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- Identification of Power Spectrum Peaks of Vibrating
Completely-Free Wood Plates and Moduli of
Elasticity Measurements™*!
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A simultaneous determination of orthotropic elastic constants of wood using a plate-vibration
technique was studied.

First, the identification of power-spectrum peaks of a vibrating completely-free plate was
examined. The spectrum pattern depended on the elastic constants, but the smallest vibration mode
was a (0, 2) or (1, 1) mode. The regularities of the resonance frequencies of higher order vibrations
were used to identify the four essential modes needed for the calculation of the engineering constants
E\, E,, G, and vi2. This procedure gave a degree of correct judgment of about 85%.

By introducing spectrum analysis which takes the separation of signals of bending and twisting
vibrations into consideration, the three important peaks of (2, 0), (0, 2), and (1, 1) modes needed to

_calculate E, E;, and G, respectively, were identified. A Poisson’s ratio, however, could not be

determined by the plate-vibration technique.

Keywords :  identification, power-spectrum peaks, plate vibration, orthotropic MOE, simultaneous
measurements.
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simple because identification of the resonance peaks
of a power spectrum is a complicated problem, and
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because a direct confirmation of the nodal pattern of
a vibrating plate using the Chladni-figure technique
normally is needed for orthotropic materials such as
wood and wood-based materials.

In this work, automated identification of power
spectrum peaks in a completely-free vibrating wood
plate was studied. Furthermore, an improved method
for simultaneously determining the anisotropic elastic

constants was developed.

2. BASIC CONCEPTS AND PRELIMINARY
APPROACH TO IDENTIFICATION
OF POWER SPECTRUM PEAKS

The Rayleigh method provides good estimations of
the resonance frequencies, fr (7, j)s, of orthotropic
wood plates."®

el /S
(i, ;)—2”\/ o (1)
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where, o is density, # is height,  is length, and b is
width. The constants a1, @, as, and @ are given as
shown in Table 1 from the energy equivalence
principle.? Flexural rigidities Dy, Dz, Dy, and a
torsional rigidity Dss are related to four engineering
constants ; two Young’s moduli, one shear modulus,
and one Poisson’s ratio as follows:

E1=lh2§Duﬂ, E2=%Dzzﬂ,

Glz=‘1};%‘Dse, V2= Dw/Dzz, (2)

where, #=1—D}/(Dn- Dz).
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Therefore, if the frequencies of the four essential
vibration modes, (0, 2), (1, 1), (2, 0), and (2, 2), are
determined, the engineering constants can be obtained
simultaneously from Equations 1 and 2 as described
later.

However, the problem is how we automatically
identify the spectrum peak of each vibration mode
from a power spectrum without making direct obser-
vations of nodal patterns.

2.1 Power-spectrum  patterns of a
completely-free rectangular plate

If the power-spectrum pattern of a vibrating wood

vibrating

plate is unique, the problem would become simple.
The following simulation approach was made to
examine the regularity of power spectrum patterns of
wood plates under the free-edges boundary conditions.

The ninety-five published data sets® of the full
orthotropic elastic constants of wood, in which the
data of forty-seven softwood and forty-eight hard-
wood were included, were used to calculate the reso-
nance frequency of each vibration mode.

The simulation result proved that the regularity of
the spectrum pattern was relatively great, but the
pattern was not unique as shown in Table 2. The
results on the ten smallest resonance frequencies of
calculated spectra are summarized as follows:

(1) The smallest vibration mode was the pure
bending mode (0, 2) or the pure twisting mode (1, 1).

(2) In the case of the longitudinal-radial plane
specimens, the most probable smallest mode was (1,
1), and the second was (0, 2).

(3) In the case of the longitudinal-tangential plane
specimens, the most probable smallest mode was (0,
2), and the second was (1, 1).

Table 1. Constants a..

