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FRÉCHET-URYSOHN SPACES
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(Communicated by Alan Dow)

Abstract. Let F (X) and A(X) be respectively the free topological group
and the free Abelian topological group on a Tychonoff space X. For every
natural number n we denote by Fn(X) (An(X)) the subset of F (X) (A(X))
consisting of all words of reduced length ≤ n. It is well known that if a
space X is not discrete, then neither F (X) nor A(X) is Fréchet-Urysohn,
and hence first countable. On the other hand, it is seen that both F2(X)
and A2(X) are Fréchet-Urysohn for a paracompact Fréchet-Urysohn space X.
In this paper, we prove first that for a metrizable space X, F3(X) (A3(X))
is Fréchet-Urysohn if and only if the set of all non-isolated points of X is
compact and F5(X) is Fréchet-Urysohn if and only if X is compact or discrete.
As applications, we characterize the metrizable space X such that An(X) is
Fréchet-Urysohn for each n ≥ 3 and Fn(X) is Fréchet-Urysohn for each n ≥ 3

except for n = 4. In addition, however, there is a first countable, and hence
Fréchet-Urysohn subspace Y of F (X) (A(X)) which is not contained in any
Fn(X) (An(X)). We shall show that if such a space Y is first countable, then
it has a special form in F (X) (A(X)). On the other hand, we give an example
showing that if the space Y is Fréchet-Urysohn, then it need not have the
form.

1. Introduction

All spaces are assumed to be Tychonoff and we denote by N the set of all natural
numbers. Let F (X) and A(X) be respectively the free topological group and the
free Abelian topological group on a Tychonoff space X in the sense of Markov [4].
For each n ∈ N, Fn(X) stands for a subset of F (X) formed by all words whose
reduced length is less than or equal to n. Then each Fn(X) is closed in F (X). This
concept is defined for A(X) in the same fashion. It is well known that if a space
X is not discrete, then neither F (X) nor A(X) is Fréchet-Urysohn, and hence first
countable (see [1]). On the other hand, Fn(X) and An(X), n ∈ N, have a chance
to be first countable for a non-discrete space X . In fact, the author [6] recently
obtained the following results:

For a metrizable space X, the following are equivalent: (i) An(X) is metriz-
able for each n ∈ N; (ii) An(X) is first countable for each n ∈ N; (iii) A2(X) is
metrizable; (iv) A2(X) is first countable; (v) the set of all non-isolated points of
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X is compact. In the non-Abelian case the following are equivalent: (i) Fn(X) is
metrizable for each n ∈ N; (ii) Fn(X) is first countable for each n ∈ N; (iii) F4(X)
is metrizable; (iv) F4(X) is first countable; (v) X is compact or discrete. Further-
more, the following are also equivalent: (i) F3(X) is metrizable; (ii) F3(X) is first
countable; (iii) F2(X) is metrizable; (vi) F2(X) is first countable; (v) the set of all
non-isolated points of X is compact.

In the proofs of the above results, we proved that for a metrizable space X , if
F2(X) (A2(X)) is first countable, then the set of all non-isolated points of X is
compact. It is easy to see that both F2(X) and A2(X) are Fréchet-Urysohn for a
metrizable space X (see the next section). In this paper, we shall show that for
a metrizable space X if Fn(X) (An(X)) is Fréchet-Urysohn for some n ≥ 3, then
the set of all non-isolated points of X is compact. Moreover we shall prove that
for a metrizable space X , if Fn(X) is Fréchet-Urysohn for some n ≥ 5, then X is
compact or discrete. To prove it, we need some algebraic techniques; that is, we
shall construct actions of groups on spaces and a semidirect product with respect
to the action.

We call a subspace Y of F (X) (A(X)) bounded in F (X) (A(X)) if Y is contained
in Fn(X) (An(X)) for some n ∈ N. On the other hand, a subspace Y of F (X)
(A(X)) is called unbounded in F (X) (A(X)) if Y is not bounded in F (X) (A(X)).
As we mentioned above, neither F (X) nor A(X) is Fréchet-Urysohn if a space X is
not discrete. On the other hand, from the above results, we can construct concrete
spaces X and Y such that Y is first countable and bounded in F (X) (A(X)). Then
the following natural question can be considered:

Are there spaces X and Y such that Y is first countable or Fréchet-Urysohn, and
Y is unbounded in F (X) (A(X))?

