1	Human IgG1 Expression in Silkworm Larval Hemolymph Using
2	BmNPV Bacmids and its N-Linked Glycan Structure
3	
4	Enoch Y. Park, ^{1,2*} Motoki Ishikiriyama, ¹ Takuya Nishina, ¹ Tatsuya Kato, ¹
5	Hirokazu Yagi, ³ Koichi Kato, ^{3,4} and Hiroshi Ueda ⁵
6	
7	¹ Laboratory of Biotechnology, Department of Applied Biological Chemistry, Shizuoka
8	University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan
9	² Laboratory of Biotechnology, Integrated Bioscience Section, Graduate School of
10	Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529,
11	Japan; telephone/fax: +81 54 238 4887; e-mail: <u>acypark@ipc.shizuoka.ac.jp</u>
12	³ Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1
13	Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
14	⁴ Institute for Molecular Science and Okazaki Institute for Integrative Bioscience,
15	National Institutes of Nat <u>ur</u> i on al Science, 5-1 Higashiyama Myodaiji, Okazaki
16	444-8787, Japan
17	⁵ Department of Chemistry and Biotechnology, School of Engineering, University of
18	Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
19	

Abbreviations: Bacmid, baculovirus shuttle vector; BmNPV, *Bombyx mori* nucleopolyhedrovirus; BmNPV-*CP*, cysteine protease-deficient BmNPV; BmNPV-*CP*-*Chi*, cysteine protease- and chitinase-deficient BmNPV; BSA, bovine serum albumin; bx, bombyxin; d.p.i., days post-injection; ELISA, enzyme-linked immunosorbent assay; HRP, horseradish peroxidase; PCR, polymerase chain reaction; SDS-PAGE, <u>sodium dodecyl sulfate polyacrylamide</u> <u>gel electrophoresis</u>; V_H, heavy-chain antibody variable region fragment; V_L, light-chain antibody variable region fragment

^{*}Corresponding author at: Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan. Tel./fax: +81 54 238 4887. *E-mail address:* <u>acypark@ipc.shizuoka.ac.jp</u> (E.Y. Park).

1 Abstract:

2	A Bombyx mori nucleopolyhedrovirus (BmNPV) bacmid expressing heavy and
3	light chains of human 29IJ6 IgG was constructed and used to secrete recombinant
4	antibody into silkworm larval hemolymph. Fifth instar silkworm larvae were reared and
5	injected into the dorsum of the larvae with recombinant cysteine protease- and
6	chitinase-deficient BmNPV (BmNPV-CP-Chi) bacmid/29IJ6 IgG and harvested after
7	approximately 6 days. The total yield of recombinant 29IJ6 IgG was 36 μ g/larvae,
8	which is equivalent to 8 mg/kg of larvae. The recombinant antibody was purified to
9	homogeneity using a HiTrap rProtein A FF column with a purification yield of 83.1%.
10	The purified protein was identified by Western blot and ELISA experiments. The
11	N-linked glycan structure of the purified protein was determined by the HPLC mapping
12	method. The N-glycans of the 29IJ6 IgG glycoprotein produced in, and secreted by the
13	silkworm larvae were composed exclusively of two kinds of paucimannose-type
14	oligosaccharides, Man α 1-6Man β 1-4GlcNAc β 1-4(Fuc α 1-6)GlcNAc and
15	$Man\alpha 1-6 (Man\alpha 1-3) Man\beta 1-4 Glc NAc\beta 1-4 (Fuc\alpha 1-6) Glc NAc.$

16 Keywords: IgG; antibody; bacmid; silkworm; BmNPV

1 1. Introduction

2 Progress has been made in antibody engineering technology in the last decade, 3 which has enabled the production of recombinant antibodies including chimeric, 4 humanized and human antibodies. Different systems to produce recombinant antibodies 5 have been developed and used, such as bacterial (Bird et al., 1988), yeast (Davis et al., 1991), insect (Bei et al., 1995; Hasemann and Cappa, 1990), mammalian (Jost et al., 6 7 1994), transgenic plant (Whitelam et al., 1994) and animal methodologies (Pollock et al., 8 1999). In order to obtain recombinant antibodies capable of full activity, expression in 9 eukaryotic cells has been preferred over bacterial systems that often produce insoluble 10 antibodies that remain inactive even after re-folding. Insect cells infected with 11 recombinant baculovirus have been used for the high-level expression of antibodies 12 (Hasemann and Cappa, 1990; Verma et al., 1998), because they are capable of a similar 13 post-translational modification to that occurring in mammalian cells, and also because 14 of the high expression levels achievable. Recombinant baculoviruses are used to infect 15 insect cells, Sf9 and High Five cells, and recombinant antibodies are recovered from the 16 infected cells. However, to improve the yield of recombinant antibodies, optimization of 17 the reactor performance, reactor design and the development of appropriate media are 18 still required. For example, the serial passage and preparation of large amounts of 19 recombinant baculovirus for the infection of insect cells are major drawbacks when 20 using baculovirus-insect cell expression systems.

1	An alternative baculovirus expression system involves the use of silkworms and
2	enables the production of recombinant proteins in silkworm larvae or pupae. A Bombyx
3	mori nucleopolyhedrovirus (BmNPV) bacmid system has recently been developed
4	(Motohashi et al., 2005). The BmNPV bacmid is a shuttle vector that can be replicated
5	in Escherichia coli, cultured B. mori cells and silkworm larvae or pupae. This enables
6	more rapid gene expression in silkworms compared with that in conventional
7	baculovirus expression systems. Moreover, a cysteine protease-deficient BmNPV
8	(BmNPV-CP ⁻) bacmid (Hiyoshi et al., 2007) and both cysteine protease- and
9	chitinase-deficient BmNPV (BmNPV-CP-Chi) bacmids (Park et al., 2008) have been
10	developed for the efficient production of gene products from silkworms. The protein
11	expression of these bacmids is higher than that of the wild-type BmNPV bacmid due to
12	the significant decrease in silkworm liquefaction and proteolytic degradation of the
13	expressed proteins.
14	In this study we report the successful production of a functional human IgG in
15	silkworm larvae. To evaluate the performance of our antibody expression system, a
16	human anti-BSA IgG1 was chosen as a model antibody. As the source of variable
17	region gene, the heavy (V _H) and light chain (V _L) genes of human single chain Fv 29IJ6
18	isolated from a synthetic library Tomlinson I+J were used (Aburatani et al., 2002; de
19	Wildt et al., 2000). The genes for V _H /V _L were linked to the genes for heavy chain
20	constant region of human IgG1 (C γ 1) and the human lambda light chain constant region
21	<u>Cλ, respectively, and expressed as 29IJ6 IgG. Moreover, pPurification of the productis</u>

