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Abstract

The spread of H5N1 virus to Europe and continued human infection in
Southeast Asia have heightened pandemic concern. Although, fortunately,
sustained human-to-human transmissions have not been reported yet, it is
said that a pandemic virus which can be easily transmitted among humans
certainly emerges in the future. In this study, we extended the previous
studies for the prevention of the pandemic influenza to evaluate the time-
dependent optimal prevention policies, which are associated with elimination
policy and quarantine policy, considering its execution cost. Actually, the
execution cost affects the optimal strategy of prevention policies and the pre-
vention of the disease spread. We found that the quarantine policy is very
important rather than the elimination policy during the disease spread, even
if the unit execution cost of the quarantine policy is more expensive than that
of the elimination policy. And also, the change of the unit execution cost does
affect the total cumulative cost of the optimal prevention policies but does not
affect the relative frequency of each cumulative execution cost. Furthermore,
interestingly, we revealed that an optimal strategy to reduce the number of
total infected humans might increase a chance of invadability of the mutant
influenza.
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1 Introduction

Preparedness for a possible influenza pandemic caused by highly pathogenic avian in-

fluenza A subtype H5N1 has become a global priority [40, 42, 48]. The spread of the

virus to Europe and continued human infection in Southeast Asia have heightened

pandemic concern [5]. Although, fortunately, sustained human-to-human transmis-

sions have not been reported yet (except for a few cases caused by close contacts

within household [26, 35, 40]), it is said that a pandemic virus which can be easily

transmitted among humans (i.e., mutant avian influenza) certainly emerges in the

future [12, 35, 40]. Therefore, the WHO recommends that all countries undertake

urgent action to prepare for a pandemic influenza.

The US General Accounting Office estimated the human consequences of a pan-

demic of influenza in the US. These consequences includes 200, 000, 000 Americans

infected, 90, 000, 000 clinically ill and 2, 000, 000 dead. The study also estimates

that 30% of all US workers would become ill and 2.5% would die, with 30% of

workers missing a mean of 3 weeks of work, and a subsequent decrease in the US

Gross domestic product of 5% [35]. Thus, influenza produces several costs due to

lost productivity and associated medical treatment, as well as execution costs of

preventative policies [14, 35, 38]. Actually, in the US, influenza is responsible for a

total cost of over 10 billion per year and further it has been estimated that a future

pandemic could cause hundreds of billions of dollars in the above costs [32]. In par-

ticular, the costs associated with vaccination, elimination of birds, hospitalization,

quarantine of persons, transport restriction and so on can be great.

To project the potential economic impact of pandemic influenza mitigation strate-

gies, we consider optimal control strategies associated with elimination policy and

quarantine policy including execution costs based on previous model in [15, 16, 17].

The optimal control theory, which was developed by Pontryagin and his co-workers

in the late 1950s, has been applied to many areas including economics, management,

engineering, biology, physiology, and medicine [10, 18, 19, 20, 22, 24]. We introduce

two control mechanisms in the model: one is the effort of the elimination policy for

infected birds and the other is the effort of the quarantine policy for infected hu-

mans. In our system, the elimination control is manipulated in the term of the force

of infection by infected birds with wild avian influenza and the quarantine control

is manipulated in the term of the force of infection by infected humans with mutant

avian influenza. We found that the quarantine policy is very important rather than

the elimination policy during the disease spread, even if the unit execution cost of

the quarantine policy is more expensive than that of the elimination policy. And
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also, the change of the unit execution cost does affect the total cumulative cost of

the optimal prevention policies but does not affect the relative frequency of each

cumulative execution cost. Furthermore, interestingly, we revealed that an optimal

strategy to reduce the number of total infected humans might increase a chance of

invadability of the mutant influenza.

2 Materials and Methods

Recent outbreaks of emerging infectious diseases such as SARS and H5N1 avian

influenza have underlined the fact that the infectious disease of wild animals might

acquire the ability to spread efficiently among the humans [2]. Therefore, in order

to capture an essence of invasion and transmission of avian influenza, we consider

both bird and human worlds.

