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[1] Peridotite xenoliths derived from the low velocity zone beneath the Avacha 13 

frontal volcano, Kamchatka, preserve a-axis slip fabrics, comparable with those in 14 

xenoliths from the back-arc region of the NE Japan. Although low-velocity zones 15 

are commonly attributed to zones of partially melted mantle, migration of the melt 16 

does not erase the existing olivine fabrics and related seismic anisotropies. These 17 

anisotropies may counteract the anisotropies associated with c-axis slip fabrics, if 18 

they exist, along the slab or in the high-pressure zone.  19 
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1. Introduction 24 

[2] Previous studies of various subduction zones have imaged an inclined P- and 25 

S-wave low-velocity zone with a velocity reduction of 5–10%, oriented sub-parallel to 26 

the down-dip direction of the slab in the mantle wedge [e.g., Northeast Japan: Zhao et al., 27 

1990; Kamchatka: Gorbatov et al., 1999; Tonga: Conder and Wiens, 2007]. The 28 

low-velocity zone is commonly attributed to a region of partially melted mantle [Kushiro, 29 

1987], representing a major source of magma for the volcanic chain that forms along the 30 

arc (i.e., the volcanic front). Therefore, the nature of the low-velocity zone represents a 31 
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key to understanding the formation of the island-arc above the mantle wedge.  32 

[3] On shear-wave polarization anisotropy in the mantle wedge, whereas the 33 

orientation of the fast direction perpendicular to the trench axis on the back-arc region is 34 

likely to reflect a-axis slip olivine fabrics (A-type) in mantle [e.g., Nicolas and 35 

Christensen, 1987), the orientation of the fast direction commonly parallel to the trench 36 

axis on the fore-arc region might reflect a number of possible mechanisms: deformation 37 

of olivine via c-axis slip [B-type fabric; Jung and Karato, 2001, Karato, 2003], 38 

trench-parallel flow [e.g., Smith et al., 2001; Peyton et al., 2001], crack induced 39 

anisotropy in the crust and/or slab [Currie et al., 2001], or highly anisotropic foliated 40 

antigorite serpentine [Kneller and van Keken, 2007]. Here, we present that peridotite 41 

xenoliths derived from the Avacha frontal volcano, Kamchatka, preserve a-axis slip 42 

fabrics, comparable with fabrics in xenoliths from the back-arc region. Although 43 

low-velocity zones are commonly attributed to zones of partially melted mantle [Kushiro, 44 

1987], we infer that migration of the melt does not erase the existing olivine fabric and 45 

related seismic anisotropy. 46 

 47 

2. Geological settings 48 

[4] The Avacha (=Avachinsky) volcano is part of the frontal chain that forms the 49 

volcanic front (VF) of the Kamchatka arc, and is famous for producing peridotite 50 

xenoliths derived from the mantle beneath the volcanic front [e.g., Kepezhinskas et al., 51 

1995; Arai et al., 2003; Ishimaru et al., 2007]. The volcano is located in the southern part 52 

of the Kamchatka Peninsula, which is a relatively mature arc (Figure 1). The depth to the 53 

subducted slab in this region is about 120 km [Gorbatov et al., 1997] and the depth to the 54 

Moho is about 37 km [Levin et al., 2002]. The Pacific Plate at this site is subducting 55 

relatively rapidly [70–90 mm/year; Minster et al., 1974] beneath the southern part of the 56 

Kamchatka Peninsula along the Kuril–Kamchatka trench. In southern Kamchatka, the dip 57 

of the subducting plate decreases from 55° to 35° from south to north [Gorvatov et al., 58 

1997], and there occur three sub-parallel volcanic chains at distances from the trench of 59 

200, 320, and 400 km  [Figure 1; Tatsumi et al., 1994]. 60 

[5] Avacha is a stratovolcano that rises ~2741 m above sea level. Volcanism began 61 

in the late Pleistocene and is divided into two stages (IAv and IIAv) based on the chemical 62 

composition of ejecta [Braitseva et al., 1998]. IAv is characterized by andesitic 63 

pyroclastic flows and tephra over the period 7250 to 3700 years BP, whereas IIAv is 64 
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characterized by basaltic andesite lavas extruded from 3500 years BP to the present 65 

[Braitseva et al., 1998]. All the effusive rocks are calc-alkaline in chemistry, and some 66 

contain megacrystals of hornblende [Braitseva et al., 1998]. 67 

 68 

3. Samples and Methods 69 

[6] Abundant peridotite xenoliths occur as ejecta (occasionally coated by thin lava 70 

film) enclosed in some of the andesitic pyroclastic deposits of IAv [Braitseva et al., 1998]. 71 

The xenoliths are subangular to angular in shape and predominantly 5–6 cm (up to 40 cm) 72 

across. The grain size of peridotite xenoliths is variable, with some being 73 

very-fine-grained, containing olivine crystals less than 1 mm in size [down to 0.1 mm; 74 

