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Instantaneous Measurement of Elastic Constants
by Analysis of the Tap Tone of Wood

Application to flexural vibration of beams™’
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An instantaneous measurement for obtaining a Young’s modulus (E£) and a shear modulus (G)
simultaneously from the tap tone of flexural vibrations of wooden beams was investigated. The
resonance frequencies were obtained by an instantaneous frequency analysis of the tap tone using
a FFT (Fast Fourier Transformation) spectrum analysis. The Timoshenko theory of flexural
vibration taking the occurrence of shear and rotatory inertia effects into account was applied in the
calculation of £ and G. The hold position of a beam, the effective tap position to excite its
vibration, the computer program to identify automatically the resonance frequencies of higher
vibration modes from the original spectrum, and the transfer method of a tap tone by FM radio
waves were investigated.

It was proved that a rapid and automated procedure to measure £ and G was possible by the
connection of a FFT analyzer and a 16-bit microcomputer.
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An elastic constant is one of the practical and
principal strength predictors in nondestructive evalu-
ation of wooden beams. Development of a rapid and
simple testing method would contribute to the qual-
ity evaluation of woods by vibration methods.

This paper aims the development of a system for
instantaneous measurement of Young’s modulus (E)
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and shear modulus (G) of wooden beams by a flexu-
ral vibration method. The designed system has the
following characteristics : (1) detection of a vibra-
tion by the tap tone of a beam, (2) instantaneous
FFT (Fast Fourier Transformation) spectrum analy-
sis, (3) application of the Timoshenko theory of a
flexural vibrating beam to a simultaneous measure-
ment of £ and G, and (4) system control by a
microcomputer. By connecting these, an automated
and instantaneous measurement of the elastic con-
stants of wooden beams was attempted.

2. EXPERIMENT

2.1 Materials

The experiment was made on specimens of hinoki
(Chamaecyparis obtusa S. et Z.), buna (Fagus
crenata Bl.), keyaki (Zelkowa serrata Mak.), and
shirakashi (Quercus myrsinaefolia Bl.). Specimens of
spruce (Picea sp.), western redcedar (Thuya plicata
Donn), Douglas-fir (Pseudotsuga menziesii (Mirb.)
Franco), and meranti (Shorea sp.) also were used.
The grain direction of beams was parallel to their
lengths. The dimensions and the densities are given in
Table 1 for the Japanese species.

Table 1. Dimensions and densities of specimens.

. Length Thickness Width Density
Specimen

(cm) (cm) (cm) (g/cm?)
Hinoki 40.1 1.03 2.50 0.368
Buna 40.2 1.03 2.50 0.635
Keyaki 40.2 1.03 2.50 0.651
Shirakashi 37.2 1.03 2.50 0.672

2.2 Measuring system

The measuring apparatus is shown in Figure 1.
Besides a microphone, this system was made up of a
microphone amplifier, a FFT spectrum analyzer
(CF-910; Ono Sokki Co.), and a 16-bit microcom-
puter (PC-9801 ; NEC). The FFT analyzer was cou-
pled to the microcomputer by a GP-IB interface
board.

The specimens were held vertically and lightly by
the fingers at the nodal points of vibrations, while
they were tapped with a small plastic hammer. The
tap tone was detected at an end of the beam by the
microphone. The inherent error of the resonance
frequency measurement by the FFT analyzer was 6.25

Specimen

gk 1
/ \ interface
% ! board
FM wireless
microphone

Fig. 1. Measuring apparatus.

Hz in this work.
2.3 Methods
2.3.1 Hearmon’s method on the free-free vibration
of beams

The full differential equation of a flexural vibra-
tion taking the occurrence of shear and rotatory
inertia effects into account was proposed by
Timoshenko.” According to Hearmon’s solution on
free-free vibration beams,?

E:ﬂﬁ?.nand
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where £ = Young’s modulus,

G = shear modulus,

i = radius of giration of cross-section,

p = density,

fr = resonance frequency,

! = length of a beam,

s = shear deformation coefficient, and

F,(m), F,(m), and M,, are constants deter-
mined by vibration modes.

To obtain the values of E and G, provisional
values of sE/G and T are given to the above equa-
tion ; then the calculations are repeated until both
values of E and sE/G converge on each constant
using each improved value of s£/G and T.

The final values of £ and G are obtained by
applying the method of least squares to Equation 1.

The value of s for wooden beams has been discus-
sed by Hearmon?® and by Nakao and others® by.
experimental comparisons between flexural and tor-
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sional vibration tests. Hearmon obtained s =1.06 on
average. In the recent work of Nakao and others, they
obtained s =1.18 from vibration tests in which the
support conditions of the beams were carefully con-
sidered. Thus, the s=1.18 obtained by Nakao was
used in this work.

