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Abstract 

When a very intense beam is used for illuminating an object in coherent x-ray diffraction 

imaging, the intensities at the center of the diffraction pattern for the object are cut off by a 

beam stop that is utilized to block the intense beam.  Until now, only iterative phase-

retrieval methods have been applied to the object reconstruction from a single diffraction 

pattern with a deficiency of central data due to a beam stop.  As an alternative method, we 

here present a noniterative solution, in which an interpolation method based on the 

sampling theorem for the missing data is used for the object reconstruction with our 

previously proposed phase-retrieval method using an aperture-array filter.  Computer 

simulations demonstrate the reconstruction of a complex-amplitude object from a single 

diffraction pattern with a missing data area, which is generally difficult to treat with the 

iterative methods because a nonnegativity constraint cannot be used for such an object.    

OCIS codes: 100.0100 Image processing, 100.5070 Phase retrieval 
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1. INTRODUCTION 

Lensless coherent x-ray imaging from the diffraction intensity of an object has attracted 

considerable attention in the past decade since x-rays of coherent and brightness beams had 

become available from synchrotron radiation sources.  In particular, the coherent x-ray imaging 

has been applied to the reconstruction of a noncrystalline specimen [1-4] or a small crystal [5,6] 

from its diffraction intensities with a spatial resolution from several to a few tens of nanometers.  

When such an isolated object is illuminated with a coherent and intense beam, the central 

intensities of the diffraction pattern of the object are mixed with the direct beam.  In this case, 

there exists the missing data problem for the measurement of the diffraction intensity, because 

the central intensities of the diffraction pattern are lost by a beam stop used for blocking the 

intense direct beam.  Since the central intensities of the diffraction pattern include the 

information of the lower spatial frequency of the object structure, the lack of that information 

makes the object reconstruction difficult and every so often impossible.  The conventional 

approach in the field of diffraction imaging is to replace the missing data in the diffraction 

pattern by the corresponding spatial frequency calculated from the low-resolution image of an x-

ray or electron microscope [7].  This approach, however, makes it impossible to perform the 

investigation of the dynamics of object structures, and also causes artifacts in the object 

reconstruction owing to the combination of the different contrast data between the coherent 

diffraction imaging and the microscopy.  Therefore it is desirable to be able to reconstruct an 

object directly from a single diffraction pattern with missing data. 

Until now, a numerical solution to the problem of the object reconstruction from the 

diffraction pattern with the missing data area has been shown by using only the iterative phase-

retrieval method [8].  The three-dimensional structure of a positive object has been reconstructed 
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[8] from diffraction patterns at different angles by using the iterative method with the 

nonnegativity constraint, when the missing data are confined within a central speckle size that is 

proportional to the inverse of the object’s extent.  However, the reconstruction by iterative 

methods is accompanied by convergence problems, and hence the methods sometimes stagnate 

in a local minimum solution different from a true one.  In the case of the reconstruction of 

complex-amplitude objects, the convergence of iterative methods becomes generally even more 

difficult [9,10], because the nonnegativity constraint that helps convergence in iterative methods 

cannot be used.  Although a nonnegativity constraint on the imaginary part of some complex-

amplitude objects has been used [11] to retrieve the phase from the Fourier intensity distribution 

with a beam stop, such a constraint cannot be applied to generally complex-amplitude objects. 

     To the best of my knowledge, there is not any noniterative solution to the object 

reconstruction from a diffraction patter with a deficiency of central data so far.  We have recently 

proposed a noniterative phase-retrieval method using an aperture-array filter to reconstruct a 

complex-amplitude object from a single diffraction pattern [12].  In this paper we present a 

noniterative solution to the missing data problem in coherent diffraction imaging, in which an 

interpolation method based on the sampling theorem [13] is applied to the missing data problem 

for the object reconstruction by the noniterative phase-retrieval method [12].  It is demonstrated 

in computer simulations that the present method can cope with the reconstruction of a complex-

amplitude object from a single diffraction pattern with missing data due to a beam stop, which is 

generally difficult to be reconstructed by iterative phase-retrieval methods. 

In computer simulations, we demonstrate that, even if the maximum modulus of an 

illuminating Gaussian beam is ten thousand times larger than the maximum one of a complex-

amplitude object, the object can be reliably reconstructed from a single far-field diffraction 
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pattern with missing data by the use of the present method, provided that the extent of the 

Gaussian beam is at least four times larger than that of the object and the size of a beam stop 

covers at most the spatial frequency area within the bounds of the inverse of the object’s extent.  

