variation in growth rates increases.		
614	Suppose that an organism produces two offspring on average in a generation. In stable environments,		
615	after three generations, we expect 2x2x2 = 8 offspring. However, in changing environments we may-		
616	expect, say, $2x1x3 = 6$ offspring. In both environments, the mean fitness is same (i.e.,		
617	$\frac{(2+2+2)}{3}=(2+1+3)/3=2$. But the geometric mean fitness is lower $((2x1x3)^{1/2}=1.82)$ in the variable.		
618	environment, than in the constant environment ($(2x2x2)^{1/3}=2$). Since the population reaches only <u>6</u>		書式変更: フォント: (特殊) Times New Roman, フランス語 (フランス)
			貴八変更 : フォント : (特殊) Times New Roman, フランス語 (フランス)
619	individuals after three generations, the average growth rate of 1.82 individual/generation is a correct-		
620	measure of fitness. To reiterate, the probabilistic optimum is based on geometric mean fitness, and		
621	the deterministic optimum is based on arithmetic mean fitness.	1	書式変更: フォント: (特殊) Times New Roman, フランス語 (フランス)

622			
623	This example indicates that variation in growth rates decreases geometric mean fitness. Because of	[書式変更: フォント : (特殊) Times New Roman, フランス語 (フランス)
624	this, the geometric mean fitness is often approximated with mean and variance using a		書式変更: フォント : (特殊) Times New Roman, フランス語 (フランス)
625	variance discount method (Fig. 2) (Frank and Slatkin, 1989; Gillespie, 1977; Yoshimura and Clark,	 	Roman, フランス語 (フランス) 書式変更: フォント : (特殊) Times New Roman, フランス語 (フランス)
626	1991). Such approximation clearly depicts the effect of variance. As in the previous calculus		書式変更: フォント: (特殊) Times New Roman, フランス語 (フランス)
627	example, variance in population growth rate w reduces the geometric mean fitness. Even if the mean-		Roman, フランス語 (フランス) 書式変更: フォント : (特殊) Times New Roman, フランス語 (フランス)
628	w is smaller, if the variance of w is smaller, the geometric mean fitness can be higher (Fig. 3).	Ì	書式変更: フォント : (特殊) Times New Roman, フランス語 (フランス)
629	٩.	><1	書式変更: フォント : Times New Roman, フランス語(フランス)
630	However, ironically such approximation concentrates only on the effects of mean and variance and		書式変更: 行間: 2行 書式変更: フォント:(特殊)Times New Roman,フランス語(フランス)
631	ignores the entire distribution of growth rates. In addition, the approximation also assumes the	· · · · [書式変更: 左揃え, 行間 : 2 行 書式変更: フォント : (特殊) Times New Roman, フランス語 (フランス)
632	normal distribution of growth rate with small variance (Yoshimura and Jansen, 1996). Therefore, it is	[魯式変更: フォント : (特殊) Times New Roman, フランス語(フランス)
633	not applicable to a case when variance is large or when extinction is a prominent possibility. This is-		
634	evident from the logarithmic function in geometric mean fitness: the weight of negative growth is		
635	much higher than the weight of positive growth, because the logarithm drops faster on the negative-		
636	side, than increases in the positive side. In the limit, if fitness falls to zero in any generation,		
637	arithmetic mean fitness will still be positive, but geometric mean fitness will be zero	1	書式変更: フォント : (特殊) Times New Roman, フランス語(フランス)
638			
639	What is the probability distribution best fit to the distribution of population growth rates? Growth		
640	rate w is a nonnegative variable. Therefore, normal distribution that can take negative values is not-		
-----	---	----	--
641	appropriate. In this sense, lognormal distribution is more appropriate or at least applicable. Here we-		
642	show the geometric mean fitness becomes extremely simple when the lognormal distribution is	/1	書式変更: フォント: (特殊) Times New Roman, フランス語 (フランス) ま式変更: フォント: (特殊) Times New
643	assumed in population growth rates. Let population growth rate w follows a lognormal distribution	l	Roman, フランス語 (フランス)
644	such that	,	書式変更: フォント:(特殊) Times New
645	$P(w;m_z,\sigma_z) = \begin{pmatrix} 1 \\ w\sqrt{2\pi}\sigma_z \end{pmatrix} \exp \begin{pmatrix} (\log(w) - m_z)^2 \\ 2\sigma_z^2 \end{pmatrix} $ (10)		Roman 書式変更: フォント: (特殊) Times New Roman, フランス語 (フランス) まざ変更: フォント: (特殊) Times New
646	Where $P(w) = P(w; m_z, \sigma_z)$ is the probability distribution of w with mean m_z and variance σ_z for		Roman, フランス語 (フランス) 書式変更: フォント: (特殊) Times New Roman, フランス語 (フランス)
647	genotype z. Then the logarithmic form of geometric mean fitness (equation (9)) can be solved.		書式変更: フォント: (特殊) Times New Roman 書式変更: フォント: (特殊) Times New
648	analytically and reduces to the mean of the lognormal distribution m _e , such that (see Appendix for		Roman, フランス語(フランス) 書式変更: フォント:(特殊)Times New Roman
649	derivation):		書式変更: フォント: (特殊) Times New Roman, フランス語 (フランス) 書式変更: フォント: (特殊) Times New Porman
650	$\log G(z) = \log G(m_z, \sigma_z) = m_z = E_z(\log(w)) $ (11)		Roman 書式変更: フォント: (特殊) Times New Roman, フランス語 (フランス)
651	It has been believed that variance is important in adaptation in stochastic environments. However, it		奮式変更: フォント: (特殊) Times New Roman, フランス語 (フランス) 書式変更: フォント: (特殊) Times New Porman, フランス語 (フランス)
652	may be an artefact of our use of multiplicative population growth rates. The correct measure may be		Roman, フランス語 (フランス) 書式変更: フォント: (特殊) Times New Roman, フランス語 (フランス)
653	the logarithmic population growth rates. The simple <u>farithmetic</u> mean of the logarithmic growth		含丸変更 : フォント : (将妹) limes New Roman, フランス語 (フランス) 書式変更: フォント : (特殊) Times New Roman フランス語 (フランス)
654	rates is the fitness over generation time. In this measure, variance and the shape of the probability		Roman, フォント: (特殊) Times New Roman, フランス語 (フランス)
655	distribution does not affect the overall fitness over generation time.		書式変更: 73 ファン: Times New Roman, フランス語 (フランス) 書式変更: 行間: 2 行
656	÷		晋式変更: フォント: 10.5 pt, 太字(な し), (特殊) Times New Roman, フラン ス語(フランス)
657	<u>5. EFFECTS OF UNCERTAINTY</u>		吉い友史・

658	How-strong is the effect of uncertainty on natural selection? How large is the discrepancy between
659	the deterministic and probabilistic optima for phenotypes, genotypes in a generation or genotypes
660	across generations? This depends on two factors: (1) the fitness response to phenotypes or
661	environmental conditions (the shape of functions v and f and the logarithm of geometric mean
662	fitness) and (2) the degree of uncertainty (the shape of probability distributions $\frac{d_{\beta} h(\alpha, \beta)}{h_{\beta}}$ and
663	p(w;z) , e.g., variance and skew; see equations in Tables 1 and 2 equations (1-6)). Even though exact
664	quantitative differences depend on the exact shape of individual fitness and probability distributions.
665	in general, we can state that sharp fitness responses (steep functions) and large degrees of
666	uncertainty (flat distributions) tends to lead to a large discrepancy between the deterministic and
667	probabilistic optima (Yoshimura and Shields, 1995).
001	
668	
668 669	The variance-discount method is often used to estimate the discrepancy quantitatively, e.g., the
668 669 670	The variance-discount method is often used to estimate the discrepancy quantitatively, e.g., the Z-score model (Stephens and Krebs, 1986) in risk-sensitive foraging. However, we need to be aware
668 669 670 671	<u>The variance-discount method is often used to estimate the discrepancy quantitatively, e.g., the</u> <u>Z-score model (Stephens and Krebs, 1986) in risk-sensitive foraging. However, we need to be aware</u> that this approximation ignores the higher order terms of central tendency in probability distributions
668669670671672	<u>The variance-discount method is often used to estimate the discrepancy quantitatively, e.g., the</u> <u>Z-score model (Stephens and Krebs, 1986) in risk-sensitive foraging. However, we need to be aware</u> that this approximation ignores the higher order terms of central tendency in probability distributions and may result in a large discrepancy from true probabilistic optima, as in the usual mean fitness.
 668 669 670 671 672 673 	The variance-discount method is often used to estimate the discrepancy quantitatively, e.g., the. Z-score model (Stephens and Krebs, 1986) in risk-sensitive foraging. However, we need to be aware that this approximation ignores the higher order terms of central tendency in probability distributions. and may result in a large discrepancy from true probabilistic optima, as in the usual mean fitness. approaches. As is discussed in the previous section, the limitation of variance-discount methods.
 668 669 670 671 672 673 674 	The variance-discount method is often used to estimate the discrepancy quantitatively, e.g., the. Z-score model (Stephens and Krebs, 1986) in risk-sensitive foraging. However, we need to be aware that this approximation ignores the higher order terms of central tendency in probability distributions and may result in a large discrepancy from true probabilistic optima, as in the usual mean fitness approaches. As is discussed in the previous section, the limitation of variance-discount methods. becomes clear when we apply them to geometric mean fitness.
 668 669 670 671 672 673 674 675 	The variance-discount method is often used to estimate the discrepancy quantitatively, e.g., the Z-score model (Stephens and Krebs, 1986) in risk-sensitive foraging. However, we need to be aware that this approximation ignores the higher order terms of central tendency in probability distributions and may result in a large discrepancy from true probabilistic optima, as in the usual mean fitness approaches. As is discussed in the previous section, the limitation of variance-discount methods. becomes clear when we apply them to geometric mean fitness.

