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Abstract

This article treats a problem which describs movement of a string that hits to an
obstacle. In [10] M. Schatzman solves this problem in a slightly classical way. In [5],
[6] K. Maruo constructs a solution to this problem by the use of Yosida approx-
imation. The purpose of this article is to construct a solution to this problem in
time semidiscretization method. In general approximation by time semidiscretiza-
tion method is different from Yosida approximation. A simple example is presented
in Appendix.
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1 Introduction

In [9] M. Schatzman treats a problem which describs movement of a string that
hits to an obstacle. This problem is formulated as in the following way. Here,
for the sake of simplicity, we suppose that the obstacle is flat just like as a
table. Let u0 ∈ W 1,2(0, 1) and v0 ∈ L2(0, 1) with u0 ≥ 0 and u0(0) = u0(1) = 1,
and find u that satisfies a second order hyperbolic differential inequality

utt − uxx ≥ 0 (1.1)
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in the sense of distributions and

spt (utt − uxx) ⊂ {u = 0}, (1.2)

u(t, x) ≥ 0 for L2 − a.e. (1.3)

with initial conditions

u(0, x) = u0,
∂u

∂t
(0, x) = v0 (1.4)

and a boundary condition

u(t, 0) = u(t, 1) = 1. (1.5)

A weak solution to (1.1)–(1.5) is defined as follows:

Definition 1.1 A function u : (0, T ) → L2(0, 1) is said to be a weak solution
to (1.1)–(1.5) in (0, T ) if

i) u ∈ W 1,2((0, T )× (0, 1)), u(t, x) ≥ 0 for L2-a.e. (t, x)

ii) s-lim
t↘0

u(t) = u0 in L2(0, 1)

iii) u(t, 0) = u(t, 1) = 1

iv) for any φ ∈ C0
0([0, T ); L2(0, 1)) ∩W 1,2

0 ((0, T )× (0, 1)) with φ ≥ 0,

−
T∫

0

1∫

0

ut(t)φt(t)dxdt +

T∫

0

1∫

0

uxφxdxdt−
1∫

0

v0φdx ≥ 0.

v) for any φ ∈ C0
0([0, T ); L2(0, 1)) ∩W 1,2

0 ((0, T ) × (0, 1)) with spt φ ⊂ ({u =
0})c,

−
T∫

0

1∫

0

ut(t)φt(t)dxdt +

T∫

0

1∫

0

uxφxdxdt−
1∫

0

v0φdx = 0.

Replacing (1.3) with u ≥ r, where r ∈ C0([0, 1]), we can treat a more compli-
cated obstacle. Probably the case that u(t, 0) = a, u(t, 1) = b with a, b ≥ 0
is also a problem. Our analysis is available for these cases under some minor
changes.
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In [10] M. Schatzman solves this equation in a slightly classical way. Under a
condition that a solution satisfies an equality which assures the energy conser-
vation law, uniqueness is also proved. In [5], [6] K. Maruo constructs a solution
to this problem by the use of Yosida approximation. Let us define a functional
Φ : L2(0, 1) → [0,∞] by

Φ(u) =





0 if u(x) ≥ 0 for each x

∞ if otherwise.
(1.6)

Then (1.1)–(1.3) are equivalent to

utt − uxx + ∂Φ(u) 3 0

in L2(0, 1). In [5], [6] Yosida approximation is carried out to the functional Φ,
namely, given λ > 0, approximate functional Φλ is defined as

Φλ(u) = min{ 1

2λ
‖v − u‖2 +

1∫

0

|vx(x)|2dx + Φ(v); v ∈ L2(0, 1)}.

Then ∂Φλ is singleton and Lipschitz continuous in L2(Ω).

