1	Characterization of iodothyronine sulfotransferase activity
2	in the cytosol of Rana catesbeiana tadpole tissues
3	Farhana Babli Rahman ^a , Kiyoshi Yamauchi ^b
4	
5	^a Graduate School of Science and Engineering, Shizuoka University, Shizuoka, 422-8529, Japan
6	^b Department of Biological Science, Faculty of Science, Shizuoka University, Shizuoka, 422-8529, Japan
7	
8	Address all correspondence and requests for reprints to: Dr. Kiyoshi Yamauchi, Department of Biological
9	Science, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
10	Tel.: +81 54 238 4777
11	Fax: +81 54 238 0986
12	E-mail: sbkyama@ipc.shizuoka.ac.jp
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	

29 Abstract

30 We have investigated the sulfation of thyroid hormones (THs) in the cytosol from *Rana catesbeiana*

- 31 tadpole tissues. Sulfation of 3,3',5-triiodothyronine (T₃) by the liver cytosol, which was dependent on
- 32 protein amount, incubation time, and temperature, suggested the presence of TH sulfotransferases (SULTs)
- 33 in the liver. The apparent Michaelis–Menten constant (K_m) of the liver cytosol was 0.22 μ M for T₃, and the
- 34 apparent maximum velocity (V_{max}) of the liver cytosol was 7.65 pmol/min/mg protein for T₃. Iodothyronine
- 35 sulfating activity in the liver cytosol was increased in tadpoles at premetamorphic (stages IX–X) and
- 36 metamorphic climax (stage XX) stages, and in adult frogs. The substrate preference of iodothyronine
- 37 sulfation for the liver cytosol from tadpoles (stage X) was: 3,3',5'-triiodothyronine > T_3 >
- 33 3,3',5,5'-tetraiodothyroacetic acid > 3,3',5-triiodothyroacetic acid, T₄, 3-iodothyronine >
- 39 3,5-diiodothyronine. Several halogenated phenols were potent inhibitors (IC₅₀ = $0.15-0.21 \mu$ M). The
- 40 substrate preference for T₃ was gradually lost by the onset of metamorphic climax stages. These enzymatic
- 41 characteristics of iodothyronine sulfation in the liver cytosol from tadpoles resembled those of mammalian
- 42 phenol SULTs, except that the tadpole cytosol had a higher affinity (one or two orders of magnitude) for T₃
- 43 than mammalian SULTs. These results suggested that an enzyme homologous to mammalian phenol SULT
- 44 (SULT1) may be involved in TH metabolism in tadpoles.
- 45
- 46 Keywords: iodothyronine; sulfotransferase; metamorphosis; liver; Rana catesbeiana

47

49 1. Introduction

50Thyroid hormones (THs, iodothyronines) are iodinated amino acid-derived hormones, most of which 51are secreted as thyroxine (L-3,3',5,5'-tetraiodothyronine, T_4), from the thyroid gland into the bloodstream. 52In peripheral tissues, T_4 is metabolized to 3,3',5-triiodothyronine (T_3), an active form of TH, by outer ring 53deiodinase (5'D) or 3.3'.5'-triiodothyronine (rT₃), an inactive form of TH, by inner ring deiodinase (5D). THs are also metabolized by nondeiodination pathways, such as sulfation, glucuronidation, ether link 54cleavage, deamination, and decarboxylation (Wu et al., 2005). Of these pathways, iodothyronine sulfation 55in mammalian species has been a key research focus (Visser, 1996; Darras et al., 1999). However, little is 5657known about the extent to which sulfation contributes to TH metabolism in amphibians, especially during metamorphosis, which is obligatorily regulated by THs. The study of the sulfation by Xenopus laevis 5859oocyte cytosol suggested the presence of sufotransferases (SULTs) with a substrate preference for rT_3 60 (Friesema et al., 1998). This is different from the characteristics of the mammalian SULTs (Young et al., 611988; Gong et al., 1992; Kaptein et al., 1997; Visser et al., 1998). 62 Sulfation of iodothyronines is catalyzed by cytosolic sulfortansferases (SULTs), a supergene family of 63 important phase II conjugation enzymes. In mammals, SULTs comprise five distinct gene families (SULT1, 64 SULT2, SULT3, SULT4 and SULT5) (Gamage et al., 2006). Sulfotransferases consist of two subunits 65 (molecular mass is 31–35 kDa for each subunit) (Stanley et al., 2005). Cytosolic SULTs are usually present 66 as homodimers in various tissues, such as the liver, kidney, intestine, skin, and brain depending on the families or subfamilies (Strott, 2002; Gamage et al., 2006). Using 3'-phosphoadenosine-5'-phosphosulfate 67 68 (PAPS) as a sulfate donor, SULTs detoxify various xenobiotics and modulate the activity of endogenous 69 hormones, bile acids, and neurotransmitters, e.g., phenols, iodothyronines, estrogens and catecholamines in 70 the SULT1 family, neutral steroids and sterols in the SULT2 family, and heterocyclic amines in the SULT3 family (Blanchard et al., 2004; Gamage et al., 2006; Wang and James, 2006; Testa and Krämer, 2008). The 7172human SULT1A subfamily (SULT1A1, SULT1A2, and SULT1A3 isoforms), SULT1B subfamily

73 (SULT1B1 isoform), SULT1C subfamily (SULT1C2 isoform), SULT1E subfamily (SULT1E1 isoform),

and SULT2A subfamily (SULT2A1 isoform) all catalyze iodothyronine sulfation (Wu et al., 2005) and are tissue specific. Of these SULT isoforms, SULT1A1 is the most abundant in the liver, when compared with the other SULT isoforms, and has a relatively lower Michaelis–Menten constant (K_m) for T₃ than the other SULT isoforms (Young et al., 1988; Kester et al., 1999), whereas SULT1B1, the major iodothyronine SULT found in the small intestine and colon, has a K_m for T₃ lower than SULT1A1 and SULT1A3 (Wang et al. 1998; Fujita et al., 1999).

