## 1 Historical effect in the territoriality of Ayu fish

- $\mathbf{2}$
- Yumi Tanaka<sup>1</sup>, Kei'ichiro Iguchi<sup>2</sup>, Jin Yoshimura<sup>3,4,5</sup>, Nariyuki Nakagiri<sup>1</sup> and Kei-ichi
   Tainaka<sup>3</sup>\*
- <sup>1</sup>School of Human Science and Environment, University of Hyogo, Himeji, 670-0092,
- 6 Japan (e-mail: Y.T.: nd08x012@stshse.u-hyogo.ac.jp, N.N.:
- 7 nakagiri@shse.u-hyogo.ac.jp).
- 8 <sup>2</sup>National Research Institute of Fisheries Science, Fisheries Research Agency, 1088
- 9 Komaki, Ueda 386-0031, Japan (e-mail: keyichi@fra.affrc.go.jp).
- <sup>3</sup>Department of Systems Engineering, Shizuoka University, Hamamatsu 432-8561,
- 11 Japan (e-mail: J.Y.: jin@sys.eng.shizuoka.ac.jp, K.T.: tainaka@sys.eng.shizuoka.ac.jp)
- <sup>4</sup>Marine Biosystems Research Center, Chiba University, 1 Uchiura, Kamogawa
  299-5502, Japan.
- <sup>5</sup>Department of Environmental and Forest Biology, State University of New York
- 15 College of Environmental Science and Forestry, Syracuse, New York 13210, USA.
- 16 \*Corresponding author: Kei-ichi Tainaka
- 17
- 18 Keywords: fish behavior, territory formation, territory breakdown, historical effect,
- 19 phase transition

#### 21 Abstract

Ayu fish form algae-feeding territories in a river during a non-breeding (growing) 22season. We build a cost-benefit theory to describe the breakdown and formation of 23territory. In the early stage of a growing season, all fish hold territories at low densities. 24Once all territory sites are occupied, excess fish become floaters. When fish density 25further increases, a phase transition occurs: all the territories suddenly break down and 2627fish form a school. In contrast, when the fish density is decreased, territories are suddenly formed from the school. Both theory and experiments demonstrate that ayu 2829should exhibit a historical effect: the breakdown and formation processes of territory are largely different. In particular, the theory in formation process predicts a specific fish 30 behavior: an "attempted territory holder" that tries to have a small territory emerges just 3132before the formation of territory.

## **1. Introduction**

| 35 | Animals have evolved various behavioral strategies as an adaptation for                       |
|----|-----------------------------------------------------------------------------------------------|
| 36 | different ecological circumstances (Krebs and Davies 1987). Territoriality and group          |
| 37 | foraging are the two different ways of adaptation (Foster 1985). Territorial behavior is a    |
| 38 | life history adaptation in the solitary state of animals (Brown and Orians 1970; Ebersole     |
| 39 | 1977; Davies and Houston 1984), while group foraging is an adaptation by forming a            |
| 40 | group (Schaller 1972; Robertson et al. 1976). In many species, mating pairs often form        |
| 41 | a breeding territory, while they forage in group during non-breeding seasons, e.g., most      |
| 42 | of migratory birds. However, it is rather rare to see a transition between territoriality and |
| 43 | group foraging in a single (non-breeding) season.                                             |
| 44 | Whether territory formation is adaptive or not can be answered by usual the                   |
| 45 | cost-benefit analysis comparing the individuals with/without a territory, within a            |
| 46 | solitary state (Krebs 1971). Group foraging is also compared with solitary foraging in a      |
| 47 | species with some group foraging (Pulliam and Caraco 1984; Clark and Mangel 1986).            |
| 48 | These two different evolutionary adaptations may occur in a closely related species, e.g.,    |
| 49 | fishes (Foster 1985). However, it should be extremely rare to find both territorial           |
| 50 | foraging and group foraging in a single species. The cost-benefit analyses of these           |
| 51 | behavioral strategies can provide a single framework to view the adaptive evolution of        |

