1 Graphical abstract

- 2 Applanatines A to E from the culture broth of Ganoderma applanatum
- 3 Keiji Fushimi, Madoka Horikawa, Kaori Suzuki, Atsushi Sekiya, Susumu Kanno, Susumu Shimura, and Hirokazu Kawagishi*

5 Title

6 Applanatines A to E from the culture broth of *Ganoderma applanatum*

7

8 Authors

- 9 Keiji Fushimi^a, Madoka Horikawa^b, Kaori Suzuki^b, Atsushi Sekiya^c, Susumu Kanno^d,
- 10 Susumu Shimura^d, Hirokazu Kawagishi^{a,b,*}

11

12 Affiliations

- ^a Graduate School of Science and Technology, Shizuoka University, 836 Ohya,
- 14 Suruga-ku, Shizuoka 422-8529, Japan
- ¹⁵ ^b Department of Applied Biological Chemistry, Faculty of Agriculture, Shizuoka
- 16 University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- 17 ° Forestry and Forest Products Research Institute, 1 Matsunosato, Tsukuba-shi, Ibaraki
- 18 *305-8687, Japan*
- ^d Central Laboratory, Lotte Co. Ltd., 3-1-1 Numakage, Saitama-shi, Saitama 336-0027,
- 20 Japan

21

23 Abstract

24	Five novel compounds, applanatines A to E (1-5), and a known one (6) were isolated
25	from the culture broth of Ganoderma applanatum. Their structures including the
26	relative configurations were determined by the interpretation of spectroscopic data.
27	Compounds 3 and 4 suppressed the growth of <i>Fusobacterium nucleatum</i> that is a
28	prominent member of the oral microflora implicated in periodontitis.
29	
30	1. Introduction
31	Chronic-degenerative dental diseases, including periodontal diseases, are
32	widespread in human populations and represent a significant problem for public health. ¹
33	Fusobacterium nucleatum is a Gram-negative obligate anaerobe and a prominent
34	member of the oral microflora implicated in periodontitis, a disease affecting 5-15% of
35	most populations worldwide. ²⁻⁴ The primary role of F . <i>nucleatum</i> in promoting the
36	onset of periodontal disease is associated with its ability to co-aggregate with different
37	bacterial species in oral biofilms, leading to plaque formation and permanent
38	establishment of pathogenic strains within the oral cavity. ^{2, 5-8} Therefore, inhibition of
39	the growth of <i>F</i> . <i>nucleatum</i> is effective in prevention and progression of the disease.
40	During screening for the antibiotic activity of extracts of various mushrooms

41	against F . nucleatum growth, we found strong inhibitory activity in the extract of the
42	culture broth of a fungus Ganoderma applanatum (Japanese name,
43	Kofukisarunokoshikake), and tried to isolate the active molecules from the culture broth.
44	This mushroom is from bracket and wood-decay fungi class and grows in broadleaf
45	forests and almost anywhere around the world.
46	Here we describe the isolation, structural determination, and biological activity
47	of five novel compounds, applanatines A to E, and a known one from the culture broth
48	of the fungus.
49	
50	2. Results
51	The culture broth of G. applanatum was extracted with hexane, EtOAc, and
52	then H_2O . Since EtOAc-soluble fraction showed antibacterial activity against F .
53	nucleatum, the fraction was subjected to column chromatography, being guided by the
54	result of the bioassay. As a consequence, five novel compounds (1–5), and a known one
55	(6) were purified (Scheme 1).
56	Applanatine A (1) was purified as colorless oil. Its molecular formula was
57	determined as $C_{17}H_{26}O_3$ by HRESIMS m/z 301.1761 [M+Na] ⁺ (calcd for $C_{17}H_{26}NaO_3$,
58	301.1780). The structure of 1 was elucidated by interpretation of NMR spectra

