Graphical abstract

1

Nitration reaction of lutein with peroxynitrite

1 Nitration reaction of lutein with peroxynitrite

2	Makoto Tsuboi, ^a Hideo Etoh, ^a * Yuya Yomoda, ^a Kyuki Kato, ^a Hideaki Kato, ^a Aditya
3	Kulkarni, ^a Yukimasa Terada, ^b Takashi Maoka, ^c ** Hironobu Mori, ^d and Takahiro Inakuma ^d
4 5	^a Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529.
6	Japan
7	^b Center for Computers and Technology, Meijo University, Shiogamaguchi, Tempaku,
8	Nagoya 468-8502, Japan
9 10	^c Research Institute for Production and Development, Shimogamo-morimotocho, Sakyo-ku, Kyoto 606-0805, Japan
11 12	^d Research Institute, Kagome Co. Ltd., 17 Nishitomiyama, Nasushiobara-shi, Tochigi 329-2762, Japan
13 14	Corresponding authors: E-mail: *acheto@agr.shizuoka.ac.jp, ** maoka@mbox.kyoto-inet.or.jp
15	AbstractThe in vitro reactivity of lutein toward peroxynitrite was investigated, and the
16	reaction products produced by scavenging with peroxynitrite were analyzed. A novel
17	lutein-6H-1,2-oxazine (1) along with 14-s- <i>cis</i> -15-nitirolutein (2) and
18	14'-s-cis-15'-nitrolutein (3) were isolated from the products of the reaction of lutein with
19	peroxynitrite. These results indicate that lutein is able to capture peroxynitrite and
20	nitrogen dioxide radicals from their molecules to form oxazine or nitrocarotenoids.
21	Keywords: lutein, reaction with peroxynitrite, lutein-6H-1,2-oxazine,
22	14-s-cis-15-nitrolutein, 14'-s-cis-15'-nitrolutein

1	Peroxynitrite, the reaction product of superoxide and nitric oxide, is a powerful oxidant
2	produced by macrophages and neutrophils. Peroxynitrite is known to induce DNA strand
3	scission, protein modification by nitration, and hydroxylation and lipid peroxydation in
4	LDL. Previously, we first reported the formation of nitro-carotenoids by the reaction of
5	β -carotene and astaxanthin with peroxynitrite. These results indicated that β -carotene and
6	astaxanthin are able to capture peroxynitrite and nitrogen dioxide radicals from molecules
7	to form nitro-carotenoids. ^{1,2} This information would be of value to those investigating the
8	peroxinitrite scavenging action of carotenoids in vivo.
9	Lutein $[(3R,3'R,6'R)-\beta,\epsilon$ -carotene-3,3'-diol] and its metabolites,
10	(3R,3'S:meso)-zeaxanthin and 3'-dehydrolutein, along with (3R,3'R)-zeaxanthin are
11	presented in the macula and they perform a defense function against oxidation injury in the
12	eyes. Lutein also prevents age related macular degeneration (AMD).

In the present study, we investigated the reaction of lutein with peroxynitrite because lutein has an asymmetric structure and so might provide some new reaction products by this reaction.

16 All-*trans*-lutein was reacted with peroxynitrite,^{3,4)} and the reaction products were 17 analyzed by HPLC.

Compound $\mathbf{1}^{5,6}$ (yield 1.5 mg) showed absorption maxima at 430, 457, and 486 nm. Acetylation of **1** gave a diacetate. Its molecular formula was determined to be C₄₀H₅₅O₃N