80 The biochemical properties and physiological functions of iodothyronine SULTs in the liver of lower

81 vertebrates are distinct from those in the liver of higher vertebrates. Of the iodothyronines, major

82 mammalian liver iodothyronine SULTs have a substrate preference for 3,3'-diiodothyronine (3,3'-T₂; rank

83 order: $3,3'-T_2 > rT_3 > T_4$ in humans, and $3,3'-T_2 > T_3 > rT_3 > T_4$ in rats) (Gong et al., 1992; Visser,

84 1994; Visser et al., 1998; Kester et al., 1999; Wu et al., 2005). Interestingly, in rat, sulfation of these

85 iodothyronines, except for rT₃, accelerates (by 40- to-200-fold) deiodination, and initiates the irreversible

86 degradation, of THs (Visser, 1996). However, when deiodinase activity is low, i.e., during fetal

87 development and non-thyroidal illness (Chopra, 2004), iodothyronine sulfation is reversible, inactivating

THs and allowing T_4 and T_3 sulfates (T_4S and T_3S) accumulate as a TH reservoir in plasma (Visser, 1994;

89 Visser et al., 1996; Darras et al., 1999; Wu et al., 2005). In contrast, fish liver iodothyronine SULTs have a

substrate preference for rT_3 (rank order: $rT_3 >> T_3 = T_4 = 3,5-T_2$) (Finnson and Eales, 1998) and

91 iodothyronine sulfation in fish inhibits TH deiodination (Finnson et al., 1999).

92 Information about the role of iodothyronine SULTs in amphibians, particularly during development,

- 93 however, is lacking. In amphibian metamorphosis, the activation and inactivation of THs by deiodinases
- 94 plays a central role in the sensitivity of peripheral tissues to, and timing of, TH actions (Brown, 2005).
- 95 Findings from studies of THs and their metabolites, deiodinases (Morvan Dubois et al., 2006), ¹²⁵I' uptake

	7), and TH receptor mRNA (Banker et al., 1991) in amphibian embryos or lary	vae rais
--	---	----------

- 97 the possibility that TH signalling occurs before the development of the thyroid gland.
- 98 In this study, we aim to elucidate if the enzymatic properties of iodothyronine SULT(s) exist in cytosol
- 99 from *Rana catesbeiana* tadpoles and the liver cytosol from *R. catesbeiana* adult bullfrogs.

101 **2. Materials and Methods**

102 2.1. Reagents

103 $[5'-^{125}I]T_4$ (35.9 TBq/mmol) was purchased from PerkinElmer (Waltham, MA, USA). Unlabeled T₃

- 104 (>97% purity), T₄ (>98% purity), rT₃ (>97% purity), 3,3',5,5'-tetraiodothyroacetic acid (Tetrac, >98%
- 105 purity), 3,3',5-triiodothyroacetic acid (Triac, ~95% purity), pentachlorophenol (99% purity), and PAPS
- 106 (83% purity) were obtained from Sigma-Aldrich (St. Louis, MO, USA). 3-Iodothyronine (T₁, >97% purity)
- 107 was purchased from Toronto Research Chemicals (Toronto, Canada). Ioxynil
- 108 (3,5-diiodo-4-hydroxybenzonitrile, analytical standard, 99% purity) was obtained from Riedel-de Haën
- 109 Fine Chemicals (Seelze, Germany). Diethylstilbestrol (>98% purity), 3,5- T₂ (>97% purity),
- 110 3,3',5,5'-tetrabromobisphenol A (>98% purity), and 3,3',5,5'-tetrachlorobisphenol A (>98% purity) were
- 111 purchased from Tokyo Chemical Industry (Tokyo, Japan). Pentabromophenol (98% purity) was from Alfa
- 112 Aesar (Heysham, Lancashire, UK). 2,4,6-Triiodophenol (98% purity), 2,4,6-tribromophenol (98% purity),
- 113 2,4,6-trichlorophenol (97% purity), 2,6-dichlorophenol (95% purity), 2,6-dibromophenol (98% purity),
- 114 2,6-dichloro-4-nitrophenol (97% purity), *p*-nitrophenol (99% purity), dopamine (95% purity),
- dihydroxyepiandrosterone (DHEA, 97% purity), 4-nonylphenol (99% purity) and 17β-estradiol (E₂, >97%
- 116 purity) were obtained from Wako Pure Chemical Industries (Osaka, Japan). Sephadex LH-20 resin was
- 117 obtained from GE Healthcare (Uppsala, Sweden). All other chemicals used in this study were of the highest
- 118 grade available and were purchased from Wako Pure Chemical Industries or Nacalai Tesque (Kyoto,
- 119 Japan).

120	Immediately before use,	$\begin{bmatrix} 125 \\ I \end{bmatrix} T_4$	was purified us	ing a Sephadex	LH-20 column.	$[^{125}I]T_3$ and	$[^{125}I]T_4$
-----	-------------------------	--	-----------------	----------------	---------------	--------------------	----------------

100

121 were purchased or prepared in our laboratory by radioiodination using the chloramine-T method

- 122 (Greenwood et al., 1963), with slight modifications. $[^{125}I]T_3$ and $[^{125}I]T_4$ were purified by reverse phase
- 123 high-performance liquid chromatography with a isocratic mobile phase (methanol:distilled water:acetic
- acid, 54.5:44.5:1) at 1 mL/min at 40°C, with retention times of 19.1 min for $\begin{bmatrix} 125 \\ T \end{bmatrix}$ and of 25.1 min for

125	$[^{125}I]T_4$. The specific activities were 1.01–1.75 TBq/mmol for $[^{125}I]T_3$ and 1.52–1.55 TBq/mmol for $[^{125}I]T_4$.
126	The purity of $[^{125}I]T_3$ and $[^{125}I]T_4$ was confirmed by thin layer chromatography on silica gel (PE Sil G/UV,
127	Whatman; Maidstone, UK) (Chanoine et al., 1992) using chloroform:methanol:25% ammonia (55:40:5) as
128	a solvent, followed by autoradiography. The R_f values were 0.87 for iodine, 0.41 for T ₄ , and 0.24 for T ₃ .
129	All potential inhibitors and substrates of iodothyronine SULTs were dissolved in dimethyl sulfoxide or
130	0.1 M sodium phosphate, pH 7.2, to concentrations ranging from 2 to 10 mM. These chemicals were
131	diluted with phosphate buffer (pH 7.2), to give less than 0.1% (v/v) solvent.
132	
133	2.2. Animals
134	Rana catesbeiana tadpoles at stages IX-XXIV (Taylor and Kollros, 1946), froglets and adults frogs
135	(male and female) were collected from ponds in Shizuoka Prefecture, Japan, or in Saitama Prefecture,
136	Japan, from March 2007 to July 2008. The tadpoles were maintained in aerated, dechlorinated tap water at
137	20–25°C, unless otherwise noted, and fed boiled spinach three times a week.
138	
139	2.3. Preparation of cytosol
140	Tadples and froglets (8–18 g body weight) were anesthetized by immersion in 0.2% (w/v) ethyl
141	3-aminobenzoate methanesulfonic acid (Sigma-Aldrich) whereas adult frogs (170-200 g body weight) were
142	pithed, in accordance with the code of ethics on the Animal Welfare Committee of Shizuoka University.
143	Liver was removed and immediately used for the preparation of cytosol.
144	Froglets and adult frog tissues were perfused with ice-cold frog Ringer (111 mM NaCl, 3.4 mM KCl,
145	2 mM CaCl ₂ , 2.3 mM NaHCO ₃) containing 0.2 mg/mL heparin. After determining the tissue mass, the
146	tissue was minced with scissors. Tadpole tissues were minced directly with scissors without perfusion and
147	then extensively rinsed with ice-cold frog Ringer to remove plasma and blood cells. Minced tissues were
148	homogenized in 4.5 vol. of 0.25 M sucrose, 10 mM Tris-HCl, 1 mM ethylenediaminetetraacetic acid 7