1 <u>29IJ6 IgG</u> from silkworm larval hemolymph and identification of its *N*-linked glycan

- 2 structures are also reported.
- 3

4 2. Materials and methods

5 2.1. Strain, plasmid and silkworm larvae

E. coli DH10Bac was purchased from Invitrogen (Carlsbad, CA, USA). Fifth-instar 6 7 hybrid Kinsyu x Syowa silkworm larvae (Ehime Sansyu, Yahatahama, Japan) were used 8 in this study. The larvae were reared on an artificial diet (Silkmate 2S, Nihon Nosan, 9 Yokohama, Japan) at 27±1°C. Plasmids pUC18/VDJ-gamma1m (HG324) and 10 pUC18/human IgC\u03b2 (HG302) were obtained from Human Science Research Resources 11 Bank (Osaka, Japan). 12 2.2. PCR amplification of the genetic elements for IgG1 expression 13 Oligonucleotide primers used for the PCR amplification of heavy and light chain 14 genes of the human antibody variable region (Fv) recognizing bovine serum albumin (BSA), and human $\frac{\text{VDJ-C}}{2}\gamma 1 - \frac{1}{2} C\lambda$ genes are listed in Table 1. Heavy (29IJ6VH) and 15

16 light (29IJ6VL) chain genes of the human single chain Fv isolated from a synthetic

17 library Tomlinson I+J were amplified from pIT2-29IJ6 (de Wildt et al., 2000; Aburatani

18 et al., 2002) using primers 29IJ6VH-F and 29IJ6VH-R or 29IJ6VL-F and 29IJ6VL-R,

- 19 respectively. <u>The Secretion form IgG1 constant region (C λ 1)</u> cDNA was amplified
- 20 from pUC18/VDJ-gamma 1m using Cgamma1-F and Cgamma1-R, whilst-while the

1	
1	<u>human</u> Ig C λ sequence DNA from pUC18/human IgC λ was amplified using primers
2	Clambda-F and Clambda -R. PCR was performed using the following program: 3 min at
3	95°C, 35 cycles at 95°C for 15 s, 55°C for 30 s and 68°C for 1 min, followed by a final
4	extension at 68°C for 5 min. All of the amplified PCR fragments were purified using a
5	GFX PCR purification kit (Biocompare Inc., San Francisco, CA) and stored at -20°C for
6	subsequent cloning.

7

8 2.3. Construction of recombinant BmNPV bacmids

9 The recombinant BmNPV bacmid for IgG1 expression was constructed as follows (Fig. 1). Xho I- and Nco I-digested 29IJ6VL, and Nco I- and Kpn I-digested CA 10 11 fragments were ligated into Xho I and Kpn I digested pFastBac Dual (Invitrogen) 12 fragments using T4 ligase (pFastBac Dual/29IJ6VL-C\u03c2). Bam HI- and Eco RI- digested 13 29IJ6VH and Eco RI- and Pst I- digested y1 fragments were ligated into Bam HI and 14 Pst I digested pFastBac Dual/29IJ6VL-Cλ using T4 ligase (pFastBac Dual/29IJ6 IgG). 15 Expression of the 29IJ6 IgG1 gene is controlled by a polyhedrin promoter in the 16 pFastBac Dual/29IJ6 IgG, but that of the 29IJ6 lambda chain gene is controlled by a p10 17 promoter. To secrete expressed protein(s) into the silkworm larval hemolymph, the 18 signal sequence from bombyxin (bx) was added to both the heavy and the light chain 19 genes. In order to decrease the proteolytic degradation of expressed 29IJ6 IgG, a 20 cysteine protease- and chitinase-deficient Bombyx mori multiple nucleopolyhedrovirus 21 (BmNPV-CP--Chi) bacmid (Park et al., 2008) was used. The pFastBac Dual/29IJ6 IgG

1	was then transformed into each E. coli DH10BacBm-CP-Chi, cultivated in a LB (10 g
2	of tryptone, 5 g of yeast extract, 10 g of NaCl, and 20 g of agar per liter) plate
3	containing 50 μ g/ml kanamycin, 7 μ g/ml gentamycin, 10 μ g/ml tetracycline, 100 μ g/ml
4	5-bromo-4-chloro-3-indolyl- β -D-galactopyranoside (X-Gal) and 40 μ g/ml isopropyl
5	β-D-1-thiogalactopyranoside (IPTG). White colonies were selected, and positive clones
6	harboring the BmNPV bacmid were used for expressing the IgG1, and the white colony-
7	was picked up as positive clones.

8

9 2.4. 29IJ6 IgG expression in harvested silkworm larvae and hemolymph

10 BmNPV bacmid DNA was injected directly into larvae on the first day of their 11 fifth-instar. Four µg of both BmNPV bacmid and the helper plasmid pMON7124 DNA 12 were suspended in 5 µl of 1,2-dimyristyloxypropyl-3-dimethyl-hydroxy ethyl 13 ammonium bromide (DMRIE)-C reagent (Invitrogen) and left to stand at room 14 temperature for 45 min. The resultant mixture was diluted to a final volume of 50 µl 15 with PBS, and 20 µl of the mixture was then injected into the dorsum of the larvae using 16 a syringe with a 26-gauge beveled needle. Expression of IgG in the silkworm larvae was 17 confirmed at 6 days post-injection (d.p.i.). 18 Silkworm larvae at 6 d.p.i. during the fifth instar were bled by cutting the 19 abdominal legs with scissors. Hemolymph was immediately mixed with 5 µl of 200 mM 20 1-phenyl-2-thiourea, and centrifuged at 9000 rpm for 10 min at 4°C. The supernatant

21 samples were immediately frozen at -80°C for further analysis.