The purpose of this article is to construct a solution to this problem in the
method of semidiscretization in time variable. This approximating method is
often called Rothe’s method and at first introduced to construct weak solu-
tions to parabolic equations ([8]). In [11] it is pointed out that this method is
also available for hyperbolic equations and semilinear hyperbolic equations are
solved by the use of this method. In [2], [3] this method is applied to quasi-
linear hyperbolic equations, however in these works it should be supposed
that the limit of approximate solutions satisfies energy conservation law. Al-
though our equation has stronger nonlinearity than a semilinear equation,
we obtain that passing to a subsequence if necessary approximate solutions
converge to a solution without assuming any additional assumptions, such as
energy conservation law. In time semidiscretization method we should solve
elliptic equations with respect to space variables, and when the equation has
divergence form, a direct variational method is one way of solving an elliptic
equation; indeed in [2], [3], [11] elliptic equations are solved by minimizing
variational functionals. In this respect this method is closely related to the
theory of minimizing movements, which is proposed by E. De Giorgi [1]. In
[12] the method of combining Rothe’s time semidiscretization and minimizing
functionals is refered to as minimizing movement method.

Now we overview the time semidiscretization method. For a positive number
h we construct a sequence {ul}∞l=−1 in the following way. For l = 0 we let u0
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be as above and for l = −1 we set u−1 = u0 − hv0. For l ≥ 1, ul is defined as
a solution to the time semidiscretized problem, which is equivalent to

u− 2ul−1 + ul−2

h2
− uxx + ∂Φ(u) 3 0

with (1.4), (1.5), where Φ is as in (1.6), and it is obtained as a minimizer of
the functional

Fl(u) =
1

2h2‖u− 2ul−1 + ul−2‖2 +

1∫

0

|ux|2dx + Φ(u)

in W 1,2(0, 1) with u(0) = u(1) = 1. The existence of the minimizer is assured
by lower semicontinuity and boundedness from below of Fl. By the use of

convexity of

1∫

0

|ux|2dx + Φ(u) we have energy inequality

1

2h2
‖ul − ul−1‖2 +

1∫

0

|(ul)x|2dx + Φ(ul) ≤ 1

2
‖v0‖2 +

1∫

0

|(u0)x|2dx. (1.7)

(compare to [7]). Note that the right hand side is in fact 1
2
‖v0‖2+

∫ 1
0 |(u0)x|2dx+

Φ(u0), however by the assumption on u0 we have Φ(u0) = 0.

Next we define approximate solutions uh(t) and uh(t) for t ∈ (−h,∞) as
follows: for (l − 1)h < t ≤ lh

uh(t, x) =
t− (l − 1)h

h
ul(x) +

lh− t

h
ul−1(x) (1.8)

and

uh(t, x) = ul(x). (1.9)

Then we have by (1.7)

1

2

1∫

0

|uh
t (t)|2dx +

1∫

0

|ux(t)|2dx + Φ(uh(t)) ≤ 1

2

1∫

0

|v0|2dx +

1∫

0

|(u0)x|2dx(1.10)
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for each t ∈
∞⋃

l=0

((l − 1)h, lh). By the use of (1.10) we have

Proposition 1 Under the above notations it follows that

(1)) {‖uh
t ‖L∞((0,∞);L2(0,1))} is uniformly bounded with respect to h

(2)) {‖uh
x‖L∞((−h,∞);L2(0,1))} is uniformly bounded with respect to h

(3)) uh(t, x) ≥ 0 for each x and L1-a.e. t
(4)) {‖uh

x‖L∞((0,∞);L2(0,1))} is uniformly bounded with respect to h

(5)) uh(t, x) ≥ 0 for each x and L1-a.e. t

Then there exist a sequence {hj} with hj → 0 as j → ∞ and a function u
such that

(6)) for any T > 0, uhj converges to u as j →∞ weakly star in L∞((0, T ); L2(0, 1))

(7)) u
hj

t converges to ut as j →∞ weakly star in L∞((0,∞); L2(0, 1))

(8)) u
hj
x converges to ux as j →∞ weakly star in L∞((0,∞); L2(0, 1))

(9)) for any T > 0, uhj converges to u as j →∞ strongly in L∞((0, T ); L2(0, 1))

(10)) for any T > 0, uhj converges to u as j →∞ strongly in L∞((0, T ); L2(0, 1))

(11)) s- lim
t↘t0

u(t) = u0 in L2(0, 1).