2.1 Mathematical model

Herein, we describe a combination model with avian influenza transmission dynam-

ics among birds and humans including execution costs of time-dependent elimination

and quarantine policy after the occurrence of mutant avian influenza. Our mathe-

matical model is given by the following equations:

X ′ = c − bX − (1 − u1(t))ωXY,

Y ′ = (1 − u1(t))ωXY − (b + m)Y,

S ′ = λ − µS − β1Y S − (1 − u2(t))β2HS,

B′ = β1SY − (µ + d1)B,

H ′ = (1 − u2(t))β2SH − (µ + d2)H.

(1)

All birds and humans in the effective population are divided into several compart-

ments, respectively including susceptible birds (X), birds infected with wild avian

influenza (Y ), susceptible humans (S), humans infected with wild avian influenza

(B), and humans infected with mutant avian influenza (H). The parameters c and λ

are the rates of birth for birds and humans, respectively. Birds and humans die from

the natural causes at the rates b and µ, respectively. Furthermore, m and d1 are

the death rates inflicted by wild avian influenza and d2 is the additional death rate

induced by mutant avian influenza (i.e., d1 and d2, respectively, represent a virulence

of the wild and mutant strain). Here we mention that the effect of recovery from

the infection is not considered (i.e., we assume that the infection is fatal) because

we are interested in the worst situation of the pandemic (in [17], we consider the
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effect of recovery in detail). The parameters ω and β1 are the rate at which wild

avian influenza is contracted from an average infected bird, β2 is the transmission

rate of mutant avian influenza among humans.

We remark that the transmission of wild avian influenza for humans is restricted

from birds to humans (wild avian influenza is just transmitted directly from birds

to humans [4, 43, 44, 50]) but mutant avian influenza can be transmitted among

humans. Actually, the mutant avian influenza has not emerged yet but many experts

expect the emergence, and therefore, we consider the situation after the emergence

of the mutant (see [16, 17] for more detailed explanation).

Here the control functions, u1(t) and u2(t), are bounded, Lebesgue integrable

functions. The coefficient with “elimination control”, u1(t), is the effort to reduce

the number of infected birds (we simply assume that a decrease of ω leads to reducing

the number of infected birds because we obtain qualitatively similar results even if

the elimination control is modeled by different way). The “quarantine control”,

u2(t), represents the effort to reduce the number of contacts with humans infected

with mutant avian influenza. For example, when the quarantine control u2 is large,

there is low infective contacts rate and high implementation costs. Note that the

controls, u1(t) is bounded in [0,1] and u2(t) is bounded in [0,a], where 0 < a < 1.

The upper bound a is determined by the basic reproduction number of mutant avian

influenza R0 (see Epidemiological scenarios).

In [15, 16, 17], we investigated the effect of time-independent prevention policies

at the final phase of mutant avian influenza spread (i.e., equilibrium state) without

an execution cost. In this paper, we investigate how we should time-dependently

execute the prevention policies in order to minimize the number of total infected hu-

mans (B(t)+H(t)) keeping total cost of the policies (cumulated values of execution

costs of both policies for total days) low during the spread. The time-dependent

optimal prevention policies can be obtained by minimizing the following objective

functional:

J(u1, u2) =

tf∫
0

[B(t) + H(t) +
B1

2
u2

1(t) +
B2

2
u2

2(t)]dt. (2)

The costs of the elimination and quarantine policies are nonlinear and take quadratic

forms. Here the coefficients B1 and B2, respectively, represent balancing cost factors

due to size and importance of the other three parts of the objective functional.

Therefore, for example, large (small) values of B1 and B2 imply expensive (cheap)

unit execution costs of elimination and quarantine policies because B1u
2
1/2 and

B2u
2
2/2 become large (small).
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Our goal is to find an optimal control pair, u∗
1(t) and u∗

2(t), such that

J(u∗
1, u

∗
2) = min

Ω
J(u1, u2), (3)

where Ω = {(u1, u2) ∈ L1(0, tf ) | 0 ≤ u1 ≤ 1, 0 ≤ u2 ≤ a}. We use Pontryagin’s

Maximum Principle [21, 39] to solve the optimal control problem and fix tf = 365.

The analysis of the optimal control problem is referred to Appendix B.