1 2.5. SDS-PAGE, Western blot, and lectin blot analyses

2	The protein content in the hemolymph was examined using sodium dodecyl
3	sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot. SDS-PAGE
4	was performed with 10% polyacrylamide gel using the Mini-protein III System
5	(Bio-Rad Laboratories, Hercules, CA, USA). The respective bands were detected using
6	Coomasie Brilliant Blue (CBB). For the Western blot, the samples were boiled for 5
7	min before they were run on the SDS-PAGE gel. An mouse anti-human IgG (H+L)
8	antibody (Jackson ImmunoResearch Lab., Inc. West Grove, PA, USA) was used as the
9	primary antibody, and goat anti-mouse IgG-horseradish peroxidase (GE Healthcare,
10	Piscataway, NJ, USA) (1:10,000) was used as the secondary antibody. The immunoblot
11	bands were visualized using ECL plus Western blotting detection reagents (GE
12	Healthcare), and analyzed using a Fluor-S/MAX multi-imager (Bio-Rad). Magic Mark
13	XP Western Protein Standard (Invitrogen) was used as a protein molecular weight
14	marker.
15	Proteins were transferred to the SDS-PAGE as described above. The gel was
16	blocked by washing three times with TBST (10 mM TrisHCl, pH, 7.4, 150 mM NaCl,
17	0.05% Tween 20) for 10 min. It was then incubated with FITC-conjugated lectin for 1 h
18	at room temperature, followed by three washes with TBST for 5 min. The lectins used
19	were Concanavalin A (ConA), and agglutinins from Lens culinaris (LCA), Arachis
20	hypogaea (PNA), wheat germ (WGA), Aleuria aurantia (AAL) and Sambucus

sieboldiana (SSA). The signal was analyzed using a Fluor-S/MAX multi-imager
 (Bio-Rad).

3 The protein concentration was measured using a Bradford protein assay kit4 (Bio-Rad), with BSA as a standard.

5 2.6. Quantification of 29IJ6 IgG and antigen binding

6 The expressed IgG in silkworm larvae was quantified using the Human IgG ELISA 7 quantification kit (Bethyl Lab. Inc., Montgomery, TX, USA). One hundred µl/well of 8 10-µg/ml goat anti-human IgG-affinity purified solution was used as a coating antibody 9 in a coating buffer containing 0.05 M carbonate-bicarbonate (pH 9.6). This was used to 10 coat a 96-well flexible assay plate for 1 h at room temperature. Two hundred µl of 11 blocking solution (10% skimmed milk in 50 mM Tris-HCl 0.14 M NaCl, pH 8.0) was 12 added to the antibody-coated plate wells, followed by incubation for 30 min at room 13 temperature. The wells were washed three times with a washing solution (50 mM 14 Tris-HCl 0.14 M NaCl, 0.05% Tween 20, pH 8.0) and the diluted expressed protein was 15 then added to the antibody-coated plate wells, incubated for 1 or 2 h at room 16 temperature and washed three times with 200 µl of washing buffer. As a second 17 antibody, 100 µl of goat anti-human IgG-HRP conjugate diluted 50,000-100,000 times 18 in sample/conjugate diluent (50 mM Tris-HCl, 0.14 M NaCl, 1% BSA, 0.05% Tween 20, 19 pH 8.0), was added to each well, incubated for 1 h and washed three times with 200 µl 20 of washing buffer. 100 µl of substrate (0.1 mg/ml 3,3',5,5'-tetramethylbenzidine (TMBZ) in 100 mM sodium acetate, pH 6.0, with 0.2% (v/v) of 30% hydrogen 21

peroxidase) was added to each well and left at room temperature for blue color
 development. The reaction was stopped by the addition of 50 μl of 2 M H₂SO₄ solution.
 The color developed was measured at optical densities (ODs) of 450 and 655 nm. The
 value calculated by subtracting OD₄₅₀ from OD₆₅₅ was used as a measure of the amount
 of 29IJ6 IgG. Human reference serum (4 mg/ml) was used for the calibration of IgG as a
 standard.

7 The antigen binding assay was performed as follows. One hundred µl/well of 10 8 µg/ml BSA was used to coat a 96-well flexible assay plate for 1 h at room temperature. 9 Two hundred µl of 20% skimmed milk in phosphate-buffered saline-Tween (PBST) 10 buffer (137 mM NaCl, 10 mM sodium phosphate, 2.7 mM KCl and 0.1% Tween 20, pH 11 7.4) was added to the BSA-coated plate wells for blocking, followed by incubation for 1 12 h at room temperature. The wells were washed three times with PBST buffer. One 13 hundred µl/well of diluted hemolymph (diluted 400-800 times) or purified 29IJ6 IgG 14 (diluted 10-200 times) were then added to the BSA-coated plate wells, incubated for 1.5 15 h at room temperature and washed three times with 200 µl of PBST. As a second 16 antibody, 100 µl of HRP conjugated goat anti-human IgG-Fc (Bethyl Lab. Inc., 17 Montgomery, TX) was added to each well after being diluted 500-2000 times with 5% 18 skimmed milk/PBS. The plate was incubated for 1 h at room temperature and washed 19 three times with 200 µl of PBST. Detection was performed as described above. Data are 20 presented as the means of triplicate samples.