149	(EDTA), 1 mM MgCl ₂ , 1 mM dithiothreitol, 1 mM benzamidine hydrochloride, and 1 mM
150	phenylmethanesulfonyl fluoride, pH 7.5, using a glass Teflon homogenizer. The crude homogenate was
151	centrifuged at 1,200 × g for 15 min at 4°C to remove the nuclear pellet. The post-nuclear supernatant was
152	further centrifuged at 12,000 × g for 20 min at 4°C to separate the crude mitochondrial/lysosomal pellet
153	from the supernatant. The resulting post-mitochondrial/lysosomal supernatant was centrifuged at
154	105,000 × g for 2 h at 4°C to obtain the clear supernatant (cytosol), which was stored in 10% glycerol at
155	-80°C until required. The protein concentration was determined by the Bradford (1976) method, using
156	γ -globulin as the standard.
157	
158	2.4. Assay of iodothyronine SULT activity
159	Iodothyronine sulfating activity was measured as described (Young et al., 1988; Kaptein et al., 1997).
160	Briefly, 1 μ M T ₃ containing 100,000 dpm [¹²⁵ I]T ₃ or 1 μ M T ₄ containing 100,000 dpm [¹²⁵ I]T ₄ was
161	incubated with 0.3 mg/mL cytosolic proteins in the presence (complete) or absence (blank) of 50 μ M PAPS
162	in 0.2 mL of 0.1 M sodium phosphate, pH 7.2, and 2 mM EDTA for 30 min at 16°C. The reaction was
163	started by adding the cytosol and was stopped by adding 0.8 mL 0.1 N HCl to the reaction mixture. The
164	formation of iodothyronine sulfate was analyzed using Sephadex LH-20 chromatography on a mini-column
165	(bed volume, 0.75 mL), pre-equilibrated with 0.1 N HCl, as described (Rooda et al., 1987). Free iodine,
166	sulfated iodothyronines, and nonsulfated iodothyronines were eluted successively using six 1 mL aliquots
167	of 0.1 N HCl, ten 1 mL aliquots of distilled water and six 1 mL aliquots of 0.2 M ammonia/ethanol (1/1,
168	vol/vol) (Rutgers et al., 1987). One-mL fractions were collected and their radioactivity was measured in a
169	gamma counter (Auto Well Gamma System ARC-380CL, Aloka, Japan). Iodothyronine sulfation was
170	estimated by subtracting the radioactivity of the blank samples (without PAPS) from that of the complete
171	samples (with PAPS).

- 173 2.5. Statistical analysis
- 174 The data are presented as the mean \pm standard error of mean (n = 3), unless otherwise noted. All
- 175 experiments were repeated independently three times. Where appropriate, differences between two groups
- 176 were evaluated statistically by a two-way analysis of variance followed by Fisher's
- 177 least-significant-different method for multiple comparisons. P < 0.05 was considered statistically
- 178 significant.

179	3. Results

180 *3.1. Assay conditions of iodothyronine sulfation by tadpole liver cytosol*

181 Our findings suggest that the liver cytosol from *R. catesbeiana* tadpoles (stage X) contains TH sulfating

activity. In terms of the amount of protein in the liver cytosol, T₃ sulfating activity increased steadily as the

- 183 protein amount (up to 0.24 mg) increased (Fig. 1A). In terms of incubation time, T₃ sulfation increased
- 184 linearly for at least 90 min (Fig. 1B). In terms of temperature, T₃ sulfation increased gradually as
- temperature increased before reaching a plateau at about 22°C (Fig. 1C).
- 186

187 3.2. Enzyme kinetics

- 188 Saturation kinetics was demonstrated for T₃ sulfation by the liver cytosol from *R. catesbeiana* tadpoles
- 189 (stage X) at varying concentrations (0–16 μ M) of T₃ and a fixed concentration (50 μ M) of PAPS (Fig. 2A).
- 190 The double-reciprocal plot of sulfation rates vs. T₃ concentration was linear (Fig. 2A, *inset*), with an
- 191 apparent $K_{\rm m}$ of 0.22 µM and an apparent $V_{\rm max}$ of 7.65 pmol/min/mg protein. Saturation kinetics was also
- 192 demonstrated when T_3 sulfation was measured at a fixed concentration (20 μ M) of T_3 and various

193 concentrations (0–10 µM) of PAPS (Fig. 2B). From the double-reciprocal plot (Fig. 2B, *inset*), the apparent

194 $K_{\rm m}$ for PAPS was 2.41 µM and the apparent $V_{\rm max}$ was 99.2 pmol/min/mg protein. When T₄ sulfation by the

- 195 liver cytosol from *R. catesbeiana* tadpoles was investigated using the same assay procedure, the rate of T₄
- 196 sulfation was lower than that of T₃ sulfation. The substrate specificity of the tadpole liver cytosol
- 197 sulphating activity as expressed by $V_{\text{max}}/K_{\text{m}}$ value was 11-fold greater for T₃ (34.8) than that for T₄ (3.10)

198 (Table 1).