In other words, almost all energy of the direct Gaussian beam at the far-field plane can be 

blocked by the beam stop’s size, and then the object can be reconstructed by the noniterative 

phase-retrieval method from diffraction intensity data, of which the missing data are recovered 

from the diffraction intensities outside the area of the beam stop by using the interpolation 

method.  

       In Section 2, we first present a short review of the phase retrieval method using an aperture-

array filter, and then develop the procedure to estimate the missing data of two-dimensional (2-

D) diffraction intensity by using a one-dimensional (1-D) interpolation method based on the 

sampling theorem.  Such a 1-D interpolation is not so time-consuming as a 2-D one, and is 

suitable for the present phase-retrieval method based on 1-D calculations. In Section 3, the 

validity of the present method is demonstrated with computer simulations of the reconstruction 

of a complex-amplitude object, and we investigate the allowable range of the error for a 

parameter required for the calculation of the interpolation method (i.e., the error for an extent of 

the autocorrelation function of the object).  In addition, the condition of the missing data size in 

the present method is compared with that in the iterative method [8].  Concluding remarks are 

given in Section 4. 
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2. Interpolation procedure for missing intensities  

A. Review of the Phase Retrieval Method Using an Aperture-array Filter  

In this paper we apply an interpolation method based on the sampling theorem to the missing 

data problem for the object reconstruction by the noniterative phase retrieval method using an 

aperture-array filter [12].  Thus a brief review of the phase retrieval method is described here.  

Figure 1 shows a schematic of the phase retrieval method.  When an object is illuminated by a 

coherent monochromatic x-ray of wavelength λ , the complex amplitude of the transmitted wave 

in the object plane immediately behind the object is assumed to be composed of two 

components: an intense illuminating field ( , )b u v , and a weak scattered field   f (u,v) , which is of 

finite extent u vσ σ× , generated by the object.  In the far-field plane at a distance of  z  

downstream of the object plane, an array filter is inserted to make an intensity measurement for 

the phase retrieval.  We assume that the filter consists of N × M  square apertures of each width 

 w  distributed over a Cartesian grid of period d .  Then the filled apertures at the center of the 

array filter are utilized as a beam stop.  In this subsection, we suppose that there is not a beam 

stop on the array filter (i.e., the filled apertures shown in Fig. 1 are opened). 

      Under the Fraunhofer approximation [14] for the diffraction from the object, the complex 

amplitude of the incident light to the array filter is given by  

[ ]2 2 2( ) exp ( ) ( , ) ( ) exp ( )P x y i x y b u v f u v i xu yv dudv
z z
π π
λ λ

∞

−∞

⎡ ⎤ ⎡ ⎤, = + + , − +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦∫ ∫ .                       (1) 

Then, using the Fresnel approximation [14], we can obtain the amplitude distribution in the 

detector plane at a distance of l  downstream from the array filter as  

2 2( ) ( , ) ( , ) exp [( ) ( ) ]G P x y A x y i x y dxdy
l
πξ η ξ η
λ

∞

−∞

⎧ ⎫, = − + − ,⎨ ⎬
⎩ ⎭∫ ∫                                         (2) 
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where ( , )A x y  is the function of an aperture-array filter: 

/ 2 1 / 2 1

/ 2 / 2
( , ) ( , )

N M

n m
n N m M

A x y R x x y y
− −

=− =−

= − −∑ ∑ ,                                                         (3) 

in which   R(x − xn , y − yn )  denotes the amplitude transmittance of a square aperture being at the 

position of the coordinates   (xn , ym ) = (nd,md)  [ R(x, y) = 1.0 for   −w 2 ≤ x ≤ w 2,  

  − w 2 ≤ y ≤ w 2  and   R(x, y) = 0  otherwise].  In Eqs. (1) and (2), unimportant multiplicative 

constants associated with the diffraction integrals are ignored.  We now rewrite Eq. (1) as 

[ ]2 2( ) exp ( ) ( , ) ( , )P x y i x y B x y F x y
z
π
λ

⎡ ⎤, = + +⎢ ⎥⎣ ⎦
,                                                              (4) 

where ( , )B x y  and ( , )F x y  denote the Fourier transforms of ( , )b u v  and f (u,v) , respectively. 

