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We measured the Seebeck coefficient of P-doped ultrathin silicon-on-insulator (SOI) layers with

thicknesses of 2-100 nm. The dependence of the coefficient on the impurity concentration was

investigated, and was shown to be in good agreement with that of bulk Si for SOI thicknesses above 6

nm. In addition, it was found to decrease with increasing impurity concentration, which is usually observed

in semiconductor materials. However, for doping levels above 3.5 × 1019cm−3, the Seebeck coefficient was

observed to increase. This is likely to be due to the influence of an impurity band.

In recent years, thermoelectric devices have attracted considerable attention due to their

ability to produce electric power from waste heat and as a means of tackling issues related

to global warming problem. In addition, it is expected that such devices can be utilized in

noiseless, vibration-free refrigerators with zero greenhouse gas emission. However, the ther-

moelectric efficiency is still not enough for practical use. Nanostructure has been introduced

to overcome this problem since the quantum confinement effect can enhance the thermoelec-

tric efficiency.1,2) In the present paper, we investigate the Seebeck coefficient S of P-doped

ultrathin silicon-on-insulator (SOI) layers in order to clarify the quantum confinement effect

on Seebeck coefficient. The Si nanostructure is easy to be fabricated precisely and the SOI

thermoelectric material can be used as a refrigeration system for Si-based devices such as

central processing units (CPUs) or field emission displays (FEDs).

A schematic diagram of our experimental setup is shown in Fig. 1. Two gilded Cu-plates

were placed side by side with a gap of 1 mm between them. Resistive heaters were placed

beneath the plates and could be heated individually. The sample for measuring was placed

across the gap, in contact with both of the plates. Therefore, by controlling the heater current,

a temperature difference could be produced in a plane parallel to the sample surface. A

couple of probes and two K-type thermocouples were directly attached to the sample surface.

The time evolution of the thermoelectromotive force was measured by a digital multimeter

(KEITHLEY 2700) equipped with a switching module (KEITHLEY 7700), simultaneously
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Fig. 1. Schematic diagram of the apparatus for Seebeck coefficient measurement.

with the temperatures at the high- and low-temperature regions. The Seebeck coefficient was

evaluated from the thermoelectricmotive force (∆V ≡ VH−VL) and the temperature difference

(∆T ≡ TH − TL) by S = ∆V/∆T .

The SOI wafer consisted of a top Si layer (SOI layer), a buried oxide (BOX) layer and

a p-type Si substrate, and it was cut to a size of 10 × 10 mm2. The SOI layer was thinned

to a thickness of 2 to 100 nm by repeated thermal oxidation and HF etching. P atoms were

doped into the SOI layer by thermal diffusion to produce an n-type Si layer. The impurity

concentration ranged from 2× 1017 to 5 × 1019 cm−3, determined by a four-probe method at

room temperature. The thickness of the BOX layer was 400 nm and the impurity concentration

of the p-type Si substrate was ∼ 1016cm−3.

The absolute value of the measured Seebeck coefficient of the SOI layers is shown in

Fig. 2, as a function of impurity concentration. The numbers adjacent to the red filled-circles

indicate the SOI layer thickness. Unfortunately, the SOI samples with a thickness of 2-4 nm

could not be measured due to a large noise, so that only the Seebeck coefficients for the SOI

samples above 6 nm thick are shown in Fig. 2. In this figure, the results for n-type Si wafers

obtained from our measurements and reported in the literature3–5) are also shown. The solid

line is the theoretical Seebeck coefficient obtained from our calculations based on the electron

transport.6) From Fig. 2, the values of the Seebeck coefficient appear to lie on a curved line

(indicated by a broken line in Fig. 2) and to be independent of the SOI layer thickness.

Therefore, the quantum confinement effect can not be observed above 6 nm in SOI thickness.

In addition, the values for bulk Si wafers are very similar to those for SOI layers, which implies

that a Si film as thin as 6 nm has the same Seebeck coefficient as a Si wafer. Hence, this fact

suggests that an ultrathin Si film with a nanometer-scale thickness can replace the bulk Si

thermoelectric material.

Below 2×1019cm−3, the absolute value of the experimental Seebeck coefficient of SOI layers

decreases with an increase in the impurity concentration, as is generally seen in semiconductor
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Fig. 2. Absolute Seebeck coefficient of SOI wafers as a function of impurity concentration. The

Seebeck coefficients of Si wafers obtained from our measurements and reported in the literatures3)4)5)

are also shown. The solid line represents the calculated value and the broken line is an eye-guide.

materials.7) However, as seen in the figure, the theoretical curve does not fit well to the

experimental data. This is considered to be due to the influence of phonon drag originating

from momentum transfer from the phonon system to the electron system by electron-phonon

scattering.4) The influence of such phonon drag is known to become weak at high impurity

concentration.4)

On the other hand, SOI layers with impurity concentrations above 3.5 × 1019cm−3 are

found to exhibit unusual behavior in their Seebeck coefficients. The inset in Fig. 2 shows a

magnified graph of this region. It is clearly seen that the absolute value of Seebeck coefficient

increases with increasing impurity concentration. Since phonon drag is no longer significant at

these impurity concentrations,4) additional factors such as the influence of an impurity band

must be considered.8)