 書式変更:
 フォント:(特殊) Times New Roman,英語(米国)

 書式変更:
 フォント:(特殊) Times New Roman

676	Reinforcing and extending earlier generalisations, we should also note here that which direction the	
677	probabilistic optimum shifts from the deterministic optimum can be simply identified (Figs. 1-3).	
678	In the case of geometric mean fitness, it is always smaller than the arithmetic mean fitness (Figs. 3	
679	and 4). Mathematically, this directionality can be often characterised by Jensen's inequality which	
680	compares the expectation of values (here, probabilistic optimum) and the value of an expected factor	
681	(here, deterministic optimum) (Karlin and Taylor, 1975).	
682		
683	Equation (10) has an important meaning for the strategy of species (see also equations (1) and (2) of	
684	Table 2). As a thought experiment, we consider two typical species A and B. The reproduction rates	
685	during three generations are assumed as follows:	
685 686	<u>during three generations are assumed as follows:</u> <u>Species A:</u> $r(1) = r(2) = r(3) = 1$.	変更されたフィールド コード
685 686 687	<u>during three generations are assumed as follows:</u> <u>Species A:</u> $r(1) = r(2) = r(3) = 1$. <u>Species B:</u> $r(1) = 1$, $r(2) = 0.001$, $r(3) = 1000$.	変更されたフィールド コード 書式変更: フォント: Times New Roman, 斜体, フランス語 (フランス), 文字位 置下げる 5 pt
685 686 687 688	during three generations are assumed as follows: <u>Species A:</u> $r(1) = r(2) = r(3) = 1$. <u>Species B:</u> $r(1) = 1$, $r(2) = 0.001$, $r(3) = 1000$. <u>Species A has a safer strategy such as mammals, while species B takes a risky strategy like fish and</u>	変更されたフィールド コード 書式変更 : フォント: Times New Roman,
685 686 687 688 689	during three generations are assumed as follows: <u>Species A:</u> $r(1) = r(2) = r(3) = 1$. <u>Species B:</u> $r(1) = 1$, $r(2) = 0.001$, $r(3) = 1000$. <u>Species A has a safer strategy such as mammals, while species B takes a risky strategy like fish and plankton. For both cases, equation (10) leads to $w_g(z) = E_z \{\log(r)\} = 0$, so that the geometric</u>	変更されたフィールド コード 書式変更: フォント: Times New Roman, 斜体, フランス語 (フランス), 文字位 置下げる 5 pt 変更されたフィールド コード 音式変更: フォント: Times New Roman, 斜体, フランス語 (フランス), 文字位 置下げる 5 pt
685 686 687 688 689 690	during three generations are assumed as follows: Species A: $r(1) = r(2) = r(3) = 1$. Species B: $r(1) = 1$, $r(2) = 0.001$, $r(3) = 1000$. Species A has a safer strategy such as mammals, while species B takes a risky strategy like fish and plankton. For both cases, equation (10) leads to $w_g(z) = E_z \{log(r)\} = 0$, so that the geometric mean fitness takes the same value; the population size of each species is unchanged after three	変更されたフィールド コード 書式変更: フォント: Times New Roman, 斜体, フランス語 (フランス), 文字位 置下げる 5 pt 変更されたフィールド コード 変更されたフィールド コード 変更されたフィールド コード 変更されたフィールド コード 変更されたフィールド コード 変更されたフィールド コード 置下げる 5 pt
685 686 687 688 689 690 691	during three generations are assumed as follows: Species A: $r(1) = r(2) = r(3) = 1$. Species B: $r(1) = 1$, $r(2) = 0.001$, $r(3) = 1000$. Species A has a safer strategy such as mammals, while species B takes a risky strategy like fish and plankton. For both cases, equation (10) leads to $w_g(z) = E_z \{\log(r)\} = 0$, so that the geometric mean fitness takes the same value; the population size of each species is unchanged after three generations. In contrast, the mean fitness for both species largely differs. The arithmetic mean fitness	変更されたフィールド コード 書式変更: フォント: Times New Roman, 斜体, フランス語 (フランス), 文字位 運下げる 5 pt 変更されたフィールド コード 変更されたフィールド コード 変更されたフィールド コード 変更されたフィールド コード 変更されたフィールド コード 運下の スコークシス語 (フランス), 文字位 置下げる 5 pt
685 686 687 688 689 690 691 692	during three generations are assumed as follows: $\underbrace{Species A: r(1) = r(2) = r(3) = 1}_{pr(2) = 0.001, r(3) = 1000}_{pr(3) =$	変更されたフィールド コード 書式変更: フォント: Times New Roman, 斜体, フランス語 (フランス), 文字位置下げる 5 pt 変更されたフィールド コード 変更されたフィールド コード 変更されたフィールド コード 変更されたフィールド コード 変更されたフィールド コード 変更されたフィールド コード 運下パる 5 pt

書式変更: 左揃え, 行間 : 2 行 694 695 The empirical studies of geometric mean fitness is extremely difficult, because severe stochastic 696 events are rare and not measurable (Yoshimura and Clark, 1991). This situation is also reflected in 697 the empirical studies. Only few trial attempts are seen for the effects at the level across generations, 698 e.g., the cabbage butterfly (Root and Kareiva, 1984) and the Great Tit (Boyce and Perrins, 1987). 699 However, these attempts are not inconclusive. In contrast, the effects of uncertainty is well 700documented at the level of an individual (for many empirical studies, see Stephens and Krebs, 1986; 701 Real and Caraco, 1986) and few good examples are reported at the level of a population (e.g., Price 702and Waser, 1979; Yoshimura and Shields, 1995). The current analyses of geometric mean fitness 703may help empiricists to measure the effects of cross-generational uncertainty on natural selection. **書式変更:** 左揃え, 行間: 2 行 704705As in Monod's famous essay (Monod, 1971) "Chance and necessity," chance (or uncertainty) may be 706 equally as important in evolution as necessity (causality). 6. RESULT Chance and necessity governs the evolution of organisms (Monod, 1971). The traditional statistical 707 708theory of natural selection has been developed based mostly on mean fitness, one central tendency, 709 and it describes the causal "necessity" of evolution. Only in a few case, variance, the second order 710measure, is included as a variance discount. In contrast, the current probabilistic theory covers an entire probability distribution of fitness and it elucidates the intertwining features of "chance" 711

712	(uncertainty) and "necessity" in evolution. As I showed, this basic principle applies to problems of
713	uncertainty in all three major categories of uncertainty: (1) behavioural decision making of an-
714	individual (individual level: e.g., risk-sensitive foraging and dynamic behaviour), (2) phenotypic-
715	adaptation of life history and behavioral traits (population level; e.g., body size, dispersal strategy),
716	and (3) population dynamics and evolution (cross generation level: e.g., risk spreading,
717	bet hedging).
718	
719	As in Monod's famous essay (Monod, 1971) "Chance and necessity," chance (or uncertainty) may be
720	equally as important in evolution as necessity (eausality). It has been shown that environmental
721	uncertainty often relates to many other issues in evolution and ecology (Yoshimura and Clark, 1993;
722	Bulmer, 1994), e.g., game theory (Ellner, 1985), kin selection (McNamara, 1995), and community
723	diversity (Chesson and Warner, 1981). However, we still have a very limited knowledge about the
724	importance of uncertainty in the evolution of organisms. For example, we have only just started to
725	characterise the basic property of randomness in fluctuating environments, such as 1/f-noise (Halley,
726	1996). I hope that this synthesis will promote better understanding of the probabilistic nature of
727	natural selection.
728	
729	Acknowledgements

730	I would like to thank Christoph Thobaud. Vincent Jancan and John Jawton for helpful comments on	(書式変更: 行間 : 2 行
750	Twould like to thank Christoph Thebaud, whicen Jansen and John Lawton for heipfur comments on	
731	the previous manuscript.	
732		
733	<u>↓これを入れないとダメらしいです↓</u>	春式変更: フォントの色:赤
		書式変更: 左揃え, 行間 : 2 行
734	Acknowledgements	
735	Please include, at the end of the acknowledgements, a declaration that the experiments	
736	comply with the current laws of the country in which they were performed.	
737		
738	Example :-	
		- 書式來更: 行間: 2 行
739	A cknowledgements. We thank the staff of the Los Tuxtlas Biological	
740	Station for their continuous support, and H. Lambers, E. van	
741	der Maarel, and M.J.A. Werger for their comments on an earlier	
742	draft of the manuscript. The IBM Scientific Center of Mexico and	
743	the Department of Experimental Plant Ecology of the Catholic	
744	University of Nijmegen, The Netherlands, kindly provided computer	
745	facilities. We were supported by grant nr. W84-204 of The	
746	Netherlands Foundation for the Advancement of Tropical Research	
		書式変更: 左揃え, 行間 : 2 行
747	(WOTRO).	
ļ		

748				
749	Acknowledgments. Dale Roberts, Kristina Jones, Judy Anderson,	۹-		書式変更: 行間: 2行
750	Denise Stevenson and Dale Gardner assisted in the field. Mark			
751	Rausher supplied the hand held computers. This research was supported			
752	by National Science Foundation Grant BSR-8506064. P.			
753	Turchin was supported by NSF Grant BSR 8605303. Christoph Thebaud, Vincent Jansen and John			
754	Lawton provide helpful comments on the previous manuscript. This work was supported by	1	1	書式変更
755	grants-in-aids from the Ministry of Education, Culture, Sports, Science and Technology of Japan,	/		書式変更: フォント : (特殊) Times New Roman, 英語 (米国)
756	<u>ــــــــــــــــــــــــــــــــــــ</u>			書式変更: フォントの色:赤,英語(米国) まざ変更: た揃う 行間: 2 行 タブ位
757		•	· · · ·	T $(\lambda_{2,5}, \alpha_{-1,11}, \lambda_{-1}, 1)$ T $(\lambda_{2,5}, \alpha_{-1,11}, \lambda_{-1}, 1)$ T $(\lambda_{2,5}, \alpha_{-1,11}, 2)$ T $(\lambda_{2,5}, \alpha_{-1$
			Ì	書式変更: 左揃え, 行間 : 2 行

758	<u>References</u>	
759	Andrewartha, H.G., Birch, L.C., 1954. The distribution and abundance of animals. Chicago	
760	University Press, Chicago.	
761	Boyce, M.S., Perrins, C.M., 1987. Optimizing Great Tit clutch size in a fluctuating environment.	書式変更: 左揃え, 行間 : 2 行
762	<u>Ecology 68, 142-153.</u>	
763	Bulmer, M., 1994. Theoretical evolutionary ecology. Sinauer Associates, Sunderland, MA.	(書式変更: 左揃え, 行間 : 2 行
764	Caraco, T.hesson, P.L., -Warner, R.R., 19804. On foraging time allocation in a stochastic	
765	environment. Environmental variability promotes coexistence in lottery competitive systems.	
766	<u>EcologyAm. Nat. 61117, 119923-128943.</u>	春式変更: フォント:太字(なし)
767	Caraco, T., Chasin, M., 1984. Foraging preferences: response: response to reward skew. Anim. Behav.	
768	<u>32, 76-85.</u>	
769	Caraco, T., Martindale, S., Whitham, T.S., 1980. An empirical demonstration of risk-sensitive	書式変更: 左揃え, 行間 : 2 行
770	foraging preferences. Anim. Behav. 28, 820-830.	
771	Chesson, P.L., Warner, R.R., 1981. Environmental variability promotes coexistence in lottery	
772	competitive systems. Am. Nat. 117, 923-943.	
773	Cohen, D., 1993. Fitness in random environments, in Adaptation in stochastic environments	{ 書式変更: 左揃え, 行間 : 2 行)
774	(Yoshimura, J. and Clark, C. W., eds.), pp. 8-25, Springer-Verlag, Berlin.	
775	Crow, J.F., Kimura, M., 1970. An introduction to population genetics theory. Harper and Row, New	