| 52 | individual behavior (Stephens and Krebs 1986). We here provide such a unique case            |
|----|----------------------------------------------------------------------------------------------|
| 53 | study of a fish exhibiting both territorial behavior and group foraging (school) as          |
| 54 | adaptive responses during a growing season (May to July).                                    |
| 55 | Ayu (Plecoglossus altivelis, Osmeridae) is an endemic migratory fish in Japan                |
| 56 | (Kawanabe 1969; Miyadi 1960; Takahashi and Azuma 2006). This fish has a unique life          |
| 57 | history (Kawanabe 1969; Miyadi 1960; Iguchi 1996). Its life cycle is completed by one        |
| 58 | year. Eggs that are spawned in the downstream of a river hatch in autumn. The hatched        |
| 59 | larvae drift to a sea and feed mostly zooplankton in coastal zones. In spring, the juvenile  |
| 60 | fish migrate to the midstream (and/or upstream) of a river, where algae (diatoms) grow       |
| 61 | on the rocks of the riverbeds in rapids (swift current). Many young fish form a territory    |
| 62 | in this stage (Fig. 1). They feed on these algae from spring to fall. In fall, when ayu fish |
| 63 | matures, they swim downstream all together. They spawn eggs and die soon afterwards.         |
| 64 | Thus, ayu is a diadromous fish, but it is strictly anadromous (Iguchi 1996).                 |
| 65 | In the midstream of a river, rapids and pools usually locate in turn (Mizuno and             |
| 66 | Kawanabe, 1981). In the early stages of a growing season (May), the feeding territory is     |
| 67 | formed in the rapids, where diatoms grow on the surfaces of rocks (Biggs and Hickey          |
| 68 | 1994; Biggs et al. 1998). In contrast, (deep) pools, without algae, are not suitable for     |
| 69 | ayu that can only feed on small amounts of drifted algae and insects. The amount of          |

| 70 | algae growing in one territory is several times more than the necessary amounts for one       |
|----|-----------------------------------------------------------------------------------------------|
| 71 | fish to grow to maturity (Iguchi and Abe 2002; Gill and Wolf 1975). During the                |
| 72 | growing season, many fish swim into a river and the fish density increases daily.             |
| 73 | Those that cannot hold a territory become a floater. A floater, usually staying in a pool,    |
| 74 | cannot feed well. It sometimes intrudes into a territory in the rapids and steals algae       |
| 75 | while intruding. In order to defend its own territory, the territory holder attacks a floater |
| 76 | violently (Fig. 1). The unique "tomo-dsuri" fishing exploits such violent attacks:            |
| 77 | fishermen use a live decoy as an intruder to catch the territory holder. When the fish        |
| 78 | number in the midstream increases, all fish form a school. In contrast, when the fish         |
| 79 | number decreases, the state of fish conversely changes from school to territory. In the       |
| 80 | present paper, we estimate the fitness (Gross 1982; 1985; Tainaka et al. 2007; Tanaka et      |
| 81 | al. 2009) of an individual fish, and report a historical effect by the comparison between     |
| 82 | breakdown and formation processes of territories.                                             |

## 84 **2. Model**

An individual fish takes one of three strategies: territorial holder (Th), floater (Fl) and
school (Sc). The optimal strategies for the energy (food) gain of an individual fish

| 87 | depend not only on total fish density but also on the time difference of density. We                      |
|----|-----------------------------------------------------------------------------------------------------------|
| 88 | expect the breakdown and formation of a territory as illustrated in Fig. 2. First, we deal                |
| 89 | with the case that the overall density ( $N$ ) increases. From the previous studies                       |
| 90 | (Kawanabe 1969; Iguchi 1996; Kawanabe 1958, 1970, 1973), we assume the following                          |
| 91 | three phases:                                                                                             |
| 92 | i) Th-phase                                                                                               |
| 93 | At low density, all fish can hold territories in the rapids and some territories are not                  |
| 94 | occupied (Kawanabe 1973). When the density of fish increases, all incoming fish can                       |
| 95 | hold a new territory in a vacant site, until all the territory sites are occupied ( $N \le N_{T \max}$ ). |
| 96 | Here $N_{T \max}$ is the maximal number (density) of territories.                                         |
| 97 | ii) Coexisting phase: (Th+Fl)-phase                                                                       |

- 98 When the population size exceeds the territory capacity ( $N > N_{T \max}$ ), newcomers
- 99 cannot hold territories. These fish become a floater staying in the pool. Hence, we
- 100 suspect that a floater is not an available option, but a forced action. Each territory holder
- 101 defends own territory against intruders (floaters).

102 iii) Sc-phase

| 103 | Due to more newcomers, the number of floaters increases. Since territory intrusions by       |
|-----|----------------------------------------------------------------------------------------------|
| 104 | floaters become frequent, territory holders have to spend much more time in defending        |
| 105 | their own territory. They lose the time to feed on algae. When the density of fish           |
| 106 | exceeds a critical density $(N_1)$ , all the territories suddenly break down (Kawanabe 1958, |
| 107 | 1970, 1973). For $N > N_1$ , all fish form a school at once (Fig. 2).                        |

108In summary, in the increasing stage of density, the fish behavior changes as  $Th \rightarrow (Th+Fl) \rightarrow Sc$ . The total density (N) is represented by 109

110 
$$\begin{cases} N = N_T & (N \le N_{T \max}) \\ N = N_T + N_F & (N_{T \max} < N \le N_1) \\ N = N_S & (N_1 < N) \end{cases}$$
(1)

where  $N_T$ ,  $N_F$  and  $N_S$  denote the densities of territorial holder, floater and school, 111112respectively.