199

200 3.3. Temporal and spatial expression patterns of TH sulfating activity in tadpole cytosol

201 The pattern of liver TH sulfating activity during development was of particular interest because of three

202 distinct stages of activity (Fig. 3A). T₄ sulfating activity in liver cytosol was highest in adult frogs,

203	followed by tadpoles at the beginning of the metamorphic climax stage (stage XX) and at the
204	premetamorphic stage (stage X). Liver cytosol from tadpoles at other stages had relatively low T ₄ sulfating
205	activity. T ₃ sulfating activity in liver cytosol was highest in tadpoles at the premetamorphic stages (stages
206	IX and X), followed by adult frogs then tadpoles at the prometapmorphic stages (Stages XV, XVIII and
207	XX). In adult frogs, both T_4 and T_3 sulfating activities were slightly higher in males than in female. The
208	T ₃ :T ₄ sulfating activity ratio was high (about 4.5) at stage IX, decreased during the premetamorphic (stage
209	X) and prometamorphic (stages XV and XVIII) stages to a minimum (about 1) before the metamorphic
210	climax stages (stage XX) (Fig. 3A, inset). This ratio was maintained in the liver cytosol from froglets, and
211	adult frogs. In terms of tissue-specific TH sulfating activities in cytosol from tadpoles (stage X), T_4 and T_3
212	sulfating activities were highest in the liver, followed by the kidney, intestine, and brain (Fig. 3B).
213	
214	3.4. Substrate-specificity of T_3 sulfating activity
215	Of the iodothyronines and their analogs investigated, rT ₃ was the most potent competitor of T ₃ sulfation
216	in liver cytosol from tadpoles (stage X) (50% inhibitory concentration $[IC_{50}] = 83\pm3$ nM; Fig. 4A). The
217	rank order of potency was $rT_3 > T_3$ (IC ₅₀ = 130±0 nM) > Tetrac (IC ₅₀ = 830±30 nM) > Triac (IC ₅
218	1930 \pm 60 nM), T ₄ , T ₁ > 3,5-T ₂ . When a similar experiment was done using the liver cytosol from adult frogs,
219	inhibitory potency of T_3 on $[^{125}I]T_3$ sulfation was as low as that of T_4 (Fig. 4A). Of the mammalian SULT
220	substrates investigated, DHEA, diethylstilbestrol, <i>p</i> -nitrophenol, dopamine, and E_2 (all at 1µM) inhibited T_3
221	sulfation by the liver cytosol by 55%, 42%, 20%, 13%, and 10%, respectively (Fig. 4B). The IC ₅₀ for
222	DHEA was 860±70 nM.
223	

225 Of the halogenated phenol and phenolic compounds tested, pentachlorophenol, pentabromophenol and 226 triiodophenol were potent inhibitors of T₃ sulfation by the liver cytosol from tadpoles. Pentachlorophenol

- was the most potent competitor (IC₅₀ = 150 ± 10 nM; Fig. 5A). The rank order of inhibition potency was
- 228 pentachlorophenol > pentabromophenol (IC₅₀ = 160 ± 30 nM) > triiodophenol (IC₅₀ = 210 ± 20 nM) >
- 229 2,6-dichlorophenol (IC₅₀ = 360 ± 20 nM) > trichlorophenol (IC₅₀ = 370 ± 30 nM) >
- 230 2,6-dichloro-4-nitrophenol (IC₅₀ = 490 \pm 10 nM)> 2,6-dibromophenol (IC₅₀ = 550 \pm 30 nM) > tribromophenol
- 231 $(IC_{50} = 800\pm 50 \text{ nM}) > \text{ioxynil} (IC_{50} = 970\pm 30 \text{ nM})$. Tetrabromobisphenol A and tetrachlorobisohenol A
- 232 (halogenated phenolic compounds consisting of two benzene rings) were also potent inhibitors (inhibition
- at 1 μ M = 52 and 45%, respectively; IC₅₀ for tetrabromobisphenol A = 970±30 nM) (Fig. 5B). However,
- 234 nonylphenol and bisphenol A (non-halogenated phenol and phenolic compounds) had little effect on T₃
- sulfation (inhibiton at $1\mu M = 4\%$ and 9%, respectively).
- 236

4. Discussion

238In this study, we have characterized the biochemical properties of iodothyronine sulfating activity in the 239liver cytosol from R. catesbeiana tadpoles. Our findings suggest that the affinity of the enzyme in the 240tadpole liver cytosol for T_3 was higher than those of the enzymes in the liver cytosol from other species. As 2412,6-dichloro-4-nitrophenol and other halogenated phenols, dopamine, E₂, and DHEA inhibited significantly $[^{125}I]T_3$ sulfation by the liver cytosol, we believe that a phenol SULT(s) belonging to the SULT1 family 242243may be responsible for the majority of this activity. 244Our findings indicate that the tadpole iodothyronine SULT(s) might have adapted to metabolize T₃ 245more quickly at low concentrations than other mammalian SULTs. Compared with mammalian SULTs, liver cytosol from tadpoles had (i) a higher affinity for T_3 ; (ii) an apparent K_m for T_3 that was two orders of 246247magnitude lower (48-81 µM vs 0.22 µM; Young et al., 1988; Kaptein et al., 1997; Visser et al., 1998; 248Kester et al., 1999); (iii) a V_{max}/K_m ratio for T₃ one or two orders of magnitude higher (0.4–4.6 vs 34.8; 249Kaptein et al., 1997; Visser et al. 1998; Kester et al., 1999); and (iv) a $V_{\text{max}}/K_{\text{m}}$ ratio for T₃ was one order of 250magnitude lower than for 3,3'-T₂ (300–1100 vs 34.8; Kaptein et al. 1997; Visser et al. 1998; Kester et al., 1999; Kester et al., 2003). In contrast, the $V_{\text{max}}/K_{\text{m}}$ ratio for PAPS of the liver cytosol from tadpoles was 251similar to that of mammalian SULTs (Young et al., 1988; Kaptein et al., 1997; Kester et al. 1999). 252253The liver cytosol from tadpoles is remarkable for its relatively high TH sulfating activity at stage XX, 254after which TH-dependent remodeling occurs in the liver. However, developmental changes in 255iodothyronine sulfating activity are likely to be species specific. TH sulfating activity was high in the liver 256cytosol from R. catesbeiana tadpoles at premetamorphic (stages IX-X) and metamorphic climax stages 257(stage XX) and from adults. In the liver from axolotls, $3,3'-T_2$ sulfating activity was highest during 258premetamorphosis and decreased gradually during metamorphosis (Reyns et al., 2000). In contrast, the 259expression of the zebrafish iodothyronine SULT (SULT1AST5) was observed at the beginning of the hatching period during embryogenesis, and gradually increased throughout the larval stage into maturity 260

261 (Yasuda et al., 2005).