This proposition is obtained as a collorary of Proposition 2.2 of [4, Section 2],
in which minimizing movement theory for second order hyperbolic equations is
developed. Assertions 9), 10) are stronger than corresponding assertions of [4,
Proposition 2.2]. Since (1.10) implies {uh(t, ·)} is contained in a sequentially
compact subset of L2(0, 1), we can obtain these assertions.

In the terminology of [1] the function u as in Proposition 1 is called a gen-
eralized minimizing movement associated with (1.1)–(1.5). Furthermore, if we
do not have to subtract a subsequence, u is called a minimizing movement
associated with (1.1)–(1.5) (compare to [4]).

Our main theoren is as follows:

Theorem 1.1 The function u as in Proposition 1 is a weak solution to (1.1)–
(1.5).

This theorem is proved in Section 2. Readers should remark that in general
approximation by time semidiscretization method is different from Yosida ap-
proximation. A simple example is presented in Section 3.

This work is inspired by [13], in which a problem that describes a movement
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of thin film with an obstacle is investigated. In [13] it is supposed that the film
stops when it touches the obstacle and they introduce a different formulation
from Schatzman’s one. The author expresses his gratitude to Professor Omata,
one of the authors of [13], for giving him information about [13].

2 Proof of Theorem 1.1

In this section, for the sake of brevity, we write uhj as in Proposition 1 as
uh. By Proposition 1 we immediately have i) and ii) of the definition of a
solution. By the definition of Fl we have ul − 1 ∈ W 1,2

0 (0, 1). Thus we have
iii) of the definition of a solution by Proposition 1 8), 9) since uh − 1 ∈
L∞((0, T ); W 1,2

0 (0, 1)) for each h.

Since ul is the minimizer of Fl(v), we have ∂Fl(ul) 3 0, namely, for each
φ ∈ L2(0, 1), we have

1∫

0

ul − 2ul−1 + ul−2

h2
φ(x)dx +

1∫

0

(ul)xφxdx + Φ(ul + φ)− Φ(ul) ≥ 0. (2.1)

Then, for each h,

1∫

0

uh
t (t)− uh

t (t− h)

h
φ(x)dx +

1∫

0

uh
xφxdx + Φ(uh(t) + φ)− Φ(uh(t)) ≥ 0(2.2)

for L1-a.e. t ∈ (0,∞). Proposition 1 implies uh
t and uh

x converge weakly star
to ut and ux, respectively, in L∞((0,∞); L2(0, 1)). Hence we have, for any
φ ∈ C1

0([0,∞)× (0, 1)),

∞∫

0

1∫

0

uh
t (t, x)− uh

t (t− h, x)

h
φ(t, x)dxdt (2.3)

−→ −
∞∫

0

1∫

0

utφt(t, x)dxdt−
1∫

0

v0(x)φ(0, x)dx

and

∞∫

0

1∫

0

uh
xφxdxdt −→

∞∫

0

1∫

0

uxφxdxdt. (2.4)
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(compare to, for example, [2]). Thus, if φ ≥ 0, since Φ(uh + φ) = Φ(uh) = 0,
(2.2) implies iv) of the definition of a solution by letting h → 0.

Finally we prove v) of the definition of a solution. First we show, passing to a
further subsequence if necessary, uh converges to u uniformly in (0, T )× (0, 1).
It is proved by Ascoli-Arzela theorem and hence we should have equicontinuity.
Equicontinuity of x 7→ uh(t, x) is obtained by Proposition 1 4). In order to
have the equicontinuity of t 7→ uh(t, x) we show the following lemma.

Lemma 2.1 Let ϕ ∈ L2(0, 1) and suppose that ϕ′ ∈ L2(0, 1) and ϕ(0) = 0.

Then ‖ϕ‖L∞(0,1) ≤
√

2‖ϕ‖1/2
L2(0,1)‖ϕ′‖1/2

L2(0,1).

