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Abstract1

Mathematical models are proposed to simulate migrations of prey and predators2

between patches. In the absence of predators, it is shown that the adaptation of3

prey leads to an ideal spatial distribution in the sense that the maximal capacity4

of each patch is achieved. With the introduction of co-adaptation of predators,5

it is proved that both prey and predators achieve ideal spatial distributions when6

the adaptations are weak. Further, it is shown that the adaptation of prey and7

predators increases the survival probability of predators from the extinction in both8

patches to the persistence in one patch. It is also demonstrated that there exists9

a pattern that prey and predators cooperate well through adaptations such that10

predators are permanent in every patch in the case that predators become extinct11

in each patch in the absence of adaptations. For strong adaptations, it is proved12

that the model admits periodic cycles and multiple stability transitions.13
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1 Introduction15

Population dispersal is one of the most important subjects in ecology. It is well16

recognized that the spatial distribution of populations and population dynamics17

are much affected by spatial heterogeneity and population mobility (Shigesada and18

Kawasaki, 1997; Namba, Umemoto, and Minami, 1999; Diekmann, Law, and Meta,19

2000; Murray, 2003; Arino and van den Driessche, 2006; Takeuchi, Iwasa, and Sato,20

2007; Lou, 2008). For fragmented landscapes, which are common because popula-21

tions of most species occupy mosaic habitats and because of rapid destruction of22

natural habitats (Watkinson and Sutherland, 1995; Hanski, 1998), patch models23

are ideal tools to mimic population dynamics. Within each patch, individuals in24

each population are assumed to be identical and can migrate to other patches.25

Levin (1974) proposed the two-species competition and prey-predator models with26

population dispersal among patches. Lu and Takeuchi (1993) found that popula-27

tion dispersals of single species among patches enhance the stability of populations.28

For interactions of predators and prey, Takeuchi (1986) and Kuang and Takeuchi29

(1994) found that stabilizing and destabilizing effects could be induced by prey30

dispersal. More recently, Briggs and Hoopes (2004) identify three mechanisms31

whereby limited dispersal of hosts and parasitoids combined with other features,32

such as spatial and temporal heterogeneity, can promote persistence and stability33

of populations.34

The common points for most of papers in the studies of interactions of prey and35

predators with patchy structures are the assumptions of density independent dis-36

persal (constant traits of species) or random mobility (spatial flows of populations37

move towards the patch with lower density and are proportional to their density38

differences between patches). This means that population migration rates are not39

influenced by biotic conditions. However, many observations indicate that popula-40
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tion dispersal rates may be regulated by population densities and habitat qualities.41

Indeed, the density-dependent dispersal rates of populations were experimentally42

observed in mites (Bernstein, 1984), insects (Fonseca and Hart, 1996) and verte-43

brates (French and Travis, 2001; Matthysen, 2005). More recently, by using aquatic44

experimental microcosms under controlled conditions, Hauzy et al. (2007) observed45

that the dispersal rate of prey is influenced by its own density and predator’s den-46

sity, and the dispersal rate of predators is affected by prey’s density. As a matter47

of fact, prey migrations may be accelerated by poor reproduction conditions, high48

predation risks in local habitat, or because of attraction from better reproductions49

or less predation pressure at other patches, and predators may change behaviors on50

the basis of prey abundance and demographic advantages (Abrams, 2007; Abrams51

et al., 2007; Cressman and Krivan, 2006; DeAngelis et al., 2006; Hastings, 1983;52

Hofbauer and Sigmund, 1998; Kisdi and Liu, 2006; Persson and de Roos, 2003).53

To understand the effects of density-dependent dispersal of populations, Chior-54

ino et al. (1999); Mchich et al. (2007) and Abdllaoui et al. (2007) considered55

predator-prey models in a two-patch environment, where prey leave a patch at56

a migration rate proportional to the local predator density and predators leave a57

patch at a migration rate inversely proportional to local prey population density.58

This means that prey’s emigration is determined by predation pressure and preda-59

tor’s migration is mainly affected by prey’s abundance. Based upon the assumption60

that the time scale of population migrations between patches is much faster than61

that of prey growth, predator mortality and predator-prey interactions, they find62

that for a large class of density-dependent migration rules for predators and prey63

there exists a unique and stable equilibrium for migration. Moreover, under some64

particular conditions, the density dependence of migrations can generate a limit65

cycle. de Roos et al. (2002) and Persson and de Roos (2003) examine flexible66

behaviors in size-structured populations by assuming that the movement rate out67
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of a patch is purely a function of fitness of individuals within that patch. Note68

that individuals may assess benefits and costs of migrations by learning to decide69

whether to leave current patch or not. For prey individuals, they may compare the70

difference of predation pressure between the home patch and a destination patch.71

For predator individuals, they could compute the difference of food richness of the72

two patches. Furthermore, the risk of higher mortality of the destination habitat73

should also be considered. To explore the role of such habitat choice behaviors, let74

us consider two patches, labeled by 1 and 2, and Wi be the instantaneous per capita75

growth rate for an individual in patch i. Then the per individual dispersal rate76

from patch i to patch j is assumed (Abrams, 2000, 2003; Abrams and Matsuda,77

2004; Abrams, 2007; Abrams et al., 2007) to be given by m exp(λ(Wj−Wi)), where78

m is the basal per capita movement rate from patch i to patch j when fitness is79

equal and λ is a positive constant that represents the sensitivity of movement to a80

fitness difference. In contrast with the models that separate behavioral dynamics81

and population dynamics, the combined behavioral-population systems indicate82

that spatial cycling can stabilize population densities and qualitatively change the83

responses of population densities to environmental perturbations (Abrams, 2007).84

