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Abstract. In this1 article the nonlinear equation of motion of vibrating membrane

uy —div{y/1+ |Vu|* Vu} =0 is discussed in the space of functions having bounded
variation. Approximate solutions are constructed in Rothe’s method. It is proved that
a subsequence of them converges to a function u and that, if u satisfies the energy
conservation law, then it is a weak solution in the space of functions having bounded
variation. The main tool is varifold convergence.

1. Introduction.

Let Q be a bounded domain in R" with Lipschitz continuous boundary Q. Given
a function u in Q, we regard its graph as a membrane in 2 x R. Longitudinal vibra-
tions of this membrane is described by the following equation:

5214 1 0 2\—1/2 ou
(1) R {0 e g} —0, xco,
(1.2) u(0,x) = up(x), %(O,x) =u(x), xeQ,
(1.3) u(t,x) =0, xedQ.

In [4] D. Fujiwara and S. Takakuwa have investigated this equation in the class of
functions having bounded variation. A function u e L'(Q) is said to have bounded
variation in  if

sup{J udivgdy;g = (g1,...,9n) € Cy (2; R"), |g| < 1} < ®
e}

(see [2], [5], [12]). The set of all functions in L'(©) having bounded variation is
denoted by BV (Q), and a member of BV (Q) is often called a BV function. For each
ue BV (Q) there are a Radon measure u and a u-measurable function v = (v!,... v")
with |v| = 1, p-a.e., such that

(1.4) J udivgdx:—J g-vdu.
Q Q

2000 Mathematics Subject Classification. Primary 35L70, Secondary 49J40, 49Ql15.
Key Words and Phrases. Hyperbolic equations, BV functions, Rothe’s method, direct variational method,
varifolds.



742 K. KiIKucHI

We usually use such notations as g = |Du| and pulv = Du. BV(Q) is a Banach space
equipped with the norm ||ul[g) = [[ul| 1oy + [Dul(€2). Equation (1.1) does not always
have a classical solution globally in time (in [6] it is proved that in the two dimensional
case (1.1) does not always have a classical solution globally in time even though
the initial data is smooth and small). Thus a time global solution should be found in
a weak sense. When a C? class function u satisfies (1.1), multiplying %, to (1.1) and
integrating with respect to x, we obtain the energy conservation law

J |y (2, x)|* dx + J (u(1,-)) = const.,
Q

where J is the area functional J(u) = [, /1 + |Vu|>dx. J is finite for u e W' !(Q), and
thus this space is expected to be the appropriate function space for weak solutions to
(1.1). But it is not reflexive and thus does not guarantee the weak compactness of
bounded sets. While, for a bounded set B in BV(Q), there exist a subsequence {u;} —
B and a function u € BV(2) such that u; — u strongly in L'(Q) and Du; — Du in the
sense of distributions. Thus BV (Q) satisfies a kind of compactness for bounded sets.
These facts suggest that this equation should be treated in the class of BV functions.

The graph of a BV function is possibly broken. Thus the area functional should
measure not only the graph but the broken part. It is extended to BV(Q) in the
following manner:

JW)zsup{J<go+udewkwgmg>ec“azR"“xma2+¢g2sl}.
Q

It is still convex in BV (Q) and satisfies that, if {u;} converges strongly in L} (), then
liminf ;o J(u;) = J(u) ([S] Theorem 14.2). We set U= Q x R. For ue BV(Q), we
define E, = U by

E, = {()C, y);x €, y> u(x)}

It is a set of finite perimeter in U, that is, yz € BV(U). Hence, for yj , there exist u
and v as in (1.4), which are in this article denoted by uy and vg,, respectively. It holds
that

(1.5) J(u) = g, (U)
(I5] Theorem 14.6). The measure uy is characterized by the reduced boundary 0°E,,
which is defined by

0"E, = {z € U;ug (B,(z)) > 0 for all p >0,

Ig (-) VE. Alig,
ve (z) = lim =22 —
52 = 00 B )

where B,(z) denotes the closed ball with center z, radius p, ([2], [5], [12]). It is
countably n-rectifiable and satisfies

and |vg, (z)] = 1},

(1.6) pp, = H"LOE,



The nonlinear equation of motion of a vibrating membrane 743

where #" denotes the n-dimensional Hausdorff measure. In fact, for uy -a.e. ze€ 0"E,,
the approximate tangent space 7.(0*E,) exists and is given by

(1.7) T.(0"Ey) ={(e R"™; (- vg, = 0}

Moreover vg, is the inward pointing unit normal for E, in a generalized sense ([12]
Theorem 14.3, [2] Theorem 2 of Section 5.7.3).

Each BV function u has its trace yu (see [2] or [5]). y is a bounded operator from
BV (Q) to L'(0Q) such that, for each ge C'(Q;R"),

(1.8) J udivgdx:—J g~Du+J yug - AndA"1,
Q Q 2Q

where 7 is the outer unit normal to 2. Boundary condition (1.3) is regarded as yu = 0.

In this article we call a weak solution in the class of functions having bounded
variation a BV solution. In [4] it is asserted that a sequence of approximate solutions to
(1.1)=(1.3) constructed by Ritz-Galerkin method converges to a function u € L}, .((—o0, 00);
L*(Q)NBV(Q)), and that, if u satisfies the energy conservation law and one more
condition holds, it is a “BV solution” to (1.1). However there are several problems
in their theory. First they require high regularity for uy. Second there is a technical
condition which is closely related to their tool “varifold”. The last and the most serious
problem is that their formulation of a BV solution is not appropriate. Their BV solu-
tion is not suitable for calling a solution. The purpose of this article is to dissolve these
problems and reestablish their result (Theorem 4.1). The first problem is caused by
the way of approximation. Ritz-Galerkin method does not seem to be appropriate in
treating BV functions. In this article we employ the method of semidiscretization in
time variable. This approximating method is often called Rothe’s method and at first
introduced to construct weak solutions to parabolic equations ([11]). However many
hyperbolic equations are also solved by this method (see [10] and references cited there).
Thanks to this method we can treat our problem for uy(x) e L*(2)NBV(Q) with
yup = 0 and vo(x) € L*>(R). The technical condition mentioned in the second problem is
needed for controlling BV functions in terms of varifolds. Varifolds are regarded as a
kind of generalized surfaces (the theory of general varifold is precisely discussed in [12]
Chapter 8). In [4] each BV function u is identified with its graph (or ¢0*E,, more
precisely) and regarded as a varifold in U = 2 x R. It is proved that a subsequence of
varifolds corresponding to approximate solutions converges under the topology of the
space of varifolds. The above condition is imposed on this limit varifold. In this article
we follow their strategy, but we can remove this condition by introducing ‘“‘orientations”
for varifolds. Let Gy be the collection of all oriented n-dimensional vector subspaces of
R™'. Each element of Gy is characterized by an n-vector ¢ which is represented as
E=1 A - ATy, where {71,...,7,} is an orthonormal basis of this element. Thus Gy
is often identified with the set of all simple n-vectors having unit norm ([3] 1.6.2). We
say V an oriented n-varifold in U if V' is a Radon measure on U x Gy. We associate
each BV function u with an oriented varifold V" in the following way. Let &(z) be the
orientation of d*E, which agrees with the inward pointing unit normal vg (z). More
precisely £(z) is an n-vector valued #"-measurable function on 0"E, such that, for ug -
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ae. z€dE, &(z)=1 A - Atpand E(z) A vg(z) =ep A -+ A epq1, Where {11,...,T,}
is an orthonormal basis of the approximate tangent space 7.(0*E,) and {ej,... e, 1}
is the standard basis of R"*!. Now we define a continuous linear functional on
C)(U x Gy) by

Lp)= | Bece)an (BeChUx G,
It follows from the Riesz representation theorem (see, for example, [12] Theorem 4.1)
that there exists a Radon measure ¥ on U x Gy (thus an oriented varifold ¥ in U) such
that

L(p) = j BV (0.