2.2 Basic reproduction numbers

A measure of transmissibility and of the stringency of control policies required to

stop an epidemic is the basic reproduction number, which is the number of secondary

cases produced by each primary case [1]. We obtain two basic reproduction numbers,

r0 for infected bird with wild avian influenza and R0 for infected human with mutant

avian influenza, by model (1) without the prevention policies (i.e., u1 = u2 = 0).

Here we define

r0 =
ω

b + m

c

b
, R0 =

β2

µ + d2

λ

µ
.

However, for mutant avian influenza we are unable to describe adequately the spread

of the infection by applying these usual basic reproduction numbers. The reason

is that avian influenza is already endemic, particularly in Asian poultry [3, 46, 49].

This implies that some portion of humans have already been infected with wild avian

influenza and are dead (and some portion have cross-immunity to mutant avian in-

fluenza in the extended model which includes a possibility of recovery) after avian

influenza is endemic among birds (note that, in the case of basic reproduction num-

bers, all humans are susceptible). We can define an invasion reproduction number

for the mutant strain of avian influenza,

R̄0 =
β2

µ + d2

λ

µ + β1(c/(b + m) − b/ω)
,

which means an expected number of new infectious cases after avian influenza be-

comes endemic among birds (i.e., after r0 becomes larger than 1). Thus, R̄0 can

capture the real situations and the essence of the spread of mutant avian influenza.

The dynamical behavior of our model are completely classified by these basic and

invasion reproduction numbers. The detailed explanations are given in Appendix

A.

2.3 Estimation of epidemiological parameters

Baseline values of model parameters used for simulations are presented in Table 1.

These parameters are based on previous epidemics among birds (the H5N1 2004
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epidemic [13, 43, 44]) and influenza pandemics among humans (the H1N1 1918-1919

pandemic [6, 7, 27, 30, 36, 47]).

Estimated basic reproduction numbers of infected birds during the 2004 epidemic

range from 1.71 to 5.00 [44]. Here we use a relatively small basic reproduction

number r0 = 1.86. An initial bird population size is assumed to be c/b = 5.00× 102

individuals. Usually mean lifespan of poultry is about 2 years, but we consider that

the mean duration of bird being in effective population is about 1/b = 100 days

because of migration or marketing. Therefore, birth or restocking rate of birds are

c = 5 individuals per day. Because estimated mean infectious periods of infected

birds range from 5 to 17.6 [29, 41, 44], we assume that the mean infectious period is

about 1/m = 10 days (i.e., m = 0.10 day−1). Now we can estimate that transmission

rate of the wild strain among birds is ω = 4.10 × 10−4 day−1individual−1.

On the other hand, well-known estimated 1918-1919 pandemic basic reproduction

numbers vary very widely, ranging from 1.2 to 20 [6, 7, 27, 30, 36, 47]. Here the

basic reproduction number is assumed to be R0 = 3.79 which is relatively large. An

initial human population size is set in λ/µ = 1.00 × 103 individuals. We assume

that mean duration of humans being in the effective population is about 1/µ = 365

days (mean lifespan of human is about 60 years) because of rapid human migration,

transportation and so on. This implies that birth or immigration rate of humans

are λ = 2.7 individuals per day. And also, it is considered that estimated mean

infectious period of infected humans with wild avian influenza are distributed on

range from 6 to 30 days [23, 50]. However, the expected virulence of a mutant of

H5N1 causing pandemic is uncertain, which means that the mutant strain may be

more or less virulent than the wild strain [1, 4]. Therefore we have to consider

the situations of both higher and lower virulence cases. We assume that the mean

infectious period of wild and mutant avian influenza are, respectively, 1/d1 = 10

days and 1/d2 = 14 days for “lower virulence case (d1 > d2)” (the virulence of

wild and mutant avian influenza virus are d1 = 0.1 day−1 and d2 = 0.07 day−1).

In addition, we consider d1 = 0.04 day−1 as a “higher virulence case (d1 < d2)”.

