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CONTINUOUS LINEAR EXTENSION OF FUNCTIONS

A. KOYAMA, I. STASYUK, E. D. TYMCHATYN, AND A. ZAGORODNYUK

(Communicated by Nigel J. Kalton)

Abstract. Let (X, d) be a complete metric space. We prove that there is a
continuous, linear, regular extension operator from the space C∗

b of all partial,

continuous, real-valued, bounded functions with closed, bounded domains in
X to the space C∗(X) of all continuous, bounded, real-valued functions on X
with the topology of uniform convergence on compact sets. This is a variant of
a result of Kunzi and Shapiro for continuous functions with compact, variable
domains.

1. Introduction

There is a long history of improvements to the Tietze-Urysohn extension theo-
rem. Dugundji [4] proved that if A is a closed subset of a metric space X, then
there is a continuous, linear, regular extension operator from C(A), the space of
continuous real-valued functions on A with the topology of pointwise convergence,
to the space C(X). His operator is also continuous with respect to the topology of
uniform convergence on C(A) and C(X).

Kuratowski [7] first considered the space of all continuous partial functions whose
domains are closed subsets of a metric space X. The question of existence of
operators extending partial functions with variable domains then arose naturally.
A non-linear extension operator for partial functions with compact domains was
constructed by Stepanova [12].

Kunzi and Shapiro [6] improved the theorems of Dugundji and Stepanova to
encompass functions with compact variable domains as follows:

Let (X, d) be a metric space and let

Cvc = {f : A → R | A ⊂ X is compact and f is continuous }.

Then Cvc is a metric space where the distance between two functions f and g is
given by the Hausdorff distance between their graphs, which are closed, bounded
subsets of X × R. Let C∗(X) denote the set of continuous, bounded, real-valued
functions on X.
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Theorem 1.1 ([6]). Suppose that X is a metrizable space and that the set C∗(X) is
endowed with the topology of uniform convergence. Then there exists a continuous
operator Φ: Cvc → C∗(X) with the following properties:

1) Φ(f)|dom f = f for every f ∈ Cvc;
2) Φ is regular, i.e.

‖Φ(f)‖ = ‖f‖ = max{|f(x)| | x ∈ dom f}

for every f ∈ Cvc and Φ(1A) = 1X for every compact subset A of X;
3) for every compact A ⊂ X the restriction Φ|C(A) is a linear operator, i.e.

Φ(αf + βg) = αΦ(f) + βΦ(g) for α, β ∈ R and f, g ∈ C(A).

It has not been proved that the Kunzi-Shapiro operator preserves uniformly
continuous functions if X is not compact.

Let

C∗
ub = {f : A → R | f is uniformly continuous and bounded,

A ⊂ X is closed and bounded }.

As in the case of Cvc define the distance between two functions in C∗
ub to be the

Hausdorff distance between their graphs. Denote by C∗
u(X) the family of uniformly

continuous, bounded, real-valued functions on X. For a bounded space X the
following result is known:

Theorem 1.2 ([3]). Let X be a bounded metric space. There exists a regular,
positive homogeneous extension operator u : C∗

ub → C∗
u(X) which is continuous with

respect to the topology of uniform convergence on C∗
u(X).

Note that extension operator constructed in [3] is not additive and therefore is
not linear. The Kunzi-Shapiro theorem’s proof seems to depend essentially on the
compactness of domains of partial functions. Of course all of the partial functions
considered by Kunzi and Shapiro are uniformly continuous.

It is known that Hausdorff metric convergence of graphs of continuous functions
with common domain implies pointwise convergence as well as uniform convergence
on compact sets but does not imply the uniform convergence of these functions.
However, if the limit function is uniformly continuous, then this last implication is
true (see [2], [9]). In the current paper we prove a variant of the result of Kunzi and
Shapiro for the case of bounded continuous functions defined on all closed, bounded
subsets of a complete metric space. We construct an extension operator which is
linear, regular and continuous with respect to the topology of uniform convergence
on compact sets on C∗(X). In short, we weaken the compactness condition on
partial domains in the Kunzi-Shapiro result, but the trade-off is that our operator
is continuous with respect to the topology of uniform convergence on compact sets
on C∗(X) rather than the topology of uniform convergence.