In this article we write
V = v (T/l)
For each oriented n-varifold V' in U a Radon measure y;,; on U is defined by

1y (A) =V(A x Gy) for a Borel set 4 < U.

When V =, (u), it immediately follows from the definition of v, (u) that

(1.9) iy = tiE,.

Now we can associate each BV function u with an oriented varifold v, (u). It is the
same as in [4] that a subsequence of varifolds corresponding to approximate solutions
converges in the space of varifolds. We achieve our purpose by investigating the
structure of the limit varifold. The key point is whether it satisfies a relation such as
(1.9). This varifold convergence method is very useful. There is another application of
this method to a theory of parabolic equations ([7]).

In Section 2 we present a suitable formulation of a BV solution. Readers possibly
feel our definition fairly weak. Since the area functional J is convex, we can regard
(1.1) as an evolution equation u; + 0J(u) 0. In the appendix we show that, if 0Q is
of C? class, our definition of a BV solution is equivalent to the definition of a weak
solution to u, + 0J(u) 20. Abstract theories of hyperbolic evolution equations are
discussed by several authors (for example [8]). However it seems that there are few
works on abstract hyperbolic evolution equations in the space of functions having
bounded variations.

2. Definition of a BV solution.

In the original physical meaning Equation (1.1) is derived as the Euler-Lagrange
equation of the action integral

T
J <J |u, (2, x)|2dx—J(u)> dt (J is the area functional, T > 0).
0o \Je

However the area functional J is not always Gateaux differentiable on BV(Q2). Thus
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we cannot calculate (d/de)J(u+ ep)|,_, directly. This is a variation of the area of the
graph of u (or 0"E,, more precisely). Usually variations of areas of surfaces in a
domain U are calculated by the use of a one parameter family of diffeomorphisms of U
(see, for example, [12] Section 9). In our case the domain U is Q2 x R, and, since the
equation describes the longitudinal vibration, we may suppose that each diffeomorphism
of the one parameter family is written as U > (x, y) — (x, y + ep(x, y)) € U, where ¢ is
the parameter and ¢ is a given function on U.

Taking account of these facts, we present a definition of a BV solution to (1.1)—(1.3)
in the following way. Let T be any positive number.

DrrFINITION 1. A function u is said to be a BV solution to (1.1)-(1.3) in (0, 7) x 2
if and only if

i) ueL”((0,T);BV(Q)), uye L*((0,T) x Q)

i) u(0,x) = up(x)

i) yu=0 for £'-ae. te(0,7)

iv) for any g e C}([0,T) x U),

r d
L= [ tonteonn + oy eoxcamgds 4 st cpte )
0 Q

= J vo(x)@(0, x, up(x)) dx.
Q

REMARK. The second relation of i) implies ue C%'/2((0,T);L'(2)). Hence
s-limp ou(t,-) exists in L'(Q) and then we define u(0,:) by this limit. Further, if
u(0,-) € L*(Q), then ue C®'/2((0,T); L*(RQ)).

First of all we should justify Definition 1. We should show that d/de-
J(u+ep(x,u))|,_, describes the variation of the area of 0"E, and that it exists
when ¢ e C}(U).

Let u be a function in BV (Q) and let ¢ be a function in C'(U). Suppose that all
first derivatives of ¢ are bounded. Here we do not assume the boundedness of ¢ itself.
Let @%?: U — U denote the one parameter family of diffeomorphisms defined by
®%?(x,y) = (x,y +ep(x,y)). Then the variation of the area is given by

G
de ule=0
Note that the area formula (see [2], [12]) implies, for each n-rectifiable set M with
H"(M) < o0,

(2.1) HN(D(M)) = JM Ts®0 dA™,

where S = T.M and

Js®89(x) = \Jdet((d @27 )" o (d2 7).

It immediately follows from (2.1) that, if #"(M) =0, then #"(P*>?(M)) =0. Tt also
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follows from (2.1) that, when M = M;U M, with M, N M, = &, then
(2.2) A (M U M) = A (D (M)) + A7 (0P (M),
First we claim
THEOREM 2.1. If ¢ is sufficiently small, then J(u+ ep(x,u)) = A" (D*?(0"E,)).
Proor. By (1.5) and (1.6) we have
J(u+ ep(x,u)) = H"(0" Eyyap(x,u))-

When ¢ is sufficiently small, y+ ep(x, y) is monotone increasing with respect to y.
Thus y + ep(x, y) > u(x) + ep(x,u(x)) if and only if y > u(x). This implies E,, p(x») =
@%?(E,). In particular, we obtain

H" (0" Evyop(e) = A" (0P (Ey)).

Let 0, denote the measure theoretic boundary (for the definition, refer to [2] Section
5.8). In [2] Lemma 1 of Section 5.8 it is proved that, for each set E of locally finite
perimeter, 0*E < d,E and

(2.3) H"(0.E\O'E) = 0.
Thus we have
A D (E,)) = A"(0. D57 (E,)).
Generally, for a set E of locally finite perimeter in U and a diffeomorphism @ : U — U

which satisfies

Gy <

det 6_@’ < (C
(2.4) Oz

Colz — 2| < |B(z) - B(=")] < G| — =/

with positive constants C; (j =0,1,2,3), it holds that 0,®(E) = ®(0.E). When ¢ is
sufficiently small, @** satisfies (2.4) since first derivatives of ¢ are bounded. Hence we
have

H" (0, D (E,)) = A (D*?(0.E,)).
By (2.2) and (2.3) we have
HNB(0,E,)) = HN(@(D°E,)) + A (@0 ENGE,)) = (00" E,)).
Thus the assertion is verified. ]

Let z be the point at which the approximate tangent space for 0*E, exists. Let
{t1,...,74} be an orthonormal basis of S = T.(0*E,). Put C'=(z,...,7,) and C =
(t1y.--,Tn, Ve, (2)). By (1.7) we have det C =1. Then d®%?|; = (dP??)C’ and thus

Js @ (2) = \Jdet(C1(dws) o (A2 7))
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1 0

. 69 —
Since d®; (.slego 1+ eg,

), the (i, j)-element of 'C’(d®>?)" o (dD>?)C’ is

"4 (dPE)dDE )Ty = v g+ ele T Vg - (1))
+ T}”le(p () + TZ”HTJHI + 21',-"+lf]-"+l(py) + 0(&?).

Noting 7; - 7; = d;, we have by the use of relations det(/ + ¢4) = 1 + etr4 + O(e?) and

VIt x=1+x/2+ 0(x?)
Js®4? =1+ s{|v1’5u|2(py —(Vyp - v}iu)vgjl} + 0(&?).
Thereby we obtain the following theorem by Theorem 2.1 and (2.1).