1	by HRFAB-MS, and it showed a structure lutein NO adduct. The ¹ H and ¹³ C NMR signals
2	of 1 were assigned by ¹ H- ¹ H COSY, NOESY, HSQC, and HMBC experiments. The ¹³ C
3	NMR signals at C-5, C-6, C-7, and C-8 were significantly different from those of lutein.
4	The partial structure of C-5-C6=C7-C8 was elucidated from HMBC experiments. The
5	chemical shift value of the quaternary carbon at C-5 (δ 80.1) indicated that an oxygen group
6	was attached to C-5. On the other hand, the chemical shift value of the quaternary carbon
7	at C-8 (δ 142.6) indicated that nitrogen was attached to C-8 by a double bond. 7 These
8	spectral data were in agreement with the partial structure of -O-C5-C6=C7-C8=N From
9	the HRMS data, oxygen was found to be bound to nitrogen by a single bond. Therefore,
10	the partial structure of a 6-membered oxazine ring was elucidated. The remaining structural
11	features were also confirmed by NOESY correlations between CH ₃ -16/17 and H-7, CH ₃ -19
12	and H-7/11, CH ₃ -20 and H-11/15, CH ₃ -16'/17' and H-7', CH ₃ -19' and H-7'/11', and
13	CH ₃ -20' and H-11'/15'. The HMBC spectrum showed cross peaks at CH ₃ -16/17 to C-6,
14	CH ₃ -18 to C-5/6, and CH ₃ -19 to C-8/9/10, indicating a 6-membered oxazine skeleton.
15	Therefore, the structure of 1 was determined to be lutein-6H-1,2-oxazine. The formation
16	mechanism of 1 might be assumed to be the direct reaction of lutein with peroxynitrite.

Compound 2^8 (yield 3.5 mg) showed absorption maxima at 322, 465 nm. Its molecular $\mathbf{2}$ formula was determined to be C40H55O4N by HRFAB-MS and it demonstrated a NO2 3 substituted lutein structure. This structure was also characterized from ¹H and ¹³C NMR 4 $\mathbf{5}$ including 2D NMR experiments. The partial structure of the end group and the polyene chain of compound 2 were characterized by ¹H NMR and ¹³C NMR including ¹H-¹H COSY, 6 NOESY, HSOC, and HMBC experiments. The downfield shift of the ¹³C NMR signal at $\overline{7}$ C-15 (δ 145.8, quaternary carbon) along with disappearance of a methylene proton at the 8 C-15 position in ¹H NMR compared with lutein, clearly indicated that a nitro group was 9 attached to the C-15 position of lutein. Furthermore, the change in the coupling pattern and 10 the downfield shifts of the ¹H NMR signals at H-15' (δ 8.05) and H-14 (δ 6.19) compared 11 12with lutein, supported the substitution position of the nitro group at C-15. The steric structure was confirmed by NOESY correlations between CH₃-16/17 and H-7, CH₃-19 and 13H-7/11, CH₃-20 and H-11/14', CH₃-16'/17' and H-7', CH₃-19' and H-7'/11', and CH₃-20' 14and H-11'/15'. Spectral analysis of compound 2 indicated its structure to be 1514-s-cis-15-nitrolutein (2). 16

14-s-cis-15-nitrolutein (2)

Compound 3^9 (yield 3.2 mg) showed maxima at 343, 447 nm and molecular formula as those of **2**. The ¹H and ¹³C NMR data of **3** were very similar to those of **2** except for at the 14, 15, 14', and 15' positions. The quaternary carbon at C-15' (δ 145.8) and doublet signal at H-15 (δ 8.06) clearly indicated that a nitro group was attached to C-15'. Its steric structure was confirmed by NOESY data. The final structure of compound **3** was established as 14'-s-*cis*-15'-nitrolutein (**3**).

14'-s-cis-15'-nitrolutein (3)

8 9

The versatility of the reaction mode is suggestive of the involvement of several

1	different active species in the reaction with peroxynitrite. There are still many unidentified
2	products, the identification of which may provide additional new reaction modes for the
3	reaction of peroxynitrite with carotenoids as well as various other biological antioxidation
4	systems. These reactions would probably be found in vivo and contribute to the degradation
5	of biological systems, eventually leading to pathogenic disease processes. Better
6	understanding of the behavior of peroxynitrite toward a wide variety of biological
7	antioxidation systems would enable us to predict the role of peroxynitrite in vivo and
8	provide valuable information on its physiological significance.
9	
10	Acknowledgements
11	This work was supported in part by the Grant-in-Aid from the Ministry of Education
12	Science, Sports (Grant No. 20580126).
13	References and notes
14	1. Yoshioka, R.; Hayakawa, T.; Ishizuka, K.; Kulkarni, A.; Terada, Y.; Maoka, T.; Etoh, H.
15	<i>Tetrahedron Lett.</i> 2006 , 47, 3637-3640.
16	2. Hayakawa, T.; Kulkarni, A.; Terada, Y.; Maoka, T.; Etoh, H. Biosci. Biotechnol.
17	Biochem. 2008, 72, 2716-2722.
18	3. Niwa, T.; Doi, U.; Kato, Y.; Osawa, T. J. Agric. Food Chem. 2001, 49, 177-182.
19	4. All-trans-lutein (400 mg, from Kemin Health Asia) was dissolved in 50 mL of THF

