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Controlling dynamical behavior of a semiconductor laser with external optical feedback
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We describe controlling chaos in a laser diode with an external cavity through a sinusoidal modulation to the
injection current. The modulation is optimized by analytically determining the modulation frequency from the
mode analysis of the dynamical model. The numerical results show that chaos can be successfully stabilized to
various limit cycles with very small modulation amplitudes.

FIG. 1. Schematic of the laser diode with external optical feedback.
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modulating the laser diode injection current with a sinusoidal
signal whose frequency is equal to the corresponding mode.
As a result, the original chaos is stabilized to a limit cycle.
The algorithm is numerically verified by a computer simula
tion. Possible applications of the technique to the optimiza
tion of the modulation frequency in the HFI are also de
scribed.

The schematic of the laser diode with external cavity is
shown in Fig. 1. The light source considered in this paper is
a channeled substrate planar (CSP) AlxGal-xAs semicon
ductor laser with the cavity length l and the refractive index
7J. The internal amplitude reflectivities of the front and rear
facets of the laser diode are r 1 and r 2, respectively. In this
paper, we consider the case r 1 = r2' The light beam is re
flected by an external mirror located at a distance L from the
front facet of the cavity. The fraction of the electric ampli
tude of the output light coupled into the cavity is denoted as
r3, which includes the amplitude reflectivity of the external
mirror, the propagating losses in the external optical path,
and the coupling efficiency.

We choose the carrier density'N(t) and 'the complex elec
tric field E ( t) as the dynamic variables of the system. N ( t) is
the average carrier density in the active region, E (t) is the
electric field at the front facet and can be divided into its real
amplitude and phase factors as E(t) =Eo(t)exp{j[(wot
+ ¢J( t) ]}, where Wo is the angular frequency of the solitary
laser. For the weak to moderate feedback level, we have the
following rate equations:
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PACS number(s): 05.45.+b, 42.50.Ne, 42.55.Px

Nonlinear dynamics of laser diodes with external optical
feedback has received much attention in recent years from
both theoretical and experimental aspects. Since a laser diode
with optical feedback provides a very excellent all-optical
chaos model, a large number of studies have been performed
on such systems to investigate both static and dynamical
behaviors such as mode hops, coherence collapse, and bifur
cations to chaos [1]. The' study of nonlinear dynamics in
laser diodes has also been of great importance to the appli
cations of laser diodes to optical communications and optical
data recording systems. In most practical environments,
some kind of optical feedback to the laser diodes is inevita
bly induced and, sometimes, such optical feedback becomes
very bothersome because a feedback level as small as 0.1 %
may cause intensity noise enhancement that dramatically de
teriorates the performance. Therefore some methods have
been proposed to avoid such feedback induced effects. One
of the methods that is currently used in optical data recording
systems is known as a high-frequency injection (HFI) tech
nique, which modulates the laser diode injection current with
frequencies much higher than the data rate [2,3]. The experi
mental results show that the relative intensity noise (RIN)
enhancement does not occur if the modulation frequency is
appropriately chosen and if the modulation amplitude is large
enough. However, the optimum value of the modulation fre
quency has to be determined empirically and, up to now,
only a few numerical analyses have been performed to un
derstand the mechanism of such HFI techniques [3].