262Of the iodothyronines and their analogs, rT₃ and T₃ were the preferred substrates for sulfation by the liver cytosol from tadpoles. This substrate preference resembles that of the zebrafish iodothyronine SULT 263264(SULT1AST5), which belongs to the SULT1 family (Yasuda et al., 2005). Except for the its preference for T₃, the liver cytosol from tadpoles had a rank order of the potency that was similar to those for mammalian 265266liver SULT1 family enzymes (Visser et al., 1998; Kester et al., 1999). In contrast, the substrate preference 267of enzymes obtained from chicken liver (Reyns et al., 2000), axolotl and Xenopus oocytes (Friesema et al., 2681998; Reyns et al., 2000), and rainbow trout liver (Finnson & Eales, 1998) was extremely higher for rT₃ 269than for T₃. Given that the liver cytosol from tadpoles has the IC₅₀ value for rT₃ that was merely 1.6 times 270less than that for T_3 , the tadpole liver may catalyze T_3 sulfation as well as rT_3 sulfation before metamorphic 271climax stages. 3,3'-T₂ is also one of the preferred substrates of mammalian iodothyronine SULTs. Although 272we did not investigate $3,3'-T_2$ sulfation by the liver cytosol from tadpoles, $3,3'-T_2S$ has been detected with 273rT₃S, but not with T₃S, in the plasma of metamorphosing tadpoles (stages X and XX) (Wu et al., 1998). 274This suggests that 3,3'-T₂ may also be a preferred substrate of tadpole SULTs. 275Results from this study suggest that the liver cytosol from tadpoles, like that from mammals, may 276contain more than one SULT isoform that may have more than one substrate. In mammals and zebrafish, 277several SULTs belonging to the SULT1 and SULT2 families have iodothyronine sulfating activity (Visser, 2781996; Wu et al., 2005; Gamage et al., 2006; Sugawara et al., 2003a; 2003b; Yasuda et al., 2005). In humans, 279there are several SULT isoforms that sulfate more than one substrate and have overlapping substrate 280specificity, e.g., SULT1A1 sulfates simple phenols, iodothyronines, and estrogens (Stanley et al., 2005; 281Gamage et al., 2006). We found that the $T_3:T_4$ sulfating activity ratio decreased during development from premetamorphosis to prometamorphosis and that competition between T_3 and $[^{125}I]T_3$ sulfation by the 282283tadpole liver cytosol was one order of magnitude higher than that by the adult liver cytosol. These results suggest that a SULT isoform with high T_3 preference may exist in the liver cytosol of tadpole during 284

285	premetamorphosis, and may be displaced by another SULT isoform with a low T ₃ preference during
286	metamorphosis climax. In addition, we demonstrated that the liver cytosol from tadpoles sulfated more than
287	one substrate, including <i>p</i> -nitrophenol, dopamine, E ₂ , and DHEA, as well as iodothyronines.
288	Iodothyronine SULT(s) in <i>R. catesbiana</i> tadpoles may be a molecular target for chemicals known to
289	disrupt the amphibian thyroid system. Amphibian tadpoles have a thin, permeable skin and inhabit aquatic
290	environments. As a result, they are susceptible to contaminants in the wastewater discharges from
291	agricultural fields, and industrial and household areas. Our previous studies indicated that
292	pentachlorophenol, triiodophenol, ioxynil, 3,3',5,5'-tetrabromobisphenol A, and
293	3,3',5,5'-tetrachloroobisphenol A affect the amphibian thyroid system by interfering with either TH
294	binding to plasma proteins or TH nuclear receptors in vivo and in vivo (Ishihara et al., 2003; Kudo and
295	Yamauchi, 2005; Kudo et al., 2006). In this study, $[^{125}I]T_3$ sulfation by the tadpole liver cytosol was
296	strongly inhibited by halogenated phenols and phenolic compounds. 2,6-Dichloro-4-nitrophenol, an
297	inhibitor of mammalian SULT1A1, inhibited T ₃ sulfation by the liver cytosol from tadpoles; inhibition was
298	one order of magnitude lower than that by the liver cytosol from mammals (Young et al., 1988; Gong et al.,
299	1992) or recombinant SULT1A1 (Fujita et al., 1999). Simple phenols (pentachlorophenol,
300	pentabromophenol, and 2,4,6-triiodophenol) were the most potent inhibitors, whereas phenolic compounds
301	$(3,3',5,5'$ -tetrabromobisphenol A and $3,3',5,5'$ -tetrachlorobisphenol A) were moderate inhibitors of T_3
302	sulfation by liver cytosol from tadpoles. In addition, these compounds inhibit $3,3'-T_2$ or T_3 sulfation by
303	mammalian and rainbow trout liver (Visser et al., 1998; Gong et al., 1992; Schuur et al., 1998; Finnson and
304	Eales, 1998).
305	Given our findings, we propose two possible pathways of iodothyronine metabolism in the tadpole liver
306	(Fig. 6). As iodothyronines in the tadpole plasma increase to detectable concentrations during
307	premetamorphosis (stage XIII), peak during metamorphosis climax (stages XX-XXII), then gradually

decrease (White and Nicoll, 1981), T₄ and T₃ would need to be metabolized quickly to rT₃S [Pathway (I)]