Note that the movement rule in previous studies is among possible choices and dif-85

ferent movement rules can cause significant quantitative differences in population86

dynamics (Abrams, 2007).87

In this paper, we hope to extend the research by introducing two dynamical88

variables to represent the adaptations of dispersal rates of prey and predators. This89

alternative approach gives an advantage that more mathematical analysis can be90

carried out. Especially, we can show that optimal states can be achieved by prey91

and predators through adaptations and the adaptations can enhance the survival92

probability of populations. Therefore, biological insights can be provided in a93

different way.94
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The organization of this paper is as follows. In the next section, we present the95

formulation of mathematical model. Section 3 shows that ideal spatial distributions96

of populations can be established through weak adaptations. In section 4, we show97

that the adaptations can increase the permanence of populations. Finally, we show98

that large adaptations induce complicated dynamical behaviors.99

2 Model formulations100

We consider two patches. Let xi be the density of prey in patch i and yi be the101

density of predators in patch i. Without population dispersal, we assume that the102

interaction of prey and predators is described by103





dxi

dt
=xigi(xi)− fi(xi)yi,

dyi

dt
=yi(kifi(xi)− di),

(2.1)

where gi is the per capita growth rate of the prey in patch i, di is the per capita104

death rate of predators in patch i, fi is the functional response of predators in105

patch i and ki is the conversion coefficient.106

In order to incorporate population movements between the two patches, we107

consider those individuals of prey or predators that have ability and desire to108

disperse in unit time, which are called movable individuals. Movable individuals109

decide their habitats after comparing costs and benefits of migrations. Let u denote110

the ratio of movable individuals in prey to current individuals in prey in unit time,111

and v denote the ratio of movable individuals in predators to current individuals112

in predators in unit time. If m1, 0 ≤ m1 ≤ 1, is the migration probability of a113

movable individual of prey from the first patch to the second patch, we assume114

that the migration probability for a movable individual of prey to migrate from the115

second patch to the first patch is complementary to the probability of a movable116
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individual of prey from the first patch to the second patch, i.e., 1−m1. Indeed, the117

migration probability m1 just means that a prey individual in the first patch has118

the desirability m1 to stay in the second patch and the desirability 1−m1 to stay in119

the first patch, after evaluating the qualities of two patches. Since we assume that120

each individual knows clearly the conditions of two patches, all members of prey121

have the same desire to stay in a fixed patch wherever they stay. Hence, a prey122

individual in the second patch has also the desirability m1 to stay in the second123

patch and the desirability 1 − m1 to stay in the first patch. As a consequence,124

1−m1 is the migration probability of a movable individual of prey from the second125

patch to the first patch. For example, if the quality of patch 2 is 2 times better126

than that of patch 1, then the probability that a prey individual has the desire127

to stay in the first patch is 1/3 and the probability to stay in the second patch is128

2/3. Hence, the migration probability from the first patch to the second patch is129

m1 = 2/3 and the migration probability from the second patch to the first patch is130

1 −m1 = 1/3. Similarly, we let n1 denote the migration probability of a movable131

predator to migrate from the first patch to the second patch and 1−n1 denote the132

probability of a movable predator to disperse from the second patch to the first133

patch. With the inclusion of population dispersal (2.1) is modified into:134





dx1

dt
=x1(g1(x1)− um1)− f1(x1)y1 + u(1−m1)x2,

dy1

dt
=y1(k1f1(x1)− d1 − vn1) + v(1− n1)y2,

dx2

dt
=x2(g2(x2)− u(1−m1))− f2(x2)y2 + um1x1,

dy2

dt
=y2(k2f2(x2)− d2 − v(1− n1)) + vn1y1.

(2.2)

To include the adaptations of migration probabilities m1 and n1 in the process

of population fluctuations, we assume that the migration process of prey and preda-

tors is so quick that their fitness is determined by the within-habitat population
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dynamics. Note that the fitness of prey in the first patch is

g1(x1)− f1(x1)y1/x1

and the fitness of prey in the second patch is

g2(x2)− f2(x2)y2/x2.

If an individual of prey in the first patch takes migration probability m1, then its135

expected fitness is136

E = m1(g2(x2)− f2(x2)y2/x2) + (1−m1)(g1(x1)− f1(x1)y1/x1), (2.3)

because its probability to stay in the second patch is m1 and the probability to137

stay in the first patch is 1 −m1. Let D denote the difference between the fitness138

to stay in the second patch and the expected fitness E:139

D =(g2(x2)− f2(x2)y2/x2)− E

=(1−m1)(g2(x2)− f2(x2)y2/x2 − (g1(x1)− f1(x1)y1/x1)).

(2.4)

Following the principle of replication dynamics (Hofbauer and Sigmund, 1998),140

which is the cornerstone of evolutionary dynamics, we suppose that the rate of141

increase of dm1

dt
/m1 is proportional to the fitness difference D to obtain142

dm1

dt
= gm1(1−m1)

{[
g2(x2)− f2(x2)y2

x2

]
−

[
g1(x1)− f1(x1)y1

x1

]}
, (2.5)

where g is the proportional constant. It is easy to see that (2.5) implies that143

0 < m1(t) < 1 for t > 0 if 0 < m1(0) < 1. Note that the expression in the first144

square brackets of (2.5) is the fitness of prey in the second patch and the expression145
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in the second square brackets of (2.5) is the fitness of prey in the first patch. It146

follows from (2.5) that the migration probability m1 of prey from the first patch147

to the second patch increases if the second patch is better than the first patch for148

prey, decreases if the first patch is better than the second patch for prey, and keeps149

constant if the two patches have the same quality.150

Similarly, we can present the dynamical equation for n1:151

dn1

dt
= hn1(1− n1)(k2f2(x2)− d2 − (k1f1(x1)− d1)), (2.6)

where h is the proportional constant. Consequently, the full model with population152

dynamics and adaption dynamics is given by153





dx1

dt
=x1(g1(x1)− um1)− f1(x1)y1 + u(1−m1)x2,

dy1

dt
=y1(k1f1(x1)− d1 − vn1) + v(1− n1)y2,

dx2

dt
=x2(g2(x2)− u(1−m1))− f2(x2)y2 + um1x1,

dy2

dt
=y2(k2f2(x2)− d2 − v(1− n1)) + vn1y1,

dm1

dt
=gm1(1−m1)

(
g2(x2)− f2(x2)y2

x2

− (g1(x1)− f1(x1)y1

x1

)

)
,

dn1

dt
=hn1(1− n1)(k2f2(x2)− d2 − (k1f1(x1)− d1)).