776	York.			
777	Darwin, C., 1859. The origin of species. John Murray, London.			
778	DeWitt Ellner , T.J., 1998. Costs and limits of phenotypic plasticity: Tests with predator-induced			
779	morphology and life history in a freshwater snail. Journal of Evolutionary Biology 11:	1	書式変更:	フォント: 斜体
780	<u>465-480.</u>			
781	DeWitt, T.J., Scheiner, SM, Eds., 2004. <i>Phenotypic Plasticity. Functional and Conceptual</i>		書式変更: 書式変更:	左揃え,行間: 2 行 フォント:斜体
782	Approaches. New York: Oxford University Press.			
783	DeWitt, T.J., Yoshimura, J. 1998. The fitness threshhold model: Random environmental change			
784	alters adaptive landscapes. <i>Evol., Ecol.</i> 12: 615-626.8., 1985. ESS germination strategies in) ر 	書式変更: 書式変更:	フォント:斜体 フォント:斜体
785	randomly varying environments. I. Logistic type models, Theor. Pop. Biol. 28, 50-79.	1	書式変更:	フォント:太字(なし)
786	Ellner, S., 1985. ESS germination strategies in randomly varying environments. I. Logistic-type			
787	models, Theor. Pop. Biol. 28, 50-79.			
788	Fisher, R.A., 1930. The genetical theory of natural selection. Dover, New York.	{	書式変更:	左揃え、行間:2行
789	Frank, S., Slatkin, M., 1989. Evolution in a variable environment. Am. Nat, <u>136</u> , 244-260.	1	書式変更:	フォント:太字(なし)
790	Gillespie, J.H., 1977. Natural selection for variance in offspring numbers: a new evolutionary			
791	principle. Am. Nat. <u>111, 1010-1014.</u>	1	書式変更:	フォント:太字(なし)
792	Halley, J.M., 1996. Ecology, evolution and 1/f-noise. Trends Ecol. Evo. 11, 33-37.	1	書式変更:	フォント:太字(なし)
793	Karlin, S., Taylor, H.M., 1975. A first course in stochastic processes. 2nd Ed. Academic Press, New			

794	York.	
795	Krebs, J.R., Davies, N.B., 1993. An introduction to behavioural ecology. 3rd Ed. Blackwell	
796	Scientific, Oxford, UK.	
797	Lalonde, R.G., 1991. Optimal offspring provisioning when resources are not predictable. Am. Nat.	
798	<u>,138, 680-686.</u>	書式変更: フォント:太字(なし)
799	Lewontin, R.C., Cohen, D., 1969. On population growth in a randomly varying environment. Proc.	
800	<u>Natl. Acad. Sci. USA, 62, 1056-1060.</u>	春式変更: フォント:太字(なし)
801	Mangel, M., Clark, C.W., 1988. Dynamic modeling in behavioral ecology. Princeton University	
802	Press, Princeton, NJ.	
803	McNamara, J., 1995. Implicit frequency dependence and kin selection in fluctuating environments.	
804	<u>Evol. Ecol. 9, 185-203.</u>	春式変更: フォント:太字(なし)
805	Monod, J., 1971. Chance and necessity. Vintage Books, London.	
806	Mountford, M.D., 1968. The significance of litter-size. J. Anim. Ecol. <u>37</u> , 363-367.	書式変更: 行間 : 2 行 書式変更: フォント : 太字(なし)
807	Parker, G.A., Maynard Smith, J., 1990. Optimality theory in evolutionary biology. <i>Nature</i> 348,	(書式変更: 左揃え, 行間 : 2 行
808	<u>27-33.</u>	
809	Pettifor, R.A., Perrins, C.M., McCleery, R.H., 1988. Individual optimization of clutch size in great tit.	(書式変更: 左揃え, 行間 : 2 行
810	<u>Nature 336, 160-162.</u>	
811	Philippi, T., Seger, J., 1989. Hedging one's evolutionary bets, revisited. <i>Trends Ecol. Evol.</i> 4, 41-44.	(書式変更: 左揃え, 行間 : 2 行 (書式変更: フォント : 太字 (なし)

		書式変更: フォント:斜体
812	Pigliucci, M., 2001. <i>Phenotypic Plasticity: Beyond Nature and Nurture</i> . Johns Hopkins University	書式変更: 左揃え, 行間 : 2 行
813	Press, Baltimore, MD.	
814	Price, M.V., Waser, N.M., 1979. Pollen dispersal and optimal outcrossing in Delphinium nelsonii.	書式変更: 左揃え, 行間 : 2 行
815	<u>Nature 277, 294-296.</u>	書式変更: フォント:太字(なし)
816	Real, L.A., Caraco, T., 1986. Risk and foraging in stochastic environments. Ann. Rev. Ecol. Syst. <u>17</u> ,	書式変更: フォント:太字(なし)
817	<u>371-390.</u>	
818	Roff, D., 1981. On being the right size. Am. Nat. <u>118, 405-422.</u>	- 書式変更: フォント: 太字 (なし)
819	Roff, D.A., 1992. The evolution of life historiey. Chapman and Hall, New York.	
820	Root, R.B. and Kareiva, P.M., 1984. The search for resources by cabbage butterflies (Pieris rapae):	(書式変更: 左揃え, 行間 : 2 行
821	Ecological consequences and adaptive significance of markovian movements in a patchy	
822	environment. Ecology 65, 147-165.	
823	Schmidt-Nielson, K., 1984 Scaling: why is animal size so important? Cambridge University Press,	(書式変更: 左揃え,行間 : 2 行)
824	Cambridge, UK.	
825	Sibly, R.M., Calow, P., 1986. Physiological ecology of animals. Blackwell Scientific, Oxford, UK.	
826	Stearns, S.C., 1992. The evolution of life histories. Oxford University Press, Oxford, UK.	
827	Stephens, D.W., Krebs, J.R., 1986. Foraging theory. Princeton University Press, Princeton, NJ,	
828	Via, S. and Lande, R. 1985. Genotype-environmental interaction and the evolution of phenotypic	書式変更: 左揃え, 行間 : 2 行
829	plasticity. <i>Evolution</i> , 39, 505-522.	書式変更: フォント: 斜体

			書式変更: 左揃え, 行間 : 2 行
830	Williams, G.C., 1992. Natural selection: domains, levels, and challenges. Oxford University Press,		
991	Ovford UK		
001	Oxfold OK.		
832	Voshimura I 1995 Environmental uncertainty and natural selection Japanese Journal of Ecology		書式変更: 左揃え,行間 : 2 行, タブ位置: 2.7 字, 左揃え
001			
833	45, 185-190 (in Japanese).		
		ſ	サートホー・ フニンフモ(フニンフ)
834	Yoshimura, J., Clark, C.W., 1991. Individual adaptations in stochastic environments. Evol. Ecol. 5,	7-1	書式変更 ・ノフンス語(ノフンス) 書式変更 : 左揃え、行間 : 2 行
			書式変更: フォント:太字(なし)
835	<u>173-192, 430 (Corrigenda).</u>		
836	Yoshimura, J., Clark, C.W. (eds.), 1993. Adaptation in stochastic environments (Lecture Notes in		
837	Biomathematics, Vol. 98). Springer-Verlag, Berlin.		
838	Yoshimura, J., Shields, W.M., 1987. Probabilistic optimization of phenotype distributions: a general		
		_1	書式変更: フォント:太字(なし)
839	solution for the effects of uncertainty on natural selection? <i>Evol. Ecol.</i> 1, 125-138.	1	
0.40			
840	Yoshimura, J., Shields, W.M., 1992. Components of uncertainty in clutch-size optimization. Bull.		
941	Mark Dial EA AAE ACA		書式変更: フォント:太字(なし)
041	<u>Main. Biol. 24, 443-404.</u>		
842	Voshimura I. Shields W.M. 1995 Probabilistic optimization of body size: a discrepancy between		
012	Toshinara, s., Shields, W.M., 1995. Trobaonistic optimization of oody size. a discrepancy between		
843	genetic and phenotypic optima. <i>Evolution</i> , 49, 375-378.	,,,1	書式変更: フォント:太字(なし)
844	Yoshimura, J., Jansen, V.A.A., 1996. Evolution and population dynamics in stochastic environments.		書式変更: インデント:左: 0 mm, ふ ら下げインデント: 5.66 字, 行間: 2
			行, タフ位置: -5.39 字, 左揃え + -2.7 字, 左揃え + 0 字, 左揃え + 2.7
845	Researches on Population Ecology 38, 165-182.		子, 左擱え + 5.39 子, 左擱え + 8.09 字, 左揃え + 10.79 字, 左揃え +
	``	N	10.49 子, 左攔え + 10.18 子, 左擱え + 18.88 字, 左揃え + 21.58 字, 左揃え 4.04.07 左 左 横 之 + 20.58 字, 左 揃え
846	*		+ 24.21 + 5.21 $+ 26.91 + 26.91$ $+ 26.91$ $+ 32.36$ $+ 12.36$
			<u>40.10</u> 書式変更: フォント:太字(なし)
		Ì	書式変更: 左揃え, 行間 : 2 行

