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Actual determination of center-of-buoyancy  
in Nautilus.

Konomi MORIMOTO1 and Yutaro SUZUKI1

Abstract　A new experimental method is presented in obtaining the center-of-buoyancy of Nautilus, 
and its physical reasoning is explained.  Before experiment a model of Nautilus of uniform density is 
prepared, the shape of which copied exactly the lateral halves.  The experiment starts with finding its 
balance-line with to explore on the flat plane corresponding to the animal symmetry.  After the place-
ment of the model on two isolated sticks, these were slowly brought close to each other.  Ultimately 
these adjoin at the balance-line.  Finding additional two balance-lines on the same plane will result in 
an intersection point, which corresponds to the center-of-gravity of the model.  The intersection cor-
responds to the center-of-buoyancy of Nautilus.  The validity of the present method is confirmed using 
another model, the center-of-buoyancy of which is able to explore theoretically.
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Introduction

One of key prerequisites in evolutionary studies is the 
understanding of animal locomotion that varied along the 
evolutionary change in animal forms.  In understanding the 
form-locomotion relationship, it is inevitable to detect how 
the form and its operation of organisms reflect the physical 
variables such as gravity, velocity and the surrounding 
medium condition.  A living marine ectocochleate cephalo-
pod, Nautilus, is one of the eye-catching targets for locomo-
tory studies because of its unique drifting movement 
(Chamberlain, 1987).

The outer conchs of Nautilus consist of a body chamber 
and a gas-filled chambered phragmocone to maintain neu-
tral buoyancy.  The driving force of the movement of Nau-
tilus animal is the jet propulsion generated by momentary 
contraction of the hyponome that faces anterior-forward, 
which in turn brings the animal to backward direction.  This 
results in the animal rocking locomotion, because the jet 
propulsion acts perpendicular to the line of action of buoy-
ancy (e.g., Jacobs and Chamberlain, 1996).  This type of 
locomotion is mainly due to the force of restitution which 
was obtained by two centers of gravity and buoyancy, as is 
similar to the problem of ship hydrostatics (e.g., Rawson 
and Tupper, 2001).  In theoretical morphology point of 
views, number of studies yet reached to a firm conclusion 
on account of the position of two centers (e.g. Trueman, 
1941; Raup & Chamberlain, 1967; Okamoto, 1996).  Espe-

cially experimental study is few, probably because of the 
complex three-dimensional animal form to deal with.  Be-
low is the method we have introduced to obtain the centers 
of buoyancy of the Nautilus animal.

The concept of buoyancy

When an object is submerged in viscous fluids, its surface 
suffers more or less the pressure from ambient fluids.  Since 
a lower part of the object suffers higher pressure, the upward 
force acts the object afloat in the fluids, so called buoyancy.  
The net buoyancy F is defined as F = ρVg where ρ is the 
density of ambient fluids, V is the volume of the object and 
g is the acceleration due to gravity (Fig. 1).  The force of 
buoyancy is thus equivalent to the weight of the displaced 
fluids of the object, i.e., the volume of the object, but not 
the weight and the density of the object (e.g., Hecht, 2005).  
Practically in obtaining the center-of-buoyancy of Nautilus 
animal, it is required in advance to replicate accurately the 
animal form using homogeneous material.  Due to the 
uniformity of the model mass, the center-of-buoyancy of 
the animal can be taken as the center-of-gravity of the 
model.

Procedure to determine the center of buoyancy 

Next step is to determine the center of buoyancy as the 
center-of-gravity out of the homogeneous model.  When an 
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Fig. 1　Schematic description of parameters of Nautilusʼs buoyancy.  Buoyancy F, which is defined by the multiplication of the density of 
ambient fluids, the volume of the object and the acceleration due to gravity are represented by ρ, V and g, respectively.  White arrows mean 
ambient fluids pressure.  Grey arrow means buoyancy F, which brings the animal vertically upward.  The magnitude F is equivalent to the 
weight of the displaced fluids of the animal form.

object in symmetric form has uniform density, the position 
of the center-of-gravity always lie on the symmetric line or 
plane.  We therefore prepared the model as to the lateral 
half of the animal with the flat median plane, and its 
center-of-gravity was projected on the median plane, termed 
here as CGM (the center of gravity of model; CGM).