Now we can estimate that transmission parameter for the mutant strain among

humans is β2 = 2.80 × 10−4 day−1individual−1. Furthermore, we assume that the

transmission rate of the wild strain among humans (i.e., from infected birds to

susceptible humans: the transmission rate between species, in general, seems to be

smaller than one within species) is β1 = 2.00 × 10−4 day−1individual−1.
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2.4 Epidemiological setting

We have mentioned that wild avian influenza is already endemic among birds [3,

46, 49]. Therefore, we must conclude that, unless a policy aimed at reducing r0 is

applied, r0 > 1 holds among birds. On the other hand, although there is no evidence

of sustained human-to-human transmission yet [26, 50], we have to consider the

situation that mutant avian influenza can effectively spread. Therefore, we have to

conclude that, unless a policy aimed at reducing R̄0 is applied, R̄0 > 1 holds among

humans. Thus we are interested in and assume the case (iv) in Theorem A 2 to apply

optimal control theory (note that our baseline parameter values are satisfied with

the case (iv)). Furthermore, because some portion of birds and humans have already

been infected with wild avian influenza or are dead, we assume that X(0) = 268,

Y (0) = 21, S(0) = 397, B(0) = 16 and H(0) = 1 (these values are chosen from

near the steady state, for the appropriate parameter values in Table 1, that wild

avian influenza has been spread through the bird and human population (i.e., E∗ in

Appendix A)).

2.5 Control setting

During the optimal of prevention policies, the basic reproduction numbers can be

rewritten as follows:

r∗0(t) =
ω(1 − u∗

1(t))

b + m

c

b
, R∗

0(t) =
β2(1 − u∗

2(t))

µ + d2

λ

µ
.

The optimal elimination and quarantine policies, u∗
1(t) and u∗

2(t), decrease the value

of r∗0(t) and R∗
0(t), respectively. However, in the real life situation, we can hardly

expect that the quarantine policy reduces R∗
0(t) to the value less than 1 (although

the elimination policy is relatively easy to execute and has succeeded in some regions

[41, 45, 51]). Therefore, we assume that, for the quarantine policy, the reduced value

still satisfies R∗
0(t) > 1, which implies that

R∗
0(t) > 1 ⇐⇒ u∗

2(t) < 1 − 1

R0

= a.

Thus, we set the upper bound a of control function u2 (since R0 = 3.79 in Table

1, we can determine the upper bound a = 0.74). Actually, if R∗
0(t) < 1 could be

realized, the optimal policies effectively prevent the disease spread (simulations are

not shown). And also, we assume the balancing factor B2 associated with control u2

is bigger than B1 associated with a control u1 because to restrict human activity is

more difficult than to eliminate infected birds. Although the weight of unit execution
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cost might be different on the situation, we fixed that (B1, B2) = (0.1, 1) and (1, 10)

as default values of our control problem (we preserve B2 is order 10 greater than B1

in other cost situations).

3 Results

The optimal strategy is obtained by solving the state and adjoint systems and the

optimality equations. An iterative method is used for solving the optimality system

as follows: First, we start to solve the state equations (1) with a guess for the

controls over the simulated time. Second, using the current iteration solution of the

state equations, the adjoint equations are solved by a backward method with the

transversality conditions (7) in Appendix B. Then, update the controls by using a

convex combination of the controls in the previous iteration and the value from the

characterizations (8), in Appendix B, in the current iteration. Repeat this process

and stop iterations if the values of unknowns at the previous iteration are very close

to the ones at the present iteration. For detailed description of the iterative method,

see Chapter 4 and 8.2 in the reference [25].

3.1 Optimal strategy of prevention policies

We investigate the time-course of disease spread with optimal strategy of prevention

policies for 365 days after the emergence of mutant avian influenza virus. The

dashed black curves of the top figures in Fig.1 and 2 represent the epidemic curves

of total infected humans without any policy in the lower and higher virulence cases,

respectively. We can see that mutant avian influenza leads to a pandemic of the

disease in the both cases.

The colored curves (the blue and red curves correspond to (B1, B2) = (0.1, 1) and

(1, 10), respectively) of the top figures in Fig.1 and 2 represent the epidemic curves

of total infected humans with optimal prevention policies in the lower and higher

virulence cases, respectively. If we can execute the optimal strategy, the epidemic

curves are dramatically reduced in the both cases.