1	(final concentration 5.7 mM). To this, TFA was added in order to make up the final
2	concentration to 2%, before the addition of 16 mL of peroxynitrite (final concentration:
3	6.8 mM). Then the solution was allowed to react for 1 min. Then, to the above mixture,
4	300 mL of CHCl ₃ and 300 mL of H_2O were added so as to separate the reaction
5	products into organic and aqueous phases. The whole procedure was performed three
6	times. The organic layer was dried over sodium sulfate and concentrated. This organic
7	concentrate was then subjected to HPLC analysis using the Develosil C30-UG-5 (250
8	x 4.6 i.d.; MeCN:H ₂ O = 82:18, flow rate: 1 min, column temp: 40°C) column. A more
9	specific separation procedure was performed using the Deverosil C30-UG-5 (250 x 4.6
10	i.d. mm; MeCN: $H_2O = 75:25$) column.
11	5. In HPLC analysis for lutein, four main groups of reaction products were observed,
12	namely fractions A (tR 3-12 min), B (tR 12-28 min), C (tR 30-36 min), and D (tR 50-68
13	min). The peaks in fraction A were observed to have a lower λ max, indicating then to
14	be apo-carotenals. The fraction B and C compounds, which contained the main reaction
15	products, were observed to be oxygenated products with a C-40 skeleton. The
16	compounds in fraction D were 9- and 9'-cis-lutein and 13- and 13'-cis-lutein. They
17	were identified from their values in the literature; Khachike, F.; Englert, G.; Daitch, C.
18	E., Beecher, G. R.; Lusby, W. R. J. Chromatogr. Biomed. Appl. 1992, 582, 153-166.
19	Further separation of fraction B gave compounds 2 and 3 and fraction C gave

1 compound **1**.

2	6.	Lutein-6H-1,2-oxazine (1) UV-vis λ max (Et ₂ O) nm 430, 457, 486; HR-FAB MS
3		597.4173 (M ⁺ , calc. for C ₄₀ H ₅₅ O ₃ N, 597.4182); ¹ H NMR (CDCl ₃ , 500 MHz) δ 0.85
4		(H ₃ -17', s), 1.00 (H ₃ -16', s), 1.23 ((H-4α, dd, J=13.0, 4.0), 1.25 (H-2α, overlapped),
5		1.26 (H ₃ -17, s), 1.31 (H ₃ -16, s), 1.37 (H-2'α, dd, J=13.0, 7.0), 1.60 (H ₃ -18, s), 1.62
6		(H ₃ -18', s), 1.85 (H-2'β, dd, <i>J</i> =13.0, 6.0), 1.91 (H ₃ -19', s), 1.98 (H ₃ -20', s), 1.99 (H ₃ -20,
7		s), 2.02 (H-2β, ddd, <i>J</i> =13.0, 4.0, 2.0), 2.17 (H ₃ -19, s), 2.41(H-6', d, <i>J</i> =10.0), 2.53 (H-4
8		β, ddd, J=13.0, 4.0, 2.0), 4.22 (H-3, m), 4.25 (H-3', m), 5.44 (H-7', dd, J=15.5, 10.0),
9		5.55 (H-4', brs), 6.14 (H-8', d, J= 15.5), 6.14 (H-10', d, J= 11.0), 6.24 (H-7, s), 6.24
10		(H-12, d, <i>J</i> = 15.0), 6.25 (H-14', d, <i>J</i> = 11.0), 6.31 (H-14, d, <i>J</i> = 11.0), 6.36 (H-12', d, <i>J</i> =
11		15.0), 6.62 (H-11', dd, <i>J</i> =15.0, 11.0), 6.64 (H-15, m), 6.64 (H-15', m), 6.69 (H-11, dd,
12		<i>J</i> =15.0, 11.0), 8.30 (H-10, d, <i>J</i> =11.0) ¹³ C-NMR (CDCl ₃ , 125MHz) δ 12.7 (C-20), 12.8
13		(C-20'), 13.1 (C-19'), 15.1 (C-19), 22.9 (C-18'), 23.4 (C-18), 24.2 (C-17'), 26.5 (C-17),
14		29.4 (C-16), 29.5 (C-16'), 34.0 (C-1'), 34.8 (C-1), 44.6 (C-2'), 45.9 (C-4), 51.4 (C-2),
15		54.9 (C-6'), 65.6 (C-3), 65.9 (C-3'), 80.1 (C-5), 116.1 (C-7), 124.5 (C-4'), 125.1
16		(C-11'), 128.3 (C-9), 128.8 (C-7'), 129.8 (C-15), 129.9 (C-11), 130.7 (C-15'), 130.8
17		(C-10'), 132.4 (C-12), 132.5 (C-13, 13'), 134.1 (C-10), 134.5 (C-14), 135.3 (C-9'),
18		137.1 (C-12', 14'), 137.7 (C-8'), 138.0 (C-5'), 142.6 (C-8), 156.3 (C-6); Acetylation of
19		1 with acetic anhydride in pyridine at room temperature for 1 hr gave a diacetate, which