847 APENDIX.
848 We solve the logarithmic form of geometric mean filtness (equation (2) to derive equation (10) when
849
$$P(r) = P(r;m_{1},\sigma_{2})$$
 is a bencomal distribution (equation (2)).
850 $\log G(r;m_{1},\sigma_{2}) = \int_{0}^{1} \log(r) \left(\frac{1}{r\sqrt{2\pi\sigma_{2}}}\right) \exp\left(-\frac{(\log(r)-m_{2})^{2}}{2\sigma_{2}^{2}}\right) dr$ (A1)
851 $\log G(r;m_{1},\sigma_{2}) = \int_{-\infty}^{1} \left[\log\left(\frac{1}{r\sqrt{2\pi\sigma_{2}}}\right) \exp\left(-\frac{(\log(r)-m_{2})^{2}}{2\sigma_{2}^{2}}\right) dr$ (A2)
852 $\log G(r;m_{1},\sigma_{2}) = \int_{-\infty}^{1} \left[\sqrt{2\pi\sigma_{2}} \right] \exp\left(-\frac{(y-m_{1})^{2}}{2\sigma_{2}^{2}}\right) dy$ (A2)
853 Then let $y - m_{1} = x, \frac{1}{\sqrt{2\pi\sigma_{2}}} = a, \frac{1}{2\sigma_{1}^{2}} = b$ equation (A2) becomes
854 $\log G(r;m_{1},\sigma_{2}) = a \left[\frac{1}{2} x \exp(-bx^{2}) kx + m_{1} \left[\int_{-\infty}^{1} \exp(-bx^{2}) kx \right] \right]$ (A3)
855 Here let $F(x) = \exp(-bx^{2})$ Then we get $\frac{dF}{dx} = -2zb \exp(-bx^{2})$, which is instromed is
856 $-xF(x) = -\frac{1}{2b} \frac{dF}{dx}$. Therefore, we get $\int xF(x) dx = \left[-\frac{1}{2b} F(x) \right] = 0$
857 The right-hand side of Equation (A2) is now calculated as follows.
858 $\int_{-\infty}^{1} x \exp(-bx^{2}) kx = \frac{\sqrt{\pi}}{2\sqrt{p}}$ we get
859 And from $\int_{0}^{1} \exp(-bx^{2}) kx = \frac{\sqrt{\pi}}{\sqrt{p}}$ we get
850 $\int_{-\infty}^{1} \exp(-bx^{2}) kx = \frac{\sqrt{\pi}}{\sqrt{p}}$ we get
851 $\int_{-\infty}^{1} \exp(-bx^{2}) kx = \frac{\sqrt{\pi}}{\sqrt{p}}$ we get
852 $\int_{-\infty}^{1} \exp(-bx^{2}) kx = \frac{\sqrt{\pi}}{\sqrt{p}}$ we get
853 $\int_{-\infty}^{1} \exp(-bx^{2}) kx = \frac{\sqrt{\pi}}{\sqrt{p}}}$ we get
854 $\int_{-\infty}^{1} \exp(-bx^{2}) kx = \frac{\sqrt{\pi}}{\sqrt{p}}}$ we get
855 $\int_{-\infty}^{1} \exp(-bx^{2}) kx = \frac{\sqrt{\pi}}{\sqrt{p}}$ we get
856 $\int_{-\infty}^{1} \exp(-bx^{2}) kx = \frac{\sqrt{\pi}}{\sqrt{p}}}$ we get
857 $\int_{-\infty}^{1} \exp(-bx^{2}) kx = \frac{\sqrt{\pi}}{\sqrt{p}}}$ we get
858 $\int_{-\infty}^{1} \exp(-bx^{2}) kx = \frac{\sqrt{\pi}}{\sqrt{p}}}$ we get
859 $\int_{-\infty}^{1} \exp(-bx^{2}) kx = \frac{\sqrt{\pi}}{\sqrt{p}}}$ we get
850 $\int_{-\infty}^{1} \exp(-bx^{2}) kx = \frac{\sqrt{\pi}}{\sqrt{p}}}$

i		
866	Table 1. Terms and equations for the fitness at the levels of an individual and a p	opulation.
867		
868	<u>x:</u> an environmental factor for an individual	
869	<u>y:</u> the phenotype of an individual	
870	<u>z: a genotype</u>	
871	<u><i>H</i>: The domain of a given distribution <u><i>h</i></u></u>	
872	$f_{\underline{i}}(x,y)$: fitness of an individual with phenotype y in environment x	
873	<u>$h_i(x)$:</u> probability distribution of environment x	
874	$f_p(y) = w_j(y)$: fitness of an individual with phenotype y	
875	<u>$h_{\underline{p}}(y,z)$:</u> probability distribution of phenotypes y for a given genotype z	
876	$w_p(z)$: fitness of a genotype z (within a generation)	
877		
878	$w_i(y) = \int f_i(x, y) h_i(x) dx $ (1)	変更されたフィールド コード
	$y \in H_i(x)$	書式変更 :英語(米国)
879	$w_{n}(z) = \int f_{n}(y)h_{n}(y,z)dy $ (2)	
	$ \begin{array}{c} $	
880	$\overline{w_n(z)} = \sum f_n(y)h_n(y,z) \tag{3}$	
	$\sum_{y \in H_p(y,z)} y \in F_p(y,z)$	
881		
882	<u>Note: the suffix <i>i</i> in equation (1) denotes the individual level</u>	書式変更: フォント:斜体
883	(p: population level).	書式変更: フォント: 斜体
884		
885		

899	Figure Legends
900	Fig. 1 - Probabilistic optimization of uncertain daily food amounts xy for a given phenotype yx . (a)
901	the fitness $f_{y}(xy, yx)$ of an individual with a phenotype yx in environment xy . The phenotype $yx = 10$.
902	is adapted for bad environments, $xy = 30$ for intermediate environments and $yx = 50$ for good
903	environments. (b) the fitness $f_i(x, y) + (y, x)$ for phenotypes $y = x$ in a given environment $x = x$. The
904	deterministic optimum Y_{*_d} (=33) is the optimal phenotype in the average environment x_{m_m} (=50).
905	(c) the (Gaussian) probability distribution of daily food abundance $h_{eff}(y)$ with the mean $E(xy) = 50$.
906	(d) The phenotypic fitness of an individual $w_f(yx)$. The probabilistic optimum Y_{x_p} (=30.89) is the
907	maximum of $w_{1}(y)$ for y_{π} . The probabilistic optimum $Y_{\pi_{p}}$ (=30.89) is different from the
908	<u>deterministic optimum Y*_d (=33).</u>
909	
910	Fig. 2 - Probabilistic optimization of body size $y=$. (a) $w_j(y)=$ the phenotypic fitness of body size
911	(the dotted line); $w_p(z)w(z)$: the genotypic fitness of mean body size (the solid line); $Y_{\#_{max}}$ represents
912	the optimal phenotype (individual body size); and $Z_{\Xi_{max}}$ represents the optimal genotype (mean body)
913	size). (b) $h_p(y, z)$: probability distributions of body size y for a given genotype z . The normal
914	distributions are assumed with a constant variance and genotypic mean body sizes z (three genotypes
915	are shown). The genetic optimum $Z_{\Xi_{max}}$ is different from the phenotypic optimum $Y_{\Xi_{max}}$.
916	

917		
918	Fig. 3 - Probabilistic optimization of population growth rates <u>r</u> over cross-generations. (a) $f_{e}(r) = \frac{1}{2}$	書式変更: フォント:斜体
919	log (<i>r</i>): the log population growth rate plotted against multiplicative growth rate <i>r</i> . (b) $h_g(r, z)$:	書式変更: フォント:斜体 書式変更: フォント:斜体
920	probability distributions of multiplicative growth rate r for three genotypes. The log normal	
921	distributions are assumed with a constant variance and genotypic mean body sizes z (three genotypes	
922	are shown: $z = z_1, z_2$ and z_3). (c) The log-transformed generational fitness $F_F(R) = F_F(\log r) = R$	書式変更: フォント:斜体 書式変更: フォント:斜体 書式変更: フォント:斜体
923	plotted against $R = \log(r)$. (d) $h_G(r, z)$: probability distributions of log growth rate log (r) for three	書式変更: フォント:斜体
924	genotypes (transformed from (b)),	書式変更: フォント: 斜体
925	Fig. 43 - Mean-variance approximation of geometric mean fitness: $G(r_{H}) \simeq - \mu - \sigma^2/(2\mu)$, where	書式変更: 下線
926	μ and σ^2 are mean and variance of population growth rates $r_{\mu\nu}$, respectively. –Isoclines indicate	
927	several three different level of $G(rw)$ with grey scale (from top: 1.5, 1 and 0.5). The combination of	
928	low mean and low variance (circle) is may be better than that of high mean and high standard	
929	deviation (cross). –On an isocline, two genotypes have equal geometric mean fitnesses.	
930	4-	(書式変更: 左揃え
931		
932		

1014	(Lloyd and Dybas, 1966; Hoppensteadt and Keller, 1976), This hypothesis can	e l'	1
1015	explain the origins and maintenance of periodical cycles, but it cannot explain	[
1016	why prime number cycles of periodical cicadas are <u>have originated in the first</u>		1
1017	place (May, 1979). The hybridization hypothesis claims that prime numbers	 	
1018	greatly reduce the chance of hybridization among cicada broods (Cox and Carlton,		
1019	1988; Cox and Carlton, 1991; Yoshimura, 1997)		
1020	۸		
1021	In the hybridization hypothesis, the origin of periodicity is due to environmental cooling		
1022	during the Pleistocene Ice Ages. Apart from the timing of adult emergence, ancestral-	,	Ċ
1023	poriodical cicadas are assumed to be very similar to typical members of the Cicadidae,-		
1024	emorging annually and spending 5-9 years in the larval stages based on the life history	1	
1025	of <i>Okanagana rimosa</i> , a closely related species. Their determinant of maturation is		
1026	cumulative temperature because their growth depends on that of the host plants, trees,		(
1027	(Yoshimura, 1997). Periodicity is originally caused by global cooling at the onset of the	, i ¹	
1028	Pleistocene. Cooling causes a large delay in larval growth and additional mortality-		
1029	before emergence, resulting in a massive decrease in the adult density (Cox and Carlton,		
1030	1988; Cox, 1992; Yoshimura, 1997). The synchronization of cycles or periodicity is strongly-		
1031	selected at this stage owing to the adult densities approaching extinction. The		

書式変更: (日) MS	フォント:(英)Century, 明朝
書式変更:	フォント: Century
書式変更:	フォント: Century
書式変更:	フォント:Century
書式変更: の色:自	フォント: 10.5 pt, フォント 動
書式変更: (日) MS : 自動	フォント:(英)Century, 明朝, 10.5 pt, フォントの色
書式変更: (日) MS	フォント:(英)Century, 明朝
書式変更: (日) MS : 自動	フォント:(英)Century, 明朝, 10.5 pt, フォントの色
書式変更: (日) MS	フォント:(英)Century, 明朝
書式変更: (特殊) Cer	フォント:(日)MS 明朝, ntury, 英語(英国)
書式変更: (日) MS	フォント:(英)Century, 明朝
書式変更:	行間:2行