(2.7)

We assume that limxi→0 fi(xi)/xi = αi ≥ 0. Then (2.7) is well defined for xi ≥154

0, yi ≥ 0 with i = 1, 2, 0 ≤ m1 ≤ 1 and 0 ≤ n1 ≤ 1.155

3 Ideal distribution through adaptations156

In this section, we show that populations can achieve ideal spatial distributions157

through weak adaptations. We begin from the special case that predators are158
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absent. Without predators (2.7) is reduced to159





dx1

dt
=x1(g1(x1)− um1) + u(1−m1)x2,

dx2

dt
=x2(g2(x2)− u(1−m1)) + um1x1,

dm1

dt
=gm1(1−m1) (g2(x2)− g1(x1)) .

(3.1)

To ensure the survival of prey in the absence of predators, we make an assump-160

tion161

(H1) There exists a Ci such that gi(Ci) = 0, gi(xi) > 0 for 0 ≤ xi < Ci and162

gi(xi) < 0 for xi > Ci.163

Then Ci is the carrying capacity of prey in patch i. We say that ideal states of164

prey are achieved if its carrying capacity in every patch is established.165

Theorem 1 Let (H1) hold. Then system (3.1) admits a unique positive equilibrium166

Eprey = (C1, C2, C2/(C1 + C2)).167

The next theorem states that the unique positive equilibrium is globally stable168

if the adaptation is weak (proofs of theorem 1 and theorem 2 are postponed to169

Appendix).170

Theorem 2 Let (H1) hold and g′i(xi) < 0. Then Eprey is globally stable if 0 < g ¿171

1.172

Theorem 2 indicates that the carrying capacity of prey population in each patch173

is achieved through weak adaptations. Hence, an ideal spatial distribution is es-174

tablished. Notice that Eprey is asymptotically stable irrespective of magnitude of175

adaptation coefficient g. For the growth rates of logistic type, extensive numerical176

calculations indicate that the equilibrium Eprey is also globally stable for large g.177

This suggests that the adaptation always facilitates the formation of ideal spatial178

distribution of prey.179
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Now, a natural question is what will happen when predators are present. By180

using the same arguments as above, we obtain181

Theorem 3 Let (H1) hold. Suppose that functional responses fi are strictly in-182

creasing functions and183

fi(Ci) >
di

ki

, i = 1, 2. (3.2)

Then system (2.7) admits a unique positive equilibrium E∗ = (x∗1, y
∗
1, x

∗
2, y

∗
2,m

∗
1, n

∗
1),184

where185

x∗i = f−1
i (

di

ki

), y∗i =
x∗i gi(x

∗
i )

di

ki

, i = 1, 2,

m∗
1 =

x∗2
x∗1 + x∗2

, n∗1 =
y∗2

y∗1 + y∗2
, i = 1, 2.

(3.3)

Note that (x∗i , y
∗
i ) with components defined in (3.3) is the coexistence state of186

prey and predators in the isolated patch i. If this state is globally asymptotically187

stable in the isolated patch i, then the community of prey population and predator188

population evolves to it through natural selection. Similar to the case of single189

species, we call it as the carrying capacity of the ecological community of the prey190

population and the predator population in patch i.191

Note that m∗
1 (n∗1) given in (3.3) implies that the migration rate of prey (preda-192

tors) to patch 1 u(1 − m∗
1)x

∗
2 (v(1 − n∗1)y

∗
2) equals the emigration rate of prey193

(predators) from patch 1 um∗
1x
∗
1 (vn∗1y

∗
1). We expect that positive solutions of (2.7)194

approach E∗ as t → ∞ for small g and h, which means that prey population and195

predator population in patch i evolve, under weak adaptations of both prey and196

predators, to carrying capacity of the ecological community. To be tractable in197

analysis, we suppose that prey grow according to the logistic law:198

gi(xi) = ri − µixi, i = 1, 2,199
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and the functional responses are linear fi(xi) = bixi. Then (2.7) is reduced to:200





dx1

dt
=x1(r1 − µ1x1 − b1y1)− um1x1 + u(1−m1)x2,

dy1

dt
=y1(k1b1x1 − d1 − vn1) + v(1− n1)y2,

dx2

dt
=x2(r2 − µ2x2 − b2y2)− u(1−m1)x2 + um1x1,

dy2

dt
=y2(k2b2x2 − d2 − v(1− n1)) + vn1y1,

dm1

dt
=gm1(1−m1) (r2 − µ2x2 − b2y2 − (r1 − µ1x1 − b1y1)) ,

dn1

dt
=hn1(1− n1)(k2b2x2 − d2 − (k1b1x1 − d1)).

(3.4)

By Theorem 3, (3.4) has a unique positive equilibrium E∗ = (x∗1, y
∗
1, x

∗
2, y

∗
2, m

∗
1, n

∗
1)201

if202

rikibi > diµi, i = 1, 2, (3.5)

where203

x∗1 =
d1

k1 b1

, x∗2 =
d2

k2 b2

, y∗1 =
r1 k1 b1 − µ1 d1

k1 b2
1

,

y∗2 =
r2 k2 b2 − µ2 d2

k2 b2
2

, m∗
1 =

d2 k1 b1

d1 k2 b2 + d2 k1 b1

,

(3.6)

204

n∗1 =
(r2 k2 b2 − µ2 d2) k1 b2

1

k2 b2
2 r1 k1 b1 − k2 b2

2 µ1 d1 + k1 b2
1 r2 k2 b2 − k1 b2

1 µ2 d2

. (3.7)