However it is easy to answer the question positively. We shall show, in §3, that
every unbounded subspace Y must have a special form in F (X) (A(X)) if Y is first
countable. That is, the family {Y ∩ (Fn+1(X) \Fn(X)) : n ∈ N} ({Y ∩ (An+1(X) \
An(X)) : n ∈ N}) has to be discrete in Y . On the other hand, we give an example
of a locally compact separable metric space X and a Fréchet-Urysohn subspace Y
of F (X) (A(X)) such that Y does not have the above form. The example also gives
us a first countable subspace of F (X) (A(X)) such that the above family is not
discrete in F (X) (A(X)).

We refer to [3] for elementary properties of topological groups and to [1] for the
main properties of free topological groups.

2. Fréchet-Urysohn property of Fn(X) and An(X)

In this section we study metrizable spaces X for which Fn(X) and An(X) are
Fréchet-Urysohn. Recently the author showed that if a space X is paracompact,
then F2(X) is a closed image of (X ⊕ {e} ⊕ X−1)2 and A2(X) is a closed image
of (X ⊕ {0} ⊕ −X)2 (see [7, Proposition 4.8]). Hence, both F2(X) and A2(X) are
Fréchet-Urysohn if X is metrizable. In addition, in the same paper [6], he proved
that for a metrizable space, (i) if Fn(X) is first countable for some n ≥ 2, then the
set of all non-isolated points of X is compact and the same is true for An(X), and
(ii) if Fn(X) is first countable for some n ≥ 4, then X is compact or discrete. We
shall improve the result (i) for n ≥ 3 and the result (ii) for n ≥ 5 by showing the
hypothesis of Fn(X) and An(X) is enough to be Fréchet-Urysohn.
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For a spaceX , let UX and UX be the universal uniformities onX = X⊕{e}⊕X−1

and on X , respectively. For each n ∈ N, U ∈ UX and U ′ ∈ UX , the author defined
the subsets Wn(U) of F2n(X) in [7] and V (U ′) of A2n(X) in [6], as follows:

Wn(U) is a subset of F2n(X) which consists of the identity e and all words g
satisfying the following conditions;
(1) g can be represented as the reduced form g = x1x2 · · ·x2k, where xi ∈ X

for i = 1, 2, . . . , k and 1 ≤ k ≤ n,
(2) there is a partition {1, 2, . . . , 2k} = {i1, i2, . . . , ik} ∪ {j1, j2, . . . , jk},
(3) i1 < i2 < · · · < ik and is < js for s = 1, 2, . . . , k,
(4) (xis , x

−1
js

) ∈ U for s = 1, 2, . . . , k and
(5) is < it < js ⇐⇒ is < jt < js for s, t = 1, 2, . . . , k.

Vn(U ′) = {x1−y1+x2−y2+· · ·+xk−yk : (xi, yi) ∈ U ′ for i = 1, 2, . . . , k, k ≤ n}.
Then the following are proved.

Theorem 2.1. Let X be a space. Then :

(1) ([7]) Wn(U) is a neighborhood of e in F2n(X) for each U ∈ UX , and
(2) ([6]) Vn(U ′) is a neighborhood of 0 in A2n(X) for each U ′ ∈ UX .

The above neighborhoods are used to prove the following result.

Theorem 2.2. Let X be a metrizable space. If Fn(X) for some n ≥ 3 is Fréchet-
Urysohn, then the set of all non-isolated points of X is compact. The same is true
for An(X).

Proof. It suffices to prove the theorem for n = 3. Suppose that the set of all
non-isolated points of X is not compact, and take sequences {yi : i ∈ N ∪ {0}},
{xi : i ∈ N} and {xi,j : j ∈ N} (i ∈ N) in X such that

(1) the set Y = {yi : i ∈ N ∪ {0}} ∪ {xi : i ∈ N} ∪ {xi,j : i, j ∈ N} consists of
distinct points of X ,

(2) the sequence {yi : i ∈ N} converges to y0,
(3) the sequence {xi,j : j ∈ N} converges to xi for each i ∈ N and
(4) {{yi : i ∈ N ∪ {0}}} ∪ {{xi,j : j ∈ N} : i ∈ N} is a discrete family of closed

subsets of X .