59	including DEPT, COSY, HMBC, and HMQC (Figure 1). The complete assignment of
60	the protons and carbons was accomplished as shown in Table 1. The presence of the
61	benzene skeleton (C3a to C7a) was suggested by the characteristic chemical shifts at δ_{C}
62	125.1, 133.7, 134.7, 135.3, 138.5, and 140.8. The structure of methoxyethyl moiety (C1'
63	to C2') was constructed by the COSY correlations (H1'/H2'), the HMBC correlations
64	(H1'/C2'; H2'/C1', C2'-OMe; C2'-OMe/C2'). The position of the methoxyethyl at the
65	benzene ring was elucidated by the HMBC correlations (H1'/C4, C5, C6), and the
66	positions of the two methyls were also assigned by the HMBC correlations (C4-Me/C3a)
67	C4, C5; C6-Me/C5, C6, C7; H7/C5, C6-Me). The structure of the cyclopentane moiety
68	(C1 to C3) and the other parts were constructed by the HMBC correlations
69	(H1/C1-OMe, C2, C2-Me, C2-CH ₂ OH, C3, C3a, C7; C1-OMe/C1; C2-Me/C1, C2,
70	C2-CH ₂ OH, C3; C2-CH ₂ OH/C1, C2, C2-Me, C3; H3/C1, C2, C2-Me, C2-CH ₂ OH, C3a,
71	C4, C7a; H7/C1, C3a) and the chemical shifts (C1-OMe, δ_H 3.42, δ_c 57.2; C2-CH ₂ OH,
72	$\delta_{\rm H}$ 3.63, 3.76, $\delta_{\rm c}$ 68.2). The relative stereochemistry of C1 and C2 in 1 was determined
73	by the NOE difference experiment; an NOE was observed between H1 and C2-Me and
74	there was no NOE between C1-OMe and C2-Me. As a result, the structure of 1 was
75	determined as

76 $((1S^*, 2S^*)$ -1-methoxy-5-(2-methoxyethyl)-2,4,6-trimethyl-2,3-dihydro-1*H*-inden-2-yl)

77 methanol.

78	Applanatine B (2) was purified as colorless oil. Its molecular formula was
79	determined as $C_{17}H_{26}O_3$ by HRESIMS m/z 301.1763 [M+Na] ⁺ (calcd for $C_{17}H_{26}NaO_3$,
80	301.1780). The formula was the same as that of 1 and the NMR data of 2 were very
81	similar to those of 1 (Table 1), suggesting that 2 must be a diastereomer of 1. The
82	relative stereochemistry of 2 was confirmed by the observed NOE between H1 and
83	C2-CH ₂ OH in the NOE difference experiment. As a result, the structure of 2 was
84	determined as
85	$((1R^*, 2S^*)$ -1-methoxy-5-(2-methoxyethyl)-2,4,6-trimethyl-2,3-dihydro-1 H -inden-2-yl)
86	methanol.
87	Applanatine C (3) was purified as colorless oil. Its molecular formula was
88	determined as $C_{17}H_{26}O_3$ by HRESIMS m/z 301.1780 [M+Na] ⁺ (calcd for $C_{17}H_{26}NaO_3$,
89	301.1780) and the same as those of 1 and 2 . The NMR data of 3 were similar to those of
90	1 and 2 (Table 1). The HMBC cross peaks (two of C2-Me/C1, C2, C3, the other C2-Me;
91	C6-CH ₂ OH/C5, C6, C7) indicated that the positions of the hydroxymethyl and the
92	methyl in 3 are opposite to those in 1 and 2 . As a result, the planar structure of 3 was
93	determined as
94	1-methoxy-5-(2-methoxyethyl)-2,2,4-trimethyl-2,3-dihydro-1 <i>H</i> -inden-6-yl)methanol.

95	Applanatine D (4) was purified as colorless oil. Its molecular formula was
96	determined as $C_{18}H_{22}O_4$ by HRESIMS <i>m</i> / <i>z</i> 303.1619 [M+H] ⁺ (calcd for $C_{18}H_{23}O_4$,
97	303.1596). The structure of 4 was elucidated by interpretation of NMR spectra
98	including DEPT, COSY, HMBC, and HMQC (Figure 1). The complete assignment of
99	the protons and carbons was accomplished as shown in Table 1. The presence of the
100	benzene ring (4a to 5a and 10b to 11a) was suggested by the characteristic chemical
101	shifts at δ_C 124.3, 125.7, 131.9, 138.8, 140.8, and 150.0. The presence of the δ -lactone
102	moiety (1 to 4a and 11a) and its linkage to the benzene ring was constructed by the
103	COSY correlations (H3/H4), the HMBC correlations (H3/C1, C4, C4a; H4/C3, C4a, C5,
104	C11a; H11/C1, C4a), the chemical shifts (C1, δ_c 165.7; C3, δ_H 4.47, δ_c 66.5; C4, δ_H 2.95,
105	δ_c 25.3) and the IR absorption at 1718 cm ⁻¹ . The position of the methyl at the aromatic
106	ring was also assigned by the HMBC correlations (C5-Me/C4a, C5, C5a). The structure
107	of the 2,2-dimethyl-1,3-dioxane moiety (6a to 10a) and the other parts were constructed
108	by the HMBC correlations (H6/C5, C5a, C6a, C6a-Me, C7, C10a, C10b; C6a-Me/C6,
109	C6a, C7, C10a; H7/C6, C6a, C6a-Me, C9, C10a; two of C9-Me/C9, the other C9-Me;
110	H10a/C5a, C6, C6a, C6a-Me, C9, C10b, C11; H11/C5a, C10a) and the chemical shifts
111	(C7, δ_H 3.77, 3.81, δ_c 66.8; C9, δ_c 98.1). The relative stereochemistry of 4 was
112	determined by the NOE difference experiment; an NOE was observed between H10a

