

マングローブ林堆積物における有機物とメタンの動 態

メタデータ	言語: jpn
	出版者:
	公開日: 2008-01-25
	キーワード (Ja):
	キーワード (En):
	作成者: 八巻, 美樹, 鈴木, 款, 宮坂, 均, 松井, 直弘
	メールアドレス:
	所属:
URL	https://doi.org/10.14945/00000390

マングローブ林堆積物における有機物とメタンの動態

八巻美樹¹・鈴木 款²・宮坂 均³・松井直弘⁴

Behavior of organic matter and CH₄ in mangrove sediment

Miki YAMAKI¹, Yoshimi SUZUKI², Hitoshi MIYASAKA³, and Naohiro MATSUI⁴

Abstract CH₄ is one of the most important greenhouse gas. In tropical and subtropical coastal region, mangroves are actively fixing CO₂ by photosynthesis and regarded as a significant CO₂ sink. On the other hand, it is known that mangrove sediment releases CH₄ to atmosphere. Due to O_2 deficiency in the sediment, which is caused by redundant supply of organic matter and seawater flooding the sediment. Although CH, released from natural wetland occupies 20% for all of CH₄ production, pathway and condition of the CH₄ production are still unclear. In this work, we study behavior of organic matter in mangrove sediment, in particular accumulation of organic matter and CH₄ release, at the mouth of Fukido River, Ishigaki Island, Okinawa Prefecture. Although pH was the optimum condition for methanogenesis bacteria (pH 6.4-7.4), redox potential was very high (+185 - +240mV). Total organic carbon in sediment was $6.2\pm2.7\%$ for sediment dry weight, which shows that this mangrove forest stores much abundant carbon in sediment. The CH4 release rate in vitro experiment was $118 \,\mu \, \text{mol} \, \text{m}^{-2} \text{day}^{-1}$. This value is negligible compared with total organic carbon reduction rate (2.1 mol m⁻² day⁻¹). This suggests that CH₄ produced by decomposition of organic matter is minor or that CH₄ is immediately oxidized in sediment.

Key Words: mangrove, methane flux, organic carbon

緒言

近年、二酸化炭素やメタンなど、温室効果ガスの大 気中での濃度上昇が懸念されている。その対策の一つ として, 生態系による二酸化炭素固定が挙げられ, 一

次生産速度の速い生態系としてマングローブ域が注目 されている.

マングローブとは、熱帯、亜熱帯の潮間帯に生息す る塩性植物の総称である(中村, 1998). マングローブ 植物は活発に光合成を行い二酸化炭素を有機物として

*静岡大学理学部生物地球環境科学科,〒422-8529 静岡市大谷836

¹Department of Biology and Geosciences, Shizuoka University, 836 Oya, Shizuoka, 422-8529 Japan

E-mail:r0815083@ipc.shizuoka.ac.jp(M.Y.)

²静岡大学理学部地球科学教室 〒422-8529 静岡市大谷836

²Institute of Geosciences, Shizuoka University, 836 Oya, Shizuoka, 422-8529 Japan

E-mail:seysuzu@ipc.shizuoka.ac.jp(Y.S.)

*関西電力株式会社総合技術研究所環境技術研究センター,〒661-0974 尼崎市若王寺3丁目11番20号

³Environmental Research Center, Technical Research Center, The Kansai Electric Power Company, Inc., 11-20 Nakaoji 3-chome, Amagasaki, Hyogo, 661-0974 Japan E-mail:K448482@kepco.co.jp(H.M.)

·株式会社関西総合環境センター、〒541-0052 大阪市中央区安土町1丁目3番5号

³Kansai Environmental Engineering Center Co., Inc., Azuchimachi 1-3-5, Chuo-ku, Osaka, 541-0052 Japan E-mail:matsui_naohiro@kanso.co.jp(N.M.)

固定するため、二酸化炭素の吸収源として注目されて いる. また. マングローブ植物が生産した有機物や, その分解産物である栄養塩類は潮流によって海洋へと 輸送され,海洋生態系の生産性を活性化させるため, 温暖化対策を講じる上で非常に重要な生態系であると 言える.しかしマングローブ域の堆積物中からはメタ ンが放出される可能性が指摘されている(Lu et al., 1999). マングローブ植物が生産した有機物が堆積物表 面へと供給され好気呼吸を促進し、また、海水が浸入 して堆積物への酸素供給を遮断するため、堆積物中の 酸素濃度が減少し、嫌気呼吸によるメタン生成が起こ る、メタンは二酸化炭素以上の温室効果能力をもつ気 体である、自然湿地からのメタン放出量は地球全体で のメタン放出量の22%を占めることが報告されている が(Watson et al., 1992), メタンの生成機構や生成条 件,大気への放出速度は完全に解明されていない.マ ングローブ域においてもメタン生成に関する研究例は 少なく, Barber et al. (1988), Harriss et al. (1988), Sotomayor et al. (1994), Lu et al. (1999) で報告さ れているのみである.