21 2.7. Purification of expressed 29IJ6 IgG in silkworm larval hemolymph

1	A 3-4 ml sample of hemolymph from five larvae was diluted to 10 times its volume
2	with a buffer (20 mM sodium phosphate, 0.5 M NaCl, pH 7.0) and mixed with 40%
3	saturated ammonium sulfate (pH 7.0) by vigorous stirring for 1.5 h. All subsequent
4	procedures were performed at 4°C. The preparation was centrifuged at 15000 rpm for 30
5	min, and the supernatant was mixed with 50% saturated ammonium sulfate (pH 7.0) for
6	1.5 h and then centrifuged again. Subsequently the resulting supernatant was mixed with
7	70% saturated ammonium sulfate using the similar procedure as above. Each precipitate
8	was suspended with 20 mM sodium phosphate, pH 7.0, followed by dialysis against 20
9	mM sodium phosphate overnight. The dialyzed sample was applied at a flow rate of 0.5
10	ml/min to a HiTrap rProtein A FF 1 ml column (GE Healthcare) according to the
11	manufacturer's protocol. The column was then subsequently eluted at 0.5-1 ml/min with
12	elution buffer (0.1 M sodium citrate, pH 3.0). Six ml of the eluate from the column was
13	dialyzed with 1 liter of distilled water overnight, and a 15 ml dialyzed sample was
14	obtained. The sample was lyophilized for 72 h.
15	To compare the recovery yield of recombinant IgG, the ammonium sulfate
16	purification step was omitted and a sample of hemolymph diluted 10 times was applied
17	directly to a HiTrap rProtein A FF 1 ml column using the same protocol as described
18	above.
19	2.8. Characterization of oligosaccharides by the HPLC mapping method
20	The experimental procedures used, including the chromatographic and mass

21 spectrometric conditions, have been described previously (Nakagawa et al. 1995;

1	Takahashi et al. 1995; Yagi et al. 2005), but slight modifications were made in the
2	preparation of the 2-aminopyridine derivatives of the N-glycans. The purified IgG (0.3
3	mg) was digested with PNGaseF (New England Biolabs, MA, USA) to release
4	N-glycans. After removal of the peptide materials by SepPack reversed-phase cartridges
5	(Waters, MA, USA), the reducing ends of the N-glycans were derivatized with
6	2-aminopyridine (Wako, Osaka, Japan). This mixture was applied to a DEAE column
7	(Tosoh, Tokyo, Japan) or a TSK-gel Amide-80 column (Tosoh), and then each fraction
8	separated on the amide column was applied to a Shim-pack HRC-ODS column
9	(Shimadzu, Kyoto, Japan). The elution times of the individual peaks onto the
10	amide-silica and ODS columns were normalized with respect to the degree of
11	polymerization of 2-aminopyridine-derivatized (PA-) isomalto-oligosaccharide, and
12	represented in units of glucose (GU). Thus, a given compound from these two columns
13	provided a unique set of GU values, which corresponded to coordinates on the HPLC
14	map. The PA-oligosaccharides were identified by comparison with the coordinates of
15	around 500 reference PA-oligosaccharides in a home-made web application, GALAXY
16	(Takahashi et al. 2003). The matrix assisted laser desorption/ionization time of the
17	PA-oligosaccharides was assessed by flight mass spectrometry (MALDI-TOF-MS) and
18	co-chromatography with reference to PA-oligosaccharides on the columns was used to
19	confirm their identities.

1 3.1. Expression of recombinant 29IJ6 IgG in silkworm larval hemolymph

2	BmNPV-CP ⁻ -Chi ⁻ /29IJ6 IgG with bx signal peptides was constructed for the
3	secretion of 29IJ6 IgG into silkworm larval hemolymph which was sampled at 6 d.p.i.
4	and subjected to Western analysis. The secretion of heavy and light chains in the
5	hemolymph was confirmed (Fig. 2A, lane 2), and their predicted molecular weights
6	were 52 and 26 kDa, respectively. The H_2L_2 antibody assembled was also observed in
7	its non-reduced condition (Fig. 2A, lane 4), which suggests that heterodimerization does
8	occur in the hemolymph. No band was observed from mock-injected silkworm larval
9	hemolymph (Fig. 2A, lanes 1 and 3). The average amount of 29IJ6 IgG obtained was
10	46.1 \pm 10 µg/ml corresponding to 36.9 \pm 8.1 µg/silkworm larva (Fig. 2B).
11	3.2. Purification of the recombinant 29IJ6 IgG expressed in silkworm larval hemolymph
12	The hemolymph diluted 10 times and containing 188.9 μ g of 29IJ6 IgG
13	(0.81 μ g/mg protein) was precipitated with 50% sodium sulfate and dialyzed against
14	distilled water. In this fraction, 99.8 μ g of 29IJ6 IgG (0.92 μ g/mg protein) was obtained
15	with a yield of 52.8%. This amount was subjected to a HiTrap rProtein A FF column, of
16	which 25 μ g (0.21 μ g/mg protein) was found to be flow-through and 68.4 μ g
17	(118.8 μ g/mg protein) was eluted with a yield of 36.2%. The eluted sample was
18	subjected to an antigen binding assay, and no differences between samples were found
19	(data not shown).
20	

- 20 To improve the purification yield, the sample diluted 10 times was filtered through
- 21 a 4.5 µm Millipore filter and subjected directly to the HiTrap rProtein A FF column.

1	Protein A column chromatography removed most of the larval protein as demonstrated
2	by the Coomassie-stained SDS-PAGE gel run under reducing conditions (Fig. 3A, lane
3	6). This simple purification resulted in the production of 350 μ g of recombinant IgG
4	with an increase in purity from 1.3 μg per mg total protein in the crude larval
5	hemolymph (Table 2). The estimated total recovery was 83.1% (6.6 mg/kg larva).
6	The functional activity of recombinant 29IJ6 IgG was demonstrated by ELISA
7	using the purified 29IJ6 IgG and larval hemolymph, which were compared for their
8	antigen binding with anti-human IgG-Fc-HRP antibody. Typical profiles of both
9	samples are shown in Fig. 3B. The working range of the 29IJ6 IgG was from 1 to 100
10	ng. The calculated 50% saturation values were between 7 and 10 ng for both samples,
11	suggesting that no significant inactivation of recombinant IgG occurred during the
12	purification step.