1 showed molecular ion m/z 681 by FAB MS.

2	7.	Kalinowski, H-O.; Berger, S.; Braun, S.; Carbon-13 NMR spectroscopy; John Wiley &
3		Son Ltd; New York, 1988; p.243 and p.391.
4	8.	14-s- <i>cis</i> -15-Nitrolutein (2) UV-vis λ max (Et ₂ O) nm 322, 465; HR-FAB MS 613.4139
5		(M^+ , calc. for C ₄₀ H ₅₅ O ₄ N, 613.4131); ¹ H-NMR (CDCl ₃ , 500 MHz) δ 0.85 (H ₃ -16', s),
6		1.00 (H ₃ -17', s) 1.09 (H ₃ -16 and 17, 2s), 1.37 (H-2'α, dd, <i>J</i> =14.0, 7.0), 1.48 (H-2α, dd,
7		<i>J</i> =12.0, 11.0), 1.62 (H ₃ -18', s), 1.75 (H ₃ -18, s), 1.77 (H ₃ -20, s), 1.77 (H-2β, ddd, <i>J</i> =12.0,
8		4.0, 1.5), 1.84 (H-2'β, dd, <i>J</i> =14.0, 6.0), 1.95 (H ₃ -19', s), 1.99 (H ₃ -19, s), 2.04 (H-4α, dd,
9		$J=18.0, 10.0$, 2.16 (H ₃ -20', s), 2.40 (H-4 β , ddd, $J=18.0, 6.0, 1.5$), 2.43 (H-6', d,
10		J=10.0), 4.00 (H ₃ -3, m), 4.25 (H ₃ -3', m), 5.56 (H-4', s), 5.56 (H-7', dd, J=15.0, 10.0),
11		5.86 (H-14, d, J=11.0), 6.08 (H-10, d, 11.5), 6.08 (H-10', d, J=11.0), 6.10 (H-7, d,
12		J=16.0), 6.16 (H-8, d, J=16.0), 6.16 (H-8', d, J=15.0), 6.19 (H-14, s), 6.40 (H-12', d,
13		<i>J</i> =15.0), 6.50 (H-12, d, <i>J</i> =15.0), 6.79 (H-11, dd, <i>J</i> =15.0, 11.5), 6.90 (H-11', dd, <i>J</i> =15.0,
14		11.0), 8.05 (H-15', d, <i>J</i> =12.0) ¹³ C-NMR (CDCl ₃ , 125MHz) δ 13.1 (C-19), 13.3 (C-19'),
15		13.6 (C-20'), 15.3 (C-20), 20.5 (C-17), 22.9 (C-18, 18'), 24.3 (C-17'), 28.7 (C-16), 29.5
16		(C-16'), 34.0 (C-1'), 37.1 (C-1), 42.6 (C-4), 44.6 (C-2'), 48.4 (C-2), 54.9 (C-6'), 65.0
17		(C-3), 65.9 (C-3'), 118.9 (C-14), 124.6 (C-4'), 125.6 (C-14'), 126.8 (C-5, 7), 127.9
18		(C-11), 130.0(C-10'), 130.4 (C-11', 15'), 131.1 (C-7'), 131.2 (C-10), 135.7 (C-12),
19		136.1 (C-9', 12'), 137.6 (C-5', 6, 8'), 138.1 (C-9), 138.2 (C-8), 142.8 (C-13), 145.8