Arai et al., 2003]. Coarse-grained peridotite xenoliths containing olivine crystals of 1–2 75 

mm in size (maximum size, 10 mm) are the main focus of this study, since they are a good 76 

representation of the seismic properties of the mantle wedge as described below. We 77 

analyzed 16 peridotite xenoliths to evaluate the effect of rock seismic properties on 78 

seismic-wave properties, focusing on three common minerals: olivine, orthopyroxene, 79 

and clinopyroxene, of which olivine is the most common mineral in the upper mantle. 80 

[7] Most of the xenoliths from Avacha are spinel harzburgites, with subordinate 81 

pyroxenites (clinopyroxenite and orthopyroxenite), dunite, and hornblende-gabbros; the 82 

host rock is basaltic andesite. Based on petrological data, the peridotite xenoliths are 83 

thought to have originated from depths shallower than 60 km [Arai et al., 2003]. Given 84 

that the depth to the Moho in this area is about 37 km, the peridotite xenoliths are likely to 85 

have originated in the uppermost 20 km of the mantle beneath Avacha volcano. The 86 

xenoliths record temperatures of 800–1050 °C, as indicated by Ca contents in 87 

orthopyroxene [Brey and Köhler, 1990]. These temperatures could reflect the 88 

temperature gradient of the uppermost mantle beneath the volcanic front [Ishimaru et al., 89 

2007]; consequently, we infer that the peridotite xenoliths were derived from the 90 

uppermost part of the low-velocity zone in the mantle. 91 

[8] The peridotite xenoliths contain a pervasive main foliation and a lineation 92 

defined by aligned spinel crystals. We analyzed microstructures from thin sections cut 93 

perpendicular to the foliation and parallel to the lineation (i.e., XZ sections). The 94 

peridotite xenoliths have a coarse-grained granular texture and contain elongate olivine 95 

grains. All of the peridotite xenoliths share a common texture, indicating an origin related 96 

to a pervasive event in the uppermost mantle beneath the volcanic front. Olivine crystals 97 
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have a shape-preferred orientation oblique to the main foliation by 0–30°. Such an 98 

oblique foliation is typical of shear deformation and has been reported from rocks of the 99 

uppermost mantle of the back-arc region (Ichinomegata peridotite xenoliths, Northeast 100 

Japan) [Michibayashi et al., 2006]. Hence, from the 16 xenoliths data with each one 101 

containing more than 200 measurements, we calculated the average sample (4325 102 

measurements, the sum of all the measurements with respect to the same sense of shear 103 

based on each oblique foliation), giving the same weight to each measurement, 104 

independently of the number of measurements in each xenolith (Figure 2A). 105 

[9] We calculated the seismic properties of the peridotite xenoliths based on 106 

single-crystal elastic constants, crystal density, the average crystal-preferred orientations 107 

(CPOs) of olivine, enstatite, and diopsite, and the average modal composition of these 108 

three minerals (Figure 2A). The elastic constants used in our calculations are those of 109 

Abramson et al. [1997] for olivine, Chai et al. [1997] for enstatite, and Collins and Brown 110 

[1998] for diopside; we also used the Voigt–Reuss–Hill averaging scheme [Mainprice et 111 

al., 2000].  112 

 113 

4. Results 114 

[10] The P-wave velocity is fastest (8.61 km/s) subparallel to the lineation and is 115 

closely related to the CPO maximum of olivine [100] (Figure 2A). The P-wave velocity is 116 

slow (8.12 km/s) for waves propagating in a plane normal to the [100] maximum, 117 

resulting in an axial symmetry with the [100] maximum as the symmetry axis. 118 

Polarization anisotropies have maxima girdles on each side of a plane normal to the [100] 119 

maximum, whereas the minimum birefringence (0.04%) occurs for propagation 120 

directions close to the [100] maximum, subparallel to the lineation (Figure 2A). The 121 

orientation of the polarization plane of the fastest S-wave marks the orientation of the 122 

great circle that contains the maximum concentration of [100] (Figure 2A). 123 

 124 

5. Discussion 125 

[11] Although the original orientations of the peridotite xenoliths were lost during 126 

their volcanic transport to the surface, we are able to derive quantitative constraints on the 127 

intrinsic anisotropy within the lithospheric mantle. The thickness (T) of an anisotropic 128 

layer is given by T = (100dt<Vs>)/AVs, where dt is the delay time of S-waves, <Vs> is 129 

the average velocity of the fast and slow velocities, and AVs is the anisotropy for a 130 
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specific propagation direction expressed as a percentage [e.g., Pera et al., 2004]. 131 

Accordingly, we estimated an anisotropic layer of 13–38 km thickness to explain the 132 

observed local-S fast-polarization axes with splitting delays of 0.1–0.3 s [at PET in Figure 133 

1; Peyton et al., 2001; Levin et al., 2004], indicating that the intrinsic rock seismic 134 

anisotropy is sufficient to generate the observed delay time.  135 

[12] Levin et al. [2004] showed that the orientation of the local-S fast-polarization is 136 

normal to the trench axis in the vicinity of the Avacha volcano, which is consistent with 137 

the observed fabrics of the peridotite xenoliths defined by a-axis slip olivine CPO 138 

patterns (Figure 2). The profile A of Gorbatov et al. [1999] clearly shows a Vp slow (-7 to 139 