 $\overline{7}$

113	and C6a-Me. As a result, the structure of 4 was determined as
114	$(6aS^*, 10aS^*)$ -5,6a,9,9-tetramethyl-3,4,6a,7,9,10a-hexahydrocyclopenta[d][8,10]dioxono
115	[g]isochromen-1(6H)-one.
116	Applanatine E (5) was purified as colorless oil. Its molecular formula was
117	determined as $C_{15}H_{18}O_4$ by HRESIMS m/z 285.1098 [M+Na] ⁺ (calcd for $C_{15}H_{18}NaO_4$,
118	285.1103). The NMR data of 5 were similar to those of 4 (Table 1). However, 5 lacks
119	three carbons and has no isopropyl compared with 4. In addition, all the HMBC
120	correlations in 4 (Figure 1) except for those of the isopropyl could be also observed in
121	the HMBC experiment of 5 (data not shown). Based on the NOE between H8 and
122	C7-Me, the structure of 5 was determined as
123	(7 <i>R</i> *,8 <i>R</i> *)-8-hydroxy-7-(hydroxymethyl)-5,7-dimethyl-3,4,7,8-tetrahydrocyclopenta[g]i
124	sochromen-1(6H)-one.
125	The absolute configurations of all the novel compounds remain unknown.
126	Compound 6 has been reported as a plant growth promoter, echinolactone D
127	from the culture broth of Echinodontium japonicum Imazeki (Japanese name,
128	Kouyaku-mannen-haritake). ⁹
129	The antibiotic effects of the compounds on the growth of <i>F. nucleatum</i> were
130	tested in vitro. In this experiment, thymol was used as the positive control and its MIC

131	was 100 ppm (667 μM). Compounds 1 (MIC, 3.13 ppm, 11.3 μM), 2 (MIC, 3.13 ppm,
132	11.3 $\mu M)$ and 4 (MIC, 3.13 ppm, 10.4 $\mu M)$ were stronger inhibitors than the control,
133	though 3 and 6 inhibited at higher concentrations, 100 ppm (11.3 μ M) and 200 ppm
134	(11.3 µM), respectively.
135	
136	3. Experimental
137	
138	3.1. General
139	
140	¹ H NMR spectra (one- and two-dimensional) were recorded on a JEOL
141	lambda-500 spectrometer at 500 MHz, while ¹³ C NMR spectra were recorded on the
142	same instrument at 125 MHz. The HRESIMS spectra were measured on a JMS-T100LC
143	mass spectrometer. A JASCO grating infrared spectrophotometer was used to record the
144	IR spectra. The specific rotation values were measured by using a JASCO DIP-1000
145	polarimeter. HPLC separations were performed with a JASCO Gulliver system using
146	reverse-phase HPLC columns (CAPCELL PAK C18 AQ, Shiseido, Japan; COSMOSIL
147	Cholester Waters, Nacalai tesque, Japan; Develosil C30-UG-5, Nomura Chemical,
148	Japan; Develosil C30-UG-15/30, Nomura Chemical, Japan). Silica gel plate (Merck