書式変更:	フォント	: Century
書式変更:	フォント	: Century

書式変更:	フォント	:	(英)	Century,
(日) MS	明朝			

1032	determinant of maturation switches from temperature to time (periodicity)				
1033					
1034	The selection of prime number intervals follows the evolution of periodicity and long				
1035	intervals (Cox and Carlton, 1988; Yoshimura, 1997). <mark>Initially, a variety of incipient periodical</mark>				
1036	cicada brood life-cycle lengths exist. <u>Within a brood, females produce offspring on</u>	1	書式変更:	フォント:Century	
1037	different lengths. By chance, some broods emerge concurrently; these hybridize		書式変更:	フォント:Century	
1038	randomly. <u>The gGenetics of hybrids are unknown, but from the current periodical</u>) ر 	書式変更: 書式変更:	フォント:Century フォント:Century	
1039	cicadas, it is likely to be Mendelian inheritance with shorter <u>or longer cycle dominance.</u>	1	書式変更:	フォント:Century	
1040	These hybrids are eliminated because of their small population sizes and lack of				
1041	coordinated intervals. Such co-emorgence is highly disadvantageous and leads to the				
1042	extinction of broods. Here, the frequency of co-emergence depends on intervals. Note-				
1043	that the lowest common multiplier (L. C. M.) of a prime number is usually large in				
1044	contrast with those of non-prime numbers. Prime number intervals less frequently				
1045	co-emorge with other intervals than non-prime number intervals. Non-prime number		書式変更: (日) MS	フォント: (英) Century, 明朝	
1046	intervals suffer serious hybridization loss. Once the density of non-prime number-				
1047	broods decreases, selection against hybridization increases exponentially because of				
1048	frequency-dependent mating between different broods (Yoshimura and Clark, 1994;				
1049	Yoshimura, 1997). Through frequent hybridization and elimination of non-prime number-				

1050	intervals, only prime number intervals sustain population densities and all other	
1051	intervals are wiped out completely.	1
1052		
1053	The hybridization hypothesis shows the advantage of prime number intervals in	
1054	hybridization. However, the hypothesis does not confirm the evolution of prime number	$\frac{1}{1}$
1055	intervals, climinating all other intervals, because this advantage of prime number	
1056	intervals depends on both population size (density) and frequency of all intervals. The-	
1057	loss of fitness by hybridization varies depending on both population sizes and	
1058	frequencies. When two cycles co-emorge, the cycle with the larger population size has a	
1059	small loss of offspring by hybridization, while that with the smaller population size has	
1060	a large loss, because of frequency dependent hybridization. Thus the evolution of prime-	
1061	number intervals depends on the trade-off between disadvantage of hybridization,-	
1062	population sizes, frequency of intervals and growth conditions which affect the latter-	
1063	two. In this paper, we test the hybridization hypothesis using a deterministic simulation	
1064	model. We show that prime number intervals persist while all other eyeles go extinct	
1065	under certain conditions, i.e., marginal (near extinction) environmental conditions, as-	
1066	suggested by Yoshimura (Yoshimura, 1997)	1
1067		

コメント [CS2]: One problem with this hypothesis that I have noted in the past is that current evidence suggests that periodical cicadas cannot live sympatricaly unless separated by at least four years in life cycle due to nymphal competition—but we don't need to mention this here. Perphaps nymphal competition was lower in the past and populations denisites not as high as in your model when populations are on the edge of extinction. 書式変更: フォント : Times New Roman

書式変更:フォント: (英) Century, (日) MS 明朝

書式変更:フォント: Century **書式変更:**フォント: Century **書式変更:**フォント: Century

書式変更:フォント: (英) Century, (日) MS 明朝

1068	MODELS
1069	In our model, we assume identical population sizes of insects with various established
1070	eyeles (10-20 year cycles). We assume that survival (mortality) rate $S(1$ - S) per year is
1071	$rac{constant.}{constant.}$ The larval population size decreases with a constant survival rate S /year-
1072	(Karban, 1982). This means that the cicadas with longer intervals suffer higher-
1073	mortalities. The clutch size C of a copulated adult female with interval y is assumed to
1074	be an increasing function of interval (growth period) y, such that $O(y) = Ry$, where R is a
1075	constant. It is because reproductive output (clutch size) in insects often correlates with
1076	effective cumulative temperature (Chapman, 1971). This means that longer intervals-
1077	(growth period) have larger clutch sizes, but suffer higher mortality per emergence.
1078	Note that there is a trade-off between intervals with respect to overall juvenile survival
1079	rate and clutch size C per cycle. In contrast, successful emergence rate $E(0 < E < 1)$ is
1080	kept constant, assuming emergence failure is independent from intervals. Emergence-
1081	failure in cicadas is frequently seen in nature.
1082	
1083	
1084	
1085	

1086	The allele controlling life cycle follows a single-locus Mendelian inheritance system with		
1087	shorter cycle dominance, such that genotype [<i>i,j</i>]corresponds to phenotype <i>i</i> (years) if $i \leq j$		
1088	j. For example, when 12- and 15-year life cycle genotypes co-emerge, all the hybrid-		
1089	offspring [12,15] appear after 12 years (Cox and Carlton 1991; Lloyd et al. 1983). The	1	書式変更: フォント: Century
			書式変更 :フォント:Century 書式変更 :フォント:Century
1000	number of bubild individuals is assumed to be monortional to the relative non-define		書式変更 : フォント: Century
1090	number of hybrid individuals is assumed to be proportional to the relative population-	Ì	書式変更: フォント: Century
1091	sizes of co-emergent broods (Ebert, 1992).		書式変更: フォント:(英)Century, (日)MS 明朝
1092	•		書式変更: インデント : 最初の行 : 0 字,行間 : 2 行
			まご亦更・ 行問 ・ 9 行
1093	We build a discrete population model consisting of three major parameters: survival	7	
1094	rate <i>S</i> , emergence rate <i>E</i> and clutch size factor <i>R</i> . We keep track the population sizes of		
1095	all the broods with respect to interval genotypes including hybrids and birth year with-		
1096	larval and adult stages. For genotype [<i>i,j</i>] of a given birth year, the larval population-		
		,1	書式変更: フォント: Century
1097	size of a brood at time <i>t</i> (<i>N</i> _{4,t}) follows the equation:	1	
1098			
		J	本面なわたフィールド コード
1099	$N_{l,t}(i,j) = S \times N_{l,t-1}(i,j) \tag{1}$	1	書式変更: フォント: (英) Century,
	•		(日) MS 明朝
1100			音へ変更 : フォント : (央) Century, (日) MS 明朝
			書式変更: フォント: (英) Century, (日) MS 明朝
1101	where $S(0 < S < 1)$ is survival rate at t (year). S is constant, because all broods occupy the		
1102	same habitat. Adult brood size N₄ (only appear in emergence year) is		
1100			
1103			

1140	of offspring (eq. (5)) is evaluated to zero, because the number of offspring for each.	書式変更	[4]
1141	genotype (4 patterns) becomes less than 1 individual, Thus, smaller broods, have, a		
1142	disadvantage, when the population size is counted as an integer.		
1143			
1144	<u>The hybridization yields a small brood size of mostly hybrids (Yoshimura, 1997), The</u>	書式変更	[5]
1145	hybridization between genotype [i, j] and [i, j] (i <i) (broods);="" [i,="" genotypes="" j<="" j],="" makes="" td="" three=""><td></td><td></td></i)>		
1146	[<u>j. j] and [j. j]. In our model, brood [j. j] and brood [j. j] co-emerge at jyear. The brood [j. j]</u> /	///	
1147	<u>reduces its population size considerably, and results in a huge disadvantage. On the</u>		
1148	other hand, brood [i, i] and brood [i, j] hybridize and make three genotypes (broods); [i, j],		
1149	[i, j] and [j, j]. Brood [i, j] and brood [i, j] then also reduce their population sizes,		
1150	<u>۸</u> ۲	【 書式変更: フォント:Century	
1151	RESULTS AND DISCUSSION		
1152	We simulate the population dynamics of cicadas from eleven pure broods at 10-20 yr-		
1153	intervals. Figure 1 shows a case where only prime number cycles survive. All non-prime		
1154	number cycles are eliminated within 200 years (Fig. 1A). In contrast to the elimination-		
1155	process of non-prime number intervals, the subsequent selection among prime numbers		
1156	lasts many hundreds of years (Fig. 1B). Furthermore, in some conditions, coexistence is		
1157	possible at least within a couple thousand years (Fig. 1C).	書式変更: フォント : (英) Cent (日) MS 明朝	tury,

1158		
1159	Next we evaluate the parameter sensitivity for all three parameters: (1) larval-	
1160	(nymphal) survival rate <i>S</i> , (2) clutch size parameter <i>R</i> , and (3) emergence success <i>E</i> (Fig.	
1161	2). Only the prime number cycles survive, but at the edge of survival limits. We find no-	
1162	region in which only non-prime cycles eliminate all other cycles. This suggests that the	
1163	advantage of prime number cycles prevails specifically at the verge of extinction. In the	
1164	S-R and S-E phase planes, prime number cycles are aligned along the edge of survival	
1165	limits; shorter cycles with low S and high R or E and longer cycles show the reverse-	
1166	pattern (Figs. 2A and B). The coexistence regions of two prime numbers are usually-	
1167	located slightly inside of the single prime number regions, forming a shell structure in	
1168	the <i>R-E</i> phase plane (Fig. 2C). Thus, under a specific combination of the three-	
1169	parameters, S, R and E, we find the dynamics results in the survival of only 13- and/or-	
1170	17-year cycles (Fig. 2). Furthermore, the density reduction along the environmental-	
1171	(parameter) cline shows that the advantage of prime number appears sporadically-	
1172	(often discontinuously) at the verge of extinction (Fig. 3).	
1173	•	、 【 書式変更: フォント:Century
1174	Disadvantage of small broods is a prerequisite of Yoshimura's hypothesis (Yoshimura,	書式変更 書式変更: フォント: Century 書式変更: フォント: Contury
1175	1997) <mark>. In reality, a population size is finite and integer. The stability of a small</mark>	書式変更: フォント: Century 書式変更: フォント: Century

書式変更:フォント:Century

1176	population is inferior to that of a large population in the same environment. Using the	
1177	number of individuals (integer) as the abundance of population (brood), we include the	
1178	innate disadvantage of small populations without additional assumptions. We should	
1179	note that the Allee effect is expected to be much stronger in the small populations of	
1180	periodical cicadas during icc ages. The variability in predation pressures and/or mate-	
1181	encounters should lead to an additional huge disadvantage on a small population.	
1182	resulting in the quick elimination of small broods (see e.g., Tainaka, Hayashi and	
1183	Yoshimura, 2006). It is important that we did not introduce any additional Allee effect,	
1184	but the subtle effects of integer are sufficient for the selection of prime numbers.	
1185	Introduction of additional Allee effects may strengthen the selection of prime numbers.	/ 書式変更: フォント : Century 書式変更: フォント : Century
1186	as well as increase the area of convergence (Fig. 2).	
1187	•	/ 書式変更: フォント : (英) Century, (日) MS 明朝
1188	Our results demonstrate that the hybridization breakdown associated with-	
1189	co-emergence can indeed lead to the selection of prime number cycles. A brood under-	
1190	frequent hybridization tends to suffer reduced population size and this process is	
1191	accelerated as the population size decreases owing to the frequency dependence of	
1192	random mating (Fig. 1) (Kuno, 1992; Yoshimura and Clark, 1994). The density profiles also	- 書式変更: フォント : (英) Century, (日) MS 明朝
1193	indicate the superiority of prime numbers near the extinction borders (Fig. 3). Almost-	