THEOREM 2.2. Let ue BV(Q) and p € C'(U). Suppose that all first derivatives of
@ are bounded. Then (d/de)J(u+ ep(x,u))|,_, exists and it holds that

d
Gt opts g = [ =0 v o+ o Pl ot

In [4] test functions ¢ depend only on x variables. Hence in their definition of a
BV solution the second term of the right hand side of the above disappears. This is not
appropriate because this term describes the variation of the area of the broken part of
the graph.

3. Approximate solutions and their limit.

In this section we construct approximate solutions with Rothe’s method, prove that
this approximating sequence converges to a function u, and investigate its properties in
terms of varifolds. In Rothe’s method we should solve elliptic equations with respect to
space variables. Here we solve them by a direct variational method.

Suppose that ug € L>(Q2)N BV (Q) with yup =0 and vp e L>(Q). For a positive
number /& we construct a sequence {u,},~ ; in the following way. For /=0 we let uy
be as above and for / = —1 we set u_y = uy — hvg. For /£ > 1 it is usual to define u, as
the minimizer of the functional

L[ |o—2u- L . :
Fy(v) = §J [o = 2u, h12+ 2| dx+J(v) (J is the area functional)
Q

in the class {ve L*(Q)NBV(Q);yv =0}. However the existence of the minimizer of
Z, in this class is not assured. Then we introduce another sequence of functionals in
L*(Q)NBV(Q):

dx+J(v) + [yl piag (ve L*(Q)NBV(Q)).

1J 0= 2up y 4 uy o
2)a

{q/(v) =5 112

First we remark the following fact.

PROPOSITION 3.1.  Suppose that 6Q is of C' class. Then it holds that

inf{Z;(v);ve L*(Q)NBV(R),yv =0} = inf{%,(v);v e L*(Q) N BV(Q)}.
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Proor. It is sufficient to show that the left hand side is not greater than the right
hand side.

Let v be a function in L>(Q)N BV (Q2). First we suppose that yv e L>(0Q2). In the
same way as in the proof of [S] Theorem 2.16 (refer also to Remark 2.17) we can obtain
the following: for any ¢ > 0, there exists a function w, e L*(2)N W!1(Q) such that

(31) YWe = )0,

(3.2) Well 20y < ellyoll L2(ag)
and

(3.3) JQ Wil dx < (1+ )90l 00

Then we put v, =v—w,. By (3.1) yv, =yv—pw, =0. By (3.3) we have
I0) <)+ | [Pwelds < 70)+ (1 4+l

Thus, using (3.2), we have

dx

L[ o= 2u 1 +ual? e |v—"2u 1 +u o
4 Fy < = =
(3.4) Fi(v) < ZL 2 dx + 2L L

1

1
+2—hz (1 +E> JQ |Wg|2dx+.](l)) + (1 +8)||yv||L1(5Q)

<9 5 n dx

—Du, N
<€§/(v)+EJ lo = 2ur-1 + el
Q
e(1+¢)

2
+ 2 ||Vv||L2<aQ)+6HVUHL1(99>~

When v is an arbitrary function in L*(Q)NBV(Q), we set vg(x) = R for v(x) > R,
= v(x) for |v(x)| < R, = —R for v(x) < —R, where R is a positive number. Then vg is
a function of L?(Q) N BV (Q) with yvg € L?(0Q) and satisfies %, (vg) — %,(v) as R — oo.
Applying (3.4) for vg, we obtain

F1((vr),) < 9 (v) + (% (vr) — % (v) + dx

§J vk — 2ur 1 +uy |
2], i

&(l +¢) 2
+ 2 [7vrllz2(00) + €llvorllLioo)-

Since ¢ and R are arbitrary, we have the conclusion. O
REMARK. The assumption that 0Q is of C! class is needed for the proof of (3.3).

The existence of the minimizer of %, can be obtained in the same way as in the
proof of [5] Theorem 14.5. Note that in the proof of this fact 0Q is assumed to be only
Lipschitz continuous. Taking account of Proposition 3.1, we define u, as the minimizer
of g/.
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The next lemma follows from the convexity of the functional J(v) + [|yv]| 120, and
the minimality of each u, ([9] Lemma 4.1).

LemmA 3.2 (Energy inequality).

lj s —ur |
o

2
3| e JQ o0 dix + J ().

N —

dx + J(uz) + |lyuell 11 o0y <

Next we define approximate solutions u”(z,x) and @' (t,x) for (¢,x) € (—h, o0) x Q
as follows: for (/ — )h <t </h

t— (£ —1)h lh—t
=Dk

ul(t,x) = Z us(X) 7 ur—1(x)

and
a(t,x) = us(x).

Then Lemma 3.2 shows

1

- J |vo|* dx + J (uo)
2 o

N —

(3.5) jQ ()2 dx -+ T@ (1) + 17 () ey <

for each te ()~ ((¢/ — 1)h,/h).

THEOREM 3.3. It holds that

D NNl e (0,00 120y} i uniformly bounded with respect to h

2) forany T >0, {Huh||L7~‘((O,T);L2(Q)ﬁBV(Q))} is uniformly bounded with respect to h

3) forany T >0, {Hﬁh”L“((O, T):02(Q)nBr(@)) ) IS uniformly bounded with respect to h.
Then there exist a sequence {h;} with hj — 0 as j— oo and a function u such that

4) for any T >0, @t converges to u as j — oo weakly star in L*((0,T); L*(2))

5) uf" converges to u, as j — oo weakly star in L*((0,0); L*(Q))

6) for any T >0, u” converges to u as j — oo strongly in L?((0,T) x Q) for each
I<p<l1”

7) for any T >0, it converges to u as j — oo strongly in L?((0,T) x Q) for each
l<p<l®

8) wueL”((0,00); BV(Q))

9) for ¥'-ae te(0,0), Di"(t,-) converges to Du(t,-) as j — oo in the sense of
distributions

10) S-lim[\o u(t) = Uy Iin Lz(.Q)

PrOOF. Assertion 1) immediately follows from (3.5). Moreover it also follows
that {||J(a"(z, M e (-, o0y} 1s uniformly bounded with respect to 4. Since J is convex,
we have

t—(—1h lh—t

JW"(1,-) < ?J(ah(t, )+ J(@@"(t—h,")).

Thus {||J(u"(z,))|| L1#(0,00)} 15 also uniformly bounded with respect to 4. Then Assertion
2) follows from Assertion 1) because



750 K. KiIKucHI

t

ul (1, x) = up(x) + J ul'(s, x) ds.
0

In the same way as in the proof of [9] Lemma 4.2 we can obtain
(36) ||uh — I/_thifx;((O’ T);LZ(Q)) — 0 as h — 0

Using this fact, we obtain Assertion 3) by Assertion 2). Assertions 4) and 5) are direct
consequences of Assertions 3) and 1), respectively. By Sobolev’s theorem BV (Q) <
L?(Q) compactly for each 1 < p < 1*. Then in the same way as in the proof of [4]
Proposition 5.1 we obtain Assertions 6) and 7). The limits in 6) and 7) are the same
because of (3.6). Assertion 8) immediately follows from 3), 4), and 7). Assertion 9)
follows from (1.8) and 7). Assertion 10) is obtained in the same way as in the proof of
[9] Theorem 4.1. ]

ReMARK. In the sequel {u”} and {a"} are often denoted by {u”} and {a"} for
simplicity.