メタンの生成反応においては、ギ酸、酢酸、エタノー ルなどの低分子有機物が基質として利用される.加え て、有機物分解により生成されるCO₂やH₂も基質とし て利用されるため、堆積物中の有機物濃度はメタン生 成を支配する重要な因子であるといえる(八木、1994). また、pHや温度はメタン生成菌の生育に影響を与える ため、堆積物の化学的環境もメタン生成を左右する因 子の一つである.本研究はマングローブ域の炭素循環 を明らかにするため、特に有機物の動態に着目し、堆 積物中の有機物現存量とメタンの生成に関して考察す ることを目的とする.

方法

現地観測·観測地点

観測及び堆積物試料の採取は、2000年11月9日から15 日と2001年9月10日から16日に沖縄県石垣島の吹通川河 ロ域のマングローブ林で行った。石垣島は北緯24°30'、 東経124°25'に位置する。マングローブ域の面積は12.3 ×10'㎡で、日本におけるマングローブ自生地で最も大 きなものの一つである(日本海洋開発産業協会、2001). 観測地点は川岸から内陸側に向かってSt.1, St.2, St.3, St.4と一直線上に設置した(図1). St.1はマングローブ 域の最も川側の木の根元, St.2, St.3, St.4のSt.1から の距離はそれぞれ30m, 150m, 180mである。構成樹種 はSt.1ではヤエヤマヒルギ(*Rhizophora stylosa*)のみ, St.2, St.3, St.4ではヤエヤマヒルギが大半で一部にオ

図1 吹通川河口域における調査位置図.

Fig. 1 Study location in Fukido river, Ishigaki Island.

ヒルギ(Bruguiera gymnorrhiza)が点在する. なお, 全 ての観測, サンプリングは干潮時に行った. St.1, St.2, St.3は干潮時には堆積物表面が完全に露出していたが. St.4は干潮時でも数cm冠水しているのが確認された.

サンプリング方法

サンプリングは日中の干潮時に行った. 堆積物は長 さ50cm, 内径3.6cmのアクリルパイプまたは長さ50cm, 内径3.0cmの塩ビパイプを堆積物に垂直に挿し, 両端に ゴム栓をして堆積物から取り出した. 採取した堆積物 は直ちに東亜電波製HM-21Pを堆積物表面に直接差し込 んで温度, pH, 酸化還元電位を深さ10cmまでは1cm間 隔で, それ以深は2cm間隔で深さ30cm前後まで測定し た.酸化還元電位はHM-21Pの測定値に, 温度による補 正値を足して算出した.

堆積物中の有機炭素量,有機窒素量測定用のサンプ ルは内径3.0cmのアクリルパイプで採取し,深さ10cm までは1cm間隔で,それ以深は2cm間隔で切り分け,冷 凍保存した.このサンプルは測定直前に100℃で24時間 乾燥させ(横田,1996),住化分析センター社製SUMIG RAPH NC-90Aを用い,高温酸化法で測定した.標準 試料を用いて測定精度を求めたところ,2%であった.

室内実験

メタンの生成速度を求める室内実験の模式図を図2 に示す. St.1周辺で採取した深さ10cmまでの堆積物と 海水を、体積131のポリカーボネート製容器に入れて密 封し,室温で研究室まで輸送した,輸送期間中,温度 の変化や堆積物の撹乱により内部環境が変化している 可能性があったため、20℃、暗条件で3ヶ月間静置した。 メタン採取用のチャンバーとして、内径9.4cm、長さ20 cmのアクリルパイプにアクリル板のふたを接着したも のを堆積物の深さ11cmまで差し込んだ. このチャンバー 内の気相を、アクリル板に取り付けたゴム栓を通して 2.5mlのガスタイトシリンジで採取し、FID検出器を装 着した島津製作所製SHIMADZU GC-14Bでメタンの濃 度を測定した、また、チャンバー外の堆積物を内径2.6 cm. 長さ30cmのアクリルパイプで採取し、100℃で24 時間乾燥させた後,SUMIGRAPH NC-90Aで有機炭素 量を測定した.

