258

[Mokuzai Gakkaishi Vol. 25, No. 4, p. 258—263 (1979) (Original article)]

Poisson’s Ratios in Dynamic Viscoelasticity of Wood
as Two-dimensional Materials.*
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The present paper deals with mathematical expressions for the dynamic stress-strain relation
of wood as two-dimensional anisotropic material, and the measuring of the complex Poisson’s
ratios.

A dynamic stress-strain relation in two-dimensions was assumed on the analogy of the
generalized Hooke’s law, and the relation between the elements of the tensor in Eq. 5 Cj; and
the complex “engineering constants” in Eq. 4 was investigated.

An electronic device was designed and used to measure the complex Poisson’s ratios v7;
defined by Eq. 4 on Hinoki, Buna and Keyaki. The results are shown in Table 2. They suggest
the existence of small delays in the phase angles of the complex Poisson’s ratios, and also

indicate asymmetric properties of the dynamic viscoelastic stiffness tensor CJy in Eq. 5.

1. INTRODUCTION

As developments of the advanced utilizations of
wood and wood-based materials, the effective use
of anisotropy of the materials has attracted many
researchers in plywoods, laminated woods, L.V.L.
and particleboards.

Plywoods and particleboards are often used as
walls and floors. And their dynamic viscoelastic
properties become important points in their utili-
zations, for instance, for sound-proofings and
anti-vibration of floors by walking. Recently some
parts of the sound boards of guitars and pianos
were substituted by plywoods in place of solid
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wood for the low cost of the plywoods. Wood and
wood-based materials in these cases are apparently
used as two-dimensional materials. But the progress
in the dimensional generalization of the laws of
dynamic viscoelasticity is fairly delayed comparing
with that of elasticity.

One-dimensional theory of the dynamic visco-
elasticity has almost been established. Then, an
introduction of the concept of the Poisson’s ratios
to dynamic viscoelasticity will give a clue to the
expansion of the one-dimensional law of dynamic
viscoelasticity to two-dimensions as is analogized
from the generalization of Hooke’s law in elasticity.

In this paper, a formal generalization of Hooke’s
law to the dynamic constitutive equation of two-
dimensional viscoelastic materials was investigated
and the complex Poisson’s ratios in the equation
were also measured.
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2. COMPLEX POISSON’'S RATIOS AND
DYNAMIC CONSTITUTIVE EQUATION
IN  ORTHOTROPIC  VISCOELASTIC
BODIES

In this paper, a dynamic stress-strain relation of
an orthotropic viscoelastic body was treated for
the case of plane stress.

Denoting an axial cyclic stress applied in Y
direction by ¢y* and the induced complex strains
by eyy and eyy in X and Y directions respec-
tively in Fig. 1, they may be expressed by the
following complex exponential functions,

* it
oy =0ye™,

eyy = — eyxy e (VoM (1)
iy ey
where, ¢: time,

w: angular velocity,
€1y complex strain component,
¢ ;s amplitude of strain component ¢Jy,
1y« phase angle.
In ¢/, €7y and &y, the first suffix denotes the
direction of the applied stress and the second
suffix the direction of the induced strain.
Similarly for an axial stress oy', the following
strains arise,
o
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and for a shearing stress 7yy ,

*
TXYy =7Txy

where 7Xy is a complex shearing strain.

The complex moduli of viscoelasticity corre-
sponding to the so-called “engineering constants”
in elastic bodies can be defined on the analogy of
the case of an elastic body as follows:
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Fig. 1. Co-ordinate of an orthotropic plate, ¥ and
X axes coincide with the principal axes.
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Here, attention should be paid to the point that
the complex Poisson’s ratio vy was also defined
as a complex number.

A constitutive equation is one of the indis-
pensable equations to characterize the stress-strain
relation of the materials.

By assuming the small deformations in an ortho-
tropic viscoelastic body, the dynamic stress-strain
relations may be given after the generalized Hooke’s
law as follows: -

ax) [ChCh 07 (ex
ay* = C;'1 C.:.'z 0 ey* (5)
o) Lo 0 c)Arsy

This equation contains five constants correspond-

ing to the so-called elastic stiffness in an elastic

body, and the constants characterize the dynamic

viscoelastic properties of an orthotropic material.

We may call them “dynamic viscoelastic stiffness”.

The dynamic complex moduli Ex, Ey'and Gyy
a; 0 0

are obtainable by putting { 0 f, {oy{ and{ 0

0 0 Ty
into Eq. 5 respectively,
Ef =Ch(1-2%),
Ey =Cpp(1-2%),
Y 22 (6)

* *
Gxy=Cgs,

* * AT
A =vpy-vxy=C, Cy/C i Coy

It is of interest to check the symmetry of the
stiffness tensor in Eq.5 in order to simplify the
equation. The ratio of C % to Cj is given by,

% * * * *
&z__iiz/“xv _ EE/”_XY
* * * * *
Cn Ey/ Ex |By/ Ex

If the coefficient of the exponential function in

P Cxy—3yx) (7)

Eq. 7 is equal to unity as an elastic body, we can
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write the ratio more briefly as follows:
Ch it .
1: — e‘b(&xy dyx ) (7 )
CSI
Of course, this relation may require an experi-

mental verification.
3. EXPERIMENTS

3.1 Physical and dynamic viscoelastic proper-

ties of specimen used.