Theorem 3.3, 5) and 8) imply i) of Definition 1 and 10) implies ii). Thus, if we
show iii) and iv) of Definition 1, then u is a BV solution. In the next section we prove
them with the assumption that u satisfies the energy conservation law. In this section we
investigate the properties of # which hold without assuming the energy conservation law.

Since u, is the minimizer of % (v), we have, for any ¢ € C}(U),

d
0— %g/(w + ep(x, ur))|,—o

_ J uy(x) — 2us—1 (x) + up—2(x)
Q

d
i o(x,us) dx + %J(u/ +ep(x,uz))|,—o-

By Theorem 2.2 we have

d :
Gl ap(s)lg = | 0wy g+ v Pl dn
0" ’

where E, = E,,. Then, noting that, for (/ — 1)h < t < ¢h, u!(t,x) = (us(x) — us_1(x))/h,
we have for any 7 >0 and for any ¢ e C}([0,T) x U)

r ul(t,x) —ul(t — h,x
(3.7) L {JQ () h[ =, )(ﬂ(t,x,ah(t,x))dx

+ J [—(Vap Vi Vi + il )] d%’”} dt =0,
(’)’Elh t t t

where E/' = Ejnq,.y.  In the sequel notation E; = E,(; . is also used. By the use of this
notation and by Theorem 2.2 the equality of iv) of Definition 1 is rewritten as

(3.8) JT { —JQ u (o, (2, x,u) + (py(t, X, u)uy) dx +J [—(Vip- V;;,)"Erl

0 0"E,

v e,) M} at= | (w0 0.x10(0) d.
Q
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Now, for Z'-ae. t, we associate #"(t,-) with oriented varifolds and write V! =
v, (a"(t,-)). For each ¢ e Gy there exists a unique vector v such that E Av=ej A ---
A eyy1. This map &+— v=y(&) is a homeomorphism from Gy to the n-dimensional
unit sphere S”. For each v e BV(Q) we have by the definition of v, (v) that, for any

ﬂ € C(())(U X G()),
(3.9 | peganw =] peronEarn
UxGy 0*E,

Note that v(¢) is the unit normal to the vector subspace associated with ¢ and then
spto, (v) = U x {& € Go;v*1(E) >0}, Let ¢(z) = ¢(x,») be an arbitrary function in
Ci(U). Applying (3.9) to @" and —(Vp - v/(E))V"* (&) + |V(&)[’p, for v and B(z,&),
respectively, we obtain

(3.10) [ o + P

B J [=(Vag -V (W E) + P (&), dV] (2, 0).
UXG(]
By Theorem 3.3 3) there exists a constant M which is independent of / such that

(3.11) ess. supJ 1+ [Dit(1,x)|> < M.
Q

>0

It follows from (1.5) and (1.9) that V(U x Go)(= pys(U)) = J(@"). Then (3.11)
implies

(3.12) ess. sup

>0

|, o, é)‘ < Msupl|
UxGy

for any fe CJ(U x Gy). By the use of (3.12) we obtain the following theorem in the
same way as in the proof of [4] Proposition 4.3.

THEOREM 3.4.  There exists a subsequence of {V]'} (still denoted by {V'}) and a one
parameter family of oriented varifolds V, in U=Q x R, te (0,0), such that, for each
Y(t) e L'(0,00) and e CY(U x Gy),

[o0]

fim [ w0 | peoaricoa- |

0

126} J Pz, &) dVy(z, &) dt.
UxGy
The following lemma corresponds to [4] Proposition 6.2. Proof is the same as that
of this proposition.

LemMa 3.5. For %'-ae te(0,x),
1) limsup,_o pyi(®) = uy,(w) for each open set w in U
2) liminfyo uyi(K) < py,(K) for each compact set K in U.

From [1] Theorem 10 of page 14 there exists a probability Radon measure 17<,51) on

Go for py-a.e. ze U such that
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(3.13) JUXGU Bz, &) dV, = JU (JG B(z,¢) d;%;}) duy. (fe C)U x Gy)).

The following lemma corresponds to [4] Propositions 6.4 and 6.5. However, owing to
introducing orientations in varifolds, we can simplify the proof and refine the result.

Lemma 3.6. [, 9(2)ve, (2) dug, = [, 9(2) (IGO v(&) d;y(;’)) duy, forany g e CJ(U; R™),
for Pleae te(0,0).

Proor. For any ¢ e CJ(U)

<

i (1,x)
J (J o(x, ) dy) dx
Q \ Ju(t,x)

< suplpl | 1#(6.)  u(t.x) .
Q

[ a1 oot

Since by Theorem 3.3 7) @ converges to u strongly in L'(Q) for #!-a.e. ¢, we have XED
converges to yp (z) in the sense of distributions in U for Plae. t.
For any g e CJ(U; R™™)

|, o@re @ s, = | s divate) = tim | ey(2) divae) az
U U /1—>0 U ‘

= limj g(2)vpi(z) dugn = limJ g(2)(&) dV](z, &)
h—0 U ! ! h—0 Ux G,

_ J g(2)(E) dV,(z,&).
Ux Gy

Since C}(U;R™") is dense in CJ(U;R™"), the conclusion follows. ]

Now we sum up the properties of the limit varifold V;. This theorem is closely
related to [4] Proposition 6.3 and Theorem 2.

Turorem 3.7. For %'-a.e. te (0,0),

1) wuy(A) = ug(A) for each Borel set A < U

2) uy(A) = [, Dy, v, (2) dpg, + (uy LZ)(A) for A<= U, where Dy, py, is the
derivative of py, with respect to pp and Z is the pup-null set defined by Z =
{2 Dy 1 (2) = )

3)  Jg, v(&) di’/(VZ[) =0 for pylLZ-ae. z

4) spt;y(lf) cirr(Gy) for pyLZ-a.e. z, where irr(Gy) = {S;v"1 (&) = 0}.

t

Proor. 1) First we consider the case that 4 is an open set. By Lemma 3.6 we
have, for any ge CJ(4;R""),

U ()i 2 i | < | 1a(2)]du, < suplgl, (4)
A A

Taking supremum with respect to ge CJ(4; R™™") with |g| <1, we obtain py (4) <
ty,(A).
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Let 4 be any Borel set. For each open set @ with 4 c @, ug(A4) < ug(w) <
ty, (). Thus, since infycy, uy, () = py (A), we have ug (A4) < py (A).

2) It is the direct consequence of the differentiation theory for Radon measures
(see, for example, [12] Theorem 4.7).

3) By Lemma 3.6 and Assertion 2) we have, for any g(z) e CJ(U; R™™),

0= | gz, = | o2 (j "e) dnﬁ?) duy,

This shows Assertion 3).