Note that there is a vast literature devoted to extensions of functions with special
properties (for instance see [13] for a counterpart of the Kunzi-Shapiro theorem for
pseudometrics).
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2. Preliminaries

Let (X, d) be a metric space and expb(X) the space of non-empty, closed and
bounded subsets of X with Hausdorff metric H. Let ρ be the metric on the product
space X × expb(X) given by the formula

ρ[(x,A), (y,B)] = d(x, y) +H(A,B)

for every x, y ∈ X and A,B ∈ expb(X). Let π1 and π2 stand for the projection
maps in the product space X × expb(X).

For A ∈ expb(X) let C∗(A) denote the family of continuous, bounded, real-valued
functions on A. Let

C∗
b =

⋃
{C∗(A) | A ∈ expb(X)}.

We identify each f ∈ C∗
b with its graph

Γf = {(x, f(x)) | x ∈ dom f} ,

which is a bounded and closed subset of X ×R (here dom f denotes the domain of

f). Let d̃ be the metric on X × R defined by

d̃ ((x, t), (x′, t′)) = d(x, x′) + |t− t′|

for (x, t), (x′, t′) ∈ X ×R. Let H̃ be the Hausdorff metric on expb(X ×R) induced

by d̃. For f, g ∈ C∗
b let the distance from f to g be given by H̃(Γf ,Γg).

We say that e : C∗
b → C∗(X) is an extension operator if for every f ∈ C∗

b we
have e(f)|dom f = f .

We say that e is regular if

‖e(f)‖ = sup
{
|e(f)(x)| | x ∈ X

}
= sup

{
|f(x)| | x ∈ dom f

}
= ‖f‖

for each f ∈ C∗
b and e(1A) = e(1X) for every A ∈ expb(X) where 1A is the constant

map on A with value equal to 1.
Finally, e is linear if e(af + bg) = ae(f) + be(g) for all f, g ∈ C∗

b with dom f =
dom g and a, b ∈ R.

For a topological space Y denote by P(Y ) the space of all regular, positive,
Borel, probability measures on Y endowed with the weak topology with respect
to C∗(Y ), the Banach space of all continuous, bounded, real-valued functions with
the sup-norm topology. For a topological space Z and a map m : Y → Z a family
{μz}z∈Z of measures from P(Y ) is called a fiberwise measure on m if

(i) μz depends continuously on z ∈ Z (this means that
∫
Y
ψdμz is a continuous

function on Z for every ψ ∈ C∗(Y ));
(ii) suppμz =

⋂
{C ⊂ Y | C is closed and μz(C) = μz(Y )} is a subset of

m−1(z) for every z ∈ Z.

A map m that admits a probability fiberwise measure is called a Milyutin map. A
fiberwise measure {μz}z∈Z on m is called atomless if μz(y) = 0 for every z ∈ Z
and y ∈ Y . We are going to use the following result due to Ageev and Tymchatyn:

Theorem 2.1 ([1]). For each metric space Z there exists a perfect (i.e., closed with
compact fibers), atomless, Milyutin map m : Y → Z of a zero-dimensional metric
space Y (i.e., the covering dimension dimY is 0).
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3. The main result

The following theorem is the main result of this paper.

Theorem 3.1. Let (X, d) be a complete metric space. There exists a regular, linear
extension operator e : C∗

b → C∗(X). This operator is continuous with respect to
the topology of uniform convergence on compact sets on C∗(X).

Proof. We will need to define a certain multi-valued map in order to construct the
extension operator e.

Let K =
⋃ {

A × {A} | A ∈ expb(X)
}

with metric ρ. Then K is closed in
X × expb(X).

Let U be an open, locally finite cover of (X × expb(X)) \ K such that U ∈ U
implies diam(U) < 1

2ρ(z, U) for each z ∈ K.
By Theorem 2.1 letm : Y → X×expb(X) be a Milyutin map with compact fibers

of a 0-dimensional metric space Y with a continuous family of fiberwise probability
measures on Y ,

{μ(x,A)}(x,A)∈X×expb(X),

where the support of μ(x,A) is contained inm−1(x,A) for each (x,A) ∈ X×expb(X).
For U ∈ U let

WU =
{
(a,A) ∈ K | there exists (x,A) ∈ U with

ρ
(
(x,A), (a,A)

)
< 2ρ

(
(x,A), A× {A}

)}
.