Vibration modes

M N a) [¢2] a3 Q4
1 1 0 0 0 144
0 2 0 500.6 0 0
0 3,4, - 0 Y 0 0
2 0 500.6 0 0 0
3, 4, - 0 X* 0 0 0
1 2 0 500.6 0 593.76
1 3,4, - 0 Y 0 12.3Y(Y+86)
2 1 500.6 0 0 593.76
2 2 500.6 500.6 151.3 2448.3

Note: X=(M-05)xr, Y=(N-0.5) x.
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Table 2. Simulation result of the power-spectrum
pattern.
(a) LR-plane

R . Order of spectrum peaks
Vibration L -

modes | < Low frequency High frequency—
1 2 3 4 5 6 7 8 9 10

(1,1) |65 35

0,2) |35 65

1,2 97 3

(0, 3) 2 87 9 1

(2, 0) 1 9 77 13

(2,1 1 59 40

(1,3) 13 27 60

(2,2) 46 54

0, 4) 54 46

(b) LT-plane

Order of spectrum peaks

V:legﬁigg M —Low frequency High frequency—
1 2 3 4 5 6 7 8 9 10
(1, 1) 7 93
0,2) |93 7
(1, 2) 67 33
0, 3) 33 67
2,0 45 43 12
2,1 16 45 34
1, 3) 53 32 13 3
(2, 2) 1 64 35
(0, 4) 2 9 31 57 1
(1, 5 29 65
Notes: The number in the Table is the probability

when the peak of (7, /) mode locates at the
n-th order ; for example, in the upper table
the probability when the peak of the (1, 1)
mode locates at the lowest order is 65%.

L - R: longitudinal-radial. L-T:
longitudinal-tangential.

Legend:

(4) The regularity of the spectrum pattern in the
longitudinal-radial'plane specimen was greater than
that in the longitudinal-tangential plane specimen.

This means that the identification of the spectrum
peaks should be made for each specimen.

2.2 Feasibility of automated identification of reso-
nance peaks using a computer analysis.

In this part, the automated identification of the
spectrum peaks based on the regularity of the reso-
nance frequencies of a series of higher order vibration
modes in pure bending and pure twisting vibrations
was examined. The flow chart of the procedure is
shown in Figure 1.

The identification procedure was started by using
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Assumption-1 Assumption-2
F(1) = £r(0,2 F(1) = fr(1,1
F32) = frd,1 2) = £r(0,2

- Determination of D.» and Des

by Equations 3 and 4
[Dzz_and Dse] lﬁnﬁd D

- Calculation of fr(0, ) and
fr(1, ) by Equations 7 and 8

- Search of peaks of (0, J)
and (1, ) modes

1r(0,3), fr(0,4),
r(1,2), fr(1,3),

fr(1,4

£r(0,3), fr(0,4),
£r(1,2), fr(1,3),
fr(l,4)

- Calculation of TD
53 in Equation 5
< iy

Yes /Lﬁ No
D(1) < TD(2

- Search of (2, j) modes

Choice of
Assumption-2

Choice of
Assumption-1

Fig.1. Automated identification of resonance peaks
of a power spectrum.
Note: F(1) and F(2) are the resonance frequencies of

the smallest and the second modes, respec-
tively.

the information obtained in the above simulation
study.

Assuming that the smallest mode is (0, 2) and the
second mode is (1, 1), the flexural rigidity Dz and the
torsional rigidity Des are given as follows:

Dzz=—azﬁfr(0, 2)? (3)
Dss=%:£‘,"1'yf1’(l. 17 )

where, £ is 47%pha’.

Using these provisional values of D and Dss, the
five resonance frequencies of (0, 3), (0, 4), (1, 2), (1,
3), and (1, 4) modes were calculated. Then, the most
probable resonance peaks of these vibration modes
were determined so that the difference of resonance
frequency between the corresponding mode and the
mode being searched for became a minimum.

Then, changing the order of the assumed (0, 2) and
(1, 1) modes, that is, the smallest mode (1, 1) and the
second one (0, 2), another series of the above vibra-
tion modes was obtained. The series of vibration
modes whose 7D, as defined in Equation 5, is less was
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selected as the most proper choice of (0, 7) and (1, /)
modes.
_ N2 22
D=3 R0, j)*+ 3 R(, 7 (5)

RG, )=Ur(i, )s—fri, NYFr(i, ) 100 (6)
where fr (i, /)s and fr (7, ;) are the resonance fre-
quencies of the peak being searched for and the
calculated one, respectively.

Therefore, of the remaining three (2, /) modes, the
smallest and the largest are assigned to (2, 0) and (2,
2) modes, respectively. Then, Du and D are given as

follows :
___k 2
Dy = m(z, 0) fV(Z, 0) 7

1
Dusm{kfrz(z, 2)—Duai(2, 2)

— D2, 2)—4Desas(2, 2)} ®)

The published data sets of the full elastic constants
of thirteen species by Tonosaki and Okano® then
were used to verify the applicability of this identifica-
tion method.