After substituting Eq. (4) into Eq. (2), the two quadratic phase terms are combined into one term, 

and then Eq. (2) becomes 

[ ]

( )2 22 2

2

( ) ( , ) ( , ) ( , )

exp ,

G B x y F x y A x y

l
i x y dxdy

l z

ξ η

ξ ηπα ξ η
λ α α α

∞

−∞
, = +

⎧ ⎫⎡ ⎤+⎪ ⎪⎛ ⎞ ⎛ ⎞⎢ ⎥× − + − +⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

∫ ∫
                                (5) 

where 1 l zα = + .  As described in the previous paper [12], the diffraction pattern of each 

aperture in the detector plane is isolated approximately from those of the adjoining square if the 

parameters of the measurement system (i.e., , , , and,z l w d ) satisfy a condition 

(1 / ) (2 / / ) ( , )jd l z l w l z j u vε λ σ+ > + = , where d(1+ l / z)  denotes the period of the Fresnel 

diffraction pattern of the array in the detector plane, 2 / /jl w l zλ σ+ (in which jσ  is the extent 

of the object function in the direction of u  or v ) represents the main width of the diffraction 

pattern of each square aperture in the case of the far-field diffraction, and ε  indicates a 

compensation parameter for increase of the main width in the case of the Fresnel diffraction.  
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Then the increase of the main width can be roughly calculated from the rough extent of the 

object and the Fresnel diffraction pattern of the aperture function.  This condition determines 

only the parameters for the use of the phase retrieval, and then it does not restrict the 

applicability of the interpolation method for the missing data in Subsection 2.B.  Under that 

condition, the observable intensity of Eq. (5) at the discrete coordinates n nxξ α=  and 

m myη α=   (n = −N / 2 ⋅ ⋅⋅,0,⋅ ⋅ ⋅ N / 2 −1, and, m = −M / 2 ⋅ ⋅⋅,0,⋅ ⋅ ⋅ M / 2 −1)  can be represented 

by 

[ ]
2

2( ) ( , ) ( , ) ( , )n m n mG x y B x y F x y R x x y y dxdyα α
∞

−∞
′, = + − − ,∫ ∫                                    (6) 

where   ′R (x, y)  is the aperture function including the quadratic phase: 

                       2 2( , ) ( , ) exp ( )R x y R x y i x y
l

πα
λ

⎡ ⎤′ = +⎢ ⎥⎣ ⎦
.                                                            (7) 

Since the Fourier intensity 2( , )F x y  of the object function f (u,v)  has to be encoded into the 

discrete data of Eq. (6), we here assume that the extent of the array filter (i.e., dN dM× ) is 

sufficiently large to enable a satisfactory representation of the object, and that the period d  of 

the array fulfills the condition of 2 jd zλ σ≤  ( ,j u v= ).  As described in the previous paper [12], 

the 1-D phases in the direction of ξ  and η  axes of the correlation integral in Eq. (6) can be 

retrieved from the intensity distributions 2( )n mG x yα τ α± ,  and 2( )n mG x yα α τ, ± , respectively, 

with several values of τ  (where τ  is a known constant), which correspond to the multiple 

groups of sampling data of a single intensity distribution 2( )G ξ η, of Eq. (5).  Then the 2-D 

phase of the correlation integral can be obtained by combining those 1-D phases in the direction 
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of ξ  and η  axes.  Using the same way as in Eqs. (5) and (6), we can obtain the intensity 

2( )n mG x yα τ α± , : 

[ ]
2

2 2( ) ( , ) ( , ) ( , ) expn m n mG x y B x y F x y R x x y y i x dxdy
l
πα τ α τ
λ

∞

−∞

⎛ ⎞′± , = + − − ⎜ ⎟
⎝ ⎠∫ ∫ m ,                (8) 

and also 2( )n mG x yα α τ, ±  is given by substituting ( )exp 2i y lπ τ λm  into Eq. (8) instead of 

( )exp 2i x lπ τ λm . 

     In measuring a diffraction pattern, the central intensities of the object’s scattered field 

( , )F x y  overlap with the intense direct beam ( , )B x y , and so are blocked by a beam stop.  Since 

the central intensities of ( , )F x y  correspond to the lower spatial frequency of the object structure, 

their absence makes the phase retrieval impossible.  In the following subsection, we present the 

application of a noniterative interpolation method to the recovery of the missing data. 