図2 室内実験模式図.

Fig. 2 Schematic illustration of sediment incubation system.

表1 堆積物各深度の温度, pH, 酸化還元電位の平均值. Table 1 Average values of temperature, pH and redox potential in sediments.

	St.1	St.2	St.3	St.4
Temperature(°C)				
Nov.2000	24.8±0.1	24.7±0.2	24.1 ± 0.2	23.8±0.3
Sep.2001	26.8 ± 0.3	-	-	27.0 ± 0.2
pН				
Nov.2000	6.9±0.1	6.8 ± 0.2	6.5 ± 0.1	6.6±0.2
Sep.2001	7.1 ± 0.1	-	6.7±0.2	7.1±0.3
ORP(mV)				
Nov.2000	194.8±9.0	214.9 ± 12.5	234.3 ± 5.8	225.8 ± 10.0
Sep.2001	204.2±5.2		221.3 ± 9.6	202.1±9.5

結果

現地観測結果

温度, pH, 酸化還元電位

温度, pH, 酸化還元電位を表1に示す. 値は各測点 の深さ0cmから50cm前後までの平均値とその標準偏差 とした. 2001年9月は一部のデータを欠損した. 温度は 2000年11月の結果では、川から離れるほど低くなる傾 向があった. 2001年9月では、St.1, St.4の差はわずか である. pHの平均値は6.5から7.1で、いずれもメタン 生成菌の活動にとって最適とされるpH6から8(滝井, 1995)の範囲内であった. 酸化還元電位は2001年のSt.3 は温度のデータがないため、2001年St.1, St.4の全ての データの平均温度を補正値として算出した. 全測点に おいて+185mVから+240mVと高い値であり、堆積物 が酸化的環境であることが示唆される.

全有機炭素量

全有機炭素量TOCの堆積物中における鉛直方向の分 布を図3に示す. なおTOCは堆積物乾燥重量に対する 全有機炭素の重量パーセント濃度である. St.1, St.2に おいては深度を通して一定の値を示す. 一方. St.3は, 2000年11月では減少, 2001年9月では増加の傾向が, St. 4では深さとともに減少する傾向がある. 水平方向には, 川から離れるほどTOCが蓄積されていることがわかる. これは川から離れマングローブ林の奥に行くほど、干 潮時の潮流がマングローブ植物の気根に遮られ, 堆積 物表面の落葉などが林外へ流出しにくくなるためと考 えられる.

全有機窒素量

全有機窒素量TON濃度の堆積物中における鉛直分布 を図4に示す.TONは堆積物乾燥重量に対する重量パー セント濃度である.TONは2000年11月,2001年9月どち らの観測でも,TOCと同じ傾向が認められた.すなわ ち,St.1,St.2では深度であまり変動がなくほぼ一定, St.3は2000年11月には減少,2001年9月では深度毎の変 動が大きく,St.4では両年とも減少傾向を示す.TON の水平方向の分布は,TOCと同様川から離れるほど高 い値が見られた.

C/N比

C/N比の堆積物中における鉛直方向の分布を図5に 示す.St.1,St.2では2000年11月は深度による変動が大 きく明確な傾向は見られないが、2001年9月ではほぼ一 定であまり変動しない.St.3では2000年11月は深さと ともに増加傾向を示すが、2001年9月はほとんど変化し ない. St.4では2000年11月の10cm以深で急激に増加し ているが、2001年9月ではあまり大きく変動せずわずか に上昇している.水平方向には、川から離れるほど低 下する傾向が見られた.前述の通り、川から離れた地 点では堆積物が蓄積されやすく、新鮮でC/N比の低い 有機物が多いことがわかる.

室内実験(メタン放出速度及びTOC減少速度)

チャンバー気相中のメタン濃度の時間変化を図6に 示す.メタン濃度は実験開始後5日目までは減少し、そ の後は増加に転じた、5日目以降25日目までの値を用い て、堆積物から気相へのメタン放出速度を求めたとこ ろ、118 μ mol・m⁻²・day⁻¹となった、また、実験中の TOC量の時間変化を図7に示す、実験開始から減少す る傾向が見られ、その減少速度は2.1mol・m⁻²・day⁻¹ であった。