2.3.2 Computer program

Particular consideration was given to identify the
resonance frequencies of the flexural vibrations from
the original data in which the data of false peaks by
noises were included, because the FFT analyzer can
not discriminate the true peaks of flexural vibrations.
The resonance frequencies therefore were searched
successively from those of lower vibration modes by
solving the Timoshenko equation at each step of the
search of their higher vibration modes as follows :

First, the resonance frequency of fundamental
vibration was searched for as the minimum value of
the frequency data.

The resonance frequency of the 2nd vibration
mode was searched from the result of the calculation
of Equation 1 under the condition 5<sE/G<60.
Then the provisional value of sE/G for the 3rd
vibration mode was calculated, and the estimated
resonance frequency of the 3rd vibration mode (f,")
was obtained (Figure 2).

The search for the resonance frequency of the 3rd
vibration mode was made as follows:

First, the frequencies which satisfied the condition
0.9f,/ < fi< 1.1f;, were searched. Usually, a plural
number of frequencies were found in the higher
vibration mode. The resonance frequency was deter-
mined by what had the maximum intensity within the
searched peaks. Then the estimated value of the 4th
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Fig. 2. Schematic diagram of the search process of
resonance frequencies of higher-order vibra-
tion modes.

Notes : f¢» is the estimated resonance frequency of
the n-th vibration mode. Black dots are the
true resonance frequencies of flexural vibra-
tions. White dots are the false peaks by
noises.

vibration mode was obtained in the same way as in
the 3rd vibration mode.

The same procedure were repeated for the higher
vibration modes until the 5th vibration mode.

3. RESULTS AND DISCUSSIONS

3.1 Effect of the hold position of a beam on the
resonance frequencies

The support position of a beam affects the reso-
nance frequency a little in low vibration modes.?®

Table 2 compares the resonance frequencies when
a beam is héld at the nodal points of five vibration
modes. The values in parentheses can be considered
as the standard resonance frequencies of the vibration
modes because their nodal points coincide with their
hold positions on a beam. The difference of fre-

Table 2. Effect of the hold position of a keyaki beam on the resonance frequency.

Hold position is
nodal point of N-th

Measured resonance frequency (Hz)

vibration mode Ist 2nd 3rd 4th 5th
Ist (293.75) 793.75 1525.00 2456.25 3562.50
2nd 293.75 (793.75) 1531.25 2462.50 3562.50
3rd 293.75 800.00 (1531.25) 2456.25 3562.50
4th 293.75 793.75 1525.00 (2462.50) 3562.50
5th 293.75 793.75 1525.00 2456.25 (3562.50)
Af/f (%) 0 0.41 0.25 0

Note: Af/ ﬁ.means the relative error of the resonance frequency of each vibration mode when a
beam is held at the nodal point of fundamental vibration against the standard value of the
resonance frequency marked with parentheses.
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quencies between the standard values and the mea-
sured values was within 6.25 Hz. This is the inherent
error of the frequency measurement of the FFT
analyzer used. Accordingly, there was no significant
effect of the hold position of a beam on the measured
resonance frequency.
3.2 Effect of the tap position on power spectra
Figure 3 shows the relationship between the spec-
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Fig. 3. Relationship between spectrum intensity of
each vibration mode and tap position for
keyaki.

Notes: A, nodal point; O, loop.

trum intensity of each vibration mode and the tap
positions in keyaki when the beam was held at the
nodal point of fundamental vibration. It shows that
the spectrum intensities are strong when a beam is
tapped on a loop of its vibration mode, and that the
spectrum intensities diminish or disappear when it is
tapped at a nodal point.

Considering these facts, the following two manners
of tapping were investigated to obtain a clear power
spectrum of flexural vibration. One was a tap at an
end of a beam because all vibration modes of free-free
beam have their loops at the end of a beam. However,

the spectra intensities of 2nd and 3rd vibration modes
were weak, and in the case of mistaps, the intensity of
the 2nd vibration mode was confused with noises.
This misreading of the data could be avoided by a
check of the spectrum in the monitor TV or by an
averaging procedure of multiple taps for the spec-
trum.

The more reliable manner was the following “two-
times tapping”. As shown in Figure 3, the center of a
beam coincides with the loops of the odd-numbered
vibration modes, and the position between position
numbers 3 and 4 nearly coincides with the loops of
the even-numbered vibration modes. Figure 4 (a)
shows the result of a tap at the center of a beam ;
odd-numbered modes are dominant. Figure 4 (b)
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Fig. 4. Spectra patterns of the two-times tapping
procedure process for keyaki.
(a) Tap position is the center of the beam.
(b) Tap position is centered between tap
positions 3 and 4 in Figure 3.
(c) Sum of spectra (a) and (b).

shows the spectrum when a beam was tapped at the
position between the position numbers 3 and 4;
strong peaks of even-numbered modes are seen.
Figure 4(c) shows the sum of the two spectra. This
operation gave a clear spectrum of flexural vibration.
Here, a beam was held at its center when it was
tapped for even-numbered vibration modes because
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the center coincides with the nodal points of all
even-numbered vibration modes. A “two-times tap-
ping” therefore was made in the following tests.
3.3 Calculation of E and G

Figures 5 and 6 show the results of the calculations
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Fig. 5. Relationship between Young’s modulus or
the shear modulus and the resulting number
of the averaging in the least squares proce-
dure (n,) in the case of a flatwise tap.