149	F254) and silica gel 60N (Merck 100–200 mesh) were used for analytical TLC and for
150	flash column chromatography, respectively.
151	
152	3.2. Fungus materials and incubation
153	
154	The strains of Ganoderma applanatum and Fusobacterium nucleatum have
155	been deposited at the culture collection of Forestry and Forest Products Research
156	Institute and Central Laboratory, Lotte Co. Ltd., respectively.
157	The culture medium (24g/L) of G. applanatum was prepared containing potato
158	dextrose broth (Difco). The medium was packed in each glass bottle (6 g/500 ml flask)
159	and autoclaved. The pre-incubated mycelia were inoculated to the bottle and incubated
160	under the condition (22°C, shaking with 130 rpm) for 4 weeks in an incubator (NR-30,
161	Tietech, Japan).
162	
163	3.3. Extraction and isolation
164	
165	The culture broth of G. applanatum (30 L) was filtrated and then concentrated
166	under reduced pressure. The filtrate was successively extracted with hexane (three

167	times), EtOAc (five times) and then H_2O . The EtOAc-soluble part (15.5 g) was
168	fractionated by silica gel flash column chromatography ($CH_2Cl_2/EtOAc$ 90:10, 70:30,
169	50:50; EtOAc; EtOAc/MeOH, 70:30, 50:50; and MeOH) to obtain 13 fractions.
170	Fraction 8 (2.2 g) was adsorbed to ODS gel and eluted with 50% MeOH and
171	then MeOH. The eluent with 50% MeOH, fraction 8-1 (1.4 g), was fractionated by
172	reverse-phase HPLC (Develosil C30-UG-15/30, 50% MeOH) to obtain 12 fractions.
173	Fraction 8-1-8 (50.7 mg) was further separated by reverse-phase HPLC (Develosil
174	C30-UG-5, 40% MeOH) to afford compound 6 (31.8 mg). Fraction 9 (3.7 g) was
175	fractionated by silica gel flash column chromatography (CH ₂ Cl ₂ ; CH ₂ Cl ₂ /acetone 95:5,
176	90:10, 80:20, 60:40, 30:70; acetone; acetone/MeOH 50:50; and MeOH) to obtain 15
177	fractions. Each fraction 9-2 (20.4 mg), 9-3 (30.4 mg), and 9-4 (52.7 mg) was further
178	separated by reverse-phase HPLC (Develosil C30-UG-5, 60% MeOH) to afford
179	compounds 1 (4.0 mg, from fraction 9-2), 2 (9.0 mg from fraction 9-3), 3 (2.3 mg from
180	fraction 9-4), and 4 (2.2 mg from fractions 9-2 and 9-3), respectively. Fraction 9-5
181	(126.2 mg) was further separated by reverse-phase HPLC (CAPCELL PAK C18 AQ,
182	70% MeOH) to obtain 9 fractions, and compound 5 (2.0 mg) was obtained from fraction
183	9-5-4 (8.0 mg) by reverse-phase HPLC (CAPCELL PAK C18 AQ, 50% MeOH).
184	

3.3.1. Applanatine A (1). Colorless oil; $[\alpha]_D^{25}$ -26 (c 0.2, MeOH); IR (neat): 3160 cm⁻¹; ¹H and ¹³C NMR, see Table 1; ESIMS *m/z* 301 [M+Na]⁺; HRESIMS *m/z* 301.1761 [M+Na]⁺ (calcd for C₁₇H₂₆NaO₃, 301.1780).

3.3.2. Applanatine B (2). Colorless oil; $[\alpha]_D^{25}$ -20 (c 0.9, MeOH); IR (neat): 3457 cm⁻¹; ¹H and ¹³C NMR, see Table 1; ESIMS *m/z* 301 [M+Na]⁺; HRESIMS *m/z* 301.1763 [M+Na]⁺ (calcd for C₁₇H₂₆NaO₃, 301.1780).

192

193 **3.3.3. Applanatine C (3).** Colorless oil; $[\alpha]_D^{25}$ -9.5 (c 0.2, MeOH); IR (neat): 3421

194 cm⁻¹; ¹H and ¹³C NMR, see Table 1; ESIMS *m/z* 301 [M+Na]⁺; HRESIMS *m/z* 301.1780

195
$$[M+Na]^+$$
 (calcd for $C_{17}H_{26}NaO_3$, 301.1780)

196

197 **3.3.4. Applanatine D (4).** Colorless oil; $[\alpha]_D^{25}$ +45 (c 0.1, MeOH); IR (neat): 1718 198 cm⁻¹; ¹H and ¹³C NMR, see Table 1; ESIMS *m/z* 303 [M+H]⁺; HRESIMS *m/z* 303.1619 199 [M+H]⁺ (calcd for C₁₈H₂₃O₄, 303.1596). 200