1194	all non-prime number cyclos disappear when the survival rate is slightly lowered.		
1195	Interestingly, the lower prime number cycles tend to have a separate density peak at-		
1196	the edge of extinction (Fig. 3B), whereas density profiles are smoothly decreasing in-		
1197	higher prime numbers (Fig. 3A).		
1198			
1199	Our results also indicate that prime number selection is a very rare event, occurring at-		
1200	the verge of extinction (Figs. 2 and 3). This is probably why the evolution of prime-		
1201	number periodicity was likely only in what is now the central and eastern United States,		
1202	where glacial advances created many refugia during the Pleistocene glaciation (Delcourt-		
1203	and Delcourt, 1987; Gates, 1993).—		
1204			
1205	Our model is a deterministic simulation model without random numbers. The simulated		
1206	results are numerical calculations derived from set initial conditions; thus the selection		
1207	of prime number cycles is numerically shown. We also run simulations with variable-		
1208	initial conditions. The results are almost same with those of identical initial conditions.		
1209	Which prime number cycles are established depends simply on the combination of three		
1210	key parameters [:] larval survival <i>S</i> , clutch size parameter <i>R</i> and emergence rate <i>E</i>		
1210 1211	key parameters [:] larval survival <i>S</i> , clutch size parameter <i>R</i> and emorgence rate <i>E</i> . Figure 2 shows that there is a relatively broad range of environmental conditions in		
1212	which both 13- and 17-year cycles are only fixed. In contrast, the range of 11-year-		
------	--	---	----------
1213	interval is very narrow. The temporal isolation benefit of prime number reduces with		
1214	shorter intervals. The advantage of shorter reproductive cycles seems to dominate in-		
1215	shorter intervals. Our results also show that 19-year intervals are plausible. We-		
1216	speculate that larva could not survive nineteen years in the soil or host trees cannot-		
1217	survive under such conditions.		я зе
1218	There is one very important aspect of the biology of periodical cicadas that must be		sy Ca
1219	reconciled with the theory of the origination of prime-numbered life cycles presented in		書書
1220	this paper and elsewhere (Yoshimura 1997; Cox and Carleton 1988, 1991) and that is	Ň	()
1221	the four-year acceleration hypothesis. There is strong evidence that four-year shifts in		
1222	life cycle are common in the evolution of periodical cicadas: 1) the largest year classes		
1223	(broods) of periodical cicadas are separated in time by four years, these are the only		
1224	broods that overlap geographically (Lloyd and Dybas 1966, Lloyd and While 1976); 2) in		
1225	the large, overlapping 17-year cicada broods, lagging broods seem to be increasing.		
1226	historically while leading broods, four years later, seem to be diminishing in numbers of		
1227	populations (Kritsky 1988); 3) forests seem to be able to support more cicadas if they are		
1228	separated into two year-classes spaced four years apart (Simon et al. 1981); 4) 17-year-		
1229	eicadas differ from 13-year cicadas in their nymphal growth patterns in possessing a		

コメント [CS3]: I would remove the sentence below because Okanagana synodica might have 19 year cycles in Canada. 書式変更: フォント: Times New Roman

■ハスス・ノオイト + 11mes New Koman 書式変更: フォント : (英) Century, (日) M S 明朝 **書式変更:** 左揃え, 行間 : 2 行

1230	4-year dormancy period in the second instar; if this dormancy period is lost, 17-year-		
1231	<u>cicadas would be transformed into 13-year cicadas (White and Lloyd 1975); 5) Long-</u>		
1232	Island. NY is a microcosm of periodical cicada evolution possessing independently		
1233	derived populations of cicadas that appear in the same years as broods I, V, IX, and X in		
1234	addition the native brood XIV (Simon and Lloyd 1982); 5) In the Midwestern US, the		
1235	northern third of the distribution of 13-year cicadas is recently derived from 17-year-		
1236	<u>cicadas that permanently switched their life cycle to 13 years and joined two different</u>		
1237	year classes of pre-existing 13-year cicadas (Martin and Simon 1988, Martin and		
1238	Simon 1990, Simon et al. 2000, Marshall and Cooley 2000). Lloyd and Dybas (1966)		
1239	suggested that 13-year cicadas evolved first and gave rise to 17-year cicadas when they		
1240	acquired their 4-year dormancy period		
1241	4	><	書式変更: フォント: (英) Century, (日) MS 明朝 書式変更: 行間: 2 行
1242	Our model is relatively simple and the actual evolution of periodical cicadas may have-		
1243	been more complicated. <u>Selection pressures related to inferior hybrids between</u>		
1244	different life cycles could have resulted in the formation of 13-year cicadas as described-		コメント [CS4]: Zachos, J., M. Pagani,
1245	by this model while the 17-year life cycle could have evolved via four-year accelerations		2001. Trends, rhythms, and aberrations
1246	from the 13-year cycle later in the Pleistocene when glaciation intensified Zachos et al.,		Science 292:686-693.
1247	2001)		書式変更: フォント : Times New Roman 書式変更: フォント : (英) Century, (日) MS 明朝

1248	
1249	Furthermore <u>Earlier in the Pleistocone</u> , prime number fixation might not be achieved by
1250	a single glacial period, but be <u>may have</u> extended over a few glacial periods <u>with</u>
1251	<u>h</u> Hybridization might take <u>taking</u> place during interglacial period <u>e</u> . We should also note
1252	that the short year-dominance genetic system is not essential for the selection of prime-
1253	number intervals. The prime number intervals also appear under longer-
1254	year-dominance or a genetic system in which the hybrids are immediately removed
1255	(unpublished data). Our results indicate that the disadvantage in hybridization-
1256	resulting in prime number intervals appears under severe environmental conditions (at
1257	the verge of extinction), while coexistence of many intervals with shorter interval-
1258	dominance appears under good environmental conditions.
1259	
1260	
1261	
1262	Our model only deals with the origins of periodical cicadas under glacial environmental
1263	conditions (Cox and Carlton, 1988; Yoshimura, 1997). The current maintenance of the
1264	extremely high densities of cicada populations is a different problem (May, 1979). A newly
1265	recognized 13-year brood and 17-year type genotypes in 13-year cicadas are suspected to

-			
1266	have arisen from a relatively recent hybridization event after the onset of the most-		
1267	recent interglacial period. (Martin and Simon, 1988; Marshall and Cooley, 2000; Cooley <i>et al.</i> ,-		
1268	2001; Cooley <i>et al.</i> , 2003). Here the complete dominance of 13-year broods is suspected in-		
1269	this hybridization process. Our results demonstrate that the Mendelian genetic system-		
1270	is indeed enough to extinct all non-prime number intervals. Thus we have shown		
1271	mathematically that co-emergence hybridization is indeed a plausible mechanism for		
1272	the evolution of prime number intervals, (to Chris: please rewrite the paragraph and		(書式変更: フォント:Century)
1273	add the whole acceleration hypothesis. jin)	1	【 書式変更: フォント:Century
1274			コメント [CS5]: We do not believe that the origin of the new 13-year cicadas was
1275	The hybridization hypothesis of periodical cicadas is a temporal version of rendezvous		a result of hybridization. That is what Cox and Carlton believe and we think
1276	habitat selection (Rosenzweig, 1979). Rendezvous habitat selection is niche separation due	N N N N	that they are wrong as explained in Marshall et al. 2003. However, that is
1277	to the mating at specific host plants. In the case of periodical cicadas, niche separation-	- 11 - 11 - 11 - 11	less relevant to this paper. 季式変更: フォント: Times New Roman
1278	is achieved by emergent years, thus temporal separation, instead of spatial separation	١	書式変更: フォント: (英) Century, (日) MS 明朝
1279	In both cases, the evolution of this kind of phenomenon is achieved by severe frequency		
1280	dependence in mating (Rosenzweig, 1979; Kuno, 1992; Yoshimura and Clark, 1994).—–		
1281	•	, 1 ¹	【 書式変更: フォント:Century
1282	Acknowledgements		
1283	We thank Donald G. Miller, III, Michael L. Rosenzweig and anonymous referee for-		

1284	valuable comments. This work was supported by grants-in-aids from the Ministry of-			
1285	Education, Culture, Sports, Science and Technology of Japan			
1286				
1287	REFERENCES			
1288	Alexander, R. D. and Moore, T. E. 1962. The evolutionary relationships of 17-year and	><	書式変更 : (日) MS 書式変更 :	: フォント : (英) Century, 明朝 : インデント : 左 : 0 mm, 最
1289	1 3- year cicadas and three new species (Homoptera, cicadidae, <i>Magicicada</i>)		初の行:	0 字,行間: 2 行
1290	Miscellancous Publications of the Museum of Zoology University of Michigan, 121 : 1-59,		春式変更 : (日) MS 春式変更 :	: フォント : (英) Century, 明朝, 斜体 (なし) : フォント : (英) Century,
1291	Allee, W. C. 1931, Animal Aggregations: A Study in General Sociology, Chicago,		 (日) MS 書式変更: 	明朝 : フォント: Century : フォント: Century
1292	University of Chicago Press		書式変更 : 書式変更 :	: フォント : Century : フォント : Century
1293	Bulmer, M. G. 1977. Periodical insects. <u>Am. Nat. 111: 1099-1117.</u>		書式変更: 書式変更: 書式変更:	: フォント : Century : フォント : Century : フォント : (英) Century,
1294	Chapman, R. F. 1971. <i>The Insects' Structure and Function</i> . New York ⁻ American-		(日) MS 書式変更 : 書式変更:	明朝 : 行間: 2 行 : フォント:(革) Century
1295	Elsevier.	Ň	(日) MS (日) MS (日) MS	明朝, 斜体 (なし) : フォント : (英) Century, 明朝
1296	Cooley, J. R., Simon, C. and Marshall, D. C. 2003. Temporal separation and speciation in	'	書式変更 : 初の行:	: インデント : 左 : 0 mm, 最 0 字, 行間 : 2 行
1297	periodical cicadas. Bioscienc, 53: 151-157.	/	書式変更 : (日) MS 書式変更 :	: フォント : (英) Century, 明朝, 斜体 (なし) : フォント : (英) Century,
1298	Cooley, J. R., Simon, C., Marshall, D. C., Slon, K., and Ehrhardt, C. 2001. Allochronic-		(目) MS	明朝
1299	speciation, secondary contact, and reproductive character displacement in periodical			
1300	cicadas (Homoptera: Cicadidae: <i>Magicicada</i> spp.): genetic, morophological, and			
1301	behavioural evidence. Molecular Ecology, 10: 661-671.	1	書式変更 : (日) MS 書式変更 :	: フォント : (英) Century, 明朝, 斜体 (なし) : フォント : (英) Century,