4) By 3), in particular, we have JGO v (&) dnﬁj? =0 for uyLZ-a.e. z. For each A,
spt V' is contained in U x {& € Gp;v"*1(£) > 0}. Then spt V; is also contained in this
set. Thus Assertion 4) immediately follows. O

4. Main Theorem.

THEOREM 4.1.  Let T be a positive number. Suppose that ug € L*(Q) N BV (Q) with
yup =0 and vo e L*(Q). If u as in Theorem 3.3 satisfies the energy conservation law

(4.1) %JQ |y (£, X)) dx + J (u(t, ) = %JQ |vo(x)|? dx + J ()

for L -ae te(0,T), then u is a BV solution to (1.1)~(1.3) in (0,T) x Q.

PROOF. Ist step. By Theorem 3.3 5) and 7) we have, for Z!-ae. e (0,T),
liminf | |ul(z,x)|* dx > :
imin JQ (1, %) dx > JQ|u,(Z,x)| dx

and

lim \iglf](ah(t, D) = J(u(t,-)).

Thus energy inequality (3.5) and energy conservation law (4.1) imply, for #'-ae. te
(0,7),

(42) limj |u,f’(t,x)|2dxzj (1, )| dx,
N0 Jo Q
. Shee V) — .
(4.3) lim 7 (i (1,)) = J (u(1, ),
and
1 h . =
(4.4) }}{%HW (: )11 00) = 0.

Writing (1.8) for u=a" and letting / — 0, we obtain iii) of Definition 1 by
Theorem 3.3 9) and (4.4).

By (3.7) and (3.8) we obtain iv) of Definition 1 if we show, as & — 0, passing to a
subsequence if necessary,
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(4.5) JT JQ g (1) = Z’h(t —hx) o(t,x, " (t,x)) dxdt

— JT{— JQ u (@, (1, x,u) + @, (1, x, u)u,) dx} dt — J vo(x)9(0, x, uo(x)) dx

Q

T
(4.6) |, | @i+ gl ase

T
- J J [~ (Vg v Vit + v P, dot™” dt.
0 Joor,

2nd step (Proof of (4.5)). First we rewrite

T oul(e,x) —u(t —h,x
4.7) L L 6X) 2w =X)L e ) dxdr

. N T
:J Ju’(”x) Z’(Z B2 o1, 1, ) il
Q

0 h
= J J (1, ) o(t, x,d"(t, x)) dxdt
e}

o0 h
J ty (5, %) o(s+ h,x,d" (s + h, x)) dxds
nlo h

dxdt

ij Llh(l X) @(l-i-h,x,lx_lh(l—‘rh,)c)) B w(ta X, L_[h(lwx))
t ’ h
Q

Noting that, for —h < s <0, u"(s,x) = vo(x) and @#"(s+ h,x) = uy(x), we have

0 1("
=] ], oot + hoxn o aeds = [ voGolote, xn (o) e,

Since, for 0 <t < h,
1

o, x, 11 (x)) = (2, x, uo(x)) + L 0y (£, 01 (x) — uo(x))) (1 (x) — uo(x)) dO

1
= o(t, x,up(x)) + J goy(t, x, up(x) + hﬁut”(t, x))hu,h(l‘7 x)do,
0

it holds that
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h
I = %L L) vo(X)p(t, x, up(x)) dxdt

h 1
+ J J vo(x) J @, (1, x, up(x) + hou (1, x))ul (¢, x) dOdxdt.
0Jo 0

Thus, noting Theorem 3.3 1), we have

(4.8) ,111{% II = JQ 0o (x)p(0, x, up(x)) dx.
On the other hand, since

o(t+h,x, i (t + h,x)) — o(t, x, 5" (t,x))
h

1
— J [q),(t + 0h, x, ﬁh(t + h,x))
0

+,(1,x, a(t,x) + 0(@" (1 + h, x) — a"(t,x)))

h _ h
u(t—i—h,x})l u"(t, x) J0

1
= L [p: (2 + O, a" (1 + h, ) + @y, (1, x, 0" (£, ) + Ohu (¢ + h, x) up (¢ + h, x)] dO,

we have

r 1
I= L LZ up' (1, x) L [0,(t + Oh, x, @ (1 + h, x))

+ o, (t,x,@" (1, x) + Ohu)'(t + h, x))u (1 + h, x)| dO dxd.

By (4.2) {u"(t,-)} converges to u(t,-) strongly in L?(Q) for #'-a.e. te (0,T). By (3.5)
and (4.1) [ju" (¢, M) and |lui(,-)|| 2o are uniformly bounded with respect to 7 and A.
Thus the dominated convergence theorem implies {u/} converges to u, strongly in
L*((0,T) x Q). Let T’ be any number with 0 < 7' < T. If0<h< T — T', we have

o] (- + ) — (- + M0, 71yx0) = ! — ull L2n, 74y x0) < [ Uil 20, Tyx )

the right hand side of which converges to 0 as # — 0. It follows from Lusin’s theorem
that, as &7 — 0,

e (- + h) — will 120, 7)x2) — O
Thus, writing
g (- + 1) — uill 20, 711 2)
<l (- +h) —u(- + M 20, 7x0) + 1w+ h) = udl 120, 7)x0)»

we obtain that (- + h) — u, strongly in L>((0,T’) x ). By Theorem 3.3 7) we also
obtain that @’ (- 4 h) — u strongly in L'((0,7’) x Q). Noting that the support of ¢
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with respect to the ¢ variable is a compact subset of [0,7), we further see that
0,(t 4+ Oh, x,@" (t + h, x)) — @,(t,x, u(t, x))
and
9, (2, X, ﬂh(t, X) + 0/1u,h(t+ h,x)) — ¢,(t,x,u(t, X))

strongly in L'((0,7) x 2 x (0,1)). Hence there exist subsequences of {¢,(t+ 0h,x,
i"(1+h,x))} and {p, (¢, x,a"(t,x)+0hu!(14h, x))} which converge at #""*-a.e. (1,x,0) €
(0,7) x 2 x (0,1). Generally we can prove that, when {y;} converges to ¥ ae.,
{Il¥ll,~} is uniformly bounded, and {v;} converges to v strongly in L', then {y,u}
converges to {yv} strongly in L'. Thus, passing to the subsequence, we have

(4.9) lim7 = J J u(o,(t, x,u) + ¢, (¢, x,u)u,) dxdt.
h\O 0 Q -
Now (4.5) follows from (4.7), (4.8), and (4.9).
3rd step (Proof of (4.6)). If we obtain, for #'-ae. 1,

(4.10) Vi=wv(u(t,")),

then (4.6) follows from (3.10) and Theorem 3.4. Thus we have only to show (4.10).
Proof of (4.10) is essentially the same as that of [4] (6.57). However by introducing
oriented varifolds we can make it clearer.

It follows from Lemma 3.5 1) and Theorem 3.7 1) that, for Z'-ae. ¢,

(4.11) hI/I}S(;lp,uV’h(U)Z,UV,(U)Z,UE[(U).
On the other hand (4.3) means
(4.12) lim f1,(U) = g, (U).

Thus, for each ¢ at which both (4.11) and (4.12) hold, we have u; (U)=
pg,(U). Further Theorem 3.7 1) implies

(4.13) Ky, = HE,-
It follows from Lemma 3.6 and (4.13) that

(4.14) vﬂ@ZLWQW@

for py-ae. ze U. By [4] Lemma 6.8 we have, for u; -a.e. ze U, for n(,i)-a.e. ¢ e Gy,

V(&) = vE,(2).
Thus, for uj-ae. ze U,
spt 17(;? = one point = {v'(vg(2))}.