By computing the Jacobian matrix of (3.4) at E∗ and using the fact that u, v, g205

and h are small, we can verify, from the Hurwitz criteria, that all eigenvalues of206

the Jacobian matrix have negative real parts. Hence, E∗ is asymptotically stable.207

Extensive numerical calculations indicate that E∗ is also globally stable in this case.208

Thus, the community of prey and predators evolves to the ideal spatial distributions209

through weak adaptations.210

For illustration purpose, we consider the following example.211

Example 4 We fix r1 = 3, r2 = 2, µ1 = 1, µ2 = 1, b1 = 1, b2 = 0.5, k1 =212

1, k2 = 2.5, d1 = 1, d2 = 2, u = 0.1, v = 0.2, g = 0.1, h = 0.1. Then E∗ =213
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(1, 2, 1.6, 0.8, 0.6154, 0.2857). Thus, the capacity for the community of prey and214

predators in the first patch is (1, 2), and for the community in the second patch215

is (1.6, 0.8). Computer simulation shows that population densities in each patch216

approach the ideal state (see Figure 1). In contrast, if we remove the adaptations,217

and fix m1 and n1 as constants, for example, m1 = n1 = 0.5, then densities of prey218

and predators in the first patch approach (1.0521, 1.9698), and densities of prey and219

predators in the second patch approach (1.513, 0.9436). Note that the fitness of220

prey is -0.0219 in the first patch and 0.0152 in the second patch, whereas the fitness221

of a predator is 0.052 in the first patch and -0.1087 in the second patch. Hence, the222

first patch is better for predators, but worse for prey, and the second patch is better223

for prey, but worse for predators. By contrast, the weak co-adaptations lead to the224

spatial distribution that there is no difference in patch fitness for both prey and225

predators by choosing m∗
1 = 0.6154 > 0.5 and n∗1 = 0.2857 < 0.5. This means that226

an ideal free distribution for the prey population and the predator population has227

been achieved. In fact, the ideal free distribution for s single species, introduced228

by Fretwell and Lucas (1970), requires that all occupied patches have equal fitness.229

Further, the ideal free distribution for two species was defined by Cressman et al.230

(2004) as the distribution yielding equal fitness across occupied habitats for each231

species.232

4 Influences on persistence233

In this section, we study the influences of adaptations on persistence of populations234

in (3.4). We begin from the effect of adaptations on survival of predators. Let235

m1 = m10 be the baseline transfer probability of prey from the first patch to the236

second patch when there is no fitness difference between the two patches for prey237

and n1 = n10 be the baseline transfer probability of a predator from the first patch238
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to the second patch when there is no fitness difference between the two patches for239

predators. If there is no adaptation of prey and predators for patch selection, we240

have m1 = m10 and n1 = n10 for all t. Then (3.4) is reduced to241





dx1

dt
=x1(r1 − µ1x1 − um10 − b1y1) + u(1−m10)x2,

dy1

dt
=y1(k1b1x1 − d1 − vn10) + v(1− n10)y2,

dx2

dt
=x2(r2 − µ2x2 − u(1−m10)− b2y2) + um10x1,

dy2

dt
=y2(k2b2x2 − d2 − v(1− n10)) + vn10y1.

(4.1)

We will compare the dynamical behaviors of (3.4) with (4.1) to see the influences242

of adaptations of the prey and predators.243

Set244

A =




k1b1x̄1 − d1 − vn10 v(1− n10)

vn10 k2b2x̄2 − d2 − v(1− n10)


 ,245

where (x̄1, x̄2) is the unique positive equilibrium of the following system:246





dx1

dt
=x1(r1 − µ1x1 − um10) + u(1−m10)x2,

dx2

dt
=x2(r2 − µ2x2 − u(1−m10)) + um10x1.

247

We assume 0 < m10 < 1 and 0 < n10 < 1. By similar discussions to those in248

Wang and Zhao (2004, 2005a,b), we see that predators in (4.1) become extinct if249

λdom := tr(A) +
√

(tr(A))2 − 4det(A) < 0, (4.2)

and is persistent if250

λdom = tr(A) +
√

(tr(A))2 − 4det(A) > 0. (4.3)
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A key point that we should emphasize is that predators in (4.1) are either251

persistent in both patches, or become extinct in both patches. This means that it252

is impossible that predators survive in one patch and die out in the other patch,253

which seems a contradiction to many ecological observations. Now, we show that254

the phenomenon that predators survive only in one patch could occur through255

adaptations. Indeed, (3.4) admits equilibria256

E0
00y = (

r1

µ1

, 0,
r2

µ2

, 0,
r2µ1

r1µ2 + r2µ1

, 0),

E1
00y = (

r1

µ1

, 0,
r2

µ2

, 0,
r2µ1

r1µ2 + r2µ1

, 1).

257

By direct calculations, we obtain258

Theorem 5 E0
00y is stable if259

k1b1r1 < µ1d1,

k2b2r2 < µ2(d2 + v),

k1b1
r1

µ1

− d1 > k2b2
r2

µ2

− d2,

(4.4)

and is unstable if one of the inequalities in (4.4) is reversed.260

Theorem 6 E1
00y is stable if261

k1b1r1 < µ1(d1 + v),

k2b2r2 < µ2d2,

k1b1
r1

µ1

− d1 < k2b2
r2

µ2

− d2,

(4.5)

and is unstable if one of the inequalities in (4.5) is reversed.262

The stability of E0
00y and E1

00y presents opportunity that predators live well in263

a better habitat, but desert the worse one. Indeed, we first choose parameters such264
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that k1b1r1/µ1−d1 < 0, k2b2r2/µ2−d2−v < 0 and k2b2r2/µ2−d2−(k1b1r1/µ1−d1) <265

0. Then we vary k1 such that k1b1r1/µ1 − d1 > 0, which leads to a stability266

transition of E0
00y from a stable state to un unstable state. As a consequence,267

E0
00y repels predators in the first patch away from extinction, at least locally, and268

another equilibrium269

E0
0y = (x∗1, y

∗
1,

r2

µ2

, 0, m̄1, 0)270

emerges, where x∗1 and y∗1 are defined in (3.6) and271

m̄1 =
r2/µ2

x∗1 + r2/µ2

.272

Numerical calculations show that E0
0y is globally stable for a certain range of pa-273

rameters, which confirms that predators can survive in the first patch and become274

extinct in the second patch in this case (see Figure 2).275

Next, we show that the co-adaptation of prey and predators can enhance the276

survival probability of predators. To see this, we first select parameters such that277

k1b1
r1

µ1

− d1 > 0,

k2b2
r2

µ2

− d2 < 0.