考察

現地の環境

温度, pH, 酸化還元電位

メタン生成、制御の要因として、八木(1994)は温度、 pH,酸化還元電位。有機物濃度,硫酸還元菌との競合 などを挙げている。温度、pHはメタン生成菌の生育に 影響し、多くのメタン生成菌にとって最適な温度は20 ℃から30℃、最適なpHは6から8とされている。Wang et al.(1993)の室内実験では、酸化還元電位が-150mV 程度まで低下するとメタン生成が始まり、-230mVまで は対数的に増加することが示された。本研究の温度. pHはメタン生成菌に適した値であったが、酸化還元電 位は+185mVから+240mVと高い値であった. マング ローブ林では、マングローブ植物が根から酸素を放出 しているため、酸化還元電位は高くなる傾向がある (Alongi et al., 2000). しかし, 酸化還元電位の測定 は干潮時に行われている.水位は堆積物中の酸化還元 電位を決定する重要な要因である。干潮時には直上水 がなくなり堆積物へと酸素が供給されて高い酸化還元 電位を示すが、満潮時には大気からの酸素供給が絶た れ酸化還元電位は低下する。本研究は酸化還元電位の 測定を干潮時にのみ行ったため、満潮時の値は不明で ある、これらの地点がメタン生成の条件を満たしてい る可能性については、今後満潮時においてデータを採 取し、検討する必要がある.

有機物量

過去の研究例における、堆積物中の全有機炭素(TOC) 量とC/N比を表2に示す。本研究の値は2000年11月。 2001年9月の観測全ての平均値を示している。マングロー ブ域の堆積物中には、他の生態系と比較して有機物が 豊富に蓄積されていることがわかる.マングローブ域 は熱帯、亜熱帯性気候の地域にあり、高い一次生産能 力を持つ.また,陸上植物は一般に,海水中の植物プ ランクトンのC/N比が6から7と低いのに対し, Schlesinger & Lichter (2001)のマツ林での報告(C/N 比42.7±1.1)が示すように非常に高いC/N比の有機物を 生産することが知られている。これらの有機物は堆積 物中で分解され、さらにC/N比は高くなる、二酸化炭 素固定能力を議論する上で、堆積物中の有機物のC/N 比は重要である. 二酸化炭素固定に貢献するには, 生 産された有機物のうち有機窒素のみが速やかに分解さ れて栄養塩類へと再生され,炭素は有機物のまま堆積

図3 堆積物中における全有機炭素(TOC)の鉛直分布. Fig. 3 Vertical distributions of total organic carbon (TOC) concentrations in sediments.

図5 堆積物中におけるC/N比の鉛直分布.

Fig. 5 Vertical distributions of molar C/N ratio in sediments.

Fig. 7 Variation of total organic carbon (TOC) concentration in incubation system.

表2 堆積物中における全有機炭素(TOC)量の比較.

Table 2 Comparison of total organic carbon (TOC) concentration in sediments of selected ecosystems.

study site	TOC (%)	C/N ratio	
marine sediment, Gulf of Mexico	0.6	-	杉村, 1972
coastal marine sediment, Gulf of Mexico	1.3	-	杉村, 1972
pine forest, North Carolina	1.31 ± 0.07	18.09±0.91	Schlesinger & Lichter, 2001
seagrass bed, Aburatubo Bay	0.87 ± 0.29	27.1 ± 4.1	古田, 2002MS
mangrove forest, Papua New Guinea	1.1-3.0	6-40	Alongi et al., 1993
mangrove forest, Vietnam	1.55-8.13	19	Alongi et al., 2000
mangrove forest, Australia	5.8-13.4	35	Alongi et al., 1998
mangrove forest, Fukido	6.2 ± 2.7	57.3±25.7	this study

表3 堆積物中におけるメタン生成速度の比較.

 Table 3 Comparison of methane productions from sediments of selected wetlands.

study site CH ₄ F	roduction rate ($\mu \operatorname{mol} \cdot \operatorname{m}^{-2} \cdot \operatorname{day}^{-1})$
salt marsh, North Carolina	9.98	Kelly et al., 1995
salt marsh, Georgia	143.6	King et al., 1978
rice paddy, Italy	159.7	Schutz et al., 1989
rice paddy, China	63.5	Shangguan et al., 1993
peatland, Minesota	93.5	Williams & Crawford, 1984
lake Washington, USA	40.8	Kuivila et al., 1989
lake Mendta, USA	1130	Phelps & Zeikus, 1985
mangrove forest, Florida	18.7	Harris et al., 1988
mangrove forest, Puerto Rico	18.7	Sotomayor et al., 1994
mangrove forest, Fukido	118	this study

物中に蓄積される必要がある.本研究では吹通川マン グローブ域の堆積物中にC/N比が高い有機物が豊富に 存在し、炭素が効率よく蓄積されている可能性を示唆 している.