By the definition of v we see that &(z) = v~ !(vg(z)) is the orientation of d*E, which
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agrees with vg (z). By (3.13) and (4.13) we obtain

J &) dv, :j Bz.E(2) dug, (e CO(U x Gy)).
UxGy U
Now (4.10) is verified. ]

Appendix.

In this appendix we suppose that 0Q is of C? class. This fact is used in the proof
of Lemma A.4.
The purpose of this appendix is to show the following theorem.

THEOREM A.l. A function u is a BV solution to (1.1)-(1.3) in (0,T) x Q if and only
if u satisfies 1)—iii) of Definition 1 and

iv)  for any ¢e Cl(0,T); L>(Q))NL*((0,T); BV(RQ)) with yp =0 for £ -ae.
te(0,7),

T

JT{J(u + @) — J(u)}dr > J

0 0

J w, (1, x) dxdt + J vo(x)p(0, x) dx.
Q Q

PROOF OF ‘IF’ PART. Suppose that u satisfies i)—iii) of Definition 1 and iv)’.
For each ¢ € C}([0,T) x U) we have ¢(1,x,u) e CL([0, T); L*(Q)) N L*((0, T); BV (RQ)).
Thus, since J is convex and by Theorem 2.2 differentiable to the direction ¢(f,x,u)
for each ¢, iv)’ yields

T d T
J d—J(u +ep(x,u))|,_odt = J J uo(t, x, u)), dxdt + J vo(x)@(0, x, up(x)) dx,
0 ae 0 Jo Q

O

which shows iv) of Definition 1.
Before the proof of ‘only if’ part we prepare several lemmas.

LemmA A.2. Suppose that u is a BV solution in (0,T)x Q and u/(T,-) =
ap lim, -7 u,(t,-) exists in L*(Q). Then, for any ¢ e C}([0,T] x U), it holds that

(A.1) LT{—JQ u(o,(t, x,u) + ¢, (2, x, u)u;) dx + %J(u + ep(t, x, ”))s_o} dt

:j 00(x)p(0, x, uo<x)>dx—j u(T,x)o(T, x,u(T, x)) d,
Q Q

where u(T,-) = s-lim, -7 u(t,) in L*(Q).

Proor. Let # be a one dimensional mollifier, that is, # € C;°(R), spty = [-1,1],
0<n<l,and [* n()dt=1. For ¢ >0 we put p,(1) =1— Y,(t — T + 20), where
t
Y,(t) = o 'n(a's) ds.

—00

Then p,(1)p(t,x, y) belongs to CL([0,T) x U) and p,(0) =1 when ¢ < T/3. Thus iv)



758 K. KIKUCHI

of Definition 1 yields

(A2) jo { —jg (P (1)1, 1) + POVt 0) + o (D, (1, w)tr) dix

o ey (0ptt, v 0) g f = [ en(3)0(0.300(0) .
& Q

Since p, (1) — 1 as ¢ — 0 on [0,7), we obtain by Theorem 2.2 that, as ¢ — 0,
T d Td
J —J(u+ep ()t x,u))|,_o dt—>J —J(u+ep(t, x,u))|,_o dt.
0 de 0 de

The first and third terms of the left hand side of (A.2) also converge to corresponding
terms of iv) of Definition 1.
Now we mention about the second term. Note that

ph(t) = —(Yo(t = T +20) = —a 'n(a ' (t = T + 20)).
We put

f(0) = { J u (8, x)p(t, x,u(t, x)) dx for te (0,7
= Q
0 otherwise.

Then the second term of the left hand side of (A.2) coincides with ["a~'y(a="(1—
T +20))f(t)dt. Since f e L*(0,T) by i) of Definition 1, we have, for any J > 0,

J o e (t =T +20))f(2) dt—f(T)‘

0

jm o e (S s+ T - 26) — £(T)) ds

-0

<o| o e s+ 2 lon | o o ds

— 0 A()‘,,,

where A5, = {t;|f(t+T—20)—f(T)| =0} N{t;—0 <t < o}. Since 0 <7 <1, we have

(A.3) JT o n(o~ Mt = T + 20))£ (1) dt — f(T)’ <o4a P (4y,).

0

Note that

(A.4) LYNAs0) = L {1f() = (T =26} {t; T 36 <t < T —a}).

By the definition of f there exists a constant C = C(Q, ¢, |[u/|l;«(o,7),12(0)) Such that
£ (6) = S(T) < Cllua(t,-) = u( T )l 2 ) + [ty ) = u(T, )| p2())-

Hence we obtain
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(A.5) {61/() = A(T) 2 6} = {t; Jur(t,) = un( T, )|y = (2€) 76}
U{tllu(t, ) = (T, )| o) = (2€) 70}
Since u(T,-) =s-lim, -7 u(t,-) in L*(Q), we have, if ¢ is sufficiently small,
Lt llu(t, ) = w(T, )l o) = 2C)'}N{T =30 <t < T —0}) =0.
Further, since u,(7T,-) = ap lim, -7 u,(¢,-), we have
lii%a*lyl({z; et ) = (T, ) 2y = 2C)'}N{tT =30 <t < T —g}) =0.

Now by (A.4) and (A.5) we obtain lim, .o 6~' #!(4s5,,) =0. Thus, since J is arbitrary,
(A.3) yields

lim JT o n(c ™ (t = T +20))f(¢)dt = £(T).

a—0 0
This shows the conclusion. |

LemMmA A.3.  If u satisfies the same conditions as in Lemma A.2, then (A.1) holds for
each function ¢ having the form ¢(t,x,y) = ¢(t,x) + ay, where ¢ € C}([0,T] x Q) and a
is a real constant.

Proor. Note that the function ¢ as in the statement of lemma satisfies the
assumption of Theorem 2.2. Then by Theorem 2.2 it is sufficient to show that

(A.6) JOT { —JQ u (@, (1, x,u) + @, (¢, x, u)u,) dx

[ @ g Pl aor |
o°E,

:j 00 (x)9(0, x, uo<x>>dx—J u(T,x)p(T, x,u(T, x)) d.
Q Q

Let % denote the set {p e C([0,T] x U); ¢, ¢,, V0, ¢, are all bounded, sptyp
[0,7T] x K x R, where K is a compact subsets of Q}. First we show that (A.6) holds
for each pe 4. Let { be a C* function on R such that {(r) =1 for r <0, =0 for
r>1, and 0<{(r)<1 for re R. Now we put (z(r) ={(r—R) (R>0). Suppose
that ¢ € 4. Then, since (x(|y))e(t,x,y) € CL([0,T] x U) and u is a BV solution, we
have by Lemma A.2

T
(A7) J { _J ut(CR(WD(pt(l? X, u) + é;{(|u|)¢(l7 X, u)ut + CR(|U|)(P},(Z, X, u)“t) dx
0 Q
+ j =GRV - v WE + Vi 2 (Do + <R<|y|>wy>1d%"} dt
- JQ o) (10 () (0, x, o (x)) dlx