Legend: A, hinoki; O, buna; X, keyaki; @,

shirakashi.
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Fig. 6. Relationship between Young’s modulus or
the shear modulus and the resulting number
of the averaging in the least squares proce-
dure (n,) in the case of an edgewise tap.

Note: For legend refer to Figure 5.

of E and G in the cases of a flatwise tap (a beam was
tapped on a broad face) and of an edgewise tap ( a
beam was tapped on a narrow face), respectively.
Their abscissae are the resulting numbers of the
averaging in the least squares procedure (7,) in
Hearmon’s method.

The Young’s modulus was not affected by 7,. On
the other hand, the shear modulus was affected very
much in some cases by n,. However, the value had a
tendency to converge to a constant (Gy) with an
increase of n,.

The constant G; was compared with the shear
modulus (G,) which was obtained directly by the
free-free torsional vibration test. The G, was calcu-
lated from the anisotropic theory of torsional vibra-
tion as Nakao and others¥ made. In spite of the
change of the shear modulus with g, the value of G;
agreed very much with G; as shown in Figure 7. The

1.5
L o
- Y, o °
o
i .
& 1.0 - MA
a
\T: [ ]
& B
[ )
- (=)
L L 1 L 1 ! L L L
0.5 1.0 1.5
G/ (GPa)

Fig. 7. Comparisons of the shear modulus obtained
from flexural vibration (G;) and that
obtained from the isotropic theory of torsion
(Gy) with that obtained from the anisotropic
theory of torsion® (G,).

Note: The above values were measured using the
same specimens and four additional speci-
mens of spruce, western redcedar, Douglas-
fir, and meranti prepared for this purpose.

Legend: @, G;; O, G,.

ratio G;/G, was 1.013. This agreement is not an
unexpected coincidence because the value s=1.18
obtained by Nakao and others is the experimental
value which was calculated by the same experimental
comparison as in this work. Furthermore, this value
agrees very much with the theoretically estimated
s(s=1.1-1.2),24 but the value s=1.18 should be
considered as an experimental coefficient. The value
of s which was calculated inversely from the results
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of this work is 1.17. This agrees very much with that
obtained by Nakao and others.®

To calculate the shear modulus of such anisotropic
material as wood, it is necessary to know the ratio of
the two shear muduli concerning the torsion, for
example Gis/G,,. This procedure is troublesome or,
sometimes, difficult. Therefore, usually the shear
moduli are calculated from the isotropic theory of
torsion.

The shear modulus (G;) which was calculated
from the isotropic theory also is compared with G, in
Figure 7. The G, is smaller than the G, by about 3%.
Comparing G,/G, with G;/G,, they are 0.974 and
1.013, respectively, and their standard deviations are
0.0349 and 0.0381, respectively. Accordingly, there
is not much difference in accuracy between the
calculations by the isotropic theory of torsion and
those by - the theory of flexural vibration.

It has been noted that s depends on the grain
direction of wood. Therefore, the value s=1.17
obtained in this work should be applied within the
limit that the grain direction of a beam is parallel to
its length. However, this would be the most probable
case in nondestructive tests on wooden beams.

The operation time of this system is an important
factor from the viewpoint of instantaneous measure-
ments. The reading time of tap-tone data by the FFT
analyzer is 160 mS, and the FFT analysis time and
the transfer time of the data from the FFT analyzer to
the computer are both about 200 mS. Therefore, the
rate-determining stage of this system is that of the
calculation of the elastic constants. This calculation
time was two seconds when the averaging procedure
was made up to the 5th vibration mode. This speed
would become faster by improvements in the calcula-
tion program.

An improved method of the tap-tone transfer by

FM radio waves also was investigated using a FM
wireless microphone and the usual FM radio. A
transfer of about 20 m was obtained in a building.
This way is convenient not only in lumber yards but
also in laboratories.

4. CONCLUSIONS

A new system for measuring the Young’s modulus
and the shear modulus by the flexural vibration of a
beam was designed. An automated and instantaneous
measurement of these constants was obtained by
connecting a tap-tone measurement, a FFT spectrum
analysis, the Timoshenko theory of flexural vibration
of beams, and the system control of a microcomputer.

The equipment for measuring the vibration of
beams were simplified very much compared with that
of steady-state vibration methods by applying a tap
to a beam for exciting a vibration and the detection
of the tap tone with a microphone.

The shear modulus obtained by this system agreed
very much with that obtained by the torsional vibra-
tion method of anisotropic bodies. The measurement
of the shear modulus by this system is recommended
as a convenient means when the application of tor-
sional vibration is difficult.
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