メタン放出と有機物分解

堆積物中におけるメタン生成速度は様々な生態系で 測定が行われている.これまでの研究例を本研究の結 果とともに表3に示す.本研究の値は、メタン生成速 度からメタン酸化速度を差し引いたメタン放出速度と なっている. 海底堆積物中では硫酸還元菌が,豊富に存在する硫酸塩を利用して活発に有機物分解を行っている.硫酸還元菌はメタン生成菌と同じ基質を利用しメタン生成 菌と競合関係にあるため(堀ほか,1993),海水が浸入 するマングローブ域や塩性湿地では反応の基質となる 有機物が豊富でもメタン生成は抑制されている.本研 究の値118μmol・m⁻¹・day⁻¹も淡水域と比較するとそ れほど高い値ではないが,嫌気的メタン酸化の速度が 差し引かれていると考えられるため,この値よりも生 成速度は高くなる可能性がある.

本研究での値は吹通川の一測点のみでの結果であり,

また、実験期間が非常に長かったため微生物層が現地 と異なっている可能性が高く、現地の環境を正確に反 映しているとは言えないが、マングローブ域が潜在的 には高いメタン生成能力を持つことを示唆している.

TOCの減少速度は2.1mol・m⁻²・day⁻¹, メタン放出 速度は118µmol・m⁻²・day⁻¹であり, メタン放出速度 はTOC減少速度の5.5×10⁻³%であることがわかる. TOC減少速度がメタン放出速度を大きく上回った理由 としては, 嫌気的メタン酸化または, 硫酸還元反応, 脱窒反応など他の分解過程による有機物分解が考えら れる. 硫酸塩を多量に含む海底堆積物中では, 硫酸還 元と共役した嫌気的メタン酸化が起こることが知られ ている. 今研究の実験では嫌気的メタン酸化の可能性 に加えて, 硫酸還元菌, 脱窒菌などとメタン生成菌と の有機物をめぐる競合も考えられ, 大気中のメタンへ と移行する有機物が少なくなっていると推測される.

まとめ

現地観測の結果から、吹通川マングローブ域の堆積 物中には、有機炭素量は2.5%~12.2%、有機窒素量は 0.04%~0.35%、C/N比は23.8~101.2であり、他の生態 系と比較してC/N比が高い有機物が豊富に蓄積され、 炭素が効率よく蓄積されていることが判明した。

室内実験においては、有機炭素減少速度が2.1mol・ m⁻²・day⁻¹であったのに対し、メタン放出速度は118 µ mol・m⁻²・day⁻¹であったことから、堆積物中では硫 酸還元菌などによるメタン生成の阻害、または嫌気的 メタン酸化が起こっていることが考えられる。室内実 験の結果は完全に現地の環境を反映しているとは言え ないが、吹通川マングローブ域が他の生態系よりも高 いメタン生成能力を持つ可能性が示唆された。

謝辞

本研究を進めるにあたり,佐々木眞氏に石垣島の観 測で多大なご協力を頂いた. 林雅人, 篠村理子, 山本 泰弘, 羽川貴弘の各氏には観測中に助言, 手助けをし て頂いた. ここに深く感謝の意を表する. また, 参考 資料の収集などを手伝って頂いた石川義朗氏, 黒澤勝 彦氏, 静岡大学理学部地球科学教室鈴木研究室の学生, 院生の皆様に重ねて深く感謝し御礼申し上げる.

引用文献

- Alongi D. M., Ayukai T., Brunskill G. J., Clough B. F. & Wolanski E. (1998), Sources, sinks, and export of organic carbon through a tropical, semienclosed delta (Hinchinbrook Channel, Australia). *Mangroves and Salt Marshes*, 2, 237-242.
- Alongi D. M., Christoffersen P. & Tirendi F. (1993), The influence of forest type on microbial-nutrient relationships in tropical mangrove sediments. *Journal Experimental Marine Biological Ecology*, 171, 201-223.
- Alongi D. M., Tirendi F., Trott L. A. & Xuan T. T. (2000), Benthic decomposition rates and pathways in plantations of mangrove *Rhizophora apiculata* in the Mekong Delta, Vietnam. *Marine Ecology Progress Series*, **194**, 87-102.

Barber T. R., Burke, R. A., & Sackett W. M. (1988),

Diffusive flux of methane from warm wetlands. Global Biogeochemical cycles, 2, 411-425.