For every i ∈ N put Di = {xi,j x−1
i yi : j ∈ N} and D =

⋃∞
i=1 Di. Then D is a

subset of F3(X) and (3) implies that the sequences Di converge to yi, respectively.
Hence, by (2), we have that y0 ∈ D. To prove that F3(X) is not Fréchet-Urysohn,
we need to show that there are no sequences in D which converge to y0.

Let S be an arbitrary sequence in D. If S ∩ Di is infinite for some i, then S
cannot converge to y0 by (1) and (3). So, we may assume that there is a function
f : N→ N such that S ∩Di ⊆ {xi,j x−1

i yi : j ≤ f(i)} for each i ∈ N. Let V = ({yi :
i ∈ N ∪ {0}})2 ∪

⋃∞
i=1({xi,j : j > f(i)} ∪ {xi})2. Then V is an open neighborhood

of the diagonal ∆Y in Y 2. Let W be an open neighborhood of the diagonal ∆X in
X2 such that W ∩ Y 2 = V and put U = W ∪ {(x−1, y−1) : (x, y) ∈ W} ∪ {(e, e)}.
Then U ∈ UX . By Theorem 2.1(1), W2(U) is a neighborhood of e in F4(X). In
addition, if we put By0 = y0W2(U) ∩ F3(X), then By0 is a neighborhood of y0 in
F3(X) (see [7, Lemma 3.1]). On the other hand, from the definition of V , it is easy
to see that By0 ∩ S = ∅. This means that the sequence S cannot converge to y0.
Consequently, F3(X) is not Fréchet-Urysohn.
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In the Abelian case, put Di = {xi,j − xi + yi : j ∈ N} for each i ∈ N. Then,
applying Theorem 2.1(2), the above argument also implies that (y0 + V2(W )) ∩
A3(X) ∩ S = ∅, and hence A3(X) is not Fréchet-Urysohn.

Remark 2.3. Let C be a non-trivial convergent sequence {xi : i ∈ N} with its limit
x and D = {di : i ∈ N ∪ {0}} be an infinite discrete space consisting of distinct
points. Then C ×D is homeomorphic to the space Y which appears in the above
proof. Put Di = {(xj , di) − (x, di) + (x, d0) : j ∈ N} ⊆ A3(C × D) (i ∈ N) and
D =

⋃∞
i=1 Di. Then the above argument yields that, in A3(C ×D), no sequences

in D converge to (x, d0), however (x, d0) ∈ D. We apply the fact in the proof of
the next theorem.

Theorem 2.4. Let X be a metrizable space. If Fn(X) is Fréchet-Urysohn for some
n ≥ 5, then X is compact or discrete.

Proof. Suppose that a metrizable space X is neither compact nor discrete, and
choose sequences {xi : i ∈ N} and {di : i ∈ N} consisting of distinct points in
X and a point x in X such that the sequence {xi : i ∈ N} converges to x and
{{xi : i ∈ N} ∪ {x}} ∪ {{di} : i ∈ N} is a discrete closed family in X . For each
i ∈ N put Ei = {di xj x−1d−1

i xi : j ∈ N} and E =
⋃∞
i=1Ei. Then E is a subset

of F5(X). Since each sequence Ei converges to xi, we have that x ∈ E. To prove
that F5(X) is not Fréchet-Urysohn, we need to show that there are no sequences
in E which converge to x in F5(X). Let S be an arbitrary sequence in E. Then
we may assume that S ∩ Ei is a non-empty finite set for each i ∈ N, that is, we
may assume that for each i ∈ N there is a non-empty finite set pi ⊆ N such that
S ∩ Ei = {gi,j = di xj x

−1d−1
i xi : j ∈ pi}. To prove that S cannot converge to x,

we need to construct some mappings and topological groups which are defined by
Pestov and the author in [5].