Species, specific gravities, moisture contents,
sizes, dynamic Young’s moduli and loss tangents
of specimens are shown in Table 1.

The dynamic Young’s moduli £’ and the loss
tangents tand were measured by the method of
free-free beam vibration. And E' was calculated
from its resonance frequency, and tand from the
0.707 value line width of the resonance curve.

3.2 Method for measuring complex Poisson’s

ratios.

In order to obtain the values of the complex
Poisson’s ratios in Eq. 4, the amplitudes (exy/exx »
eyx/eyy) and the phase angles (Oyx—0xy, Oyy—
8yy ) from experiments are required.

One of the fundamental methods to measure
these values is to draw a Lissajous’ figure with a
synchroscope. This method was used in this study.

The diagram of measuring devices used is shown
in Fig. 2. A bar with rectangular cross-section is
supported with strings at the two nodes of the
lateral fundamental vibration. And a sinusoidal
force is given by a magnetic driver at an end of

the bar in order to make the bar vibrate at its
resonance frequency, which is measured by an
inductance-type displacement meter and a universal
counter at the end of the specimen.

The strains in longitudinal direction of the bar
and in the perpendicular direction are measured by
wire strain gages which are glued orthogonally to
each other at the middle point of the bar.

The signals from the gages are amplified by
strain amplifiers and transmitted to low-pass filters
to remove the signals of the carriers at amplifiers,
whose frequencies are 4kHz.
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Diagrams of measuring devices.

Driving system (a), Phase shifter?>?) (b)
and Electronic circuits system (c). Amp:
Amplifier, EC: Electronic counter, D:
Driver, DM: Displacement meter, HPF:
High pass filter, IP: Iron piece, LPF: Low
pass filter, OP: Operational amplifier,
Osc: Oscillator, PS: Phase shifter, S:
Synchroscope, SA: Strain amplifier, WBx -
WBy: Wheatstone bridge.

S

Table 1. Physical and dynamic viscoelastic properties of specimens.
. Moisture : Dynamic Young’s i
Species vKillsl:‘gt?cfn'l) content Sf:vc.llﬁc modulus :..oss Sizes (em) -
(%) gravity (x1019dyne/cm?) angent  Length Breadth Thickness

Hinoki LR 121 040 5.80 0.008, 351 504 7
Chamaeciparis .
obtusa Endl. RL 12.5 0.41 1.22 0.018 28.1  4.52 1'5?23
Buna LR 1.2 061 10.07 0.009, 401 504 90T,
Fagus crenata L5
Blume RL 108 071 2.05 0.021 u6 442 VHo
Keyaki LR 1.1 0.63 11.23 0.0095 401 503 137
Zelkowa serrata 1.34
Makino RL 11.4 0.69 1.85 0.019 24.6 4.54 1'219_;2

*1) The first letter denotes the longitudinal direction of the bar and the second letter the direction of the breadth

of the bar.

L; fiber direction of wood, R;radial direction of wood.

Numbers of the specimens used are three for each kind of vibration except LR specimens of Buna (two specimens).
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Phase shifters are used to compensate the phase
angles which are shitted by passing the amplifiers
and other circuits.

High-pass filters are also used to remove the
noises. Lastly the signals are transmitted to ¥ and
Y axes of a synchroscope and a Lissajous’ figure
is drawn.

The characreristics of the amplitude and the
phase angle in clectronic circuies depend on the
frequency of signal, so that their adjustments are
done as follows: A sinusoidal voltage whose
frequency is equal to the resonance frequency of
the sample is applied simultancously to the out-put
terminals of the Wheatstone bridge circuits WBy
and WBy, and the amplitudes and the phase angles
are adjusted with the phase shifters looking at the
Lissajous’ figure in the synchroscope as shown
in Fig. 3.

4. RESULTS AND DISCUSSIONS

Fig. 4 shows typical time-scanning figures of

(a) (b)
Adjustments of the phase (a) and the
amplitude (bj at the resonance frequency
of a sample.

Fig. 3.

Fig. 4.

Typical time-scanning figures of the dy-
namic strains at the resonance frequency.
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the dynamic strains &yy and eyy. The ratios of

the double amplitudes, leyy]/leyy| and legyl/
#* A

lexyl , are shown in Table 2 as |vyy] and  [vyy]

respectively.

Figs. 5 to 7 and Figs. 8 to 20 show the
Lissajous’ figures of the complex Poisson’s ratios
vyy (the longitudinal direction of a specimen ¥
coincides with the fiber direction of wood) and
vyy (complimentary to vy ) respectively.