(4.6)

Note that (4.6) implies that n1 decreases and converges to 0 as t increases in a278

small neighborhood of E0
0y. By using the Routh-Hurwitz criteria, we can obtain279

the following theorem for the stability of E0
0y, the proof of which is postponed to280

Appendix.281

Theorem 7 E0
0y is asymptotically stable if (4.6) holds and g is small.282

Theorem 7 supports the persistence of predators in the first patch and the283

extinction of predators in the second patch. On the other hand, if there is no284

adaptation of prey and predators, the persistence and extinction of predators are285
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determined by the sign of λdom. Note that in a small neighborhood of v = 0, we286

have287

λdom =
1

2
[k1b1x̄1 − d1 + k2b2x̄2 − d2 − n10v + o(v)], (4.7)

which suggests that λdom may be a decreasing function of v, and may be negative288

for large v. To confirm this, we fix r1 = 1, r2 = 1, µ1 = 2, µ2 = 1, d1 = 1, d2 =289

2, b1 = 1, b2 = 1, k1 = 2.1, k2 = 1, u = 1,m10 = 0.5, n10 = 0.6. Then x̄1 = 0.6036290

and x̄2 = 0.8536, and291

λdom = −0.4395− 0.5 v + 0.5
√

1.9991− 0.5656 v + v2.292

The graph of λdom with respective to v is given in Figure 3, which shows that the293

dominant eigenvalue λdom of A is a decreasing function of v and λdom < 0 for larger294

v. Thus, without any adaptation of prey and predators, the increase of the maxi-295

mal potential migration rate v of predators from the first patch to the second patch296

tends to reduce the survival probability of predators, and leads to the extinction297

of predators after a threshold value. However, by reviewing the proof of Theorem298

7, we see that the stability of E0
0y is not influenced by the magnitude of v. Thus,299

we can fix v such that λdom < 0 and then choose small g, the adaptation coefficient300

of prey, such that E0
0y is stable, which is possible as the second inequality in (4.6)301

holds. It follows that predators survive in the first patch. Therefore, the adap-302

tation of prey and predators increases the survival probability of predators from303

the extinction in both patches to the persistence in one patch. Biological mech-304

anism behind this phenomenon is that predators exploit better patches to escape305

extinction through adaptations. Nevertheless, Figure 3 also shows the possibility306

that predators can survive in both patches for small v under the assumptions that307

there is no adaptation, but can survive only in the first patch with adaptations.308

The reason for the latter is that the first patch is better than the second patch for309
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predators and adaptations make predators aggregate in the first patch.310

We now present an example to show that there exists a pattern that prey and311

predators cooperate well through adaptations such that predators are permanent in312

every patch in the case that predators become extinct in each patch in the absence313

of adaptations. We take r1 = 1.2, r2 = 1, µ1 = 2, µ2 = 1, d1 = 1, d2 = 2, b1 = 1, b2 =314

1, k1 = 2, k2 = 2.1, u = 1, n10 = 0.4, v = 4. By numerical calculations we obtain the315

graph of λdom versus m10 in Figure 4, which indicates λdom < 0 when m10 is close316

to 0 or close to 1. Thus, if there is no adaptation of prey and predators, predators317

become extinct in each patch when m10 is close to 0 or close to 1. If the adaptation318

of predators emerges and the adaptation of prey is absent, numerical calculations319

show that predators survive in the first patch for small m10, and survive in the320

second patch when m10 is close to 1. But predators become extinct in the second321

patch for the former case, and become extinct in the first patch for the latter case322

(see Figure 5). Hence, the benefit of adaptation of only predators is to facilitate the323

survival in one patch. However, if both predators and prey adopt the adaptation324

strategies, things are different because the parameter values ensure that the full325

model with the adaptation of prey and predators admits a positive equilibrium.326

Further numerical simulations indicate that the positive equilibrium is globally327

stable (see Figure 6). Hence, prey and predators coordinate well so that predators328

survive in every patch. We now explain why there exist such patterns through the329

adaptations. First, in the absence of prey adaptation, predators test the better330

patch to migrate to that patch to survive. For example, if we fix m10 = 0.1 and331

keep other parameters as above, the first patch is better for predators through less332

prey emigration from the first patch and more prey migration to the first patch. In333

fact, with the adaptation of predators, the fitness of a predator tends to 0 in the334

first patch and -1.41389 in the second patch. Although predators can survive in the335

first patch in this case, the fitness of prey is -0.4024 in the first patch and 0.7209 in336
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the second patch. This means that the second patch is better for prey, the reason337

of which is that the prey in the first patch faces more predation pressure. Thus, if338

the adaptation of prey is allowed, more prey will migrate to the second patch. As339

a result, the fitness of a predator increases in the second patch and decreases in340

the first patch. This encourages a fraction of predators to migrate to the second341

patch so that the coexistence patter of prey and predators occurs.342

5 Behaviors from strong response343

In this section, by considering (3.4) we show that strong adaptations of prey and344

predators may induce complicated dynamical behaviors.345

First, equilibrium E0
0y exhibits stability transitions as the adaptation coefficient346

g increases, which suggests the possibility of a Hopf bifurcation. This is confirmed347

by numerical simulations. For the parameters with larger r1 and g in Figure 7,348

prey’s densities in the two patches approach periodic cycles, and predators always349

stay in the first patch, but exhibit periodic fluctuations after a transient time.350