The results of the R (i, ;) of each specimen proved
that the mean value and the maximum value of R (7,
7) were 2.5% and 9.5%, respectively.

The percentages of the number of the four essential
modes which were identified correctly were 92, 92, 92,
and 77% for (1, 1), (0, 2), (2, 0), and (2, 2) modes,
respectively.

A serious misidentification between (1, 1) and (0, 2)
modes occurred in one specimen. The difference of
their resonance frequencies was two percent. This
condition was probably beyond the ability of the
judgment of the proposed method. However, this
misidentification has to be avoided because correct
identifications of the essential modes are needed to
calculate elastic constants. The cause would be due
to the heterogeneity of the wood properties in a plate
such as a local dispersion of fiber orientation, ring
width, or density. This condition would not be inevi-
table so long as we deal with wood because wood
substantially has these heterogeneous properties.

3. IMPROVED METHOD

The following procedure, which took the phase of
deflection of a vibrating plate into consideration,
gives a substantial resolution of the misidentification
of spectrum peaks.

1 0,2
+
+
@ - @ *
AN
1) /\\//'\\/ TN
/N LN
@ < A\

JANIAN
VARV

Addition

JANWAN
Subtraction \/ \/

Twisting

Bending

Fig.2. Addition and subtraction procedures for se-

parating twisting and bending modes.

Figure 2 shows the concept of this procedure. The
bending vibration provides the same phase of deflec-
tion at both edges, a and b, of a plate. On the other
hand, the twisting vibration provides the phase differ-
ence of 7 between both edges. Accordingly, the
addition and the subtraction of the deflections at the
adjacent edges of an end at any time provide for the
doublings of the deflections of the bending vibration
and of the twisting vibration, respectively.

By this procedure, the vibration signals can be
separated into the following two groups: one is that
of twisting vibtations (1, 1), (1, 2), (1, 3), and (1, 4)
modes which are separated by the subtraction proce-
dure, and the other is that of bending vibrations (0, 2),
(0, 3), (0, 4), (2,0), (2,1), and (2, 2) modes separated
by the addition procedure.

Accordingly, this procedure enables detection of
misidentifications of modes between twisting modes
and bending modes in such cases as occurred in the
previous section ; namely : confusion between (1, 1)
and (0, 2) modes, between (1, 2) and (0, 3) modes,
between (1, 3) and (0, 4) modes, and so forth.

3.1 Experiments

Five plate samples ((30 cmX 30 cmX 1 cm ; western
redceder (Thwja plicata Donn), Agathis sp., hemlock
(Tsuga sp.), buna (Fagus crenata Bl.), and keyaki
(Zelkowa serrata Mak.)) were used.

The disposition of a specimen and a pair of micro-
phones is shown in Figure 3. A specimen is supported
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Fig.3. Support and tapping conditions.
Legend: O: microphone, []: sponge-rubber sup-

port, @ : tap position.
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Fig.4. Typical power spectra (western redcedar) ;

on four pieces of sponge rubber. A preliminary exper-
iment proved that the support condition did not affect
the resonance frequencies of spectrum peaks to be
identified.

The addition and subtraction operations of tap
tones were made by additional and differential ampli-
fiers composed of linear operational amplifiers.”

A specimen was tapped with a small hammer at
three points to enhance the spectrum peaks of the
essential vibration modes, as shown in Figure 3, and
the tap tones were analyzed by using a Fast Fourier
Transformation spectrum analyzer (Ono Sokki Co.;
dual-channels analyzer CN-910).

3.2 Results and discussions

Figure 4(a) shows a power spectrum whose signal
was detected by a microphone located at a corner of
a plate. The ten peaks to be searched for can be
distinguished. Figure 4(b) shows the power spectrum
isolated by the subtraction procedure. The identifica-
tion of the twisting modes, (1, j)s, were automatically
made by assigning the outstanding peaks in the order
of the magnitude of the resonance frequencies. Figure
4(c) shows the power spectrum isolated by the addi-
tion procedure. Three outstanding peaks of (2, 7)
modes and relatively weak peaks of (0, /) modes were
resolved. However, seeing both spectra of Figs. 4(b)
and 4(c) in detail, a little contamination was found
between both spectra, but the identification of each

(a) detected by a microphone, (b) separated by
subtraction procedure, and (¢) separated by
addition procedure.

mode could be made easily by comparing both spec-
tra. In this case, the identification of the (0, 2) and (1,
1) modes, which are located closely, can be made
easily because the intensity of the (1, 1) peak is
greater than that of the (0, 2) peak in the subtraction
spectrum, is very weak in the addition spectrum, and
the intensity of the (0, 2) peak is more than that of the
(1, 1) mode in the addition spectrum, and is weaker
than that of the (1, 1) mode in the subtraction spec-
trum.