1302	Cox, R. T. 1992. A comment on Pleistocene population bottlenecks in periodical cicadas-		
1303	(Homoptera: Cicadidae: <i>Magicicada</i> spp.). Evolution, 46 : 845-846.		書式変更: フォント:(英) Century, (日) MS 明朝, 斜体(なし)
1304	Cox, R. T. and Carlton, C. E. 1988. Paleoclimatic influences in the ecology of periodical-		書式変更: フォント:(英)Century, (日)MS 明朝
1205	cierdes (Hementeur: Cierdides: Magiciande enn.). American Midland Neturalist 190	1	春式変更: フォント:(英) Century, (日) MS 明朝, 斜体(なし)
1305	eleadas (Homoptera-Cleadidae <i>Magicicada</i> Spp.). American Michael Paterrais, 120 -		 (日) 115 月15 月15 日日 (日) MS 明朝
1306	183-193.		
1307	Cox, R. T. and Carlton, C. E. 1991. Evidence of genetic dominance of the 13-yeat life-		
1308	eyele in periodical cicadas (Homoptera: Cicadidae: Magicicada spp.). American Midland		書式変更: フォント : (英) Century, (日) MS 明朝, 斜体 (なし)
1309	Naturalist, 125 : 63-74.		書式変更: フォント: (英) Century, (日) MS 明朝
1310	Delcourt, P. A. and Delcourt, H. R. 1987. Long-term Forest Dynamics of the Temperate		
1311	Zone. New York: Springer.		
1312	Dybas, H. S. and Davis, D. D. 1962. A population census of seventeen-year periodical		
1313	cicadas (Homoptera: Cicadidae: <i>Magicicada</i>). Ecology, 43: 432-444.		書式変更: フォント:(英) Century, (日) MS 明朝, 斜体 (なし) 書式変更: フォント:(英) Century,
1314	Ebert, D. 1992. A maturation size threshold and phenotypic plasticity of age and size at-		(日) MS 明朝
1315	maturity in <i>Daphinia magna</i> . Oikos, 69 : 309-317.		書式変更: フォント: (英) Century, (日) MS 明朝, 斜体 (なし)
1316	Gates, D. M. 1993. <i>Climatic Change and its Biological Consequences</i> . Sinauer-		■八次文・ノオンド・(英) century, (日) MS 明朝
1317	Sunderland, Mass		
1318	Hoppensteadt, F. C. and Keller, J. B. 1976. Synchronization of periodical cicadas-		
1319	emergenees. <u>Science</u> , 194 -335-337.	1	書式変更: フォント:(英) Century, (日) MS 明朝, 斜体 (なし)
			(日) MS 明朝

1320	Karban, R. 1982. Increased reproductive success at high densities and predator-		
1321	satiation for periodical cicadas. Ecology, 63: 321-328.		書式変更: フォント : (英) Century, (日) MS 明朝, 斜体 (なし)
			書式変更: フォント:(英)Century, (日)MS 明朝
1322	Kuno, E. 1992. Competitive exclusion through reproductive interference. Researches on		書式変更: フォント:(英)Century, (日)MS 明朝, 斜体(なし)
1323	Population Ecology, 34: 275-284.		書式変更: フォント:(英)Century, (日)MS 明朝
1324	Lloyd, M. and Dybas, H. S. 1966. The periodical cicada problem. I. Population ecology.		
1325	Evolution, 20 : 133-149.		書式変更: フォント : (英) Century, (日) MS 明朝, 斜体 (なし)
			書式変更: フォント:(英)Century, (日)MS 明朝
1326	Lloyd, M. and Dybas, H. S. 1966. The periodical cicada problem. II. Evolution. Evolution.		書式変更: フォント : (英) Century, (日) MS 明朝, 斜体 (なし)
1327	20 : 466-505.	1	書式変更: フォント : (英) Century, (日)MS 明朝
			書式変更: フォント: Century
1398	Lloyd M. G. Kritsky and C. Simon, 1983. A simple Mondelian model for the 13- and	1	【 書式変更: フォント: Century
1520	hoju, h., o. httpsky, and o. onion. 1900. Homple Mendenan induction are to and		
1329	17-year life cycle of periodical cicadas, with historical evidence for hybridization		(書式変更: フォント:Century
			書式変更: フォント: Century
1330	between them. Evolution 37:1162–1180.	(書式変更: フォント:Century
			書式変更: 行間: 2 行
1331	Marlatt, C. L. 1907. The periodical cicada. USDA Bureau of Entomology Bulletin 71.	 	書式変更: フォント : (英) Century, (日) MS 明朝, 斜体 (なし)
1332	Marshall, D. C. and Cooley, J. R. 2000. Reproductive character displacement and		書式変更: フォント:(英)Century, (日)MS 明朝
		<u>``</u>	書式変更: インデント:左: 0 mm, 最 初の行: 0 字, 行間: 2 行
1333	speciation in periodical cicadas, with description of a new species, 13-year Magicicada		
1334	neotredecim. Evolution, 54: 1313-1325.		書式変更: フォント : (英) Century, (日) MS 明朝, 斜体 (なし)
			書式変更: フォント:(英)Century, (日)MS 明朝
1335	Martin, A. P. and Simon, C. 1988. Anomalous distribution of unclear and mitochondrial	į	書式変更: フォント: (英) Century, (日) MS 明朝, 斜体 (なし)
1336	DNA markers in periodical cicadas. Nature, 336 : 237-239	11	書式変更: フォント:(英)Century, (日)MS 明朝
		1	書式変更: 行間: 2 行
1337	May, R. M. 1979. Periodical cicadas. Nature, 277 : 347-349.		書式変更: フォント : (英) Century, (日) M S 明朝, 斜体 (なし)
	•······		書式変更: フォント : (英) Century,

書式変更:	フォント: Century
書式変更:	フォント : Century
書式変更:	行間 : 2 行
書式変更: (日) MS	フォント : (英) Century, 明朝, 斜体(なし)
書式変更: (日) MS	フォント:(英)Century, 明朝
書式変更: 初の行:	インデント : 左 : 0 mm, 最 0 字, 行間 : 2 行

書式変更:	フォント:(英)Century,
(日) MS	明朝, 斜体(なし)
書式変更:	フォント : (英) Century,
(日) MS	明朝
書式変更:	フォント:(英)Century,
(日) MS	明朝, 斜体(なし)
書式変更:	フォント:(英)Century,
(日) MS	明朝
書式変更:	行間 : 2 行
書式変更:	フォント:(英)Century,
(日) MS	明朝, 斜体(なし)
書式変更:	フォント: (英) Century,
(目) MS	明朝

1338	Rosenzweig, M. L. 1979. Three probable evolutionary causes for habitat selection. In-		{	書式変 初の行
1339	Contemporary Quantitative Ecology and Related Ecometries (G. P. Patil and M. L.			書式変 書式変
1340	Rosenzweig, eds.), pp. 49-60. International Co-operative Publishing House, Fairland,-		7 1 7 11 7 11 7 11 7 111	青八変 書式変 書式変
1341	Maryland,		- 10 - 10 - 10 - 10 - 10 - 10	1(日) 変た書 (日)
1342	Simon, C.M., R. Karban, & M. Lloyd, 1981. Patchiness, mean crowding and relative	e_ /	1444 1444 1444 1444 1444 1444	書式変 (日) 1 書式変
1343	density of allochronic sympatric populations of 17-year signadas Ecology		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	書式変書式変
1944				書式変 書式変
1044			4 1111 4 1111 1 11111 1 11111 1 11111	青八変 書式変 書式変
1345	Simon, C. 1988. Evolution of 13- and 17-year periodical cleadas (Homoptera-Cleadidae	<u> </u>	MITTT MITTTT MITTTT MITTT MITTT	書式変 ンデン ,日本
1346	Magicicada). Bulletin of the Entomological Society of America, 34 : 163-176,			本語と 書式変
1347	<u>Tainaka, K. Hayashi, T. and Yoshimura, J. 2006, Sustainable sex ratio in lattice</u>			書式変 書式変 書式変
1348	populations, EUROPHYSICS LETTERS, 74 (3), pp. 554–559.) 	書式変書式変
1349	Williams, K. and Simon, C. 1995. The ecology, behavior, and evolution of periodical			春 式変 書 式変 書 式変
1350	cicadas (Hemiptera[:] Cicacidae: <i>Magicicada</i>). Annu. Rev. Entomol., 40: 269-295.			書式変 (日) N
1351	Yoshimura, J. 1997. The evolutionary origins of periodical cicadas during ice ages. Am	₹\ ^{`\\} \ `		青式変 初の行 書式変
1352	Nat. , 149 : 112-124.	\`		(日) 1 書式変 (日) 1
1353	Yoshimura, J. and Clark, C. W. 1994. Population dynamics of sexual and resource-	Ň		音式変 (日) N 書式変
1354	competitions. Theoret. Pop. Biol., 45: 121-131.			(日) I 書式変 (日) I
1355		•		晋式変 (日) 1 書式変