 

B. Interpolation Method Based on the Sampling Theorem 

In the present method, some filled apertures on the array filter are utilized as a beam stop.  Then 

the beam stop is assumed to have the extent of [(2 2) ] [(2 2) ]c cn d w m d w+ − × + −  and to be 

symmetrical with respect to the origin (i.e., c cn m= ), in which cn  (or cm ) is the number of 

apertures from the  central aperture at the position of the coordinates 0 0( , ) (0,0)x y =  in the 

positive direction of x  (or y ) axis.  In addition, we assume that all energies of the waves, 

including the intense direct beam ( , )B x y  and the lower spatial-frequency components of the 

object’s field ( , )F x y , are blocked by the beam stop.  Thus, a 1-D interpolation method based on 

the sampling theorem [13] is applied to estimate the missing data of ( , )F x y  as follows.   



 9

For aperture indices ( , )n m  within the area of the beam stop, we make no measurements of 

the intensity functions 2( )n mG x yα α,  given by Eq. (6) since these apertures are blocked.  On the 

other hand, for aperture indices ( , )n m  outside of the beam stop, we do measure the 

corresponding functions 2( )n mG x yα α, , and then the area of the measurements are beyond the 

region of support for the direct beam ( , )B x y .  Therefore we can simplify Eq. (6) by setting 

( , )B x y equal to zero.  Thus, the observable diffraction intensities in the detector plane are given 

by 

2
2( ) ( , ) ( , )n m n mG x y F x y R x x y y dxdyα α

∞

−∞
′, = − −∫ ∫  .                               (9) 

Then the inverse Fourier transform of Eq. (9) is written as 

1 2( ) ( , ) ( , )n mG x y g u v g u vα α− ⎡ ⎤ℑ , =⎣ ⎦ � ,                                                 (10) 

where 1−ℑ  denotes the inverse Fourier transform, the symbol �  indicates the autocorrelation 

operation, and the function ( , )g u v  is given by 

( , ) ( , ) ( , )g u v f u v r u v′= ,                                                                      (11) 

in which ( , )r u v′  denotes the inverse Fourier transform of the aperture function ( , )R x y′  in Eq. 

(7).  The extent of ( , )r u v′  is larger than the object’s extent, because the width w  of the aperture 

function ( , )R x y′  is smaller than the period ( 2 , , )jd z j u vλ σ≤ =  of the array filter.  Thus the 

extent of the function ( , )g u v  is determined by the extent u vσ σ×  of the object function ( , )f u v .  

Therefore the autocorrelation function of Eq. (10) is a band-limited function with the extent 

2 2u vσ σ× .  By the Whittaker-Shannon sampling theorem, the 1-D intensity distribution of Eq. 

(9) on the coordinates ( n nxξ α= ) along a line parallel to the ξ  axis can be written in terms of its 

sample values at frequencies /k L : 
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2/ 2 1
2

/ 2
( ) , sinc

K

n n
k K

k kG x C G C L x
L L
αα

−

=−

⎡ ⎤⎛ ⎞ ⎛ ⎞, ≅ −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∑ ,                                              (12) 

where sinc( ) sin( ) ( )x x xπ π= , 2 uL σ= , and mC yα ′= , in which the numerical subscript m′  is 

set to be a constant within c cm m m′− ≤ ≤ .  To determine the 2 1cn +  missing data of 2( )nG x Cα ,  

in Eq. (9) within the extent of the beam stop, we have to measure the values of 2( )G k L Cα ,  at 

any K  distinct frequencies /k L , where the integer value K  is chosen for 

( ) ( 1)K L Nd z K Lλ≤ < + .  The /k L  in general will not coincide with the aperture’s position 

nx .  Thus, when the condition 2 1cN K n− ≥ + [i.e., ( )/ (2 1)cN Nd z L nλ− ≥ + ] is satisfied in 

the measurement system, the values of 2( )G k L Cα ,  are determined from the observable data 

2( )nG x Cα ,  in the area excluding the extent of the beam stop by solving a set of K  linear 

equations of the form  

2/ 2 1
2

/ 2
( ) , sinc

K

n n
k K

k kG x C G C L x
L L
αα

−

=−

⎡ ⎤⎛ ⎞ ⎛ ⎞, = −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∑   2 2, , 1, 1, ,

2 2
c c

c c
K n K nn n n+ +

= − ⋅⋅⋅ − − + ⋅⋅⋅ . 