In this paper, we try to give a solution to the frequency
optimization in the HFI technique from a chaos controlling
point of view. We consider that the feedback induced deter
ministic instabilities are responsible for the intensity noise
enhancement. Hence one can realize suppression or control
of the feedback induced intensity noise enhancement pro
vided the feedback induced chaos is effectively stabilized.
Therefore the optimization of the modulation frequency is
converted to a problem of how to select the frequency by
which chaos can be most effectively stabilized. In the follow
ing, we first present the numerical calculations of the rate
equation model of the laser diode with optical feedback and
investigate the bifurcation routes under different parameter
conditions. Then the linear stability analysis is performed
which yields the mode distributions. Based on the mode dis
tributions, one can choose to strengthen a certain mode by
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Here, GN is the model gain coefficient, No is the carrier
density at the transparency, Nth is the threshold carrier den
sity for the solitary laser, K = (1 - r~) r31r2 is the feedback
coefficient, and F I' F N' and F ¢> are Langevin noise terms.
Also, T is the photon lifetime, 'Tin = 27]11c is the optical
round tiip time in the laser diode cavity, 'Ts is the carrier
lifetime, 'T= 2L leis the external cavity round trip time, a is
the linewidth enhancement factor, and J is the injection cur
rent density. We neglect the small contribution from nonlin
ear gain suppression and spontaneous emission. Some typi
cal numerical values for the various parameters, as
appropriate for a 780-nm AlxGal-xAs semiconducto.r las~r

likely to be used i.n an optical recording system, are gIven In
Table I [1-3].

The dynamics of the laser diode with external cavity can
be generalized as a simple delay-differential model like

dX(t)/dt=F(X(t),X(t- T);/L), (5)
where X( t) is a vector variable, F is a nonlinear vector field,
'T is the delay time introduced by the external feedback, J.L is
a system control parameter and may correspond to the injec
tion current density J or the effective external reflectivity
r3' In view of the dynamics of the delay-differential system,
two sets of bifurcations can generally be observed in such a
system. One is obtained by varying the system control pa
rameter; the other is obtained by varying the delay time, i.e.,
the external cavity length in our case.

We have numerically calculated Eqs. (1)-(3) by employ
ing a fourth order Runge-Kutta algorithm and verified vari
ous phase transitions among steady, periodic, quasiperiodic,
and chaotic states. Here we only give a brief description
about the bifurcation routes observed in our numerical inves
tigations. The first one is the result via the variations of the
effective external reflectivity r 3' As r3 is increased from 1%
to 2%, we most often observed a continuous bifurcation from
steady states to periodic states, then quasiperiodic states, and
finally chaos. An incomplete period-doubling bifurcation
also occurs for certain values of r3, which leads to the sub
harmonic periodic solutions. Quasiperiodic solutions emerge
from the fundamental periodic solution and the subharmonic
periodic solutions or even the other limit cycles. Bifurcations
upon the variation of the injection current become .more
complicated since such variation has also dramatIcally
changed the steady state of the system. The system also
evolves into chaos by varying the external cavity length only.
In the calculations, we vary the external cavity length from
15 cm to 30 cm; this corresponds to the change of the delay
time from 1 ns to 2 ns. It results in periodic solutions, sub
harmonic solutions, and chaos. Such a phenomenon is one of
the generic properties of the delay-differential system: the
output evolves into instability with the increase of the delay
time. Two examples of bifurcations are plotted in Fig. 2 with

with
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Figs. 2(a), 2(b), and 2(e) corresponding to the variation of
r3 and Figs. 2(c), 2(d), and 2(e) corresponding to the varia
tion of L.

Before describing the control of chaos, we perform the
stability analysis of the· dynamical model and get the mode
distributions. The steady-state solutions to Eo, ¢, and N are
obtained by substituting Eo(t)=Es , N(t) =Ns ' and
¢( t) = (w s - wo)t in Eqs. (1)-(3),

Ws- Wa = - (K/ 'Tin) [ a COS( WsT) + sine WsT) J, (6)

GN(Ns...,...Nth ) = -(2K/'Tin)COS(WsT), (7)

GN(Ns-No)E;=J-(Ns/'Ts)' (8)
In general, there exist a number of solutions of w s even for a
fixed set of parameters. Among them we choose the one that
results in the maximum gain as a steady-state solution of the
angular frequency. The steady-state carrier density and field
amplitude are uniquely determined from Eqs. (7) and (8) for
a specific value of w s 'T.