Biological reason for this type of cycles could be given as follows. Rich prey in351

the first patch attracts a large number of predators, which in turn give the higher352

predation pressure on prey. Then a strong response leads to a quick migration353

of prey to the second patch, which decreases the prey density in the first patch.354

In the process, predators always stay in the first patch as the large r1 leads to355

rich prey in the first patch, which implies that the fitness of a predator in the356

first patch is higher. Thus, the decrease of prey reduces predators in the first357

patch. The cycles emerge from repetitions of the processes. In contrast, in the358

absence of the adaptations, simulations with the parameters given in Figure 7359

indicate that populations in each patch approach to globally stable states with360

x1 = 1.7767, x2 = 0.4893, y1 = 5.8610, y2 = 2.8262 (see Figure 8). Hence, the361
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adjustment of prey to equality in patch fitness destroys the stable coexistence of362

ecological community of prey and predators in each patch, and leads to periodic363

cycles.364

We now consider influences of strong adaptations on the stability of positive365

equilibrium E∗. For larger g and h, E∗ becomes unstable in several cases. First,366

E∗ becomes unstable for a larger intrinsic growth rate of prey (see the left panel in367

Figure 9). Secondly, there exists a region of u and v, which is similar to a bottle,368

such that E∗ is unstable inside the region and is stable outside the region (see369

the right panel in Figure 9). Variations of k1 and k2, or b1 and b2, exhibit similar370

influences on the stability of E∗. Clearly, the figures show that there are multiple371

stability switches if we fix one parameter and vary the other. For example, for the372

case described by the left panel of Figure 9, if we fix r1 = 3 and vary r2, then373

there are Hopf bifurcations when r2 = 1.7357, r2 = 6.0363 and r2 = 11.7166. E∗ is374

unstable when r2 lies in (1.7357, 6.0363) and r2 > 11.7166. There are a family of375

stable periodic solutions when r2 varies in (1.7357, 6.0363) and a family of stable376

periodic solutions when r2 varies in r2 > 11.7166 (see Figure 10).377

6 Discussions378

In this paper, we have proposed a prey-predator model that incorporates density-379

dependent migrations through the adaptations of prey and predators between the380

two patches. We have assumed that a movable individual decides its migration381

probability in terms of the law that the rate of migration probability is proportional382

to the difference of the fitness of the destination patch and the average fitness. This383

modeling method, based upon the assumption that an individual has the ability to384

know the fitness in each patch, gives an alternative migration rule and allows more385

mathematical analysis to find more interesting phenomena.386
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In Theorem 1 and Theorem 2, we have shown that prey evolves, through weak387

adaptation, to the ideal spatial distribution where the carrying capacity of prey388

population in each patch is achieved. By means of analytic method in Theorem 3389

and simulations, we have verified that the full system of prey-predator interactions390

with weak adaptations and small migration amplitudes implies that the ideal spatial391

distribution is established in the sense that the carrying capacity of prey-predator392

community in each patch is approached.393

For classical patchy models of prey and predators without adaptations, either394

predator population survives in every patch, or becomes extinct in every patch395

unless there is no barrier to predators between two patches. With the introduction396

of the adaptations, we have shown that the predator population can survive only in397

the better patch, and desert the worse one. This means that there is no need to use398

barriers to limit predators in a favorable patch if predators are able to adapt. We399

have also analyzed that the adaptation of prey and predators increases the survival400

probability of predators from the extinction in both patches to the persistence in401

one patch. Furthermore, we have presented the example that prey and predators402

cooperate well through adaptations to ensure the permanence of predators in every403

patch in the case that predators become extinct in each patch in the absence of404

adaptations.405

For the strong responses of prey and predators, we have shown that the adjust-406

ment of prey to establish equality in patch fitness destroys the stable coexistence407

of ecological community of prey and predators in each patch, and leads to periodic408

cycles. As a result, the objective of equal fitness in every patch cannot be realized.409

Moreover, we have presented the stability regions for large adaptations that show410

the possibility of multiple stability transitions if we vary one parameter.411
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Appendix415

Proof of Theorem 1416

To find a positive equilibrium, we set the right-hand side of the third equation417

of (3.1) to 0 to obtain418

g2(x2) = g1(x1).419

It follows from the first equation and the second equation of (3.1) that420

u(1−m1)− um1
x1

x2

= um1 − u(1−m1)
x2

x1

,421

which leads to422

m1 =
x2

x1 + x2

. (A-1)

Thus, at a positive equilibrium (3.1) we have423

migration rate of prey to patch 1 = u(1−m1)x2 = u
x1x2

x1 + x2

,

emigration rate of prey from patch 1 = um1x1 = u
x1x2

x1 + x2

.

424

It follows that the inflow rate of prey to patch 1 equals the outflow rate of prey425

from patch 1. Then it is easy to see that Eprey is the unique positive equilibrium426

of (3.1). The proof is complete. 2427

Proof of Theorem 2428

We begin by showing that Eprey is asymptotically stable. The Jacobian matrix429
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of (3.1) at Eprey is430




−um∗
1 + C1 g′1(C1) u (1−m∗

1) −u(C1 + C2)

um∗
1 −u (1−m∗

1) + C2 g′2(C2) u(C1 + C2)

−gm∗
1 (1−m∗

1) g′1(C1) gm∗
1 (1−m∗

1) g′2(C2) 0




.431

Its characteristic equation is432

λ3 + a1λ
2 + a2λ + a3 = 0,433

where434

a1 =− C1g
′
1(C1)− C2g

′
2(C2) + u > 0,

a2 =− gum∗
1(C1 + C2)(1−m∗

1)(g
′
1(C1) + g′2(C2))

+ C1C2g
′
1(C1)g

′
2(C2)− uC1g

′
1(C1)(1−m∗

1)− um∗
1C2g

′
2(C2) > 0,

a3 =um∗
1gg′1(C1)g

′
2(C2)(C1 + C2)

2(1−m∗
1) > 0.