To show that WU is open in K we note that the functions (a,A) �→ (x,A) for fixed
x and (a,A) �→ A× {A} are continuous. Then the set

Wx = {(a,A) ∈ K | ρ((x,A), (a,A)) < 2ρ((x,A), A× {A})}

is open, and so is WU =
⋃

x∈U Wx.
Note that if {Ui} is a sequence in U and (a,A) ∈ K ∩ lim inf Ui, then

(1) lim
i

WUi
=

{
(a,A)

}
.

Let V be a clopen, pairwise disjoint cover of Y \m−1(K) such that V refines
m−1(U). For V ∈ V let UV ∈ U with V ⊂ m−1(UV ). Define a set-valued function
F : Y → X × expb(X) as follows. Let z ∈ Y . If z �∈ m−1(K) there exists a unique
V ∈ V with z ∈ V . Let

F (z) =

{
{m(z)} if m(z) ∈ K;

{(a,A) ∈ WUV
} if π2(m(z)) = A and z ∈ V ∈ V .

Lemma 3.2. The map F is lower semicontinuous.

Proof. Let {zi} converge to z in Y . Suppose first that z �∈ m−1(K). Let V be
the unique element of V such that z ∈ V . Since V is open we may suppose that
zi ∈ V for each i. Let m(z) = (x,A) and m(zi) = (xi, Ai). Since m is continuous,
limm(zi) = m(z). If (a,A) ∈ F (z), then (a,A) ∈ WUV

and a ∈ A. Since limAi =
A, there exists ai ∈ Ai such that lim ai = a. For large i, (ai, Ai) ∈ WUV

since WUV

is open. So (ai, Ai) ∈ F (zi) for large i and lim(ai, Ai) = (a,A) as required.
Now assume that z ∈ m−1(K) and let m(z) = (x,A) where x ∈ A. Then

F (z) = (x,A). By (1) (x,A) ∈ limF (zi). So F is lower semicontinuous. �
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Define a set-valued function F : Y → X × expb(X) by setting F (z) = F (z) for
z ∈ Y . Then, F is also lower semicontinuous and has closed values in the complete
metric space (X × expb(X), ρ) (see [5, page 298, 4.5.23(c)]). By the 0-dimensional
Michael selection theorem [8] F has a continuous selection ϕ : Y → X × expb(X).
Note that ϕ

(
m−1(x,A)

)
= {(x,A)} if (x,A) ∈ K.

Define an operator e : C∗
b → R

X by setting, for g ∈ C∗
b and x ∈ X,

e(g)(x) =

∫

m−1(x,dom g)

g(π1(ϕ(z)))dμ(x,dom g).

The rest of the proof of Theorem 3.1 will consist of verification of the properties
of the map e, which is done in the following lemmas.

Lemma 3.3. For every g ∈ C∗
b the function e(g) is bounded and continuous on X.

Proof. The fact that e(g) is a continuous, bounded function on X follows from
continuity and boundedness of the function g ◦ π1 ◦ ϕ on m−1(X × {dom g}) and
continuity of the measures. Indeed, for a sequence {xi} from X converging to some
x0 ∈ X, let (xi, dom g) = αi, (x0, dom g) = α and X × {dom g} = T . We obtain

e(g)(xi) =

∫

m−1(αi)

g(π1(ϕ(z)))dμαi
=

∫

m−1(T )

g(π1(ϕ(z)))dμαi
−−−→
i→∞

∫

m−1(T )

g(π1(ϕ(z)))dμα =

∫

m−1(α)

g(π1(ϕ(z)))dμα = e(g)(x0). �

Lemma 3.4. The map e is a linear, regular extension operator.

Proof. If x ∈ dom g, then ϕ(m−1
(
x, dom g

)
) = {(x, dom g)} and so

e(g)(x) =

∫

m−1(x,dom g)

g(x)dμ(x,dom g) = g(x).

Therefore, e is an extension operator. Since integration is a linear operation, e is
linear.