309	and to $3,3'-T_2S$ [Pathway (II)], respectively, by both 5D and SULT(s) before metamorphic climax stages.
310	In both pathways, two routes are possible. To know which route is predominant, we would need to
311	determine whether the <i>R. catesbeiana</i> 5D, like the mammalian 5D (Visser, 1996), prefers T ₄ S and T ₃ S,
312	rather than T_4 and T_3 as substrates. The tadpole liver has high activity of 5D until stage XIX, but no activity
313	of 5'D, which is expressed in the intestine, tail, leg, eye, and skin in a tissue-specific manner during
314	metamorphosis (Becker et al., 1997). R. catesbeiana 5D has an affinity for T ₃ one order of magnitude
315	higher than for T ₄ (Galton and Hiebert, 1987). These pathways would protect the tadpole liver against
316	excess THs before the metamorphic climax stages, and would need to be fine-tuned for the onset of
317	T_3 -dependent remodeling at a defined metamorphic climax stage. The concentrations of T_4S and T_3S are
318	negligible in tadpole plasma (Wu et al., 1998), unlike those in mammalian fetal plasma (Visser, 1994;
319	1996; Wu et al., 1998; Darras et al., 1999; Wu et al., 2005). Therefore, iodothyronine sulfation in the
320	tadpoles would not provide a TH reservoir comparable to those in mammalian fetuses, in the forms of T_4S
321	and T ₃ S from which active THs are recovered by sulfatases (Hazenberg et al., 1988).
322	In conclusion, we discovered T_3 sulfation activity with a low K_m in the liver cytosol from R .
323	catesbeiana tadpole that decreased during premetamorphic and prometamorphic stages. The enzymatic
324	characteristics of this activity, in terms of substrate preference and sensitivity to inhibitors, resemble those
325	of mammalian phenol SULTs belonging to the SULT1A family. Our findings suggest that the potential
326	SULT(s) in the liver of tadpoles may play a role in iodothyronine metabolism and cellular actions
327	modulated by THs at low concentrations before metamorphic climax (stage X).
328	

329 Acknowledgments

- 330 We wish to express our thanks to M. Sc. Y. Koto for help in the purification of labeled iodothyronines
- 331 by HPLC, to Dr. A. Ishihara for help in statistical analysis, and to Dr. J. Monk for a thorough and critical
- 332 reading of the manuscript. This work was funded in part by Grant-in Aid of Science Research (C) (no.
- 333 20510062) from Japan Society for Promotion of Science.

335 **References**

- Banker, D.E., Bigler, J., Eisenman, R.N., 1991. The thyroid hormone receptor gene (c-*erb*A α) is expressed
- in advance of thyroid gland maturation during the early embryonic development of *Xenopus laevis*. Mol.

338 Cell. Biol. 11, 5079-5089.

- 339 Becker, K.B., Stephens, K.C., Davey, J.C., Schneider, M.J., Galton, V.A., 1997. The type 2 and type 3
- 340 iodothyronine deiodinases play important roles in coordinating development in *Rana catesbeiana*

341 tadpoles. Endocrinology 138, 2989-2997.

- 342 Blanchard, R.L., Freimuth, R.R., Buck, J., Weinshilboum, R.M., Coughtrie, M.W.H., 2004. A proposed
- nomenclature system for the cytosolic sulfotransferase (SULT) superfamily. Pharmacogenetics 14,
- 344 **199-211**.
- Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein
 utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254.
- Brown, D.D., 2005. The role of deiodinases in amphibian metamorphosis. Thyroid 15, 815-821.
- 348 Chanoine, J.P., Safran, M., Farwell, A.P., Dubord, S., Alex, S., Stone, S., Arthur, J.R., Braverman, L.E.,
- Leonard, J.L., 1992. Effects of selenium deficiency on thyroid hormone economy in rats. Endocrinology
- 350 131, 1787-1792.
- 351 Chopra, I.J., 2004. A radioimmunoassay for measurement of 3,3'-diiodothyronine sulfate: studies in
- thyroidal and nonthyroidal diseases, pregnancy, and fetal/neonatal life. Metabolism 53, 538-543.
- Darras, V.M., Hume, R., Visser, T.J., 1999. Regulation of thyroid hormone metabolism during fetal
 development. Mol. Cell. Endocrinol. 151, 37-47.
- 355 Finnson, K.W., Eales, J.G., 1998. Sulfation of thyroid hormones by liver of rainbow trout, Oncorhynchus
- 356 *mykiss*. Comp. Biochem. Physiol. Pharmacol. Toxicol. Endocrinol. 120C, 415-420.

- 357 Finnson, K.W., McLeese, J.M., Eales, J.G., 1999. Deiodination and deconjugation of thyroid hormone
- 358 conjugates and type I deiodination in liver of rainbow trout, *Oncorhynchus mykiss*. Gen. Comp.
- 359 Endocrinol. 115, 387-397.
- 360 Friesema, E.C.H., Docter, R., Krenning, E.P., Everts, M.E., Hennemann, G., Visser, T.J., 1998. Rapid
- 361 sulfation of 3,3',5'-triiodothyronine in native *Xenopus laevis* oocytes. Endocrinology 139, 596-600.
- 362 Fujita, K., Nagata, K., Yamazaki, T., Watanabe, E., Shimada, M., Yamazoe, Y., 1999. Enzymatic
- 363 characterization of human cytosolic sulfotransferases; identification of ST1B2 as a thyroid hormone
- 364 sulfotransferase. Biol. Pharm. Bull. 22, 446–452.
- 365 Galton, V.A., Hiebert, A., 1987. Hepatic iodothyronine 5-deiodinase activity in *Rana catesbeiana* tadpoles
- at different stages of the life cycle. Endocrinology 121, 42-47.
- Gamage, N., Barnett, A., Hempel, N., Duggleby, R.G., Windmill, K.F., Martin, J.L., McManus, M.E., 2006.
 Human sulfotransferases and their role in chemical metabolism. Toxicol. Sci. 90, 5-22.
- 369 Greenwood, F.C., Hunter, W.M., Glover, J.S., 1963. The preparation of ¹³¹I-labeled human growth hormone
- of high specific radioactivity. Biochem. J. 89, 114-123.
- 371 Gong, D.-W., Murayama, N., Yamazoe, Y., Kato, R., 1992. Hepatic triiodothyronine sulfation and its
- regulation by growth hormone and triiodothyronine in rats. J. Biochem. 112, 112-116.
- Hazenberg, M.P., de Herder, W.W., Visser, T.J., 1988. Hydrolysis of iodothyronine conjugates by intestinal
- bacteria. FEMS Microbiol. Rev. 54, 9-16.
- 375 Ishihara, A., Sawatsubashi, S., Yamauchi, K., 2003. Endocrine disrupting chemicals: interference of thyroid
- hormone binding to transthyretins and to thyroid hormone receptors. Mol. Cell. Endocrinol. 199,
- 377 105–117.
- 378 Kaptein, E., van Haasteren, G.A.C., Linkels, E., de Greef, W.J., Visser, T.J., 1997. Characterization of
- iodothyronine sulfotransferase activity in rat liver. Endocrinology 138, 5136-5143.
- 380 Kester, M.H.A., Kaptein, E., Roest, T.J., van Dijk, C.H., Tibboel, D., Meinl, W., Glatt, H., Coughtrie,