_ jg (T, X)Cx(u(T, X)) )p(T, x, u(T, x)) dx.
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Since u, € L*((0,T) x Q) and ¢, ¢,, V.p, and ¢, are bounded and #"(0"E,) < oo, the
both side of (A.7) converges to the both side of (A.6), respectively, as R — oo.
Next we prove (A.6) for a function ¢(t,x,y) = ¢(t,x) + ay, where ¢ € C} ([0, T] x
Q) and a is a real constant. We define a nondecreasing function 7, € C'(R) (L > 0)
as qp(y) =y for 0<y<L, =sin(y—L)+L for L<y<L+n/2, =L+1 for y>

L+mr/2, and 5, (y) = —ny(—y) for y <0. Putting ¢, (s,x,y) = ¢(t,x) + an,(y), we
have ¢; € ¢ and thus

ay { =], w000 + (o), 1) s

0

* J = (Vagr - vpVE + Vg (02),) M"} i

- J 00(x)p (0, x, uo<x>>dx—J ul(T,x)oy (T, x,u(T, x)) d.
Q Q

By the definition of ¢, we have Vip, = Vo, (¢.), = ¢,, and (¢.), = (1), =1 for |y| <
L, =0 for |[y[| > L+mn/2. Thus, since (¢.), /1 as L — oo, (A.6) holds for this ¢ by
the dominated convergence theorem. O

For 6 > 0 we set
(A9) Q5 = {x € Q;dist(x, Q) > d}.
Let yi and y; denote the trace operators in BV (Q;) and BV(R"\Q;), respectively.

LEmMMA A.4.  There exists a constant oy = do(Q2) such that, if 5 < do, then Qs is of
C' class. In addition there exists a constant C = C(Q) such that

(A.10) 175 vll 1oy < CUIl 215, + 1PUI(R\Rs) + [ly0l 1 20))
for any ve BV (Q) and any 6 with 0 < < dy.

PrROOF. Ist step. Given x = (xi,...,x,), let us write x = (x/,x,) for x’ = (x1,...,
Xn—1) € R"'.x, e R. Similar notations are used for other points. Given x € R" and r,
h >0, we define the open cylinder

C(xvrvh) = {yERn;|y/_x/| <r7|yn_xn| <h}
and the (n — 1)-dimensional open ball
B(x',r) = {y' e R" |y = x| <1}.

Since 0Q is of C? class, for each point x € 0Q there exist r, # > 0 and a C? function f
such that, upon rotating and relabeling the coordinate axis if necessary,

(A.11) QNC(x,2r,h) ={yeR" [y = x| <2r,xy —h <y, < f()')}
and
, h
(A.12) max |f(y)— x| < =.
[x'=y'|<r 2
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Suppose that

(A.13) o< min{g,r}.
For y e 02 we define a point z by
z =y — 0iiy,

where 7, is the outer unit normal to 0Q at y. If yedQN C(x,2r,h), then

. V() 1
VI WronP 1+ wron?

Now we set z/ =1(y’). Itis a C' map from B(x’,2r) into R""! and given by
Vi)
L+ Vr()?

Since f is of C? class, det(dt/dy’) #0 if J is sufficiently small. Thus, noting that
t(B(x',2r)) o B(x',2r —6), we find by (A.13) that the inverse ! can be defined at
least for z' € B(x',r). It is also a C' map, and we define another C! function f; :
B(x',r) = R by

() ="+

B 0
VI+ VA )P

It is clear by (A.12) and (A.13) that x, — h < f5(z'). For z' € B(x',r), putting y’' =
v !(z') and y = (), f(»')), we have z = (¢, f;(z')) = y — 0li,. Moreover we can show
that there exists a positive number 0% < min{A/2,r} which depends on f such that, if
0<%,

(A.14) VACOENICRED)

(A.15) QsNC(x,r,h)={yeR" |y —x'|<rx,—h<y,<f5()}

Note that f is determined by x and 02. Hence 6" is determined by x and 0.
2nd step. For each x e 0dQ there exist ry, h, such that (A.11) holds and J; as
above. Since 0Q is compact, there are finitely many points {xj}j’i | © 0Q such that

N
0Q < |J Clx,r; =0/, hy),
=1

where r; =ry, hj = hy, and 6] =9,.
Now we put

oy = min{éj*;j: I,...,N}.

Let 6 be a number with 0 < <dy. For each x e 0Qs there exists a point y € Q2
such that dist(x, y) =J. Then y belongs to one of cylinders {C(x;,7; —9J/,/;)} and
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hence x, which coincides with y — dii,, belongs to C(x;,r;,h;). Since (A.15) holds for
each x;, we see that 0Qs is of C I class.

3rd step (Proof of (A.10)). Let v be a function in BV(£2). By the use of a par-
tition of unity subordinate to the {C(x;,r;,h;)} we may suppose that sptv is contained
in one of these cylinders. Omitting the index j, we write C(x,r,h) for this cylinder. By
(A.11) and (A.15), for each ¢ with 0 <J < do,

(@\Q) N C(x,r,h) = {y e R™ |y = x| <r f5(3) <y, < f(V)}-
For the time we assume that ve BV (Q)NC*(Q2\Q;). When ¢ is a sufficiently small
positive number, then

FON=e gy

o £ () — &) — o, fy(") +é) = j (',5) ds.

A
f5(")+e 0Xy

It is easy to prove that o(y’,f(y')—¢) — (¥, f(¥")) and v(y',f5(»") +¢) —
v 0(V's f5(»)) in LY'(B(x',r)) (refer to the 2nd step of the proof of [2] Theorem 1 of
Section 5.3). Integrating over B(x',r) and letting ¢ — 0, we have

(»',5)

o , , FON op ,
lys v(»' s dy' < dy'ds +
B(x',r) B(x'.r) Jfs(3")

! ! !
o, ) (¥, f(¥")] dy".

B(x',r

Now note that

el dnt = |
B(x',

Since fis of C? class, we find by (A.14) that there exists a constant C which depends

only on x and @ such that \/1+|Vf;(»')|> < C. Then

| e GO T+ P 0NE
025N C(x,r,h) r)

pretlanrt < c |

B(x',r

| e, Sy
0QsNC(x,r,h) )

JAGD)
(]
B(x',r) Jf5(»")

0

c(j _ o)l + |
(2\Q25)NC(x,r,h) B(x’

< C<Dv|((!2\f_25) NC(x,r,h)) + J

ov

IA

(v'.5)] dsdy’ +j va(yﬁf(y’))ldy’)

B(x',r)

0x,

IA

| o(y', £ T+ IVf(y’)Izdy’>

)

va(y)ldff””)
0QNC(x,r,h)
Thus (A.10) holds for ve BV(Q2)N C*(Q\Q;).

Now we assume only v e BV (). For each fixed 0 with 0 <J < dy there exists a
sequence {v;} = BV(Q)N C*(2\Qs) such that v — v in L'(Q\Qys) and |Du;|(Q\Qs) —
|Dv|(2\Q5) ([5] Theorem 1.17 or [2] Theorem 2 of Section 5.2). Furthermore we have
yuk — yv in L'(0Q) and yyvp — y5v in L'(09;) (see the proof of [2] Theorem 1 of Sec-
tion 5.3). Since (A.10) holds for each vk, our passing to the limit as k — oo yields the
conclusion. ]
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LemmA A.5. Let T be a positive number and v be a function on (0,T) x Q.
Suppose that ve L*((0,T); L*(2) N BV (RQ)), v, e L*((0,T) x Q), and yv = 0 for L'-a.e.
te(0,T). Then there exists a sequence {v;};, = Ci ([0, T) x Q) such that, as j — oo,
v — v, (v;), = vy strongly in L*((0,T) x Q), and J(v;) — J(v) strongly in L'(0,T).