435

Set436

Q1 =um∗
1(C1 + C2)(1−m∗

1)((g
′
1(C1))

2C1 + C2(g
′
2(C2))

2 − u(g′1(C1) + g′2(C2))),

Q2 =(u− C1g
′
1(C1)− C2g

′
2(C2))(C1g

′
1(C1)C2g

′
2(C2)

− um∗
1C2g

′
2(C2)− uC1g

′
1(C1)(1−m∗

1)).

437

Then direct calculations lead to438

a1a2 − a3 = gQ1 + Q2 > 0.439

It follows from the Hurwitz criteria that Eprey is asymptotically stable.440

Now, we use techniques of singular perturbation theory to show that each pos-441
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itive solution of (3.1) approaches Eprey as t → ∞ when the adaptation coefficient442

g is small. If τ = gt, we obtain443





gx′1 =x1(g1(x1)− um1) + u(1−m1)x2,

gx′2 =x2(g2(x2)− u(1−m1)) + um1x1,

m′
1 =m1(1−m1) (g2(x2)− g1(x1)) ,

(A-2)

where prime denotes the derivative with respect to τ . Since g is a small parameter,444

(A-2) is a slow system and (3.1) is a fast system. The slow manifold is determined445

by446

F1(x1, x2,m1) := x1(g1(x1)− um1) + u(1−m1)x2 = 0,

F2(x1, x2,m1) := x2(g2(x2)− u(1−m1)) + um1x1 = 0.

(A-3)

The Jacobian matrix of (F1, F2) is447

J(x1, x2,m1) =




g1(x1)− um1 + x1g
′
1(x1) u(1−m1)

um1 g2(x2)− u(1−m1) + x2g
′
2(x2)


 .448

Note that449

g1(x1)− um1 = −u(1−m1)
x2

x1

,

g2(x2)− u(1−m1) = −um1
x1

x2

.

450

It follows from g′i(xi) < 0 that451

detJ(x1, x2,m1) = −u(1−m1)g
′
2(x2)

x2
2

x1

− um1g
′
1(x1)

x2
1

x2

+ x1x2g
′
1(x1)g

′
2(x2) > 0.452

Since F1 = 0 and F2 = 0 at Eprey, it follows from the implicit function theorem453

that (A-3) determines a manifold x1 = x1(m1), x2 = x2(m1), denoted by S.454
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Set455

Jx1 =



−u(C1 + C2) u(1−m∗

1)

u(C1 + C2) −u(1−m∗
1) + C2g

′
2(C2)


456

and457

Jx2 =



−um∗

1 + C1g
′
1(C1) −u(C1 + C2)

um∗
1 u(C1 + C2)


458

with m∗
1 = C2/(C1 + C2). Then detJx1 > 0 and detJx2 < 0. Hence, on S we have459

x′1(m
∗
1) = −detJx1/detJ(C1, C2,m

∗
1) < 0,

x′2(m
∗
1) = −detJx2/detJ(C1, C2,m

∗
1) > 0.

460

If we denote the right-hand side of the third equation of (A-2) by F3(x1, x2,m1), it461

follows that F3(x1(m1), x2(m1),m1) satisfies462

F3





< 0 if m∗
1 < m1 < m∗

1 + ε

> 0 if m∗
1 > m1 > m∗

1 − ε

463

for some positive ε. From the argument in the proof of Theorem 1 we see that464

F3(x1(m1), x2(m1),m1) can not be zero for m1 > m∗
1 or m1 < m∗

1. Therefore,465

equilibrium m1 = m∗
1 is globally asymptotically stable on S.466

We consider a subsystem of (3.1):467





x′1 =x1(g1(x1)− um1) + u(1−m1)x2,

x′2 =x2(g2(x2)− u(1−m1)) + um1x1.

(A-4)

By the monotonic flow techniques (Lu and Takeuchi, 1993; Smith, 1995; Zhao,468

2003) we see that the positive equilibrium (x1(m1), x2(m1)) is globally stable in469

the interior of R2
+ for (3.1). Thus, given ε > 0, for any interval M0 := [m00,m

00]470
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with 0 < m00 < m∗
1 < m00 < 1, and a compact set X0 in the interior of R2

+, there471

is a T0 > 0 such that any positive solution (x1(t), x2(t)) of (A-4) staring in X0 with472

m00 ≤ m1 ≤ m00 satisfies473

|xi(t)− xi(m)| < ε, i = 1, 2, t ≥ T0. (A-5)

Note that Eprey is the unique positive equilibrium of (3.1) and is asymptotically474

stable. It follows from the theory of geometric singular perturbation (Fenichel,475

1979; Jones, 1994) that Eprey is globally stable for small adaptation coefficient g.476

The proof is complete. 2477

Proof of Theorem 7:478

The characteristic equation of the Jacobian matrix of (3.4) at E0
0y has 2 roots:479

λ1 = k2b2
r2

µ2

− d2 − v < 0,

λ2 = h(k2b2
r2

µ2

− d2) < 0.

(A-6)

The other roots satisfy the following equation480

A0λ
4 + A1λ

3 + A2λ
2 + A3λ + A4 = 0, (A-7)
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where

A0 =b1k1(d1µ2 + r2k1b1),

A1 =(d1µ2 + r2k1b1)(r2k1b1 + b1uk1 + µ1d1),

A2 =gb1r2k1d1u(µ2 + µ1) + µ1d1(−d2
1 µ2 + ud1µ2 − d1r2k1b1 + r2d1µ2 + r2

2k1b1)

+ b1k1(k1b1r2d1r1 + b1r
2
2k1u + d2

1µ2r1),

A3 =d1gur2(b1k1µ1r2 − k1b1µ1d1 + µ1µ2d1 + k2
1b

2
1r1)

+ d1(r2d1µ2 + r2
2k1b1 + ud1µ2)(r1k1b1 − µ1d1),

A4 =ur2d1g(d1µ2 + r2k1b1)(r1k1b1 − µ1d1).