- 381 M.W.H., Visser, T.J., 1999. Characterization of human iodothyronine sulfotransferases. J. Clin.
- 382 Endocrinol. Metab. 84, 1357-1364.
- 383 Kester, M.H.A., Kaptein, E., Roest, T.J., van Dijk, C.H., Tibboel, D., Meinl, W., Glatt, H., Coughtrie,
- 384 M.W.H., Visser, T.J., 2003. Characterization of rat iodothyronine sulfotransferases. Am. J. Physiol.
- 385 Endocrinol. Metab. 285, 592-598.
- Kudo, Y., Yamauchi, K., 2005. In vitro and in vivo analysis of the thyroid disrupting activities of phenolic
 and phenol compounds in *Xenopus laevis*. Toxicol. Sci. 84, 29-37.
- 388 Kudo, Y., Yamauchi, K., Fukazawa, H., Terao, Y., 2006. In vitro and in vivo analysis of the thyroid
- system-disrupting activities of brominated phenolic and phenol compounds in *Xenopus laevis*. Toxicol.
 Sci. 92, 87-95.
- 391 Morvan Dubois, G., Sebillot, A., Kuiper, G.G.J.M., Verhoelst, C.H.J., Darras, V.M., Visser, T.J., Demeneix,
- B.A., 2006. Deiodinase activity is present in *Xenopus laevis* during early embryogenesis. Endocrinology
 147, 4941-4949.
- Reyns, G.E., Kühn, E.R., Darras, V.M., 2000. Thyroid hormone sulfation in chicken and axolotl. Nether. J.
 Zool. 50, 329-341.
- Rooda, S.J.E., van Loon, M.A.C., Visser, T.J., 1987. Metabolism of reverse triiodothyronine by isolated rat
 hepatocytes. J. Clin. Invest. 79, 1740-1748.
- 398 Rutgers, M., Bonthuis, F., de Herder, W.W., Visser, T.J., 1987. Accumulation of plasma triiodothyronine
- sulfate in rats treated with propylthiouracil. J. Clin. Invest. 80, 758-762.
- 400 Schuur, A.G., Legger, F.F., van Meeteren, M.E., Moonen, M.J.H., van Leeuwen-Bol, I., Bergman, Å., Visser,
- 401 T.J., Brouwer, A., 1998. *In vitro* inhibition of thyroid hormone sulfation by hydroxylated metabolites of
- 402 halogenated aromatic hydrocarbons. Chem. Res. Toxicol. 11, 1075-1081.
- 403 Stanley, E.L., Hume, R., Coughtrie, M.W.H., 2005. Expression profiling of human fetal cytosolic
- 404 sulfotransferases involved in steroid and thyroid hormone metabolism and in detoxification. Mol. Cell.

405 Endocrinol. 240, 32-42.

- 406 Strott, C.A., 2002. Sulfonation and molecular action. Endocr. Rev. 23, 703-732.
- 407 Sugahara, T., Liu, C.-C., Carter, G., Pai, T.G., Liu, M.-C., 2003a. cDNA cloning, expression, and
- 408 functional characterization of a zebrafish SULT1 cytosolic sulfotransferase. Arch. Biochem. Biophys.
- 409 414, 67-73.
- 410 Sugahara, T., Liu, C.-C., Pai, T.G., Collodi, P., Suiko, M., Sakakibara, Y., Nishiyama, K., Liu, M.-C.,
- 411 2003b. Sulfation of hydroxychlorobiphenyls. Molecular cloning, expression, and functional
- 412 characterization of zebrafish SULT1 sulfotransferases. Eur. J. Biochem. 270, 2404-2411.
- Taylor, A.C., Kollros, J.J., 1946. Stages in the normal development of *Rana pipiens* larvae. Anat. Rec. 94,
- 414 7-23.
- Testa, B., Krämer, S.D., 2008. The Biochemistry of Drug Metabolism An introduction part 4. Reactions
 of conjugation and their enzymes. Chem. Biodivers. 5, 2174-2336.
- 417 Tindall, A.J., Morris, I.D., Pownall, M.E., Isaacs, H.V., 2007. Expression of enzymes involved in thyroid
- 418 hormone metabolism during the early development of *Xenopus tropicalis*. Biol. Cell 99, 151-163.
- 419 Visser, T.J., 1994. Role of sulfation in thyroid hormone metabolism. Chem. -Biol. Interact. 92, 293-303.
- 420 Visser, T.J., 1996. Pathway of thyroid hormone metabolism. Acta Med. Austriaca 23, 10-16.
- Visser, T.J., Kaptein, E., Glatt, H., Bartsch, I., Hagen, M., Coughtrie, M.W.H., 1998. Characterization of
 thyroid hormone sulfotransferases. Chem. Biol. Interact. 109, 279-291.
- 423 White, B.A., Nicoll, C.S., 1981. Hormonal control of amphibian metamorphosis. In: Metamorphosis,
- 424 Gilbert, L.I., Frieden, E. (Eds.), Plenum Press, New York, pp. 363-396.
- 425 Wu, S.Y., Huang, W.S., Polk, D.H., Parker, L.N., Fisher, D.A., Galton, V.A., 1998. Sulfoconjugation is a
- 426 major pathway of thyroid hormone metabolism in developing animals: from tadpoles to mammals. 80th
- 427 Annual Meeting of the Endocrine Society, New Orleans, LA., p248.

428	Wu, SY., Green, W.L., Huang, WS., Hays, M.T., Chopra, I.J., 2005. Alternate pathways of thyroid
429	hormone metabolism. Thyroid 15, 943-958.