Proof. Since ϕ(0) = 0, we have

ϕ(x)2 = ϕ(x)2 − ϕ(0)2 =

x∫

0

d

dx
(ϕ(y)2)dy =

x∫

0

2ϕ(y)ϕ′(y)dy.

Thus by Schwarz’s inequality

ϕ(x)2 = 2|
x∫

0

ϕ(y)ϕ′(y)dy| ≤ 2‖ϕ‖L2(0,1)‖ϕ′‖L2(0,1).

This implies the conclusion. Q.E.D.

Since we have

uh(t)− uh(s) =

t∫

s

uh
t (τ)dτ,

for each t, s ≥ 0, we have

‖uh(t)− uh(s)‖L2(0,1) ≤ ‖uh
t ‖L∞((0,∞);L2(0,1))|t− s|, (2.5)

while we have

‖uh
x(t)− uh

x(s)‖L2(0,1) ≤ 2‖uh
x‖L∞((0,∞);L2(0,1)) (2.6)

By (2.5), (2.6), and Lemma 2.1 we have

‖uh(t)− uh(s)‖L∞(0,1) ≤ 2‖uh
t ‖1/2

L∞((0,∞);L2(0,1))‖uh
x‖1/2

L∞((0,∞);L2(0,1))|t− s|1/2.

By the use of this inequality
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|uh(t, x)− uh(s, y)| ≤ |uh(t, x)− uh(t, y)|+ |uh(t, y)− uh(s, y)|

= |
x∫

y

uh
x(t, ξ)dξ|+ |uh(t, y)− uh(s, y)|

≤ ‖uh
x‖L∞((0,T );L2(0,1))|x− y|1/2 + 2‖uh

t ‖1/2
L∞((0,∞);L2(0,1))‖uh

x‖1/2
L∞((0,∞);L2(0,1))|t− s|1/2.

By Proposition 1 1), 4) there exists a constant C independent of h such that

|uh(t, x)− uh(s, y)| ≤ C(|x− y|1/2 + |t− s|1/2),

namely, uh is equicontinuous in (0, T )× (0, 1) with respect to h. Furthermore,
letting s = 0 and y = 0, we find {uh} is uniformly bounded in L∞((0, T ) ×
(0, 1)). Hereby we have by Ascoli-Arzela theorem that, passing to a further
subsequence if necessary, {uh} converges uniformly in (0, T )× (0, 1) to u. Let
φ ∈ C0

0([0, T ); L2(0, 1)) ∩ W 1,2
0 ((0, T ) × (0, 1)) satisfy spt φ ⊂ ({u = 0})c =

{u > 0}. Here remark that u is continuous with respect to t and x. Thus
there should be a positive constant σ such that u ≥ σ in spt φ. Without

loss of generality we may suppose that sup |φ| ≤ 1

2
σ. Since uh(t, x) converges

uniformly to u(t, x), |u(t, x)−uh(t, x)| < 1

2
σ if h is sufficiently small. Thus we

have

uh + φ = u + φ + uh − u ≥ u− |φ| − |u− uh| ≥ σ − 1

2
σ − 1

2
σ = 0.

Hence uh + φ ≥ 0 in (0, T ) × (0, 1). Noting that uh(t, x) = uh(lh, x) for
(l − 1)h < t ≤ lh, we find uh + φ ≥ 0 in (0, T ) × (0, 1). Hence (2.2) implies,
for L1-a.e. t,

1∫

0

uh
t (t)− uh

t (t− h)

h
φ(t, x)dx +

1∫

0

uh
xφxdx ≥ −(Φ(uh + φ)− Φ(uh)) = 0.

Replacing φ with −φ we have the converse inequality and thus, for L1-a.e. t,

1∫

0

uh
t (t)− uh

t (t− h)

h
φ(t, x)dx +

1∫

0

uh
xφxdx = 0.

Integrating over (0, T ) and letting h → 0, by (2.3) and (2.4) we have v) of the
definition of a solution.

8



3 Appendix

In this section, giving an example, we assert that approximation by time
semidiscretization method is different from Yosida approximation.