13

 recombinant 29IJ6 IgG expressed in silkworm larval hemolymph The reactivity of recombinant 29IJ6 IgG with various lectins was examined (Fig. 4). The ConA lectin reacted with recombinant 29IJ6 IgG, indicating the presence of a non-reducing terminal α-mannosyl group (Fig. 4). In addition, the reaction with LCA lectin suggested the presence of an α 1-6 fucose residue attached at the reducing terminus. Similarly, reactions with AAL, PNA and WGA lectins indicated the presence 	14	3.3. Lectin binding assay and identification of the N-linked glycan structure of the
 The reactivity of recombinant 29IJ6 IgG with various lectins was examined (Fig. 4). The ConA lectin reacted with recombinant 29IJ6 IgG, indicating the presence of a non-reducing terminal α-mannosyl group (Fig. 4). In addition, the reaction with LCA lectin suggested the presence of an α 1-6 fucose residue attached at the reducing terminus. Similarly, reactions with AAL, PNA and WGA lectins indicated the presence 	15	recombinant 29IJ6 IgG expressed in silkworm larval hemolymph
 The ConA lectin reacted with recombinant 29IJ6 IgG, indicating the presence of a non-reducing terminal α-mannosyl group (Fig. 4). In addition, the reaction with LCA lectin suggested the presence of an α 1-6 fucose residue attached at the reducing terminus. Similarly, reactions with AAL, PNA and WGA lectins indicated the presence 	16	The reactivity of recombinant 29IJ6 IgG with various lectins was examined (Fig. 4).
 non-reducing terminal α-mannosyl group (Fig. 4). In addition, the reaction with LCA lectin suggested the presence of an α 1-6 fucose residue attached at the reducing terminus. Similarly, reactions with AAL, PNA and WGA lectins indicated the presence 	17	The ConA lectin reacted with recombinant 29IJ6 IgG, indicating the presence of a
 lectin suggested the presence of an α 1-6 fucose residue attached at the reducing terminus. Similarly, reactions with AAL, PNA and WGA lectins indicated the presence 	18	non-reducing terminal α -mannosyl group (Fig. 4). In addition, the reaction with LCA
20 terminus. Similarly, reactions with AAL, PNA and WGA lectins indicated the presence	19	lectin suggested the presence of an α 1-6 fucose residue attached at the reducing
	20	terminus. Similarly, reactions with AAL, PNA and WGA lectins indicated the presence

21 of α -Fuc1-6GlcNAC, Gal β 1-3GlcNAc disaccharide of *O*-glycans, and GlcNAc,

respectively. Conversely the SSA lectin, known to recognize Siaα2-6Gal, did not react
 with recombinant 29IJ6 IgG, suggesting that sialic acid was absent. The lectin binding
 properties are summarized in Table 3.

4 The structures of the N-linked glycans were determined by comparing their 5 positions with those of known standard oligosaccharides on a two-dimensional map. 6 Identification of a sample PA-oligosaccharide was confirmed by co-chromatography 7 with a known PA-oligosaccharide on the ODS and amide-silica columns. The detailed 8 chromatogram and structure of the oligosaccharides are shown in Fig. 5. The 9 recombinant 29IJ6 IgG antibody had a non-reducing terminal α -mannosyl group 10 lacking sialic acid, whilst fucose was connected to GlcNAc near Asn. Non-reducing 11 terminal α -mannosyl sugars were calculated to account for 90.2% of the total sugar 12 content and included 12.7% antennary sugars. PNA lectin showed the possible 13 attachment of Gal β 1-4GlcNAc, which may be Gal β 1-4GlcNAc β 1-2Man α 1-. This 14 unidentified oligosaccharide might be included with others (9.8%) in Fig. 5B. 15 4. Discussion 16 In this study, a model human IgG1 was expressed in silkworm larval hemolymph. 17 The amount of IgG secreted from the larvae was 46 µg/ml, which is higher than that

18 obtained using insect cells where the expression level of secreted human HAV16

19 antibody using High Five insect cells was reported at around 6-18 µg/ml (Liang et al.,

20 2001). In another study, multiple-protease-deficient strains of the methylotrophic yeast

21 Ogataea minuta secreted 10 µg/ml of antibody, where the partial degradation of

1	antibody was suppressed (Kuroda et al., 2007). CHO-DG44 cells from mammals have
2	been reported to produce 35 μ g/ml of monoclonal antibody against botulinum
3	neurotoxin serotype A (Mowry et al., 2004). Although the specificity varied between
4	antibodies, comparison with these other experiments demonstrates that silkworm larvae
5	are a potential host capable of expressing a comparable or superior level of human IgG.
6	However, a larger amount of antibody can be produced using transgenic animals. For
7	example, 4 g/l and 14 g/l of hBR96-2, a humanized IgG1, were recorded in the milk of
8	transgenic mice and goats, respectively (Pollock et al., 1999). However, these authors
9	also reported that the other female founder produced only low levels (0.1 g/l) of
10	antibody, which suggests that significant fluctuations in antibody production occur in
11	transgenic animals.

12 To further improve the expression level in insect cells, coexpression of a molecular 13 chaperone is effective. Hsu and Betenbaugh (1997) reported that the coexpression of 14 chaperone BiP enhanced the level of soluble intracellular and secreted IgG obtained 15 from Trichoplusia ni insect cells by 90%. Cytosolic hsp70 chaperones, which are 16 known to associate and prevent aggregation of polypeptides in vitro, form a specific 17 hsp70-immunoglubulin complex in vivo and increase intracellular immunoglobulin 18 solubility (Ailor and Betenbaugh, 1998). In silkworm larvae, coexpression of CRT or 19 CNX can increase IgG expression to levels five times greater than that without the 20 chaperone (EY Park et al., in preparation). This indicates that the coexpression of 21 chaperones in silkworm larvae also improves the level of IgG expression.