The stability properties of a particular steady-state solu
tion are usually investigated by performing the linear expan
sion around that solution and by analyzing the stability to a
small perturbation from the initial steady-state solution
[1,4,5]. To this end, we adopt the following approximation:
x(t)=xs + ox exp(yt) (x=Eo,N,¢) and substitute into Eqs.
(6)-(8). After some algebra, one gets a transcendental equa
tion for 'Y

y3 +[( 1/TR) + (2 KA/ 'Tin)COS( WsT)] y2+ w~y+ (K2A 2/ TRr'fn)

+ (KA/'Tin) W~[COS(WsT)- a sin(wsT)]=O, (9)
. -1 -l+G E 2 2_G E 21wIth A = l-exp( - 'Y'T), 'TR = 'Ts N s' wR - N s

'Tp ' Here, we have employed the relations w~~ K
2

/-rTn and
w~~ KI 'TR 'Tin which hold for a small or moderate feedback
level. The above equation is called the characteristic equa
tion or the eigenvalue equation of the model. Each solution,
which is also called the linear mode, predicts how the small
perturbation to the initial steady state evolves with respect to
time development. The real part of the mode dominates the
mode's stability and the imaginary part determines its angu
lar oscillation frequency. As Eq. (9) is a transcendental equa
tion, it can only be solved numerically. In general, it admits
an infinite number of solutions. Although the dynamical out
put of the system is merely a nonlinear coupling of such
linear modes and the system does not explicitly exhibit peri
odic oscillations corresponding to a particular mode, such
linear modes, especially those near the stability criterion, do
represent some intrinsic resonant frequencies of the sys~em

[4,5]. In our previous work, we have successfully exploIted
this knowledge in explaining dynamical phenomena, control
ling chaos, and accessing high-mode oscillations of periodic

TABLE I. Some parameter values for laser diode used in the numeri
cal simulations.

Symbol Parameter Value

ON gain coefficient 8.4X 10- 13 m3 S-1

a linewidth enhancement factor 3
r1,r2 facet reflectivity 0.556
Nth carrier density at threshold 2.018X 1024 m- 3

No carrier density at transparency 1.400X 1024 m- 3

T s lifetime of carrier 2.04 ns
Tp lifetime of photon 1.927 ps
Tin round trip time in laser cavity 8 ps
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FIG. 2. Bifureation route via r3 and L. J=1.Uth • (a) r3=1.1%,
L=30 em, (b) r3=1.3%, L=30 em, (e) r3=1.5%, L=18 em, (d)
r3=1.5%, L=24 em, and (e) r3=1.5%, L=30 em.

cycles in a delay-differential system [5]. The key point in
stabilizing chaos with the sinusoidal modulation to the injec
tion current is to assign the modulation frequency based on
the above mode distributions. The algorithm can be written
as

J=Jb[l.O+ g sin(27Tvt)], (10)

where J b is the bias injection current density, g is the modu
lation amplitude, and v is the modulation frequency.

In Fig. 3, we show mode distributions for two typical
chaotic output cases. In the figure, only modes which have
lowest frequencies and whose real parts are very close to the
stability criterion are plotted. It should be noted that the av
erage separation between adjacent modes on the frequency
axis is almost the same as the inverse of the delay time,
which is in good agreement with the usual one-dimensional
delay-differential model [4,5].

The stabilization has been performed by modulating the
injection current of the laser diode with frequencies equal to
the imaginary parts of those modes indicated with arrows.
Figure 4 shows the results of the stabilization for
J= 1.1Jth , r3 = 1.5%, and L =25.5 em, where Jth=Nth / T's is
the current density at the threshold. The square modulus of
the field amplitude lEo 1

2 is normalized to the light power
emitted from the front facet. Figures 4(a) and 4(c) are the
time series and the corresponding phase portrait for a chaotic
output without the modulation, respectively, and Figs. 4(b)

FIG. 3. Mode distributions for two typical ehaotic outputs. Circles are
for J=1.07J th , r3=1.6%, and L=30 em, and solid triangles for
J= l.Uth , r3= 1.5%, and L =25.5 em.