-3 %) anomaly below the volcanic front at PET from surface down to 90 km depth. Such 140 

reduction of Vp % can be for instance explained by the occurrence of 10 to 5 % spherical 141 

melt pocket [Mainprice, 1997]. Consequently, the seismic P-wave observations of 142 

Gorbatov et al. [1999] combined with S-wave results of Levin et al. [2004] suggest that 143 

melt is present to explain the low P-wave speed, while a-axis slip olivine fabric is present 144 

to explain the S-wave anisotropy, at least locally at PET. It is additionally noted that 145 

a-axis slip olivine fabrics within peridotite xenoliths has been also tentatively reported 146 

from Iraya frontal volcano, Philippines [Arai et al., 2004]. 147 

[13] The obtained rock seismic properties are comparable to those reported from the 148 

back-arc region of the uppermost mantle in the Northeast Japan arc [Figure 2B; 149 

Michibayashi et al., 2006]. The Northeast Japan arc is the southwestward extension of the 150 

Kamchatka arc, where the Pacific Plate subducts beneath the North American Plate; 151 

accordingly, it is possible that the structure of the mantle wedge is identical in the two 152 

arcs (Figure 3). This is also consistent with a seismic study in the Northeast Japan, where 153 

the fast propagation axis of P-waves is in mostly E-W direction in the mantle wedge 154 

[Ishise and Oda, 2005]. Such a scenario would indicate that although low-velocity zones 155 

are commonly attributed to zones of partially melted mantle, the migration of melt does 156 

not erase the existing CPO and related seismic anisotropy, which are similar to those 157 

found in back-arc peridotites (Figure 2).  158 

[14] In contrast, the orientation of the local-S fast polarization commonly changes 159 

from the trench-normal to the trench-parallel at around the volcanic front [e.g., the 160 

northeast Japan; Nakajima and Hasegawa, 2004]. Therefore, the observed anisotropy 161 

may result from other factors such as c-axis slip olivine fabrics (B-type) along the slab 162 

[Jung and Karato, 2001; Katayama and Karato, 2006] and/or in the high-pressure zone 163 
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[Jung et al., 2009], the alignment of melt lenses in the low-velocity zone, or cracks with 164 

fluid infill. Recently, Katayama [2009] argued that the seismic anisotropy induced by 165 

olivine fabrics could result from a thin layer along the slab and overriding plate. Whereas 166 

the olivine fabrics may be B-type along the slab as documented by Mizukami et al. [2004], 167 

Skemer et al. [2006] and Tasaka et al. [2008], our results argue that the seismic properties 168 

induced by B-type fabrics along the slab are counteracted by those induced by a-axis slip 169 

olivine fabrics in the uppermost mantle of the overriding plate beneath the volcanic front 170 

(Figure 3), as the two slip systems produce similar degrees of rock seismic anisotropy 171 

[compare Figure 2 with Tasaka et al., 2008]. Therefore, other factors such as melt 172 

alignment in the low-velocity zone or cracks with fluid infill might represent the more 173 

likely explanation of the observed seismic anisotropy in the vicinity of the volcanic front. 174 

 175 
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 283 

Figure 1. Location of the Avacha volcano. Map of the Kamchatka region shows 284 

the contours of the Wadati-Benioff zone (adapted from Gorbatov et al., 1997), 285 

and the location of the three volcanic chains from Tatsumi et al. (1994). PET is 286 

Petropavlovsk-Kamchatsky, the capital city of Kamchatka. VF: volcanic front. 287 

 288 

Figure 2. Olivine crystallographic preferred orientations (CPOs) and seismic 289 

properties computed from single crystal elastic constants, crystal density, and the 290 

average CPOs of olivine, enstatite, and diopsite. Contours are multiples of 291 

uniform density. Foliation is horizontal (XY plane; solid line), and the lineation (X) 292 

is oriented E-W within the plane of the foliation. Vp: 3D distribution of the P-wave 293 

velocity. Contours are multiples of the uniform density. Anisotropy is 294 

(Vpmax−Vpmin)/Vpmean. AVs: 3D distribution of the polarization anisotropy of 295 

S-waves owing to S-wave splitting. Vs1 plane: polarization plane of the fast split 296 

S-wave (S1) as a function of the orientation of the incoming wave relative to the 297 

structural frame (X, Y, Z) of the sample. Each small segment on the figure 298 

represents the trace of the polarization plane on the point at which S1 penetrates 299 

the hemisphere. Color shading for AVs is also shown on the figure. (A) Olivine 300 

CPOs and seismic properties of Avacha peridotite xenoliths derived from the 301 

frontal volcano of the Kamchatka arc. See Fig. 1. (B) Seismic properties of 302 

Ichinomegata peridotite xenoliths derived from the back-arc region of the 303 

Northeast Japan arc. 304 

 305 

Figure 3. Schematic cross section of the mantle wedge in the West Pacific margin. 306 

The rock seismic anisotropies are similar along the uppermost mantle due to 307 

a-axis slip fabrics (green color), whereas the fast-direction of S-wave anisotropy 308 

may change at the volcanic front. 309 
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