The bottom figures of Fig.1 and 2 show the time-dependent optimal strategy of

prevention policies u∗
1(t) and u∗

2(t) in the lower and higher virulence cases, respec-

tively. In the both virulence case, the short intensive effort of the elimination policy

u∗
1(t) is needed at the beginning of the disease spread and then the effort is smoothly

reduced. On the other hand, the long strong effort of the quarantine policy u∗
2(t)

is needed over the simulated time. Thus, in spite of the fact that the unit cost
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of the quarantine policy is 10 times as expensive as that of the elimination policy,

actually, u∗
2(t) remains at high level for a long time than u∗

1(t). Therefore, the opti-

mal strategy shows that the quarantine policy is more important for the lower and

higher virulence cases. These conclusions are partially different when we consider

a time-independent optimal strategy of prevention policies at the final phase of the

disease spread in [15, 16, 17] (see Discussion).

3.2 Cost of prevention policies

We investigate an impact of the unit execution cost of prevention policies on the

optimal strategy (see the blue and red curves in the bottom figures of Fig.1 and

2). As the unit execution cost increases, in general, the effort of prevention policies

decreases over the simulated time. And also, if the unit execution cost is extremely

expensive, then the optimal policies no longer reduce the epidemic curve and can not

prevent the disease spread (simulations are not shown). Thus, the unit execution

cost affects the optimal strategy of prevention policies and the prevention of the

disease spread.

Furthermore, we reveal relations between the unit execution cost and the cu-

mulative execution cost of the optimal prevention policies. Define the cumulative

execution cost of the elimination (Te) and quarantine (Tq) policies are, respectively,

Te =
1

2

∫ tf

0

B1u
∗
1(t)

2dt, Tq =
1

2

∫ tf

0

B2u
∗
2(t)

2dt.

We calculate each cumulative execution cost for the case (B1, B2) = (0.05, 0.5),

(0.1, 1), (1, 10) and (5, 50) in the lower virulence case in Fig.3 (these unit execution

costs are relatively cheap, and therefore the disease spread are comparatively sup-

pressed by the optimal strategy). The top and bottom figures of Fig.3, respectively,

represent the total cumulative cost and the relative frequency of each cumulative

execution cost. The pink and green bars correspond to the cumulative cost of the

elimination and quarantine policies, respectively. Here we do not consider the higher

virulence case but the conclusion for this case is qualitatively the same.

The total cumulative cost (Te + Tq) increases but is not proportion to the unit

execution cost as the unit cost increases (the top figure). It shows that the total cost

of using the quarantine policy is much expensive than one of using the elimination

policy. On the other hand, the relative frequency of each cumulative execution cost

(Te : Tq) is almost same even if the unit execution cost increases (the bottom figure).

Thus, the change of the unit execution cost does affect the total cumulative cost

but does not affect the relative frequency of each cumulative execution cost. This
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implies that the relative cost of using the quarantine policy is much expensive than

one of using the elimination policy in the optimal strategies.

3.3 Invadability of mutant avian influenza

We investigate how the optimal strategy affects the invadability of mutant avian

influenza. Define the invadability measure of mutant avian influenza strain R̄∗
0(t) as

follows. If r0 < 1, the wild strain can not spread. The invadability is only determined

by the basic reproduction number of the mutant strain R0 (see Theorem A 2. (i)

and (ii)). Therefore, if r∗0(t) < 1, then R̄∗
0(t) = R∗

0(t). However, if r0 > 1, the wild

strain spreads. Then we use the invasion reproduction number of the mutant strain

R̄0 to investigate whether the mutant strain spreads (see Theorem A 2. (iii) and

(iv)). Therefore, if r∗0(t) > 1, then

R̄∗
0(t) =

β2(1 − u∗
2(t))

µ + d2

λ

µ + β1

(
c

b + m
− b

ω(1 − u∗
1(t))

) .

Thus, if the invadability measure R̄∗
0(t) is less than 1, then the mutant strain does not

spread among humans irrespective of r∗0(t): otherwise, the mutant strain spreads.

Therefore, the value of the invadability measure represents a magnitude of the spread

of mutant avian influenza (i.e, the spread of mutant avian influenza weakens as the

invadability measure decreases even if R̄∗
0(t) > 1).