From the definition of e we see that ‖e(g)‖ ≤ ‖g‖ for every g ∈ C∗
b because

μ(x,dom g)(m
−1(x, dom g)) = μ(x,dom g)(Y ) = 1

for every x ∈ X. And since e(g) is an extension of g we get ‖e(g)‖ = ‖g‖. Also, it
is clear that e maps 1A to 1X for every A ∈ expb(X). Therefore, e is regular. �

Lemma 3.5. The map e is continuous with respect to the topology of uniform
convergence on compact sets on C∗(X).

Proof. In fact, it is enough to show that if a sequence {gn} converges to g in C∗
b

and if {xn} is a sequence in X converging to x ∈ X, then the sequence {e(gn)(xn)}
converges to e(g)(x). This is the condition of continuous convergence of functions,
which for metric spaces is equivalent to uniform convergence on compact sets (see
[10, page 109]). Suppose that {gn} converges to g in C∗

b and {xn} converges to x
in X, and write (xn, dom gn) = βn and (x, dom g) = β.
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Case 1. Suppose βn = β for every n ∈ N. Since all the functions gn and g have the
same domain and their graphs converge in the Hausdorff metric, we conclude that
{gn} converges pointwise to g on dom g (see [9]). Then the sequence {gn ◦ π1 ◦ ϕ}
and the limit function g ◦ π1 ◦ ϕ satisfy the hypothesis of Lebesgue’s dominated
convergence theorem and we obtain e(gn)(xn) = e(gn)(x) → e(g)(x).

Case 2. Now suppose that βn �= β for every n ∈ N. Then by passing to a subse-
quence if necessary, we may suppose βn �= βk for n �= k. Let

Y ′ = m−1(β) ∪
∞⋃

n=1

m−1(βn).

Define a function h : Y ′ → R as follows:

h(z) =

{
g(π1(ϕ(z))) if z ∈ m−1(β);

gn(π1(ϕ(z))) if z ∈ m−1(βn).

Since the sequence {Γgn} converges to Γg in the Hausdorff metric, one can show
that if a sequence {an} in X converges to a ∈ dom g and an ∈ dom gn for each
n, then gn(an) converges to g(a). Using this condition we conclude that h is a
continuous map on Y ′. Since the measures {μβn

}∞n=1 converge to μβ we obtain

e(gn)(xn) =

∫

m−1(βn)

gn(π1(ϕ(z)))dμβn
=

∫

Y ′

h(z)dμβn
−−−−→
n→∞

∫

Y ′

h(z)dμβ =

∫

m−1(β)

g(π1(ϕ(z)))dμβ = e(g)(x).

To prove the convergence for any sequence {(xn, gn)} we will have to pass to a
subsequence to which Case 1 or Case 2 applies. Therefore, e(gn)(xn) → e(g)(x). �

Combining the results from Lemma 3.3, Lemma 3.4 and Lemma 3.5 we see that
e satisfies all the conditions claimed. �

4. Remarks and open questions

Remark 4.1. If A ∈ expb(X) and a sequence of partial functions {gn} in C∗(A)
converges uniformly to g ∈ C∗(A) on A, then the sequence of extensions e(gn)
converges uniformly to e(g) on X. Indeed, since e is linear and preserves norms,
we obtain

‖e(g)− e(gn)‖ = ‖e(g − gn)‖ = ‖g − gn‖ −−−−→
n→∞

0.

Remark 4.2. It is known that in general there is no analogue of the Dugundji theo-
rem on linear extensions of continuous, real functions defined on a closed subset of
a metric space for the case of uniformly continuous functions (see [11, Remarks in
§2]). Since Hausdorff metric convergence of graphs of uniformly continuous func-
tions with common domain is equivalent to uniform convergence of these functions,
we conclude that in general there is no linear extension operator from C∗

ub to C∗
u(X)

which is continuous with respect to the topology of uniform convergence on C∗
u(X).

The following question arises naturally:

Question 4.3. Suppose that (X, d) is bounded. Does there exist a linear, regular
extension operator u from C∗

b to C∗(X) such that Γu(gn) converges to Γu(g) in the
Hausdorff metric whenever {gn} converges to g in C∗

b ?
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