                                                                                                                                                   (13) 

Hence the 2 1cn +  missing data of 2( )nG x Cα ,  within the extent of the beam stop can be 

calculated by substituting the values of 2( )G k L Cα ,  into Eq. (12).  Using the same way as in 

Eqs. (9)-(13), the missing data of 2( )nG x Cα τ± ,  or 2( )mG C yα τ′, ±  (in which 'nC xα′ =  is a 

constant within c cn n n′− ≤ ≤ ) can be determined from intensity data 2( )nG x Cα τ± ,  or  

2( )mG C yα τ′, ±  in the area excluding the extent of the beam stop.  Note that, if the condition 

( )/ (2 1)cN Nd z L nλ− ≥ +  is not satisfied, the 2 1cn +  missing data cannot be obtained from 

observable intensities by solving the linear equations in Eq. (13).  Therefore we have to set the 
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interval d  of the aperture array to be not exceeding of up to [ ]( )1 (2 1) /cn N z Lλ− + .  In Section 

3, we will discuss the stability of linear equations for specific examples in computer simulations.   

By using the method in the previous paper [12], the 1-D phases on the coordinates nxα  

and myα  along the lines parallel to the ξ  and η  axes, respectively, are retrieved from the 

intensity distributions  2( )nG x Cα τ± ,  and 2( )mG C yα τ′, ±  with the interpolated data, and then 

the 2-D phase of the convolution integral in Eq. (9) is obtained by combining those 1-D phases.  

Since the inverse Fourier transform of that convolution integral corresponds to the function 

( , )g u v  in Eq. (11), the object function ( , )f u v can be reconstructed through compensation for 

the known function ( , )r u v′ .  Note that, although it is possible to do the 2-D interpolation 

calculation from the intensity data of 2( )n mG x yα α,  excluding the beam stop’s area, the 1-D 

interpolation method is not so time-consuming as the 2-D one and is suitable for the present 

method based on the 1-D phase retrieval.  In the next section, the usefulness of the phase 

retrieval with the 1-D interpolation method is presented in the computer simulations. 

 

 

 

3. COMPUTER SIMULATIONS 

The performance of the interpolation method for missing data on phase retrieval is demonstrated 

by computer simulations.  Figures 2 and 3 show an example of the object reconstruction using 

that method.  Figures 2(a) and 2(b) show the modulus and the phase of the original object 

function, where the figures are represented by 64 64×  points.  Data processing for calculating 

the diffraction integral by means of a fast Fourier transform was carried out with 2048 2048×  
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sampling points, of which the central part ( 64 64×  points) is shown in Figs. 2(a) and 2(b).  The 

physical size of the object, shown in the central area ( 27 27×  points) of the figures, is assigned 

to 0.844 0.844 mu vσ σ μ× = × .  The phase distribution in Fig. 2(b) is in the range of from  -2.05 

to 1.16 rad.  We assume that the object is illuminated by a monochromatic x-ray with wavelength 

1nm.  The distance between the object and the far-field planes is set to 80mmz = .  The aperture-

array filter in the far-field plane is assumed to be a uniform square grid of interval 40 md μ=  

with 64 64×  square apertures each of width 10 mw μ= , and the distance between the filter and 

the detector planes is set to be 400 mml = .  These parameters for the simulation are satisfied 

with the sufficient condition for the isolation of the diffraction patterns from the apertures of the 

filter, which was described in Subsection 2.A.  Figure 2(c) shows the intensity distribution in the 

detector plane, which is represented on a base-10 logarithmic gray scale of a normalized 

intensity truncated to 310−  for display purposes.  In the simulations of Figs. 2 and 3, 3 3×  square 

apertures around the center of the filter were closed, which corresponds to a beam stop with the 

extent [(2 2) ] [(2 2) ]c cn d w m d w+ − × + −  for 1c cn m= = , and the direct beam ( , )B x y  in Eq. (4) 

is assumed to be entirely blocked by the beam stop [i.e., ( , ) 0B x y ≡ ].  Figures 3(a) and 3(b) [or 

3(c) and 3(d)] show the modulus and the phase, respectively, of the reconstructed object from 

noiseless intensity data of Fig. 2(c) without (or with) the interpolation for the missing data.  Then 

the calculation of phase retrieval for Figs. 3(a) and 3(b) [or 3(c) and 3(d)] was carried out from 

the intensity distributions at the coordinates (ξn ,ηm ) , (ξn ± τ ,ηm ) , and   (ξn ,ηm ± τ )  in the 

detector plane, not including [or including] the interpolated data, where  twenty values of τ  at 