We calculate the invadability measure of the mutant strain R̄∗
0(t) in Fig.4 during

the optimal prevention policies for the unit execution cost (B1, B2) = (0.1, 1) and

(1, 10) in the lower virulence case (the conclusion for the higher virulence case is

qualitatively the same). The optimal strategy suppresses the spread of the mutant

strain because the invadability measure is reduced less than R̄∗
0(0) = 1.5 (which is the

value of the invadability measure before execution of the optimal prevention policies:

see Table 1) at the beginning. In general, as the unit execution cost increases, the

invadability measure increases over the simulated time (see the blue and red curves

in Fig.4). Therefore, a cheap unit execution cost effectively reduces the magnitude of

the spread of mutant avian influenza. Furthermore, interestingly, we can see that the

invadability measure gradually increases at the beginning of the optimal prevention

policies and has a peak in both cases. This implies that the optimal strategy to

reduce the number of total infected humans might increase a chance of invadability

of mutant avian influenza. The counter-intuitive result is caused by the competition

between the wild and mutant strain. Actually, because the unit execution cost

of the elimination policy is cheaper than one of the quarantine policy in order to
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reduce the total number, the effort of the elimination policy is large and one of

the quarantine policy is small at the beginning (see Fig.1). Therefore, the basic

reproductive number r∗0(t) decreases (simulations are not shown), the mutant strain

obtains some competitive advantage, and the invadability measure R̄∗
0(t) increases.

Thus to eliminate the infected birds might increase the potential invasiveness of the

mutant strain among humans. Hence the optimal strategy is no longer optimum in

terms of prevention of invadability of mutant avian influenza.

4 Discussion

Most of economic studies on avian influenza have so far concentrated on the impact

of the disease, more studies are needed to assess the impact of its control strategy

in term of sustainability and efficacy [33, 37]. Epidemiological models including

economic aspects are needed to estimate impacts of execution costs of prevention

policies [33]. Actually, even mitigating programs which execute the same inter-

vention policies have different unit execution costs depending on various situations

[28, 31, 32]. In this study, we extended the previous studies for the prevention of

mutant avian influenza spread to evaluate the time-dependent optimal prevention

policies with considering its execution cost. Here we assumed that the unit execu-

tion cost is relatively low. Our findings demonstrated that the optimal policies can

dramatically reduce the pandemic phase and block the population wide spread of

the disease (the top figures of Fig.1 and 2). And also, we showed that the quaran-

tine policy is very important rather than the elimination policy during the optimal

prevention policies, even if the unit execution cost of the quarantine policy is more

expensive than that of the elimination policy in the both virulence cases (the bot-

tom figures in Fig.1 and 2). This result is partially different from our conclusions

obtained in [16, 17] because we previously concluded that the quarantine policy

might increase the total number of infected humans at the equilibrium in the higher

virulence case when we time-independently investigated the efficacy of the elimina-

tion and quarantine policies. Furthermore, we found that the unit execution cost

affects the optimal strategy of prevention policies because the effort of prevention

policies decreases as the unit execution cost increases (the bottom figures in Fig.1

and 2). However, interestingly, the increase of the unit execution cost affects the

total cumulative cost but does not affect the relative frequency of each cumulative

execution cost (Fig.3). This suggests that the relative cost of using the quarantine

policy does not change. Another important result obtained here is that the optimal

strategy to reduce the number of total infected humans is no longer optimum in

11



terms of prevention of invadability of mutant avian influenza (Fig.4). We revealed

that the invadability measure gradually increases at the beginning of the optimal

prevention policies. This implies that the optimal prevention policies are not robust

for an influx of the infected humans with the mutant strain (i.e, the optimal policies

are sensitive to pertubations). Therefore, to succeed the optimal prevention policy

needs restriction of movement and screening of the infected humans. Thus, our

work highlights that to consider the transient dynamics and the execution cost of

prevention policies is critically important to develop effective interventions against

next influenza pandemic.

Appendix A: Dynamical behavior

We consider system (1) without controls (i.e., u1(t) and u2(t) are set to be zero).

Because the behavior of X and Y of system (1) is independent of the other dynamics,

we obtain the following properties of the behavior. The proof of this theorem is

referred to Theorem 3.1 in [15].