Figure 5 shows an example where a clear isolation
was made.

Figure 6 shows the case when misidentifications
occurred in the Agathis sp. plate. The identifications
of the (2, 2) and (0, 4) modes were difficult in that the
judgments were made by only a comparison of both
addition and subtraction spectra because both modes
belonged to the bending vibration modes, their spec-
trum peaks were located closely, and because their
intensities were nearly equal. Here, the identifica-
tions of (2, 2) and (0, 4) modes were confirmed by
Chladni-figure observations.

In conclusion, there was one case of misidentifica-
tion between the (2, 2) mode and the (0, 4) mode,
although the combination of the phase-isolation
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Fig.6. Isolated spectra (Agathis sp.).
Note: Misidentification between (2, 2) and (0, 4)

modes occurred in the computer identifica-
tion. Upper is subtraction ; lower is. addi-
tion.

method and the computer identification based on the
vibration theory was applied. However, of the four
essential modes, the three modes, that is (2, 0), (0, 2),
and (1, 1), which were required to calculate E, E.,
and G, respectively, were identified correctly.
Accordingly, if a comparison of the addition and
subtraction spectra is introduced into the computer
program for the identification of power spectrum
peaks, automated simultaneous measurements of the
elastic constants of wood Will become possible.
Four engineering constants were calculated from
Equations 2 to 4 and 7 to 8, but some results of E\, Ez,

and vz were negative. This contradicts the physical
meanings of elastic constants. This contradiction was
caused by a negative value of p(=1—Dh/DiuDs) ;
namely : the overestimated value of Dy due to the
peak shift of the (2, 2) mode which would be caused
by the irregularity of a physical property in a plate.

Here, we note that in Equation 2 the product of vz
and vz is negligibly small compared with 1. Accord-
ingly, if we give proper values to viz and va, the effect
of the presumed values of the Poisson’s ratio on the
calculation of E\ and E: would be within acceptable
error. Then, vi2 and va were given as 0.4 and 0.04,
respectively ; namely : £#=0.984(=1-0.4%0.04). A
simulation result proved that the effect of this
assumption on the calculation of E; and E: was less
than 1.5% (0.43% on average) for the range of v
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Fig.7.  Relationships between Ei, E,, and G by
plate specimens and by beam specimens.

Legend: @: Ey, O: E and +: Gia.
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through 0.3 to 0.5 Accordingly, this procedure can
be used in the usual measurements of E, and E..

Figure 7 shows the relationships between Ei, E,
and G2 by plate specimens and by short-beam speci-
mens prepared from each plate sample. The mean
values of the ratios of Ei, K., and G2 between those
by plate specimens and those by beam specimens were
0.97 (standard deviation (s.d.): 0.15), 1.03 (s.d.:
0.13), and 1.05 (s.d.: 0.17), respectively.

A little difference in the elastic constants between a
plate specimen and a beam specimen would be caused
by irregularities of physical properties in a plate,
because a plate specimen was prepared by gluing two
or three pieces of narrow lumber.

4. CONCLUSION

Identification of power spectrum peaks of a vibrat-
ing completely-free wood plate was examined by
using a Fast Fourier Transformation analyzer and a
micro-computer.

The proposed spectrum peak identification method
which takes the phases of deflections of bending and
twisting vibrations at neighboring corners of a plate
into consideration was efficient for the identification
of near spectrum peaks.

The three spectrum peaks which are needed for
calculating the orthotropic constants Ei, E; and G,

that is, the spectrum peaks of (2, 0), (0, 2) and (1, 1)
modes, respectively, were identified correctly by
introducing a spectrum analysis which considered the
phases of deflections, but without making Chladni-
figure observations. Then, the three engineering
constants were determined stmultaneously.
However, a Poisson’s ratio could not be determined

by the plate-vibration method.
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