Let C = {xi : i ∈ N} ∪ {x} and D = {di : i ∈ N}. Define a mapping τ : F (D)×
(C × F (D)) → C × F (D) by letting τ((g, (x, h))) = (x, gh) for each (g, (x, h)) ∈
F (D)× (C ×F (D)). Since F (D) is a discrete space, τ is a continuous action of the
group F (D) on the space C ×F (D). For every g ∈ F (D), the self-homeomorphism
τg : C×F (D)→ C ×F (D) : (x, h)→ (x, gh) can be extended to an automorphism
τg : A(C × F (D)) → A(C × F (D)). Then, put τ : F (D) × A(C × F (D)) →
A(C × F (D)) as τ ((g, h)) = τg(h) for each (g, h) ∈ F (D) × A(C × F (D)). Since
F (D) is a discrete space, τ is a continuous action of F (D) on A(C × F (D)).

Let G = F (D)nτ A(C × F (D)) be the semidirect product formed with respect
to the action τ . In other words, as a topological space, G is the product of F (D)
and A(C×F (D)) and the group operation is given by (g, a) ·(h, b) = (gh, a+τg(b)),
where g, h ∈ F (D) and a, b ∈ A(C × F (D)). Since A(C × F (D)) (identified with
{e} × A(C × F (D)), where e is the unit element of F (D)) forms an open normal
subgroup of G, let π : G→ A(C × F (D)) be the quotient mapping.

Define a mapping ψ : C ⊕D → G by

ψ(t) =

{
(e, (t, e)) ∈ F (D)nτ A(C × F (D)), if t ∈ C,
(t, 0) ∈ F (D)nτ A(C × F (D)), if t ∈ D,

where 0 denotes the unit element of A(C × F (D)). Since

lim
n→∞

ψ(xn)= lim
n→∞

(e, (xn, e)) = (e, (x, e)) = ψ(x),



FRÉCHET-URYSOHN SPACES IN FREE TOPOLOGICAL GROUPS 2465

the mapping ψ is continuous and therefore extends to a continuous homomorphism
ψ : F (C ⊕D)→ G. Let Y = C × ({e} ⊕D) ⊆ C × F (D) and

f = (π ◦ ψ)|(π◦ψ)−1(A(Y )) : (π ◦ ψ)−1(A(Y ))→ A(Y ).

Then, since A(Y ) is a topological subgroup of A(C × F (D)), f is a continuous
homomorphism.

We return to prove that the sequence S cannot converge to x in F5(X). Since
F5(C ⊕ D) is a subspace of F5(X) and S ∪ {x} ⊆ F5(C ⊕ D), it suffices to show
that S does not converge to x in F5(C ⊕ D). Let i ∈ N and j ∈ pi. Before we
calculate ψ(gi,j), let us note that the inverse elements of (d, 0) and (e, (x, e)) in G
are (d−1, 0) and (e,−(x, e)) for each d ∈ D and x ∈ C, respectively. Hence gi,j is
mapped by ψ, as follows:

ψ(gi,j) = ψ(dixjx−1d−1
i xi) = ψ(di)ψ(xj)ψ(x)−1ψ(di)−1ψ(xi)

= ψ(di)ψ(xj)ψ(x)−1ψ(di)−1ψ(xi)

= (di, 0)(e, (xj , e))(e, (x, e))−1(di, 0)−1(e, (xi, e))

= (di, τdi((xj , e)))(e,−(x, e))(d−1
i , 0)(e, (xi, e))

= (di, (xj , di))(d−1
i ,−(x, e) + τe(0))(e, (xi, e))

= (di, (xj , di))(d−1
i ,−(x, e))(e, (xi, e))

= (di, (xj , di))(d−1
i ,−(x, e) + τd−1

i
(xi, e))

= (di, (xj , di))(d−1
i ,−(x, e) + (xi, d−1

i ))

= (e, (xj , di) + τdi(−(x, e) + (xi, d−1
i )))

= (e, (xj , di)− τdi(x, e) + τdi(xi, d
−1
i ))

= (e, (xj , di)− (x, di) + (xi, e)).