Theorem A 1. If r0 ≤ 1, then X and Y converge to X0 and 0, respectively, as

t → ∞. On the other hand if r0 > 1, then X and Y converge to X+ and Y+,

respectively, where X0 = c/b, X+ = (b + m)/ω and Y+ = c/(b + m) − b/ω.

We can neglect the dynamics of Y (t) in system (1) because it is completely

determined by Theorem A 1. Then (1) can be reduced to the following model:

S ′ = λ − µS − (β1Ỹ + β2H)S,

B′ = β1SỸ − (µ + d1)B,

H ′ = β2SH − (µ + d2)H.

(4)

Here we remark that Ỹ = 0 or Y+. This system has four equilibrium states:

E0 = (S0, 0, 0), where S0 =
λ

µ
;

Eb = (Sb, 0, Hb), where Sb =
µ + d2

β2

, Hb =
λ

µ + d2

− µ

β2

;

E∗ = (S∗, B∗, 0), where S∗ =
λ

µ + β1Y+

, B∗ =
β1Y+S∗

µ + d1

;

E+ = (S+, B+, H+), where S+ =
µ + d2

β2

, B+ =
β1Y+S+

µ + d1

, H+ =
λ − µS+ − β1Y+S+

β2S+

.

The properties of system (4) are given by the following theorem:
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Theorem A 2. (i) If r0 ≤ 1 and R0 ≤ 1, then E0 is globally asymptotically stable

(GAS) which means that the orbit converges to the equilibrium as t → ∞ for

arbitrary initial point.

(ii) If r0 ≤ 1 and R0 > 1, then Eb is GAS.

(iii) If r0 > 1 and R̄0 ≤ 1, then E∗ is GAS.

(iv) If r0 > 1 and R̄0 > 1, then E+ is GAS.

The proof of this theorem is referred to Theorem B.1 in [16].

Appendix B: Analysis of optimal control problem

We apply Pontryagin’s Maximum Principle [21, 39] to the constrained control prob-

lem, then this principle converts (1) - (3) into a problem of minimizing pointwise a

Lagrangian, L, with respect to u1 and u2. The Lagrangian for our problem is the

integrand of the objective functional coupled with the five right hand sides of the

state equations.

L(X,Y, S,B,H, u1, u2, λ1, λ2, λ3, λ4, λ5) = B(t)+H(t)+
B1

2
u2

1+
B2

2
u2

2+
5∑

i=1

λigi, (5)

where gi is the right hand side of the differential equation of the ith state variable.

By applying Pontryagin’s Maximum Principle [34] and the existence result for the

optimal control pairs from [11], we obtain the following theorem.

Theorem B 1. There exists an optimal control pair u∗
1, u∗

2 and corresponding solu-

tion, X∗, Y ∗, S∗, B∗, and H∗, that minimizes J(u1, u2) over Ω. Furthermore, there

exists adjoint functions, λ1(t), . . . , λ5(t), such that

λ̇1 = λ1(b + (1 − u1(t))ωY ) + λ2(−ω(1 − u1(t))Y ),

λ̇2 = λ1(ω(1 − u1(t))X) + λ2(−ω(1 − u1(t))X + (b + m)) + λ3(β1S) + λ4(−β1S),

λ̇3 = λ3(µ + β1Y + β2(1 − u2(t))H) + λ4(−β1Y ) + λ5(−β2(1 − u2(t))H),

λ̇4 = −1 + λ4(µ + d1),

λ̇5 = −1 + λ3(β2(1 − u2(t))S) + λ5(−β2(1 − u2)S + µ + d2), (6)

with transversality conditions

λi(tf ) = 0, i = 1, . . . , 5. (7)

13



The following characterization holds

u∗
1(t) = min(max(0,

1

B1

(λ2 − λ1)ωX∗Y ∗), 1)

and

u∗
2(t) = min(max(0,

1

B2

(λ5 − λ3)β2S
∗H∗), a).

(8)

Proof. The existence of an optimal control pair is given in Corollary 4.1 of [11].