書式変更: 初の行 :	インデント:左: 0 mm, 最 0字, 行間: 2 行
書式変更:	フォント: Century
書式変更:	フォント: Century
書式変更:	フォント : Century, 太字
書式変更:	フォント: Century
書式変更: (日) MS	フォント:(英)Century, 明朝
書式変更: (日) M S	フォント:(英)Century, 明朝, 斜体(なし)
書式変更: (日) MS	フォント:(英)Century, 明朝
書式変更:	フォント: Century
書式変更:	フォント:(英)Century
書式変更:	フォント: (英) Century
(書式変更:	フォント: (英) Century
(書式変更:	フォント: (英) Century
書式変更:	フォント: (英) Century
書式変更:	フォント : (英) Century
書式変更:	フォント: (英) Century
書式変更: ンデント幅 ,日本語と 本語と数字	1 行の文字数を指定時に右のイ 話を自動調整する,行間: 2 行 :英字の間隔を自動調整する,日 この間隔を自動調整する
書式変更:	フォント: (英) Century
書式変更:	フォント:(英)Century
書式変更:	フォント: Century
書式変更:	フォント: Century
書式変更:	フォント : Century, 太字
書式変更:	フォント: Century
書式変更: (日) MS	フォント:(英)Century, 明朝
書式変更: 初の行:	インデント:左: 0 mm, 最 0字, 行間: 2 行
書式変更: (日) MS	フォント:(英)Century, 明朝
書式変更: (日) MS	フォント:(英)Century, 明朝, 斜体(なし)
書式変更: (日) M S	フォント:(英)Century, 明朝
書式変更: (日) M S	フォント:(英)Century, 明朝, 斜体(なし)
書式変更: (日) MS	フォント:(英)Century, 明朝
書式変更: (日) M S	フォント:(英)Century, 明朝, 斜体(なし)
書式変更	[[6]
書式変更:	行間: 2行

1356	Figure legends					
1357	•	, , , , , (式変更: 日)MSI	フォント : 明朝	(英) Centur	су,
1358	Fig. 1. Population dynamics of 11 pure broods, 10-20yr intervals. Parameters are					
1359	S=0.948, R=1.45 and E=0.2. (A) The first 200 years in the case of only 17-year brood-					
1360	survival. (B) The continuation of (A) up to 700 years. (C) 600-years in the case of both-					
1361	13- and 17-year co-survival. Parametors are S=0.043, R=1.63 and E=0.2. Thick lines are					
1362	the populations of prime number broods. Thin lines are those of non-prime numbers.					
1363	Serrated lines show a decrease in larval to adult stages and an increase by the egg-					
1364	laying. Irregular serrations are produced by a time lag caused by hybrid mating. All-					
1365	non-prime number broods go to extinct during the first few hundred years.					
1366						
1367	Fig. 2. Thousand-year survival phase planes of prime numbers only (colored), both-					
1368	prime and non-prime numbers (grey) and all extinction (white) for the three main-					
1369	parameters. (A) Plane for larval survival rate S and clutch size parameter R. The other-					
1370	parameter is $E = 0.2$. (B) Plane for larval survival rate S and emergence success E. The-					
1371	other parameter is $R = 1.8$. (C) Plane for clutch size parameter R and emergence success					
1372	<i>E</i> . The survival of only prime number broods appears at the edges of extinction. The-	_				
1373	other parameter is <i>S</i> = 0.94, The non-prime numbers (grey) means most phenotypes	{	村家更:	フォント:	Century	

1374	including hybrids and prime number intervals.—				
1375					
1376	Fig.3 - Density profiles (log scale) for larval survival rate <u>S, when emergence success</u> is	 書式変更 (日) M :	: フォント 5 明朝	: (英) Ce	entury,
1377	E = 0.2 and elutch size parameter is (A) $R = 1.6$ and (B) $R = 1.8$. The density profiles of				
1378	larger prime number intervals tends to decreasing smoothly near the border of				
1379	extinction (B), whereas those of smaller primer number intervals tend to have a				
1380	separate peak near the border of extinction (B). The population sizes are measured at-				
1381	1000 years unless exploded (calculations are terminated, when $S > 0.96$).				
1382					
1383					
1384					
1385					

書式変更: フォント : (英) Century, (日) MS 明朝 **書式変更:** フォント : (英) Century, (日) MS 明朝

ページ 68: [1] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, 斜体		
ページ 68: [1] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, 斜体		
ページ 68: [1] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, 斜体		
ページ 68: [1] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, 斜体		
ページ 68: [2] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
文字位置下げる 14 pt		
ページ 68: [2] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
文字位置下げる 14 pt		
ベージ 68: [3] 春式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, フォントの	色:赤	
ページ 68: [3] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, フォントの	色:赤	
ページ 68: [3] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, フォントの	色:赤	
ページ 68: [3] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, フォントの	色:赤	
ページ 68: [3] 書式変更	Taro HAYASHI	2008/01/21 16:40:00

ページ 68: [3] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, フォントの色	:赤	
ページ 68: [3] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, フォントの色	:赤	
ページ 68・「3] 圭士亦可	Taro HAVASHI	2008/01/21 16:40:00
	· ±	2000/01/21 10.40.00
ノオンド・Century, ノオンドの巴	・ <i>小</i> ト	
ページ 68: [3] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, フォントの色	: 赤	
ページ 68: [3] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, フォントの色	: 赤	
ページ 68: [3] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, フォントの色	: 赤	
ページ 68: [3] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, フォントの色	: 赤	
.° 、 、		0000 /01 /01 10 40 00
ヘーン 68: [3] 音式変更		2008/01/21 16:40:00
フォント:Century, フォントの色	: 赤	
ページ 68: [3] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century. フォントの色	:赤	
ページ 68: [3] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, フォントの色	:赤	
ページ 68: [3] 書式変更	Taro HAYASHI	2008/01/21 16:40:00

ページ 68: [3] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, フォントの色	:赤	
ページ 68: [3] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, フォントの色	:赤	
ページ 68・「3] 圭士亦可	Taro HAVASHI	2008/01/21 16:40:00
	· ±	2000/01/21 10.40.00
ノオンド・Century, ノオンドの巴	・ <i>小</i> ト	
ページ 68: [3] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, フォントの色	: 赤	
ページ 68: [3] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, フォントの色	: 赤	
ページ 68: [3] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, フォントの色	: 赤	
ページ 68: [3] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, フォントの色	: 赤	
.° 、 、		0000 /01 /01 10 40 00
ヘーン 68: [3] 音式変更		2008/01/21 16:40:00
フォント:Century, フォントの色	: 赤	
ページ 68: [3] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century. フォントの色	:赤	
ページ 68: [3] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, フォントの色	:赤	
ページ 68: [3] 書式変更	Taro HAYASHI	2008/01/21 16:40:00

ページ 68: [3] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, フォントの色	:赤	
ページ 68: [3] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, フォントの色	:赤	
ページ 68・「3] 圭士亦可	Taro HAVASHI	2008/01/21 16:40:00
	· ±	2000/01/21 10.40.00
ノオンド・Century, ノオンドの巴	・ <i>小</i> ト	
ページ 68: [3] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, フォントの色	: 赤	
ページ 68: [3] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, フォントの色	: 赤	
ページ 68: [3] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, フォントの色	: 赤	
ページ 68: [3] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, フォントの色	: 赤	
.° 、 、		0000 /01 /01 10 40 00
ヘーン 68: [3] 音式変更		2008/01/21 16:40:00
フォント:Century, フォントの色	: 赤	
ページ 68: [3] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century. フォントの色	:赤	
ページ 68: [3] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, フォントの色	:赤	
ページ 68: [3] 書式変更	Taro HAYASHI	2008/01/21 16:40:00

ページ 68: [3] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, フォントの色:	赤	
ページ 68: [3] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, フォントの色:	赤	
ページ 68: [3] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, フォントの色:	赤	
ページ 68: [3] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, フォントの色:	赤	
ページ 68: [3] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, フォントの色:	赤	
ページ 68: [3] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, フォントの色:	赤	
ページ 68: [3] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, フォントの色:	赤	
ページ 69: [4] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, フォントの色:	赤	
ページ 69: [4] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, フォントの色:	赤	
ページ 69: [4] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, フォントの色:	赤	
ページ 69: [4] 書式変更	Taro HAYASHI	2008/01/21 16:40:00

ページ 69: [4] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, フォントの色:	赤	
_ ページ 69: [4] 書式変更 	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, フォントの色:	赤	
ページ 69: [4] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, フォントの色:	赤	
ページ 69: [4] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, フォントの色:	赤	
ページ 69: [4] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, フォントの色:	赤	
ページ 69: [4] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, フォントの色:	赤	
ページ 69: [4] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, フォントの色:	赤	
ページ 69: [4] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, フォントの色:	赤	
ページ 69: [4] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, フォントの色:	赤	
ページ 69: [4] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, フォントの色:	赤	
ページ 69: [4] 書式変更	Taro HAYASHI	2008/01/21 16:40:00

ページ 69: [4] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, フォントの色	:赤	
ページ 69: [4] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, フォントの色	: 赤	
ページ 69: [4] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, フォントの色	:赤	
ページ 69: [5] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, フォントの色	:赤	
ページ 69: [5] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, フォントの色	: 赤	
ページ 69: [5] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, フォントの色	: 赤	
ページ 69: [5] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, フォントの色	:赤	
ページ 69: [5] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, フォントの色	: 赤	
ページ 69: [5] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, フォントの色	:赤	
ページ 69: [5] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, フォントの色	: 赤	
ページ 69: [5] 書式変更	Taro HAYASHI	2008/01/21 16:40:00

ページ 69: [5] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, フォントの色	: 赤	
ページ 69: [5] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, フォントの色	: 赤	
ページ 69: [5] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, フォントの色	: 赤	
ページ 69: [5] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, フォントの色	: 赤	
ページ 69: [5] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, フォントの色	: 赤	
ページ 69: [5] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, フォントの色	: 赤	
ページ 69: [5] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, フォントの色	:赤	
ページ 69: [5] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, フォントの色	: 赤	
ページ 69: [5] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, フォントの色	:赤	
ページ 69: [5] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, フォントの色	:赤	
ページ 69: [5] 書式変更	Taro HAYASHI	2008/01/21 16:40:00

ページ 69: [5] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, フォントの色	: 赤	
ページ 69: [5] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, フォントの色	: 赤	
ページ 69: [5] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, フォントの色	: 赤	
ページ 69: [5] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, フォントの色	: 赤	
ページ 69: [5] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, フォントの色	: 赤	
ページ 69: [5] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, フォントの色	: 赤	
ページ 69: [5] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, フォントの色	:赤	
ページ 69: [5] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, フォントの色	: 赤	
ページ 69: [5] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, フォントの色	:赤	
ページ 69: [5] 書式変更	Taro HAYASHI	2008/01/21 16:40:00
フォント:Century, フォントの色	:赤	
ページ 69: [5] 書式変更	Taro HAYASHI	2008/01/21 16:40:00

ページ	69:	[5]	書式変更
-----	-----	-----	------

Taro HAYASHI

2008/01/21 16:40:00

フォント:Century, フォントの色:赤

ページ 69: [5] 書式変更 Taro HAYASHI 2008/01/21 16:40:00

フォント:Century, フォントの色:赤

ページ 80: [6] 書式変更

Taro HAYASHI

2008/01/21 16:40:00

フォント:(英)Century,(日) MS 明朝