Hence π ◦ ψ(gi,j) = (xj , di) − (x, di) + (xi, e). Since (xj , di), (x, di), (xi, e) ∈ Y ,
π ◦ψ(gi,j) ∈ A(Y ). This means that f(gi,j) = (xj , di)− (x, di) + (xi, e). Therefore,
we have that f(S) = {(xj , di) − (x, di) + (xi, e) : j ∈ pi, i ∈ N} ⊆ A3(Y ). On the
other hand, in the same way, we can show that f(x) = (x, e) ∈ A(Y ). Hence, by
Remark 2.3, the sequence f(S) does not converge to f(x) in A3(Y ). This yields
that S does not converge to x in F5(C ⊕D). Therefore, we conclude that F5(X) is
not Fréchet-Urysohn.

From the above theorems, we obtain the following results which improve Theo-
rem 4.5, 4.9 and 4.12 in [7].

Corollary 2.5. For a metrizable space X, the following are equivalent :
(1) An(X) is metrizable for each n ∈ N ;
(2) An(X) is first countable for each n ∈ N ;
(3) An(X) is Fréchet-Urysohn for each n ∈ N ;
(4) A2(X) is metrizable ;
(5) A2(X) is first countable ;
(6) A3(X) is Fréchet-Urysohn ;
(7) F3(X) is metrizable ;
(8) F3(X) is first countable ;
(9) F3(X) is Fréchet-Urysohn ;

(10) F2(X) is metrizable ;
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(11) F2(X) is first countable ;
(12) the set of all non-isolated points of X is compact.

Proof. The equivalence of the statements (1), (2), (4), (5), (7), (8), (10), (11) and
(12) are due to Theorem 4.5 and 4.12 in [7]. The implications (2)⇒ (3)⇒ (6) and
(8) ⇒ (9) are trivial. Theorem 2.2 yields the implications (6) ⇒ (12) and (9) ⇒
(12).

Corollary 2.6. For a metrizable space X, the following are equivalent :
(1) Fn(X) is metrizable for each n ∈ N ;
(2) Fn(X) is first countable for each n ∈ N ;
(3) Fn(X) is Fréchet-Urysohn for each n ∈ N ;
(4) in is a closed mapping for each n ∈ N ;
(5) F4(X) is metrizable ;
(6) F4(X) is first countable ;
(7) F5(X) is Fréchet-Urysohn ;
(8) i3 is a closed mapping ;
(9) X is compact or discrete.

Proof. The equivalence of the statements (1), (2), (4), (5), (6), (8) and (9) is due
to Lemma 4.7 and Theorem 4.9 in [7], and the implications (2) ⇒ (3) ⇒ (7) are
trivial. Theorem 2.4 yields the implication (7) ⇒ (9).

As we mentioned at the beginning of this section, we have already shown that
the mapping i2 is closed if and only if every neighborhood of the diagonal in X2

is an element of the universal uniformity UX of X (see [7, Proposition 4.8]). In
particular, i2 is closed for a paracompact space. Therefore both F2(X) and A2(X)
are Fréchet-Urysohn for a metrizable space X . So, the reader must note that it
is not clarified that the equivalent condition of a metrizable space X for F4(X)
be Fréchet-Urysohn. Unfortunately, the author does not know about it. He just
conjectures that F4(X) is Fréchet-Urysohn if the set of all non-isolated points of a
metrizable space X is compact, and hence we could add the statement that F4(X)
is Fréchet-Urysohn on the list of equivalences in Corollary 2.5.

3. Unbounded subspaces of F (X) and A(X)

As we mentioned in §1, however, neither F (X) nor A(X) is Fréchet-Urysohn for
a non-discrete space X , and there are non-discrete spaces X and Y such that Y
is a first countable unbounded subspace of F (X) (A(X)). For example, let X be
any non-discrete first countable space. Fix an element x ∈ X and for each n ∈ N
let Xn = X · xn. Then the subspace Xn of F (X) is homeomorphic to X . Let
f be a function from X to the additive group of integers such that f(x) = 1 for
each x ∈ X . Then the homomorphic extension F (f) of f over F (X) is continuous.
Since F (f)(g) = n + 1 for each g ∈ Xn and n ∈ N, it follows that the subspace
Y =

⋃∞
i=1 Xn is the sum of {Xn : n ∈ N}. Hence Y is a required unbounded

subspace of F (X).
For each n ∈ N, let En(X) = Fn(X) \ Fn−1(X). Then, for the above subspace

Y , the family {Xn = Y ∩En : n ∈ N} is discrete in Y . Generally, we can show that
every first countable subspace Y of F (X) (A(X)) has this property.