In our problem, the convexity of integrand of J with respect to (u1, u2), a priori

boundedness of the state solutions, and the Lipschitz property of the state system

with respect to the state variables show the existence of optimal solutions in our

optimality system. We obtain the following adjoint system, which consists of the five

ordinary differential equations with the final conditions, by applying Pontryagin’s

Maximum Principle,

dλ1

dt
= − ∂L

∂X
, λ1(tf ) = 0,

...

dλ5

dt
= − ∂L

∂H
, λ5(tf ) = 0,

evaluated at the optimal control pair and corresponding states, which results in the

stated adjoint system (6) and (7), [21].

Now consider the optimality conditions to derive the optimal controls. To illus-

trate the characterization of u∗
1 and u∗

2, we have

∂L

∂u1

= B1u1(t) − (λ2 − λ1)ωXY = 0,

∂L

∂u2

= B2u2(t) + (λ3 − λ5)β2SH = 0

(9)

at u∗
1 on the set {t|0 < u∗

1 < 1} and u∗
2 on the set {t|0 < u∗

1 < a}. Solving for the

optimal controls on this set yields

u∗
1(t) =

1

B1

((λ2 − λ1)ωX∗Y ∗)

and

u∗
2(t) =

1

B2

((λ5 − λ3)β2S
∗H∗).

(10)

Taking into account the bounds on u∗
1 and u∗

2, we obtain the characterizations of u∗
1

and u∗
2 in (8).

14



Note that we obtain the uniqueness of the optimal control for small tf because

of the a priori boundedness of the state and adjoint functions and the resulting

Lipschitz structure of the ODEs. The unique optimal control pair is characterized

in terms of the unique solution of the optimality system [10].
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Figure 1: Time-course of disease spread with optimal prevention policies for 365 days
after the emergence of mutant avian influenza virus in the lower virulence case: the top
figure shows that the epidemic curves of total infected humans without (dashed black
curve) and with (colored curves: the blue and red curves correspond to (B1, B2) = (0.1, 1)
and (1, 10), respectively) optimal prevention policies. The bottom two figures show the
time-dependent optimal strategy of u1 and u2. The optimal strategy dramatically reduces
the epidemic curve and shows that the quarantine policy is more important because the
long strong effort of the quarantine policy u∗

2(t) is needed over the simulated time.
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Figure 2: Time-course of disease spread with optimal prevention policies for 365 days
after the emergence of mutant avian influenza virus in the higher virulence case: the top
figure shows that the epidemic curves of total infected humans without (dashed black
curve) and with (colored curves: the blue and red curves correspond to (B1, B2) = (0.1, 1)
and (1, 10), respectively) optimal prevention policies. The bottom two figures show the
time-dependent optimal strategy of u1 and u2. The optimal strategy dramatically reduces
the epidemic curve and shows that the quarantine policy is more important because the
long strong effort of the quarantine policy u∗

2(t) is needed over the simulated time.
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Figure 3: Cumulative execution cost of elimination and quarantine policies: we calculate
each cumulative execution cost for the case (B1, B2) = (0.05, 0.5), (0.1, 1), (1, 10) and
(5, 50) in the lower virulence case. The top and bottom figures, respectively, represent the
total cumulative cost (Te + Tq) and the relative frequency of each cumulative execution
cost (Te : Tq). Here the pink and green bars correspond to the cumulative cost of the
elimination and quarantine policies, respectively. The optimal strategy shows that the
change of the unit execution cost does affect the total cumulative cost but does not affect
the relative frequency of each cumulative execution cost. Thus, the relative cost of using
the quarantine policy is much expensive than one of using the elimination policy.
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Figure 4: Invadability of mutant avian influenza: we calculate the invadability measure
of the mutant strain R̄∗

0(t) during the optimal prevention policies for the unit execution
cost (B1, B2) = (0.1, 1) and (1, 10) in the lower virulence case. The optimal strategy sup-
presses the spread of the mutant strain at the beginning. In general, as the unit execution
cost increases, the invadability measure increases over the simulated time. Furthermore,
interestingly, the invadability measure gradually increases at the beginning of the optimal
strategy and has a peak in both cases. The optimal strategy to reduce the number of
total infected humans might increase a chance of invadability of mutant avian influenza.
That is, the optimal strategy is no longer optimum in terms of prevention of invadability
of mutant avian influenza.
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