Evidently, A0 > 0, A1 > 0 and A4 > 0. By the Routh–Hurwitz criteria, we need

to consider the signs:

D2 = A1A2 − A0A3, D3 =

∣∣∣∣∣∣∣∣∣∣

A1 A3 0

A0 A2 A4

0 A1 A3

∣∣∣∣∣∣∣∣∣∣

.

By direct calculations, we see that the sign of D2 is determined by

D20 =gur2k1d1b1(−r1k
2
1b

2
1 + k1b1uµ2 + k1b1uµ1 + r2k1b1µ2 + µ1k1b1d1 + d1µ

2
1)

+ ϕ0(µ1, µ2, r1, r2, k1, b1, b2, u, d1),

where

ϕ0 =r3
2b

2
1k

2
1(b1k1u + µ1d1) + r2

2b1k1(u
2b2

1k
2
1 + 2b1d1uµ1k1 + µ2

1d
2
1 + µ1d

2
1µ2)

+ r2d1(−b1d
2
1µ

2
1k1 + µ2

1d
2
1µ2 + d1b

2
1µ1k

2
1r1 − b2

1d1uk2
1µ1 + 2uk1b1d1µ2µ1 + b3

1uk3
1r1)

+ µ1d
2
1µ2(−d2

1µ1 + ud1µ1 + b1d1k1r1 + b1k1u
2).

Since k1b1
r1

µ1
> d1, it is easy to see ϕ0 > 0. It follows that D20 is positive if g is481
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small, and therefore D2 is positive if g is small.482

The sign of D3 is determined by

D30 =g2(−r1k
2
1b

2
1 + k1b1uµ2 + k1b1uµ1 + r2k1b1µ2 + µ1k1b1d1 + d1µ

2
1)ϕ2

+ gϕ1 + ϕ0(µ1, µ2, r1, r2, k1, b1, b2, u, d1),

where ϕ1 and ϕ2 are polynomials of parameters of the model without g, k2, c2, v.483

Hence, D3 is positive when g is small. Consequently, the Routh–Hurwitz criteria484

imply that all roots of (A-7) admit negative real parts. 2485
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Figure 1: Prey and predators are adjusted to the carrying capacities of ecological

community through weak adaptation.
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Figure 2: Left panel shows the extinction of predators in the two patches where

the parameters are fixed as r1 = 1, r2 = 1, µ1 = 2, µ2 = 1, u = 1, v = 2, k1 =

1.5, k2 = 1, b1 = 1, b2 = 1, d1 = 1, d2 = 2, g = 5, h = 0.5. The right panel shows

that predators survive in the first patch, but become extinct in the second patch

where the parameters are fixed as r1 = 1, r2 = 1, µ1 = 2, µ2 = 1, u = 1, v = 2, k1 =

3, k2 = 1, b1 = 1, b2 = 1, d1 = 1, d2 = 2, g = 5, h = 0.5.
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Figure 3: The graph of dominant eigenvalue λdom versus v.
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Figure 4: The graph of dominant eigenvalue λdom versus m10.
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Figure 5: Left panel shows that the adaptation of only predators leads to the

persistence of predators in the first patch for small m10, where the parameters are

fixed as r1 = 1.2, r2 = 1, µ1 = 2, µ2 = 1, d1 = 1, d2 = 2, b1 = 1, b2 = 1, k1 = 2, k2 =

2.1, u = 1, v = 4, h = 0.5 and m10 = 0.1. The right panel shows that the adaptation

of only predators leads to the persistence of predators in the second patch for m10

close to 1, where the parameters are fixed as r1 = 1.2, r2 = 1, µ1 = 2, µ2 = 1, d1 =

1, d2 = 2, b1 = 1, b2 = 1, k1 = 2, k2 = 2.1, u = 1, v = 4, h = 0.5 and m10 = 0.98.
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Figure 6: Predators survive in two patches where parameters are fixed as r1 =

1.2, r2 = 1.1, µ1 = 2, µ2 = 1, d1 = 1, d2 = 2, b1 = 1, b2 = 1, k1 = 2, k2 = 2.1, u =

1, v = 4, g = 5, h = 0.5.
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Figure 7: Left panel shows the periodic oscillations of prey and predators in the first

patch and right panel indicates the periodic oscillation of prey and the extinction

of predators in the second patch, where the parameters are fixed as r1 = 8, r2 =

2, d1 = 1, d2 = 2.1, µ1 = 1, µ2 = 1, u = 1, v = 3, k1 = 1, k2 = 1, b1 = 1, b2 = 1, g =

5, h = 0.5.
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Figure 8: Prey and predators approach globally stable states when there is no

adaptation for prey and predators, where parameters are fixed as r1 = 8, r2 =

2, d1 = 1, d2 = 2.1, µ1 = 1, µ2 = 1, u = 1, v = 3, k1 = 1, k2 = 1, b1 = 1, b2 = 1,m1 =

0.5, n1 = 0.5.
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Figure 9: Left panel describes the curve below which E∗ is stable and above which

E∗ is unstable, where g = 3, h = 4, k1 = 1, k2 = 1, u = 0.5, v = 0.4, d1 = 2, d2 =

2, b1 = 2, b2 = 2, µ1 = 1, µ2 = 1, and right panel shows boundaries between stable

region and unstable region where k1 = 1, k2 = 1, r1 = 2, r2 = 1.5, g = 3, h = 4, d1 =

2, d2 = 2, b1 = 2, b2 = 2, µ1 = 1, µ2 = 1. U represents an unstable region and S

represents a stable region.

35



0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x
2

H 

H 

H 

Figure 10: The graph shows a family of stable periodic solutions, where H represents
a bifurcation point.
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