PrOOF. Ist step. For the time we suppose that the support of v is contained in a
compact subset of [0, 7] x Q.

Let 7 and #™ be positive symmetric mollifiers ([5] 1.14) with respect to ¢ and x
variables, respectively, and put 5(t,x) = 7()y¥)(x). Now we define

Vg = 1, * V.

Then v, € C}([0,T] x Q) if o is sufficiently small. Further it holds that, as ¢ — 0,
v, — v and (v,), — v, strongly in L*((0,7) x Q).

Let (go,g) € CL(2; R™!) be a vector valued function with g3 + |g|* < 1. Since
v(t,-) € BV(Q) for #'-ae. t, we have

o0

J (go—i—vadivg)dx:J [go—kng*vdivg]dxzj ng)(t—s)J [g0 + 1) x vdiv g] dxds
Q Q Q

=J %Nr—wj[%+mdwww*gﬂdmk3n9*Jw»
— o0 Q

This means
(A.16) J(v5) < 7% % J(v)

for te (0, T). On the other hand, since v, — v strongly in L*(Q) for £'-ae. t€(0,T),
we have liminf, o J(v,) = J(v). By Fatou’s lemma

T T T
(A.17) lim ian J(vg) dt = J lim i(glfJ(vg) dt > J J(v) dt.
=0 Jo 0 o 0

It follows from (A.16) and (A.17) that

T T
lim supJ |[J(v) — J(vs)| dt < lim supJ 17 % J(v) — J(v,)| dt
0

o—0 a—0 0

T
_ lim supJ (D % J(6) — I (v,)) di
a—0 0

T T
= J J(v)dt — limiglfj J(vy) dt < 0.
0 =0 Jo
Thus J(v,) — J(v) strongly in L'(0,T) as ¢ — 0.
2nd step. Now we do not assume the compactness of the support of v. Let Q5 be
as in (A.9) and put ws = ysv, where ys denotes the characteristic function of Q5. It is
clear that, as 6 — 0, ws — v and (ws), — v, strongly in L*((0,T) x Q). Since

Vit Do+ 27@\@s) + [ el e
Qs

Jows) = |

Qs
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and

22\D,) < JQ\Q V1+ Do < 27(@\8,) + | Del(@\B,),
we have
(A.18) ~1Del(@\@s) + | il do !~ D0y

<J0w5) = J(0) < [ [pfeldoen ! Del(00s)

02

It is easy to find that [Dv|(0Q;) = [, |75 v(x) — y5v(x)| d#"'. Thus, since yo =0 on
0Q, it follows from Lemma A.4 that, for any 6 <y and for Z'-ae. re(0,T),

U ol ' — | Do) (6925)
Q5

< |l a ! < Cllolg, + D2I(@\35)
o

0

where Jdp and C are as in the statement of Lemma A.4. This and (A.18) imply

T T
Jo |J(ws) — J(v)] dt < C||v||L|((0_ Tyx(@\a) + (C+1) Jo | Dv|(2\Qs) dt.
Hence we obtain J(w;s) — J(v) strongly in L'(0,T) as § — 0.

3rd step. Since sptws is a compact subset of [0, 7] x €, we have by the result of
the Ist step that, as o — 0, 5, * ws — ws, (1, * ws), — (ws), strongly in L*((0,T) x Q),
and J(y, * ws) — J(ws) strongly in L'(0,7). Then, combining the result of the 2nd
step, we can select a subsequence {g;,0;} by the use of the diagonal argument such
that v; =7, = wy, satisfies, as j — o0, v; — v, (v;), — v, strongly in L?((0,T) x Q), and
J(v;) — J(v) strongly in L'(0,7). O

PROOF OF ‘ONLY IF’ PART OF THEOREM A.l. Suppose that ue L*((0,T); L*(2)N
BV(Q)) is a BV solution to (1.1)-(1.3) in (0,7) x Q. Let ¢e CL([0,T); L*(Q))N
L*((0,T); BV(R)) with y¢ = 0 for #'-a.e. 1€ (0,T). Put Ty = sup{z; [|4(z, M2 # 0}
In the inequality of iv)’, T can be replaced with any of [T, T]. We choose T' € [T, T|
such that the L?(Q) valued function u, : (0, T) — L?(£2) is approximately continuous at
T’. Such points exist £ almost everywhere in [0, 7]. Then, u satisfies all assumptions
of Lemmas A.2 and A.3 in (0,7’) x Q.

Since T’ and u + ¢ satisfy the all assumptions for 7 and v in Lemma A.5, there is a
sequence {v;} in CL([0, T'] x Q) such that, as j — o0, v; — u + ¢, (v;), — (u+ ¢), strongly
in L*((0,7T') x ), and J(v;) — J(u+ ¢) strongly in L'(0,7’). Now we put
(A.19) 0;(t,x,¥) = =y +v;(4,x).

Then g¢; satisfies the assumption of Lemma A.3 in [0,7'] x 2 x R. Thus we have

.
[ =] mnteonan + ), x5 st s e

- J v0(x)9;(0, X, up(x)) dx — J u(T", x)p,(T", x,u(T', x)) dx.
Q Q
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On the other hand, since J is convex,
d
J(Ll + Q,’(E X, M)) - J(u) > %J(u + E(ﬂj(l, X, u))|s:0'

Hence
T/

(A.20) JO (T (u+ 9;(t,%,u)) — T ()} di

T
= Jo JQ u((9;), (1, X, ) + (ﬁoj)y(f, X, u)uy) dxdt

+ L) vo(x)@;(0, x, uo(x)) dx — JQ u(T', x)p,(T', x,u(T', x)) dx.

By (A.19) and Lemma A.5 we have, as j — oo,

T T’

(o)) dt — J J(u+ §)dr.

(A.21) JT’J(ij(t,x, u))df:J 0

0 0

Lemma A.5 also implies
(A.22) (0), (2, x,u) + (7). (2, 3, ) (= [9;(2, x,0)],)
=~ + (1)), =~ + U+ ¢), = ¢, in L*((0,T') x Q).

Further, integrating over [0,¢] for each ¢€[0,7’], we have

J[[(pj(s, x,u)], ds — J; ¢,(s,x)ds = (1, x) — ¢(0,x) in L*(Q),

0

while

JO[%-(S, x,u)], ds = i1, x,u(t, X)) — 9;(0, x,u0(x)) = —u(t, x) 4+ v;(, x) = 9;(0, x, up(x)).
Since v; — u+¢ in L*((0,7') x Q), we have
(A.23) goj(O,x7 up(x)) — ¢(0,x) in LZ(Q).

In the same way we see that

(A.24) 9T, x,u(T',x)) = ¢(T',x) =0 in L*(Q).
By (A.20), (A.21), (A.22), (A.23), and (A.24) we obtain iv)’. O
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