1	The N-glycans on 29IJ6 IgG produced in the silkworm larvae were composed
2	exclusively of two kinds of paucimannose-type oligosaccharides,
3	$Man\alpha 1-6Man\beta 1-4GlcNAc\beta 1-4(Fuc\alpha 1-6)GlcNAc$ and
4	$Man\alpha 1-6(Man\alpha 1-3)Man\beta 1-4GlcNAc\beta 1-4(Fuc\alpha 1-6)GlcNAc$. These patterns contained
5	fucose α 1,6-linked to the innermost GlcNAc residue. Misaki et al. (2003) reported the
6	presence of Man α 1-6Man β 1-4GlcNAc β 1-4GlcNAc (6.4%) and
7	$Man\alpha 1-6(Man\alpha 1-3)Man\beta 1-4GlcNAc\beta 1-4(Fuc\alpha 1-6)GlcNAc (1.1\%) in N-linked glycan$
8	structures of mouse interferon- β produced by <i>Bombyx mori</i> larvae.
9	$Man\alpha 1-6(Man\alpha 1-3)Man\beta 1-4GlcNAc\beta 1-4(Fuc\alpha 1-6)GlcNAc$ may be derived from
10	GlcNAcMan ₅ GlcNAc ₂ through mannosidase-mediated excision of α -linked mannosyl
11	residues, followed by GlcNAcase-mediated deletion of a β -1,2-linked terminal GlcNAc
12	residue (Watanabe et al., 2002). Likewise mannosidase-mediated excision of α -linked
13	mannosyl residues from Man α 1-6(Man α 1-3)Man β 1-4GlcNAc β 1-4(Fuc α 1-6)GlcNAc
14	may lead to Man α 1-6Man β 1-4GlcNAc β 1-4(Fuc α 1-6)GlcNAc. Shinkawa et al. (2003)
15	reported that the most important carbohydrate structure in terms of the enhancement of
16	antibody-dependent cellular cytotoxicity (ADCC) is the fucose attached to the
17	innermost GlcNAc of the biantennary complex oligosaccharides. Comparing IgG1s with
18	low and high fucose contents, the former had a higher level of ADCC before separation.
19	A terminal galactose residue was detected during the lectin analysis, indicating the
20	presence of the core Gal β 1-3GlcNAc disaccharide of <i>O</i> -glycans.
21	The N-linked glycan structures of human 291J6 IgG produced from silkworm

22 larvae were similar to that of Trichoplusia ni TN-5B1-4 cells, but the intracellular IgG

1	contained 50% higher mannose-type <i>N</i> -glycan with lower levels of complex, hybrid and
2	paucimannosidic type structures (Hsu et al., 1997). To improve the IgG quality
3	produced from silkworm larvae, sialylation of the N-glycans of the recombinant protein
4	is required. Watanabe et al. (2002) observed that GlcNAcase-dependent depletion of
5	N-acetylglucosamine residues from intermediate N-glycans is critical for the assembly
6	of paucimannosidic N-glycans in insect cells and, more importantly, that insect cells,
7	under specific conditions, retain the ability to construct sialylated N-glycans like those
8	in mammalian cells. In future, transgenic silkworm provided with both defucosylation
9	and sialylation activities will offer the most enhanced alternative IgG expression system,
10	which will extend the use of silkworm larvae in recombinant protein therapeutics.
11	

12 Acknowledgements

13 This work was supported by the Program of Basic Research Activities for Innovative14 Biosciences (PROBRAIN), Japan.

15 References

- 16 Aburatani, T., Ueda, H., Nagamune, T., 2002. Importance of a CDR H3 basal residue in
- 17 VH/VL interaction of human antibodies. J. Biochem. 132, 775-782.
- 18 Ailor, E., Betenbaugh, M.J., 1998. Overexpression of a cytosolic chaperone to improve
- 19 solubility and secretion of a recombinant IgG protein in insect cells. Biotechnol.

20 Bioeng. 58, 196-203.

1	Bei R	Schlom	I Kashmiri	SV	1995	Baculovirus e	expression	ofa	functional
1	DUI, IX.,	Somoni,	J., IXasiiiiiii	, D. V.,	1))).	Dacuitovinus	CAPICSSION '	u u	runctionar

- 2 single-chain immunoglobulin and its IL-2 fusion protein. J. Immunol. Methods 186,
- 3 245-255.
- Bird, R.E., Hardman, K.D., Jacobson, J.W., 1988. Single-chain antigen-binding proteins.
 Science 242, 423-426.
- 6 Davis, G.T., Bedzyk, W.D., Voss, E.W., Jacobs, T.W., 1991. Single chain antibody
- 7 (SCA) encoding genes: One-step construction and expression in eukaryotic cells.
- 8 BioTechnology 9, 165-169.
- 9 Hasemann, C.A., Cappa, J.D., 1990. High-level production of a functional
- immunoglobulin heterodimer in a baculovirus expression system. Proc. Natl. Acad.
 Sci. 87, 3942-3946.
- 12 Hiyoshi, M., Kageshima, A., Kato, T., Park, E.Y., 2007. Construction of cysteine
- 13 protease deficient *Bombyx mori* nuclear polyhedrovirus bacmid and its application
- 14 on improved expression of fusion protein. J. Virus Method 144, 91-97.
- 15 Hsu, T.-A., Betenbaugh, M.J., 1997. Coexpression of molecular chaperone BiP
- improves immunoglobulin solubility and IgG secretion from *Trichoplusia ni* insect
 cells. Biotechnol. Prog. 13, 96-104.
- 18 Hsu, T.-A., Takahashi, N., Tsukamoto, Y., Kato, K., Shimada, I., Masuda, K., Whiteley,
- 19 E.M., Fan, J.-Q., Lee, Y.C., Betenbaugh, M.J., 1997. Differential N-Glycan patterns
- 20 of secreted and intracellular IgG produced in *Trichoplusia ni* cells. J. Biol. Chem.
- 21 272, 9062-9070.