- 430 Wang, J., Falany, J.L., Falany, C.N., 1998. Expression and characterization of a novel thyroid
- 431 hormone-sulfating form of cytosolic sulfotransferase from human liver. Mol. Pharmacol. 53, 274-282.
- Wang, L.-Q., James, M.O., 2006. Inhibition of sulfotransferases by xenobiotics. Curr. Drug Metab. 7,
 83-104.
- 434 Yasuda S., Kumar, A.P., Liu, M.-Y., Sakakibara, Y., Suiko, M., Chen, L., Liu, M.-C., 2005. Identification
- 435 of a novel thyroid hormone-sulfating cytosolic sulfotransferase, SULT1 ST5, from zebrafish. FEBS J.
 436 272, 3828-3837.
- 437 Young, W.F.Jr., Gorman, C.A., Weinshilboum, R.M., 1988. Triiodothyronine: a substrate for the
- thermostable and thermolabile forms of human phenol sulfotransferase. Endocrinology 122,
- 439 1816-1824.
- 440
- 441
- 442
- 443
- 444
- 445
- 446
- 447
- 448
- 110
- 449

450	
-----	--

452 Figure legends

453 Figure 1. Iodothyronine sulfation by the liver cytosol from *Rana catesbeiana* tadpoles. (A)

- 454 Cytosol-dependent T₃ sulfation. The cytosol from the stage X tadpoles was incubated with T₃ (1 μ M)
- 455 containing $[^{125}I]T_3$, and PAPS (50 μ M) in 0.2 mL of the buffer, pH 7.2, for 30 min at 16°C. (*B*) Time course
- 456 of T₃ sulfation. The cytosol was incubated with T₃ (1 μ M) containing [¹²⁵I]T₃, and PAPS (50 μ M) in 0.2 mL
- 457 of the buffer, pH 7.2, for up to 90 min at 16°C. (C) Temperature-dependency of T₃ sulfation. The liver
- 458 cytosol was incubated with T_3 (1 μ M) containing [¹²⁵I]T₃, and PAPS (50 μ M) in 0.2 mL of the buffer, pH
- 459 7.2, for 30 min at 10°C, 16°C, 22°C, and 28°C. Values are the mean \pm standard error of the mean. Each
- 460 experiment was repeated three times.
- 461
- 462 Figure 2. Kinetics of T₃ sulfation by the liver cytosol from *Rana catesbeiana* tadpoles. (A) T₃
- 463 concentration-dependent T₃ sulfation. The cytosol from the stage X tadpoles was incubated with T₃
- 464 (0–2 μ M) containing [¹²⁵I]T₃ and PAPS (50 μ M) for 30 min at 16°C. (*B*) PAPS concentration-dependent T₃

sulfation. The cytosol was incubated with $T_3 (20 \ \mu\text{M})$ containing [¹²⁵I] T_3 and PAPS (0–10 \ \mu\text{M}) for 30 min

466 at 16°C. Curve fitting was performed using the Michaelis–Menten equation, $v=V_{max}/(1+K_m/S)$. Insets

467 illustrate the double reciprocal plot. Values are the mean \pm standard error of the mean. Experiments were

- 468 repeated three times.
- 469
- 470 Figure 3. Temporal and spatial patterns of TH sulfating activity in *Rana catesbeiana* cytosol. (A) TH
- 471 sulfation by liver cytosol during development. The cytosol from the metamorphosing tadpoles (stages
- 472 IX–XXIV), froglets, and adults were used for T₄ and T₃ sulfating activities (open and closed bars,
- 473 respectively). The *inset* depicts T₃:T₄ sulfating activity ratio. (*B*) TH sulfation by the cytosols from various

474	tissues of tadpoles (stage X). Each value is the mean \pm SEM of triplicate determinations. Different letters
475	indicate significance between two time points ($p < 0.05$; two-way analysis of variance followed by
476	Fisher's least-significant-difference method for multiple comparisons). $P < 0.05$, between T ₄ and T ₃
477	sulfating activities in panels A and B. Experiments were repeated three times.
478	
479	Figure 4. Substrate specificity of iodothyronine sulfating activity in the liver cytosol from Rana
480	<i>catesbeiana</i> tadpoles. (A) Competition of $[^{125}I]T_3$ sulfation by the liver cytosol with iodothyronines and
481	their analogs. Substrates investigated are 3,3',5'-triiodothyronine (rT ₃ , \bullet), T ₃ (\circ),
482	3,3',5,5'-tetraiodothyroacetic acid (Tetrac, ▲), 3,3',5-triiodothyroacetic acid (Triac, <open triangle="">),</open>
483	thyroxine (T ₄ , \blacksquare), 3-iodothyronine (T ₁ , \square); 3,5-diiodothyronine (3,5-T ₂ , \blacklozenge). For comparison, broken lines
484	indicate competition curves obtained using the liver cytosol from the adult frogs. (B) Competition of
485	$[^{125}I]T_3$ sulfation by the liver cytosol with candidate substrates. Substrates investigated are
486	dihydroxyepiandrosterone (DHEA, •), diethylstilbestrol (DES, \circ); <i>p</i> -nitrophenol (p-NiP, \blacktriangle); dopamine
487	(<open triangle="">); 17β-estradiol (E₂, \blacksquare). Values are the mean \pm standard error of the mean. Experiments</open>
488	were repeated three times.
489	
490	Figure 5. Inhibition of $[^{125}I]T_3$ sulfating activity in the tadpole liver cytosol by halogenated phenol (A) and
491	phenolic compounds (B). Compounds investigated were pentachlorophenol (PCP, \bullet), pentabromophenol
492	(PBP, ○), triiodophenol (TIP, ▲), 2,6-dichlorophenol (DCP, <open triangle="">), trichlorophenol (TCP, ■),</open>

- 493 2,6-dichloro-4-nitrophenol (DCNP, \Box), 2,6-dibromophenol (DBP, \blacklozenge), tribromophenol (TBP, \diamondsuit), ioxynil (\bigtriangledown)
- 494 and 4-nonylphenol (4-NoP, <upside-down open triangle>) in *panel A*; and tetrabromobisphenol A (Br₄BPA,

495 \circ), tetrachlorobisphenol A (Cl₄BPA, <open triangle>) and bisphenol A (BPA, \Box) in *panel B*. Values are the

496 mean \pm standard error of the mean. Experiments were repeated three times.

- 498 Figure 6. Possible pathways of iodothyronine metabolism in the tadpole liver. As outer ring deiodinase
- 499 (5'D) activity is not present in the liver of metamorphosing bullfrog tadpoles (Becker et al., 1997), T₄ and
- 500 T₃ would be metabolized by Pathway (I) and Pathway (II), respectively. From our study, it is unclear which
- 501 route in both pathways is predominant. The reactions that are catalyzed quickly and slowly, which are from
- 502 this study and Galton and Hiebert, (1987), are indicated by bold and narrow arrows, respectively. The
- 503 speed of the reactions that have not been determined are indicated by broken arrows.

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