201 **3.3.5. Applanatine E (5).** Colorless oil; $[\alpha]_D^{23}$ +24 (c 0.2, MeOH); IR (neat): 1703, 202 3400 cm⁻¹; ¹H and ¹³C NMR, see Table 1; ESIMS *m/z* 285 [M+Na]⁺; HRESIMS *m/z*

- $203 \qquad 285.1098 \; [\text{M+Na}]^{+} \; (\text{calcd for } C_{15} H_{18} \text{NaO}_4, 285.1103).$
- 204

205	3.3.6. Echinolactone D (6). Colorless oil; $[\alpha]_D^{29} + 1.0$ (c 0,5 MeOH); IR (neat): 1715,
206	3410 cm ⁻¹ ; ¹ H NMR (CDCl ₃): δ 1.09 (C7-Me, s), 2.10 (C5-Me, s), 2.54 (H6, d, 14.5),
207	2.59 (C8, d, 13.5), 2.87 (H4, dd, 12.5, 14.5), 2.88 (H6, d, 14.5), 2.88 (H8, d, 14.5), 3.44
208	(C7-CH ₂ OH, s), 4.38 (H3, dd, 4.0, 4.5), 7.67 (H9, s); ¹³ C NMR (CDCl ₃): δ 15.1
209	(C5-Me), 24.1 (C7-Me), 24.8 (C4), 42.1 (C6), 42.4 (C8), 44.4 (C7), 66.6 (C3), 69.8
210	(C7-CH ₂ OH), 123.3 (C9a), 124.0 (C9), 130.8 (C5), 136.2 (C4a), 141.5 (C8a), 148.6
211	(C5a), 166.3 (C1); ESIMS <i>m</i> / <i>z</i> 269 [M+Na] ⁺
212	
213	3.4. Bioassay
214	
215	The antibiotic activity against <i>F. nucleatum</i> was examined as follows. <i>F.</i>
216	nucleatum ATCC25586 strain was maintained on brain heart infusion agar plates (BBL).
217	The agar was inoculated to liquid culture containing trypticase soy broth (3.0 g, BBL),
218	yeast extract (0.3 g, BD), hemin-1 N NaOH (0.1 mL, Acros organics) and
219	menadione-50% EtOH (100 mL, Sigma) in 500 mL flasks and incubated at 37°C for

220 two days in an incubator. After the incubation, the cultures were diluted 10 times. The

221	diluted culture of the F. nucleatum (100 µl) was poured into each well of 96-well plates
222	and concentration of the samples (100 μl in 2% DMSO) was added to the wells. Thymol
223	was used as a positive control. After the incubation under the anaerobically condition at
224	37°C for 3 days, the minimum inhibitory concentration of the samples were measured.
225	
226	Acknowledgment
227	We thank V. K. Deo (Shizuoka University) for valuable discussion.
228	
229	References
230	1. Baldai, D.; Izzotti, A.; Bonica, P; Pera, P; Pulliero A. Mutat. Res. 2009, 667,
231	118-131.
232	2. Potrykus, J.; Flemming, J.; Bearne, S. L. Arch. Biochem. Biophys. 2009, 491, 16-24.
233	3. Piovano, S. Anaerobe 1999, 5, 221-227.
234	4. Petersen, P. E. the World Oral Health Report 2003: W. H. Organization, Geneva,
235	2003; pp 6.
236	5. Kolenbrander, P. E.; Andersen, R. N.; Moore, L. V. H. Appl. Environ. Microbiol.
237	1990 , <i>56</i> , 3890-3894.
238	6. Kolenbrander, P. E.; Andersen, R. N. Infct. Immun. 1989, 57, 3204-3209.

- 239 7. Kolenbrander, P. E.; Andersen, R. N.; Moore, L. V. H. Infct. Immun. 1989, 57,
- 240 3194-3203.
- 241 8. Kolenbrander, P. E.; London, J. J. bacteriol. 1993, 175, 3247-3252.
- 242 9. Suzuki, S; Murayama, T; Shiono, Y. Z. Naturforsch. 2006, 61b, 1295-1298.

Legends

Figure 1. HMBC correlations in 1 and 4.

Scheme 1. Structures of 1-6.