For determining CGM on the median plane, we adopted 
the method that is based on the frictional and normal 
forces on two movable supports.  Prior to the determination, 
the smooth median plane is placed on two sticks so as to 
act as fulcrums of parallel lines.  In this configuration, in-
ferred CGM is located in the area between.  When the 
moment is applied on two sticks to make them closer to 
each other, the movement of stick that has a lower maximum 
static friction precedes that of one another.  Physically, 
frictional force f is calculated as f = µN where µ is the fric-
tion coefficient and N is the normal force.  Since the normal 
force N is upward force so that the fulcrum supports the 
overlying model, it increases toward the CGM.  If the ki-
netic friction of moving stick exceeds the static friction of 
one another, the former stick stops and alternatively the 
latter one starts to move at the same time.  Slowly bringing 
the two sticks close to each other finally results the confir-
mation of the balanced-line of the model, in which CGM 
is situated (Fig. 2; A to C).

The procedure is repeated at least three times, each of 
which differs in horizontal angle of stick directions around 

60 degrees to the previous experiment (Fig. 2; D).  As the 
CGM of the model must lie along all the balance lines, it is 
obvious that CGM is at the intersection of three lines (Fig. 
2).  The position of the point thus represents the center of 
buoyancy of Nautilus animal.

Reconfirming the method introduced in this study

Finally, we adopted the method introduced in the preced-
ing section into the L-shaped plaster object to determine 
its center-of-gravity (Fig. 3; Gcal).  The object is in the 
form of two rectangular parallelepipeds, bounded together.  
One of the parallelopipeds is 7 cm × 7 cm × 3.6 cm, and 
the other is 7 cm × 3.5 cm × 2.3 cm.  As the L-shaped 
object is in uniform density, we documented the projection 
of the center-of-gravity on the L-shaped plane of the object 
by calculation prior to the experiment.  The outcome of the 
actual determination is identical to the one in the calcula-
tion, thereby proving the effectiveness of this technique.  
The calculated projection is explained in the following 
procedure.

Firstly, the L-shaped plane is divided into two rectangles.  
Since there are two ways of dividing, we get two types of 
rectangle combination.  The two diagonal intersections of 
each combination are connected by a straight line (Fig. 3A, 
G1 to G2; 3B, G3 to G4).  The intersection of the two 
straight lines for the two rectangle combinations is the 
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Fig. 2　Phased procedure to determine the position of the center-of-gravity in plaster model of lateral half of Nautilus.  Dark gray arrow means 
normal force N.  White arrow means frictional force f.  CGM is the center of gravity of the model.  dA and dB represent the distance from 
CGM to stick L and R, respectively.  (A) When dL is longer than dR, fL becomes smaller than fR that ultimately brings stick L movable and 
vice versa (the condition shown in B).  (C) A joined two sticks on the balanced line (x) where CGM should be situated.  (D) Three times 
repetition of phases shown in A to C results in the intersection of three balance lines (x, y and z), which represents the center-of-gravity 
on the medial plane. 
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Fig. 3　The projection of the center-of-gravity of the L-shaped plane is calculated from the position of the center-of-gravity of rectangles that 
constitute the shape.  G1, G2, G3 and G4 are the center-of-gravity of each rectangle.  Gcal is the center-of-gravity of the L-shape plane.

projection of the center-of-gravity on the L-shaped plane 
(Fig. 3C; Gcal).  The processes and result of the actual 
determination adopting the method herein is shown in 
Figure 4.  Since the result in the calculation (Fig. 3; Gcal) 
and in the actual determination (Fig. 4; Gx) coincides with 
each other, it is adequate to follow the method introduced 
herein to determine the center-of-buoyancy in Nautilus as 
well as fossil chambered cephalopods.
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Fig. 4　The projection of the center-of-gravity of the L-shaped plaster object was determined (Gx).  Gcal is the predicted position of the center-
of-gravity required in calculation as shown in Fig. 3.  Adjoined two sticks on the balanced line (x, y and z) where the projection should be 
situated.  The intersection of the three balance lines is the projection of the center-of-gravity on the L-shaped plane (Gx).  The position of 
Gx and Gcal coincides with each other.
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