In order to confirm the influence of an impurity band, the density of states (DOS) was

calculated for highly-doped bulk Si, based on a Baltensperger model.9) This model assumes a

regular close-packed lattice built of hydrogen-like impurities where the Schrödinger equation

is solved inside a sphere occupied by an impurity atom. The impurity band width ∆E is

defined as the energy difference between the band edges obtained from boundary conditions

for the wave functions. After obtaining the band width, a Gaussian curve is used to represent

the actual DOS across the impurity band, with the maximum lying at the energy level cor-

responding to the original impurity level.10) We can express the impurity concentration ND

as
∆END

2
√

2πσ
= ND, (1)
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where σ is a parameter characterizing the extent of the Gaussian function. This expression

corresponds to assuming that the Gaussian function has a triangular shape with a base of ∆E

and a height of ND/
√

2πσ. The DOS function for the impurity band can then be represented

by

ρi(E) =
2ND

∆E
exp

{
−4π

(
E − ED

∆E

)2
}

, (2)

where ED is the donor level and the conduction band edge EC is set to zero.

The wave function includes the confluent hypergeometric series F (l+1−n, 2l+2; 2rs/naB)

in the hydrogen-like model,9) where aB is the Bohr radius and rs is the mean radius of the

sphere occupied by an impurity atom. The indices n and l are the principal and the orbital

quantum numbers, respectively. In this paper, the impurity band width is computed under

the condition that the principal quantum number n is approximately equal to unity for l = 0,

which corresponds to a 1s band.11) Figure 3(a) shows the calculated DOS for ND = 5× 1017,

5 × 1018 and 5 × 1019cm−3, in the case of P atoms (ED = −44 meV). The Fermi energy

for ND = 5 × 1019cm−3, evaluated from the charge-neutrality condition, is also indicated by

an arrow. Below 5 × 1018cm−3, it is likely that the DOS overlap between the impurity band

and the conduction band is very small. On the other hand, for ND = 5 × 1019cm−3, the

DOS overlap becomes significant and the Fermi energy lies near the conduction band edge

EC . The impurity band undoubtedly influences the Seebeck coefficient at higher impurity

concentration since the Seebeck coefficient is strongly dependent upon the DOS distribution

around the Fermi energy.12)

The calculated Fermi energy and the impurity-band DOS at EC are shown in Fig. 3(b) as

a function of impurity concentration. The values of ED for P atoms and EC are also shown in

this figure. It is clearly seen that the Fermi energy rises with increasing impurity concentration

and crosses the maximum of the impurity band DOS (ED) at ND ∼ 1×1019cm−3. In addition,

the impurity band DOS at an energy of EC also abruptly increases above 1×1019cm−3. These

facts indicate that above ∼ 1 × 1019cm−3, a continuous distribution in DOS is produced by

the overlap between the impurity and the conduction bands, and the Fermi level is located

within this continuous band. The range of impurity concentrations where the DOS distribution

drastically changes is in good agreement with the region of abrupt increase in the Seebeck

coefficient shown in Fig. 2. Consequently, the complicated band structure in heavily doped

Si, which is quite different from that in weakly doped Si, may be the origin of the Seebeck

coefficient enhancement at higher impurity concentration.

Seeing the result of Fig. 2 from a different angle, it is possible that the relationship between

the Seebeck coefficient and the logarithmic impurity concentration makes a straight line for the

whole concentration range and there is an interesting phenomenon which lowers the Seebeck

coefficient (e.g., it cancels the phonon-drag effect) only at 1× 1019 ∼ 5× 1019cm−3. However,
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Fig. 3. (a) Density of states calculated for an impurity concentration of ND = 5× 1017, 5× 1018 and

5 × 1019cm−3, based on the Baltensperger model, and (b) calculated Fermi energy (•) and impurity-

band DOS at the conduction-band edge (¥) as a function of impurity concentration. The ionization

energy is set to ED = 44 meV for phosphorus atoms and the Fermi energy is evaluated from the

charge-neutrality condition.

there is not any idea about such phenomenon, so that we attribute the result of Fig. 2 to

the influence of the phonon drag and the impurity band, as mention above. Moreover, the

discussion on heavily doped samples is needed. Although we discussed only the impurity band

in this paper, phenomena in a degenerated semiconductor such as conduction band tailing13)

also should be considered. From Fig. 3(a), the band structure is similar to that in Kondo

semimetals and semiconductors.14) Therefore, the Seebeck coefficient enhancement at higher

impurity concentration may be characterized by a model of the thermoelectric material with

a pseudogap. An analysis about the Seebeck coefficient at higher concentration needs further

investigation.

We have investigated the Seebeck coefficient of SOI layers with thicknesses of 2-100 nm

and found that it is very similar to that of bulk Si for SOI thicknesses above 6 nm. This

indicates that the quantum confinement effect is not observed in a Si layer as thin as 6 nm.

An enhancement of the Seebeck coefficient was observed at higher impurity concentrations

(ND > 1 × 1019cm−3). This phenomenon is believed to be related to the formation of an

impurity-band, and based on calculations of the impurity-band DOS, its influence is likely to

be significant above ∼ 1 × 1019cm−3, which is consistent with the experimental results.
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