1.25 mμ  spacing in a range of 0 25 mτ μ< <  were utilized to improve the accuracy of the phase 

calculation according to the procedure in the previous paper [12].  Since those coordinates did 
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not coincide with the positions of the uniformly sampled data ( 2048 2048×  points with 7.5 mμ  

spacing) of the intensity in the detector plane, the intensity data at those coordinates were 

calculated from the uniformly sampled intensity data by linear interpolation.  In Figs. 3(c) and 

3(d), the missing data on each of the 1-D lines passing through the area of the beam stop were 

interpolated by substituting the solution of a set of 61[ (2 1)]cN n= − +  linear equations in Eq. 

(13) into Eq. (12).  For the stability of the solution of the linear equations, the condition 

( )/ (2 1)cN Nd z L nλ− ≥ +  has to be satisfied, where 2 jL σ= ( ,j u v= ) is the extent of the 

autocorrelation function of the object in the direction of u  or v .  The value of ( )/N Nd z Lλ−  

for Figs. 2 and 3 becomes about 9.98, which fulfills that condition. For comparison, a 

reconstructed object from an intensity distribution obtained without both the beam stop and the 

direct beam is shown in Figs. 3(e) and 3(f).   

To evaluate the difference between an original and a reconstructed object, a measure of the 

quality of reconstruction is defined by the normalized root-mean-square (NRMS) error, 

                    

  

ER =

f (u,v) − fr (u,v)
2

u,v∈σ
∑

f (u,v)
2

u,v∈σ
∑

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

1/2

,                                                             (14) 

where   f (u,v)  and   fr (u,v)  are the original and the reconstructed object functions, respectively, 

at the 2-D coordinates u  and  v , and σ  denotes the extent of f (u,v) .  Then the NRMS errors for 

the reconstructed objects in Figs. 3(a) and 3(b), 3(c) and 3(d), and 3(e) and 3(f) are 0.796, 0.241 

and 0.229, respectively.  It can be seen from Figs. 3(c) and 3(d), and, 3(e) and 3(f) that the 

reconstruction with the interpolation method for the missing data is almost as good as that from 

the intensity measurement without both the beam stop and the direct beam.  The remaining errors 
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in Figs. 3(c) and 3(d) [or 3(e) and 3(f) ] are due mainly to the systematic errors in the data such 

as errors in interpolation and aliasing in discrete Fourier transforms for the object with the finite 

extent.  

     In calculating the solution of the linear equations in Eq. (13), it is necessary to know the 

extent of the autocorrelation function of the object [i.e., 2 jL σ=  ( ,j u v= )] as precisely as 

possible.  Since  the extent L  is estimated practically from the inverse Fourier transform of the 

observable data 2( )n mG x yα α,  excluding the area of the beam stop, some errors of the 

estimation arose.  Thus, as shown in Fig. 4, we investigated the dependence of the NRMS error 

for the object reconstruction on the normalized deviations 2 jL σ  from the true extent 2 jσ  

( ,j u v= ), where the same deviation was used in the directions of u  and v .  In the simulations of  

Fig. 4, the same object function and parameters as in Figs. 2 and 3 were used except for changes 

of the extent L  in Eqs. (12) and (13) and the number of filled apertures on the array filter.  In Fig. 

4, the open circles and squares indicate the NRMS errors as a function of 2 jL σ  for 3 3×  and 

5 5×  filled apertures, respectively, around the center of the array filter.  The estimation of the 

missing data failed in the cases of 2 1.1jL σ =  and over for 5 5×  filled apertures (or 

2 1.15jL σ =  and over for 3 3×  filled ones), because the stability condition 

( )/ (2 1)cN Nd z L nλ− ≥ +  for the solution of the linear equations becomes to be not satisfied in 

these cases.  Figure 4 shows that it is allowable to underestimate the extent L  until about 30% of 

the true extent.  This is because the autocorrelation function of an object with a finite extent σ  

has dully decreasing amplitude in the vicinity of the boundary of its extent 2σ . 