1 (C-15), 149.1 (C-13').

2	9.	14'-s- <i>cis</i> -15'-Nitrolutein (3) UV-vis λ max (Et ₂ O) nm 343, 447; HR-FAB MS 613.4139
3		(M ⁺ , calc. for C ₄₀ H ₅₅ O ₄ N, 613.4131); ¹ H-NMR (CDCl ₃ , 500 MHz) δ 0.86 (H ₃ -16', s),
4		1.10 (H ₃ -16, s) 1.08 (H ₃ -16 and 17, 2s), 1.37 (H-2'α, dd, <i>J</i> =14.0, 7.0), 1.48 (H-2α, dd,
5		$J=12.0, 11.0$, 1.64 (H ₃ -18', s), 1.74 (H ₃ -18, s), 1.76 (H ₃ -20', s), 1.77 (H-2 β , ddd,
6		J=12.0, 4.0, 1.5), 1.85 (H-2'β, dd, J=14.0, 6.0), 1.93 (H ₃ -19', s), 2.01 (H ₃ -19, s), 2.04
7		(H-4α, dd, <i>J</i> =18.0, 10.0), 2.16 (H ₃ -20, s), 2.40 (H-4β, ddd, <i>J</i> =18.0, 6.0, 1.5), 2.43 (H-6',
8		d, <i>J</i> =10.0), 4.00 (H ₃ -3, m), 4.25 (H ₃ -3', m), 5.40 (H-7', dd, <i>J</i> =15.0, 10.0), 5.56 (H-4', s),
9		5.96 (H-14, d, J=12.0), 6.10 (H-10', d, J=11.0), 6.10 (H-7, d, J=16.0), 6.16 (H-8, d,
10		<i>J</i> =16.0), 6.16 (H-10, d, <i>J</i> =11.5), 6.20 (H-8', d, <i>J</i> =15.0), 6.30 (H-14', s), 6.40 (H-12, d,
11		<i>J</i> =15.0), 6.49 (H-12', d, <i>J</i> =15.0), 6.75 (H-11', dd, <i>J</i> =15.0, 11.0), 6.95 (H-11, dd, <i>J</i> =15.0,
12		11.5), 8.06 (H-15, d, J=12.0) ¹³ C-NMR (CDCl ₃ , 125MHz) δ 13.2 (C-19, 19'), 13.6
13		(C-20), 15.3 (C-20'), 20.5 (C-17), 21.6 (C-18), 22.9 (C-18'), 24.3 (C-17'), 28.7 (C-16),
14		29.5 (C-16'), 34.0 (C-1'), 37.1 (C-1), 42.6 (C-4), 44.6 (C-2'), 48.4 (C-2), 54.9 (C-6'),
15		65.0 (C-3), 65.9 (C-3'), 119.0 (C-14'), 124.6 (C-4'), 125.8 (C-14), 126.8 (C-5, 7), 127.8
16		(C-11', 12'), 130.1 (C-7', 10'), 130.2 (C-10), 130.4 (C-11, 15), 136.1 (C-9, 12), 137.6
17		(C-5', 6, 8'), 138.0 (C-8), 138.1 (C-9'), 142.8 (C-13'), 145.8 (C-15'), 149.1 (C-13);
18		NOESY correlations between CH ₃ -16/17 and H-7, CH ₃ -19 and H-7/11, CH ₃ -20 and
19		H-11/15, CH ₃ -16'/17' and H-7', CH ₃ -19' and H-7'/11', and CH ₃ -20' and H-14/11'.