1	Jost, C.R., Kurucz, I., Jacobus, C.M., Titus, J.A., George, A.J.T., Segal, D.M., 1994.
2	Mammalian expression and secretion of functional single-chain Fv molecules. J.
3	Biol. Chem. 269, 26267-26272.
4	Kuroda, K., Kitagawa, Y., Kobayashi, K., Tsumura, H., Komeda, T., Mori, E., Motoki,
5	K., Kataoka, S., Chiba, Y., Jigami, Y., 2007. Antibody expression in protease-deficient
6	strains of the methylotrophic yeast Ogataea minuta. FEMS Yeast 7, 1307-1316.
7	Liang, M., Dübel, S., Li, D., Queitsch, I., Li, W., Bautz, E.K.F., 2001. Baculovirus
8	expression cassette vectors for rapid production of complete human IgG from
9	phage display selected antibody fragments. J. Immunol. Methods 247, 117-130.
10	Misaki, R., Nagaya, H., Fujiyama, K., Yanagihara, I., Honda, T., Seki, T., 2003.
11	<i>N</i> -linked glucan structures of mouse interferon-β produced by <i>Bombyx mori</i> larvae.
12	Biochem. Biophys. Res. Commun. 311, 979-986.
13	Motohashi, T., Shimojima, T., Fukagawa, T., Maenaka, K., Park, E.Y., 2005. Efficient
14	large-scale protein production of larvae and pupae of silkworm by Bombyx mori
15	nuclear polyhedrosis virus bacmid system. Biochem. Biophys. Res. Commun. 326,
16	564-569.
17	Mowry, M.C., Meagher, M., Smith, L., Marks, J., Subramanian, A., 2004. Production
18	and purification of a chimeric monoclonal antibody against botulinum neurotoxin
19	serotype A. Protein. Expr. Purif. 37, 399-408.
20	Nakagawa, H., Kawamura, Y., Kato, K., Shimada, I., Arata, Y., Takahashi. N., 1995.
21	Identification of neutral and sialyl N-linked oligosaccharide structures from human

1	serum glycoproteins using three kinds of high-performance liquid chromatography.
2	Anal. Biochem. 226, 130-138.
3	Park, E.Y., Abe, T., Kato, T., 2008. Improved expression of fusion protein using a
4	cysteine protease and chitinase deficient Bombyx mori multiple
5	nucleopolyhedrovirus bacmid in silkworm larvae. Biotechnol. Appl. Biochem. 49,
6	135-140.
7	Pollock, D.P., Kutzko, J.P., Birck-Wilson, E., Williams, J.L., Echelard, Y., Meade,
8	H.M., 1999. Transgenic milk as a method for the production of recombinant
9	antibodies. J. Immunol. Methods 231, 147-157.
10	Shinkawa, T., Nakamura, K., Yamane, N., Shoji-Hosaka, E., Kanda, Y., Sakurada, M.,
11	Uchida, K., Anazawa, H., Satoh, M., Yamasaki, M., Hanai, N., Shintara, K., 2003.
12	The absence of fucose but not the presence of galactose or bisecting
13	N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the
14	critical role of enhancing antibody-dependent cellular cytotoxicity. J. Biol. Chem.
15	31, 3466-3473.
16	Takahashi, N., Kato, K., 2003. GALAXY (Glycoanalysis by the three axes of MS and
17	chromatography): a Web application that assists structural analyses of <i>N</i> -glycans.
18	Trends Glycosci. Glycotech. 15, 235-251.
19	Takahashi, N., Nakagawa, H., Fujikawa, K., Kawamura, Y., Tomiya, N., 1995.
20	Three-dimensional elution mapping of pyridylaminated N-linked neutral and sialyl
21	oligosaccharides. Anal. Biochem. 226, 139-146.

1	Verma, R.,	, Boleti, E.,	George,	A.J.,	1998.	Antibody	engine	ering:	comparison	of
---	------------	---------------	---------	-------	-------	----------	--------	--------	------------	----

- 2 bacterial, yeast, insect and mammalian expression systems. J. Immunol. Methods
- 3 216, 165-181.
- Watanabe, S., Kokuho, T., Takahashi, H., Takahashi, M., Kubota, T., Inumaru, S., 2002. 4 5
- Sialylation of *N*-glycans on the recombinant proteins expressed by a
- 6 baculovirus-insect cell system under β-N-acetylglucosaminidase inhibition. J. Biol.
- 7 Chem. 277, 5090-5093.
- 8 Whitelam, G.C., Cockburn, W., Owen, M.R., 1994. Antibody production in transgenic
- 9 plants. Biochem. Soc. Trans. 22, 940-944.
- 10 de Wildt, R.M., Mundy, C.R., Gorick, B.D., Tomlinson, I.M., 2000. Antibody arrays for

11 high-throughput screening of antibody-antigen interactions. Nat. Biotechnol. 18,

12 989-994.

- Yagi, H., Takahashi, N., Yamaguchi, Y., Kimura, N., Uchimura, K., Kannagi, R., Kato, 13
- 14 K., 2005. Development of structural analysis of sulfated N-glycans by
- 15 multidimensional high performance liquid chromatography mapping methods.
- 16 Glycobiol. 15, 1051-1060.

Figure legends 1

2	Fig. 1. Schematic diagram of recombinant BmNPV-CP-Chi ⁻ bacmid/29IJ6 IgG
3	construction. The heavy chain gene was cloned under a polyhedron promoter; light-
4	chain, under p10 promoter The human variable region genes for BSA were amplified
5	from pIT2-29IJ6 by PCR. Also, the secretion form human $\gamma 1$ and C λ were from
6	<u>pUC18/VDJ-gamma 1m and pUC18/human IgCλ, respectively.</u> rVL and Cλ
7	fragments were digested by restriction enzymes, and ligated into Xho I and Kpn
8	I-digested pFastBac Dual fragment (pFastBac Dual/29IJ6VL-Cλ). Similarly, the VH
9	and y1 fragments were restriction digested, and ligated into Bam HI and Pst I-digested
10	pFastBac Dual/29IJ6VL-CA (pFastBac Dual/29IJ6 IgG). Expression of the 29IJ6 IgG1
11	and 29IJ6 lambda in the pFastBac Dual/29IJ6 IgG is controlled by a polyhedrin
12	promoter and a p10 promoter, respectively. To secrete expressed protein(s) into the
13	silkworm larval hemolymph, the signal sequence from bombyxin (bx) was added to
14	both the heavy and the light chain genes. The pFastBac Dual/29IJ6 IgG was then
15	transformed into each E. coli DH10Bac harboring cysteine protease- and
16	chitinase-deficient Bombyx mori multiple nucleopolyhedrovirus (BmNPV-CP-Chi),
17	cultivated and positive colony was screened.
18	_
19	Fig. 2. A, Detection of 29IJ6 IgG. Supernatant (3 µl) was subjected to Western

7.5

- analysis in the reduced condition (lanes 1 and 2) and in the non-reduced condition (lanes 20
- 3 and 4). Peroxidase conjugated goat anti-human IgG (H+L) was used for the detection. 21