      When the number of filled apertures is 7 7×  or more, the present interpolation method 

cannot reconstruct the missing data reliably.  On the other hand, it has been shown in the 
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iterative approach to the missing data problem [8] that the iterative phase-retrieval method yields  

a reliable reconstruction from the intensity distribution with the central missing part when the 

missing data are confined within a central speckle size which is proportional to the inverse of the 

object extent (i.e., when the number of the missing speckles, defined by Eq. (1) in [8], is less 

than one).  The number of the missing speckles is calculated from the number of missing data 

and a ratio of the spatial frequency jzλ σ  ( ,j u v= ) to the sampling interval d  (i.e., an 

oversampling ratio).  In order to compare the present method with the iterative method, we 

evaluate the number of missing speckles for the present examles.  Then the number of missing 

speckles for the cases of 3 3× , 5 5× , and 7 7×  filled apertures in the present simulations become 

0.422, 0.844, and 1.27, respectively.  Therefore, it is found that the present phase retrieval 

method with the noniterative interpolation gives the reliable solution to the missing data problem 

under almost the same condition as that in the iterative method.   

To simulate the object reconstruction in more practical cases, an intense direct beam is 

added to the object’s wave in the object plane, and noises are added to the intensity distribution 

in the detector plane.  For simplicity, the intense direct beam ( , )b u v  is assumed to be a Gaussian 

function 2 2 2exp 4( ) ba u v δ⎡ ⎤− +⎣ ⎦ , where a  and  bδ  are the central value and the full-width at 1/e 

maximum of the function, respectively.  The extent of the direct beam which can be blocked by a 

beam stop is depended on the central value a  of the direct beam.  From computer simulations, it 

was found that, if the extent bδ  of the direct beam is at least four times wider than the object’s 

extent jσ  ( ,j u v= ), the beam stop of 3 3×  filled apertures can block the direct beam of the 

central value a  that is even ten thousand times larger than the maximum value of the object 

modulus.  Thus, Figure 5 shows the reconstruction with the same object and parameters as in 
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Figs. 2 and 3 in the case that the extent bδ  and the central value a  of the direct beam are set to 

4 jσ  ( ,j u v= ) and ten thousand times larger value than the maximum object’s modulus, 

respectively.  Figure 5(a) shows the modulus of the wave field immediately in front of the array 

filter [i.e., ( , )P x y  in Eq. (1)], which is represented on a base-10 logarithmic gray scale of a 

normalized modulus truncated to 510−  for display purposes.  To simulate the effect of noise on 

the reconstructed object, Gaussian random noises with a zero mean and a standard deviation 

were produced by a computer and were added to the observable modulus ( , )G ξ η  in the form 

( , ) ( , ) ( , )nG G nξ η ξ η ξ η= + .  A factor of the signal-to-noise ratio (SNR) is defined by the ratio 

of the total intensities for the modulus data and the noises in the detector plane [i.e., 

2 2

, ,
SNR ( , ) ( , )G n

ξ η ξ η
ξ η ξ η=∑ ∑ ].  To reduce the effect of noises on the solution of a linear 

equation in Eq. (13), the observable intensities on the left-hand side of Eq. (13) were multiplied 

by a 1-D Gaussian function as a weighting function that can be used to emphasize regions with 

high SNR around the missing data area, and then the intensities retrieved by substituting the 

solution of Eq. (13) into Eq. (12) were compensated for by multiplying by the inverse function of 

the 1-D Gaussian function.   

Figure 5(b) and 5(c) [or 5(d) and 5(e)] show the modulus and the phase, respectively, of 

the reconstructed object from noisy data for SNR=184 (or SNR=46) with the interpolation of the 

missing data, where the corresponding standard deviation of the Gaussian random noises is 

1/2.63 (or 1/1.32) of the average value of the observable modulus in the detector plane.  Note 

that the SNR=184 and SNR=46 correspond to 22.6 and 16.6 decibels (dB), respectively.  Then 

the NRMS errors for the reconstructed objects in Figs. 5(b) and 5(c), and, 5(d) and 5(e) are 0.255 

and 0.277, respectively.  On the other hand, the object reconstruction with the beam stop of 5 5×  
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filled apertures did not yield reliable results when the SNR was lower than about one thousand.  

Consequently, the condition for applying the present interpolation method to the cases with a 

practical level of noise is that the number of the missing speckles needs to be less than about 0.5, 

which is evaluated by substituting the number of missing points 2 1cn + =3 and the minimum 

oversampling ration 2.0 for phase retrieval into the defined equation in [8].   

 

 

 

4. Conclusions 

We have presented the combined use of the noniterative phase retrieval method using an 

aperture-array filter [12] and the interpolation method based on the sampling theorem for the 

object reconstruction from a diffraction intensity with the missing data due to a beam stop.  