and 4(d) represent those after the modulation. The modula
tion frequency is chosen to be the same value of the largest
stable mode shown in Fig. 2.· Clearly the chaotic output is
reduced to a limit cycle under such modulation frequency,
though the modulation amplitude is as small as 2.1%. Note
that the amplitude of the periodic oscillations is about twice
that of the original chaotic oscillations. This implies that the
system is in a resonant state with respect to the frequency of
the linear mode. Another example of the stabilization is
shown in Fig. 5 for J= 1.07Jth , r3= 1.6%, and L =30 em.
Here the largest two stable modes in Fig. 3 were chosen to
modulate the injection current of the laser. One finds that the
original chaotic output [Fig. 5(a)] is stabilized to two differ
ent limit cycles. The corresponding control conditions are
v=1.214 GHz, g=2% for 5(b) and v=0.455 GHz,
~= 2.5% for 5(c).

We have examined the robustness of the control to the
small variations of both the modulation frequency and the
amplitude. The results show that the modulation frequency
has a variation range of about 100 MHz and the modulation
amplitude is variable within a range of 10% to even 20% of
its ambient value. To make the problem simple, we did not
include the noise terms in the above calculations. It should
be noted that the control remains successful even if Langevin
noise terms to some reasonable extent are included. The RIN
level for both cases (with or without the modulation) has
been calculated and the reduction of the RIN level with the
modulation has been verified. The details will be published
elsewhere.

Chaos control has been performed in various configura
tions [5-14]. We have noticed that chaos control through
direct periodic modulation or parametric perturbation has
been studied in different numerical and experimental systems
[8-14]. However, there has been a lack of effective means so
far for determining the modulation frequency which ap
peared to be a key factor in performing the control. On the
other hand, with the control algorithm we proposed here, the
modulation frequency can easily be evaluated from the
known parameter values. As discussed in our previous
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FIG. 5. Results of the control for J= 1.07J tJl , r3 = 1.6%, and L = 30 cm.
(a) Chaotic output in the absence of the modulation, (b) periodic oscillation
at g= 0.02 and v= 1.214 GHz, and (c) periodic oscillation at g= 0.025 and
v= 0.455 GHz. Note the modulation frequencies are equal to the imaginary
parts of the mode shown in Fig. 3.

In summary, we have conducted chaos control in semi
conductor lasers with external optical feedback by superpos
ing a high-frequency modulation on the injection current of
the laser. The main advantage of the control algorithm is that
the modulation frequencies can be analytically optimized
from the mode analysis of the dynamical model of the sys
tem. It has been demonstrated numerically that chaos can be
stabilized to different limit cycles under very weak modula
tions. The robustness of the control to the variations of the
control parameters has been examined.

We gratefully acknowledge useful discussions of this
work with R. Roy, E. R. Hunt, and G. H. M. van Tartwijk.
This work was supported by The Mazda Foundation's Re
search Grant.
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works, the linear mode obtained from the stability analysis
represents the resonant feature of the system [5]. The mode
distribution in Fig. 3 clearly indicates an important feature
that the modulation frequency might be the harmonics of a
fundamental one. A similar feature has also been recognized
in various experiments [10,11]. Therefore the control method
is very promising to apply to noise reduction in semiconduc
tor lasers through the HFI technique, where a theoretical op
timization of the modulation frequency is strongly required.

0.5

lEO (t)12 lEo (t) 12

FIG. 4. Results of the control for J = 1.U th' r 3 = 1.5%, and L = 25.5
cm. (a) Time series of chaotic output in the absence of the modulation, (b)
periodic oscillations with the modulation of g= 0.021 and v = 1.251 GHz.
(c),(d) Phase potentials for (a) and (b), respectively. Note that the modula
tion frequency is equal to the imaginary part of the mode shown in Fig. 3.
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