Let us define a functional J : R2 → [0,∞] by

J(u) =




∞ if u1 < 0

0 if u1 ≥ 0.

We consider the equation





d2u
dt2

+ ∂J(u) 3 0

u(t) = u0

du
dt (0) = v0.

(3.1)

A weak solution to (3.1) is defined as follows:

Definition 3.1 A function u : (0, T ) → R2 is said to be a weak solution to
(3.1) in (0, T ) if

i) u ∈ [W 1,2(0, T )]2, J(u) ∈ L1(0, T )

ii) lim
t↘0

u(t) = u0 in R2

iii) for any φ ∈ [C0
0 [0, T ) ∩W 1,2(0, T )]2,

T∫

0

{J(u + φ)− J(u)}dt ≥
T∫

0

(ut(t), φt(t))dt + (v0, φ).

Now suppose that u1
0 > 0 and v1

0 < 0. In [9] this equation is solved by Yosida
approximation and obtained a solution

u(t) =





u0 + tv0 if t < t∗

u0 + t∗v0 + (t− t∗)ṽ0 if t ≥ t∗,
(3.2)
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where t∗ = |v1
0|−1dist(u0, {u1 < 0}), namely, the time at which the pass reaches

to the interface, and ṽ0 = t(− v1
0, v

2
0).

In the sequel we construct a solution to (3.1) in time semidiscretization method,
and then it turns out that it is different from (3.2). Letting u0, v0 be as in the
initial condition and h be a positive number, we construct a sequence {ul}∞l=−1

by setting u−1 = u0 − hv0 for l = −1, letting u0 be as in the initial condition
for l = 0, and for l ≥ 1 letting ul as the minimizer of the function

fl(v) =
1

2h2
|v − 2ul−1 + ul−2|2 + J(v)

in R2. Putting A = {u1 ≥ 0} and B = {u1 < 0}, we have

fl(v) =





1
2h2 |v − 2ul−1 + ul−2|2 if v ∈ A

∞ if v ∈ B.

Thus, if 2ul−1 − ul−2 ∈ A, fl(2ul−1 − ul−2) = 0 and hence it attaines its
minimum, namely ul = 2ul−1 − ul−2. While, if 2ul−1 − ul−2 ∈ B,

inf
v∈H

fl(v) = inf
v∈A

1

2h2
|v − 2ul−1 + ul−2|2

and hence ul is a minimizer of {|v − 2ul−1 + ul−2|; v ∈ A}. Namely,

|ul − 2ul−1 + ul−2| = dist (2ul−1 − ul−2, A),

and thus we conclude

ul =




0

2u2
l−1 − u2

l−2


 .

In case that u1
l−2 > 0 and u1

l−1 = 0 we have 2u1
l−1−u1

l−2 = −u1
l−2 < 0, namely,

2ul−1−ul−2 ∈ B, and in case that u1
l−2 = 0 and u1

l−1 = 0 we have 2u1
l−1−u1

l−2 =
0, namely, 2ul−1 − ul−2 ∈ A. Let L = [t∗/h] = max{z ∈ Z; z ≤ t∗/h}. Then,
summing up above, we have





ul = u0 + lhv0 if 0 ≤ l ≤ L

ul =




0

u2
0 + lhv2

0


 if l ≥ L + 1.
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By the definition of uh we have

uh(t) =





u0 + tv0 if 0 ≤ t ≤ Lh


((L + 1)− h−1t)u1
0 + L((L + 1)h− t)v1

0

u2
0 + tv2

0


 if Lh < t ≤ (L + 1)h




0

u2
0 + tv2

0


 if (L + 1)h < t.

Now it is easy to check that uh(t) converges to

u(t) =





u0 + tv0 if 0 ≤ t ≤ t∗


0

u2
0 + tv2

0


 if t > t∗

strongly in [L∞(0, T )]2 and that u solves (3.1). However, above u is clearly
different from (3.2).

Remark. Here we do not have to substract a subsequence. Hence the function
u is a minimizing movement associated with (3.1).
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