Since the phase of the diffracted wave from an object is retrieved from multiple groups of 

sampling data of a single intensity distribution in the detector plane by the noniterative phase 

retrieval method, the missing data for each of the multiple groups of sampling data have to be 

estimated by the interpolation method.  In that case, the use of the present interpolation 

method based on the 1-D sampling theorem is not so time-consuming as the use of the 

iterative interpolation algorithm or the 2-D version of the 1-D interpolation method, and also 

is suitable for the noniterative phase retrieval based on the 1-D calculations along lines on the 

2-D plane.  

We have demonstrated in computer simulations that the present method can cope with 

the reconstruction of a complex-amplitude object, which is generally difficult to treat with the 

iterative method because a nonnegativity constraint cannot be used.  The present method 
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yields the reliable reconstruction of an object from a diffraction intensity pattern when the 

number of missing speckles in this intensity pattern is less than one.  This condition of the 

missing speckles in the present method is almost the same as that in the iterative phase-

retrieval method [8].  However, it was also shown that the number of missing speckles should 

be less than 0.5 in order to reconstruct the object reliably at a practical level of noise.  In 

particular, we have demonstrated that, even if the central value of an intense direct beam with 

a Gaussian modulus is ten thousand times larger than the maximum value of the object’s 

modulus, the object can be reliably reconstructed from the far-field diffraction intensity with 

the missing data (in which the number of missing speckles is 0.422), provided that the extent 

of the intense direct beam is at least four times larger than that of the object. 

In practical cases, we need to know the extent of the autocorrelation function of an 

object for the solution to the missing data problem.  Since the stable performance of the 

present method has been verified by computer simulations despite the poor tolerance for the 

estimation of the extent, it would be possible to use the estimated extent from the inverse 

Fourier transform of the diffraction intensity with the missing data.  Consequently, we will be 

able to use the present method for the coherent diffraction imaging with the missing area due 

to a beam stop, for example, ultrafast single-shot imaging with x-ray free-electron lasers [15]. 
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Figure Captions 

Fig. 1. Schematic diagram of the measurement system.  The filled apertures around the center of 

the array filter work as a beam stop that blocks the direct beam.  The object function is 

reconstructed from a single intensity pattern of a diffracted wave through an array of square 

apertures by using the phase-retrieval method with the interpolation for the missing data due 

to the beam stop.   

Fig. 2. Original object function used in the simulations: (a) modulus and (b) phase of an object 

with a rectangular extent of 0.844 0.844 mμ×  (where the values of the phase are in the 

range of 2.05−  to 1.16  rad), and (c) intensity distribution in the detector plane of Fig. 1, 

where the central intensities are lost by a beam stop of 3 3×  filled apertures and the direct 

beam is set to be zero.  The only picture of (c) is represented on a base-10 logarithmic grey 

scale of a normalized intensity truncated to 310−  for display purposes. 

Fig. 3. Reconstruction of the object function shown in Fig. 2 from a noiseless intensity 

distribution in the detector plane: (a) and (b) [or (c) and (d)] are the modulus and phase, 

respectively, of a reconstructed object from the noiseless intensity in Fig. 2(c) without (or 

with) the interpolation for the missing data.  (e) and (f) are the modulus and phase, 

respectively, of a reconstructed object from an intensity distribution obtained without both 

the beam stop and the direct beam. 

Fig. 4. Dependence of the NRMS error (ER) on the normalized deviations 2 jL σ  from the true 

extent 2 jσ  ( ,j u v= ) of the autocorrelation of the object, where the same deviation in the 

directions of u  and v  is used at each coordinate.  The circles and squares indicate the 

NRMS errors in the cases where 3 3×  and 5 5×  filled apertures, respectively, are used as a 

beam stop.  
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Fig. 5. Reconstruction of the object function shown in Fig. 2 from a noisy intensity distribution   

in the case where an intense direct beam with a Gaussian modulus is added to the object 

function: (a) modulus of the wave field immediately in front of the array filter with the 

beam stop of 3 3×  filled apertures, which is represented on a base-10 logarithmic grey scale 

of a normalized modulus truncated to 510−  for display purposes.  (b) and (c) [or (d) and (e)] 

are the modulus and phase, respectively, of a reconstructed object from the noisy modulus 

for SNR=184 (22.6 dB) [or SNR=46 (16.6 dB)] with the interpolation for the missing data. 
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