- 古田朱理(2002MS),沿岸域海草藻場における溶存態有機 炭素・窒素の動態.静岡大学理学部卒業論文,50p.
- Harris R. C., Sebacher D. I., Bartlett D. S. & Crill P. M. (1988), Sources of atmospheric methane in the south Florida environment. *Global Biogeochemical Cycles*, 2, 231-241.
- 堀 謙三・犬伏和之・松本 聴・和田秀徳、(1993)、水田 土壤におけるメタン生成と硫酸還元の水素をめぐる競 合の程度、日本土壤肥料学会雑誌、64、363-367.
- Kelly C. A., Marten C. S. & Ussler W. I. (1995), Methane dynamics across a tidally flooded riverbank margin. *Limnology and Oceanography*, 40, 1112-1129.
- King G. M. & Wiebe W. J. (1978), Methane release from soils of a Georgia salt marsh. Geochimica et Cosmochimica Acta, 42, 343-348.
- Kuivila K. M., Murray J. W. & Devol A. H. (1989), 水界堆積物におけるメタン生成とその支配因子. 微生 物のガス代謝と地球環境(松本 聴編), 学会出版セン ター,東京, 101-119.
- Lu C. Y., Wong Y. S., Tam N. F. Y., Ye Y. & Lin P. (1999), Methane flux and production from sediments of a mangrove wetland on Hainan Island, China. Mangroves and Salt Marshes, 3, 41-49.
- 中村武久(1998),マングローブ入門,マングローブ入門-海に生える緑の森(中村武久・中須賀常雄編),株式会 社めこん,東京,9-58.
- 日本海洋開発産業協会(2001),マングローブ群落のCO₂吸 収量と炭素貯蔵量の長期・広域評価手法の検討,プロ グラム方式二酸化二酸化炭素固定化・有効利用技術開 発マングローブ等熱帯沿岸生態系の修復・保全による 地球温暖化ガス回収・放出抑制評価技術の開発,新エ ネルギー・産業技術総合開発機構,東京,220p.
- Phelps T. J. & Zeikus J. G. (1985), 水界堆積物におけ るメタン生成とその支配因子. 微生物のガス代謝と地 球環境 微生物の生態20(松本 聴編), 学会出版セン ター, 東京, 101-122.
- Schlesinger W. H. & Lichter J. (2001), Limited car bon storage in soil and litter of experimental forest plots under increased atmospheric CO₂. Nature, 411, 466-469.
- Schütz H., Holzapfel-Pschorn A., Rennenberg H., Seiler W. & Conrad R. (1989), A 3-year continuous record on the influence of daytime, season, fertilizer treatment on methane emission rates from an Italian rice paddy. Journal of Geophysical Research, 94, 405-416.
- Shangguan X. J., Wang M. X., Chen D. Z. & Shen R. X. (1993), Methane production in rice paddy fields (in Chinese). Advance in Earth Science, 8, 1-12.
- Sotomayor D., Corredor J. E. & Morell J. M. (1994), Methane flux from mangrove sediments along the southwestern coast of Puerto Rico. *Estuary*, 17, 140-147.
- 杉村行勇(1972),海底堆積物の構成要素.海洋科学基礎講 座12堆積物の化学(三宅泰雄編),東海大学出版会,東 京,103p.
- 滝井 進(1995),水界堆積物におけるメタン生成とその支 配因子.微生物のガス代謝と地球環境 微生物の生態 20(松本 聰編),学会出版センター,東京,101-122.
- Wang Z. P., Delaune R. D., Masscheleyn P. H. & Pat rick W. H. (1993), 土壤中でのメタン生成. 土壤圏

と大気圏-土壌生態系のガス代謝と地球環境(陽 捷

行編),朝倉書店,東京, 61-65. Watson R. T., Meila Filho L. G., Sanhueza E. & Janetos A. (1992), 生物圏におけるメタンの循環.土 壌圏と大気圏-土壌生態系のガス代謝と地球環境(陽 捷行編),朝倉書店,東京,59-61.

Williams R. T. & Crawford R. L. (1984), Methane production in Minnesota peatlands. Applied and

Environmental Microbiology, 47, 1266-1271.

- 八木一行(1994)、土壌中でのメタン生成.土壌圏と大気圏-土壌生態系のガス代謝と地球環境(陽 捷行編),朝倉 書店, 東京, 61-65.
- 横田喜一郎(1996), 底質の採取. 最新の底質分析と化学動 態(寒川喜三郎・日色和夫編),技報堂出版,東京,1-25.