Proposition 3.1. Let X be a Tychonoff space and Y a first countable subspace of
F (X). Then {Y ∩ En(X) : n ∈ N} is discrete in Y . The same is true for A(X).
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Proof. Suppose that there is a first countable subspace Y of F (X) such that {Y ∩
En(X) : n ∈ N} is not discrete at a word g in Y . Since Y is first countable, g has
a countable neighborhood base in Y . So, we can choose sequences {kn : n ∈ N} of
natural numbers and {gn : n ∈ N} in Y such that

(1) k1 < k2 < · · · ,
(2) gn ∈ Y ∩ Ekn for each n ∈ N and
(3) the sequence {gn} converges to g in Y .

Then the compact set {gn : n ∈ N} ∪ {g} is unbounded in F (X). Since every
compact subset of F (X) is bounded in F (X), this is a contradiction.

Corollary 3.2. Let X be a Tychonoff space and Y a subspace of F (X) satisfy-
ing one of the following properties : locally compactness, Čech-completeness, first
countability and point-countable type. Then {Y ∩En(X) : n ∈ N} is discrete in Y .
The same is true for A(X).

Proof. Recall that a space Y is of point-countable type iff for each point p ∈ Y ,
there is a compact set K and K has countable character. Then, the argument of
the proof of Proposition 3.1 implies that {Y ∩ En(X) : n ∈ N} is discrete in a
subspace Y of F (X) if Y is of point-countable type. Since the point-countable type
is the weakest property among the above properties, this completes the proof.

In general, The family {Y ∩ En(X) : n ∈ N} of Corollary 3.2 is not necessary
to be discrete in F (X) ((A(X)). Furthermore, the family {Y ∩ En(X) : n ∈ N} is
not necessary to be discrete in Y if Y is Fréchet-Urysohn. The following example
shows these facts.

Example 3.3. There is an unbounded subspace Y of the free topological group
F (X) on a metrizable space X such that Y is a locally compact separable metric
space and {Y ∩En(X) : n ∈ N} is not discrete at e in F (X). In addition, if we put
Z = Y ∪ {e}, then Z is Fréchet-Urysohn and {Z ∩ En(X) : n ∈ N} is not discrete
at e in Z.

Proof. Let X =
⊕∞

n=1 Cn, where each Cn is a non-trivial convergent sequence
{xk,n : k ∈ N} with its limit xn. For each n ∈ N let p(n) = n(n−1)

2 and

Sn = {xp(n)+1
−1 xk,p(n)+1 xp(n)+2

−1 xk,p(n)+2 · · ·xp(n)+n
−1 xk,p(n)+n : k ∈ N}.

Since each Sn is a subset of E2n, the set Y =
⋃∞
n=1 Sn is unbounded in F (X). To

prove that Y is a required subspace of F (X), it suffices to show that the subspace
Z = Y ∪ {e} of F (X) is homeomorphic to the sequential fan S(ω). It is clear that
each sequence Sn converges to e and Si ∩ Sj = ∅ if i 6= j. Hence it suffices to show
that a subset L of Z is closed in Z whenever the intersection of L with Sn ∪ {e} is
closed in Sn ∪ {e} for each n ∈ N. Let L be a subset of Z such that L ∩ (Sn ∪ {e})
is closed in Sn ∪ {e} for each n ∈ N and K be a compact subset of F (X). Since K
is bounded in F (X), there is n ∈ N such that L ∩K ⊆

⋃n
i=1 Si ∪ {e}. It follows

that L∩K =
⋃n
i=1(L∩ (Si ∪{e}))∩K, and hence L∩K is closed in K. Since X is

a locally compact separable metrizable space, F (X) is a k-space (see [2, Theorem
2.11]). Thus the above argument yields that L is closed in F (X), and hence in Z.
Consequently we can prove that Z is homeomorphic to S(ω).