Lissajous’ figure of complex Poisson’s ratio
vyy (Hinoki).

Fig, 5.

Fig. 6. Lissajous’ figure of complex Poisson’s ratio

vyy (Buna).

Fig. 7. Lissajous’ figure of complex Poisson’s ratio
vyx (Keyaki).
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Fig. 8. Lissajous’ figure of complex Poisson’s ratio
vyy (Hinoki).

Fig. 9. Lissajous’ figure of complex Poisson’s ratio
' vgy (Buna).

Fig. 10. Lissajous’ figure of complex Poisson’s
ratio vyy (Keyaki).

As shown in Figs. 5 to 10, the loops of the
Lissajous’ figures of vyy and vzy were very
narrow and the lines of the loops were overlapped.
Then, the phase angles of vyy and vy were
calculated by the line breadth across the vertical

axis in the synchroscope as shown in Fig. 11,

sing =— 8
5 (®)

L %

Fig. 11. Lissajous’ figure and determination on
phase angle 7.
b

sing =-—".
X

The phase angles of vyy and vyy calculated
by Eq. 8 are shown in Table 2. These values may
be a little larger than the true values because they
include the line breadth of a scanning beam which
cannot be avoided in measurements. The corre-
sponding angles of the line width of the scanning
beam were from 0.021 to 0.032 rad. and 0.026 rad.
in average.

The values of the phase angles of vy and vy
in Table 2 are slightly larger than those calculated
by the inherent beam width of the synchroscope
used. This result suggests the existences of the
delays in the phase angles of the complex Poisson’s
ratios, and the values in Table 2 are considered to
give upper limits of the phase angles of the
complex Poisson’s ratios.

The interesting studies on the static Poisson’s
ratios by Schniewind®) and Takemura® show the
time-dependent changes of the Poisson’s ratios in
wood. Their results support the existences of the
complex Poisson’s ratios as is analogized from the
theory of static viscoelasticity.

The measuring accuracy of the phase angles with
a synchroscope or drawing the Lissajous’ figures
was not satisfactory in order to obtain the more
definite values. Accordingly, another principle of
the method to measure the phase angles should be
contrived in future.

The conditions which give symmetry in the
tensor in Eq. 5 are obtained from Eq. 7 as follows;

Cial_ 14l /14y
ICal 1By

By =1,and )

6XY_6YX=O

The values of the amplitude in Eq. 7 are shown in
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Table 2. Complex Poisson’s ratios vy and vy}y and absolute values of

Ey', Exand Ch/Ch "

* * * *
Species ” o " 14 !OEY ! = ICal/ICh ™
vyl dyy—dyx(rad.) |¥xyl dxx—Ixy(rad.) (x10"dyne/cmt) (X10"dyne/cm?)
Hinoki 043 -0016 0071 -0.037 5.85 124 1.28
Buna 032 -0035 0.063 -0040 10.17 209 1.05
Keyaki 040 -0.026 0.049 -0.039 11.34 1.89 ‘1.36

1); mean values of 3 specimens except LR specimens of Buna (2 specimens).

2); See Eq. 7.

Y fiber direction of wood, X;radial direction of wood.

Table 2 for three species. The fact that these values
are not equal to unity indicates that the tensor in
Eq. 5 is asymmetric. But, this result may not give
a decisive complication to practical uses of the
tensor, as we have experienced in cases of the
treatment of cross stiffness of the static consti-
tutive equations for wood and wood based
materials.

5. CONCLUSIONS

As an attempt to extend the law of dynamic
viscoelasticity from one-dimension to two-dimen-
sions, it was presented to express the elastic
stiffnesses as complex numbers on the analogy of
the generalized Hooke’s law. The dynamic consti-
tutive equation given by Eq. 5 contains five
independent dynamic viscoelastic constants Cpy
which are connected with five complex “‘engineer-
vyy, Vyx and Ggy
defined by Eq.4, where the complex Poisson’s

ing constants” Ey, Ey,

ratios vygy and vyy are new constants defined in
accordance with the introduction of anisotropy to
the dynamic viscoelastic laws.

The values of vyy and vyy were obtained by
the Lissajous’ figures of cross strains with the
devices shown in Fig. 2 and were shown in Table 2.
The results suggested the existences of the delays
in the phase angles of the complex Poisson’s ratios.

And the values of the phase angles in Table 2 are
considered as upper limits of complex Poisson’s
ratios for each species used.

Experimental results showed also that the dy-
namic viscoelastic stiffness tensor in Eq. 5 was
asymmetric, being different from an elastic body.

By extending the law of dynamic viscoelasticity
from one-dimension to two-dimensions, more
detailed and systematic expressions for anisotropic
dynamic behaviors are possible, and this will lead
to the rational design of wood and wood-based
materials as anisotropic materials.
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