1	Lanes 1 and 3 denote mock-injected silkworm larval hemolymph. M denotes the
2	molecular weight marker. Arrows indicate the molecular weight of heavy and light
3	chains, respectively. B , 29IJ6 IgG quantification using ELISA of larval hemolymph of
4	BmNPV-CP ⁻ -Chi ⁻ bacmid/29IJ6 IgG-injected silkworm (closed circles) and larval
5	hemolymph of mock-injected silkworm (open circles).
6	Fig. 3. A, Coomassie brilliant blue stained reduced SDS-PAGE gel of larval
7	hemolymph of BmNPV-CP ⁻ -Chi ⁻ bacmid/29IJ6 IgG-injected silkworm and purified
8	recombinant 29IJ6 IgG; lanes: M, molecular marker; 1, larval hemolymph; 2,
9	flow-through after immobilized protein A column chromatography; 3, washed fraction
10	of protein A column chromatography; 4-8, elute from protein A column
11	chromatography. B, Antigen binding assay of purified recombinant IgG (open circles)
12	and crude larval hemolymph (closed circles).
13	Fig. 4. Lectin blotting assay of recombinant 29IJ6 IgG. Protein was transferred to find. 行間: 固定値 30 pt
14	SDS-PAGE and was incubated with FITC-conjugated lectin.
15	
16	Fig. 5. A, N-Glycosylation profile of recombinant 29IJ6 IgG on an amide column.
17	The purified protein was digested with PNGaseF to release N-glycans. The reducing
18	ends of the N-glycans were derivatized with 2-aminopyridine, and were subjected to a
19	TSK-gel Amide-80 column. Subsequently, each fraction was applied to a Shim-pack
20	HRC-ODS column (Shimadzu, Kyoto, Japan). The elution times of the individual peaks
21	onto the amide-silica and ODS columns were normalized with respect to the degree of

1	polymerization of 2-aminopyridine-derivatized (PA-) isomalto-oligosaccharide and
2	represented in units of glucose (GU). The identification and confirmation of
3	PA-oligosaccharides are described in detail in the Materials and Methods. B , The-The
4	proposed structure of PA-oligosaccharides obtained from recombinant 29IJ6 IgG
5	expressed in silkworm larval hemolymph. proposed structure of PA-oligosaccharides-
6	obtained from recombinant 29IJ6 IgG expressed in silkworm larval hemolymph.
7	
8	
9	
10	書式変更: インデント : 最初の行 : 1.77 字, 行間 : 固定値 30 pt

1 Table 1

2 Primers used for the cloning of 29IJ6 IgG

Name	Oligonucleotide sequences	Cloning sites
hy signal 2011/1/1 E	5'-CCG <u>CTCGAG</u> CGGATGAAGATACTCCTTGCTATTGCATTAATGTTGTCAACAGTAAT	Vh - I
ox signal-291JovL-F	GTGGGTGTCAACACAAGACATCCAGATGACCCAGTCT-3'	Xno I
29IJ6VL-R	5'-CATG <u>CCATGG</u> CATGCCGTTTGATTTCCACCTT-3'	Nco I
hu signal 2011/2/11 E	5'-CGC <u>GGATCC</u> GCGATGAAGATACTCCTTGCTATTGCATTAATGTTGTCAACAGTAAT	
ox signal-291JovH- F	GTGGGTGTCAACACAAGAGGTGCAGCTGTTGGAGTC-3'	Bam HI
29IJ6VH-R	5'-CCG <u>GAATTC</u> CGGGGCTCGAGACGGTGACCA-3'	<i>Eco</i> RI
Clambda- F	5'-CATG <u>CCATGG</u> CCCAAGGCCAACCCCACGGT-3'	Nco I
Clambda-R	5'-CAG <u>GGTACC</u> CTATGAACATTCTGTAGGGGCCACT-3'	Kpn I
Cgamma1- F	5'-CAG <u>GAATTC</u> TCCACCAAGGGCCCATCGGTCT-3'	<i>Eco</i> RI
Cgamma1-R	5'-CAA <u>CTGCAG</u> TCATTTACCCGGAGACAGGGAG-3'	Pst I

1

3 Underlining denotes restriction site of primer.

1 Table 2

2 Purification of recombinant 29IJ6 IgG from silkworm larval hemolymph

	Volume (ml)	29IJ6 IgG concentration (µg/ml)	Total 29IJ6 IgG (μg)	Protein concentration (mg/ml)	Total protein (mg)	Specific 29IJ6 IgG content (µg/mg)	Recovery (%)
Hemolymph	28	6.4	178.3	5.0	139.0	1.3	100
Flow-through	28	0.0	0.0	4.3	121.0	0.0	0
Wash	6	0.0	0.0	0.5	3.0	0.0	0
Elution	3.9	38.0	148.2	0.1	0.4	350.0	83

3

1 Table 3

2 Lectin binding properties of 29IJ6 IgG

Lectin	Results	Specificity and linkage
Canavalia ensiformis (ConA)	+	Mana1-6(Mana1-3)Man
Lens culinaris (LCA)	+	Manα1-6(Manα1-3)Manβ1-4GlcNAcβ1-4 (Fucα1-6)GlcNAc
Aleuria aurantia (AAL)	+	Fuca1-6GlcNAc
Arachis hypogaea (PNA)	+	Gal ^{β1-3} GlcNAc
Triticum vulgaris (WGA)	+	GlcNAcβ1-4Manβ1-4GlcNAcβ1-4GlcNAc or Sia
Sambucus sieboldiana (SSA)	-	Siaa2-6Gal

3 Man, mannose; Fuc; fucose; Gal, galactose; GlcNAc, *N*-acetyl glucosamine; Sia, sialic acid

B

peak	GU(ODS) GU(Amide)	MS value [M+H] ⁺	Structure	Relative quantity (mol %)
a	10.3 4.6	974.5	Fucα1 Manα1, ⁶ Manβ1-4GlcNAcβ1-4GlcNAc	77.5
b	10.3 5.1	1136.7	Man α 1, $_{3}^{6}$ Man β 1-4GlcNAc β 1-4GlcNAc Man α 1'	12.7
others				9.8