In particular, Corollary 3.2 yields that the subspace
⋃∞
i=1 Eni does not satisfy any

properties of Corollary 3.2 for each subsequence {ni : i ∈ N} of natural numbers,
as follows.
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Corollary 3.4. Let X be a non-discrete Tychonoff space. Then, for every sequence
{ni : n ∈ N} of natural numbers,

⋃∞
i=1 Eni(X) is not of point-countable type, and

hence it does not satisfy any properties of Corollary 3.2. The same is also true for
A(X).

Proof. Let Y =
⋃∞
i=1Eni(X). By Corollary 3.2, it suffices to show that E =

{Eni(X) : i ∈ N} is not discrete in Y . To prove that, choose a subsequence
{mi : i ∈ N} of {ni : i ∈ N} and natural numbers ki such that mi+1 −mi = 2ki for
each i ∈ N. Fix g ∈ Em1 , a non-isolated point x in X and an open neighborhood
U of g in F (X). Denote the set of all elements of X taking part in the reduced
form of the word g by car g. Then we can choose a sequence {Ui : i ∈ N} of an
open neighborhood of e in F (X) and sequences {ai : i ∈ N} and {bi : i ∈ N} in X
satisfying the following properties:

(1) Ui = U−1
i for each i ∈ N,

(2) gU1 ⊆ U and Ui+1
2pi ⊆ Ui for each i ∈ N, where pi =

∑i
j=1 kj ,

(3) the family {ai : i ∈ N} ∪ {bi : i ∈ N} ∪ car g consists of distinct points in X
and

(4) ai, bi ∈ xUi+1.
For each i ∈ N, since a−1

i bi ∈ (xUi+1)−1xUi+1 = U−1
i+1Ui+1 = Ui+1

2, we have
that (a−1

i bi)pi ∈ (Ui+1
2)pi = Ui+1

2pi ⊆ Ui. For each i ∈ N, put gi = g(a−1
i bi)pi .

Then each gi ∈ gUi ⊆ gU1 ⊆ U . Furthermore, property (3) implies the length of
gi = m1 + 2pi = m1 + 2

∑i
j=1 kj = mi+1. It follows that gi ∈ Emi+1 . Thus we have

that U ∩Emi+1 6= ∅ for each i ∈ N. This means that E is not discrete at g in Y .

However Proposition 3.1 is not true for Fréchet-Urysohn spaces as is shown in
Example 3.3; Corollary 3.4 is also true for Fréchet-Urysohn spaces.

Proposition 3.5. Let X be a non-discrete Tychonoff space. Then, for every se-
quence {ni : i ∈ N} of natural numbers,

⋃∞
i=1 Eni(X) is not a Fréchet-Urysohn

space.

Proof. Let Y =
⋃∞
i=1 Eni(X) and suppose that Y is Fréchet-Urysohn. Choose a

subsequence {mi : i ∈ N} of {ni : i ∈ N} such that mi+1 −mi = 2ki (ki ∈ N) for
each i ∈ N. Then, applying the proof of Corollary 3.4, we can show that for each
i ∈ N and g ∈ Emi(X), g ∈ Emj (X)

Y
for each j ≥ i. Choose g ∈ Em1 . Since

g ∈ Em2

Y \ Em2 there is a non-trivial sequence {gi : i ∈ N} in Em2 that converges
to g. For each i ∈ N since gi ∈ Emi+2

Y \ Emi+2 we can take a non-trivial sequence
{gi,j : j ∈ N} in Emi+2 that converges to gi. We put A = {gi,j : i, j ∈ N}. Since
the sequence {gi} converges to g, we have that g ∈ A. So there is a sequence S in
A that converges to g. Each sequence {gi,j : j ∈ N} converges to gi and gi 6= g. It
follows that the sequence S is unbounded in F (X). Since S ∪ {g} is compact, this
is a contradiction. Consequently Y is not Fréchet-Urysohn.
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