113At the high density, all fish form a school. However, even when the fish density decreases less than the breakdown point  $N_1$ , territories cannot be observed. The 114fish schools should persist up to a very low density, until every fish can hold a territory 115at once. This is because the territory formation is very hard. When  $N < N_1$ , a fish has 116two options: either to attempt to make a territory or remain in a school. We call the 117former 'attempted territory holders' (Th\*). Even if one fish attempts to hold a territory, 118

other remaining fish become intruders. The defense against school fish is very hard,
while the defense against a solitary intruder is highly effective (Iguchi 1996; Tachihara
and Kimura 1992).

However, if the density becomes lower below a critical value ( $N < N_2$ ), then territory holders can emerge at once. The formation point of territory ( $N_2$ ) can be estimated by the timing when all fish can hold a territory, or when no fish are necessarily forced to be a floater. When  $N < N_2$ , all fish become territory holders. The formation point  $N_2$  is much less than the breakdown point  $N_1$ , and it should be almost equal to the maximum density  $N_{T \max}$  of territory. In the decreasing stage, the fish behaviors change as Sc  $\rightarrow$  Th. The density of each strategy is given by

129 
$$N = \begin{cases} N_s & N > N_2 \\ N_T & N \le N_2 \end{cases}$$
(2)

130 There is no forced option to be a floater in the decreasing stage (Fig. 2). The attempted 131 territory holder (Th\*) can emerge for  $N_1 > N > N_2$ .

#### 133 **3. Theory**

#### 134 **3-1. Cost-benefit theory in an increasing stage**

- We estimate the fitness of an individual fish for three strategies: territorial holder (Th),
  floater (Fl) and school (Sc). The fitness is composed of both cost and benefit, where the
  cost is defined by a defense cost to protect a territory, and the benefit is assumed to be
  the food amount each fish can eat.
  When the overall density *N* is increased, the choice changes according to the
- 140 following three phases:
- 141 i) Th-phase ( $N \le N_{T \max}$ )
- 142 When all fish have territories, the fitness of a territory holder  $(W_T)$  takes the maximum

143 value. Let  $K_r$  be the algal food amount in the rapids, then  $W_T$  can be expressed as

144 
$$W_T = K_r / N_{T \max} = W_{T \max} = \text{const.}$$
 (3)

145 ii) Coexisting phase  $(N_{T \max} < N \le N_1)$ 

146 The territory holder bumps its body against the intruding floater repeatedly until the

147 floater leaves its territory. Let  $\tau_f$  and  $\tau_d$  be the dimensionless ratios of the feeding

148 and defense time durations of a territory holder, respectively ( $\tau_f + \tau_d = 1$ ) (Brown

149 1964; Pyke 1979). The fitness of a territory holder  $W_T$  can be expressed as

150 
$$W_T = (K_r / N_{T \max}) \tau_f - c_{dF} \tau_d$$
 (4)

151 where  $c_{dF}$  is the defense cost of a fish against a floater. For simplicity, we assume  $\tau_d$ 152 is a linear function of floater density:

153 
$$\tau_d = aN_F \tag{5}$$

154 where a is a constant. Equation (5) comes from the experimental data as listed in

155 Table 1. We find from this table that the attack frequency increases as the floater

156 number increases.

157 Next, we evaluate the fitness  $W_F$  of a floater. Since the floater is the forced

158 option,  $W_F$  is always smaller than  $W_T$ . The floater fitness is not important to

159 determine the optimal strategy. Note the profile of  $W_F$  has the following properties: (i)

160 if the density  $(N_F)$  of floaters is low,  $W_F$  is nearly constant. (ii) On the contrary, if

161  $N_F$  is high,  $W_F$  may be represented by  $K_p / N_F$ , where  $K_p$  is the food amount in

the pools.

163 iii) Sc-phase  $(N > N_1)$ 

Now, we evaluate the fitness  $W_s$  of a school fish for Sc-phase. Since the school fish 164165feeds both in the rapids and pools, the fitness of a school fish is given by  $W_{s} = (rK_{r} + K_{n})/N$ (6) 166167where r is the feeding rate of school fish in rapids relative to a territory holder (r < 1). In Fig. 3, both  $W_F$  and  $W_T$  are depicted against the total density N. The breakdown 168point  $N_1$  of territoriality can be determined by 169 $W_{S} = W_{T}$ 170(7) In the above model, to guarantee the cross point at  $N_1$ , we assume that  $K_r > rK_r + K_p$ . 171

- 172 The optimal strategy is territory holder  $(W_T \ge W_S)$  for  $N \le N_1$ , while school fish is
- 173 optimal  $(W_s > W_T)$  for  $N > N_1$  (Fig. 3).

174

#### 175 **3-2. Cost-benefit theory in a decreasing stage**

176 At high density, the fitness  $W_s$  of school fish is same as that in the increasing stage

- 177 [see Eq. (6)]. With decreasing fish density ( $N < N_1$ ), the fitness  $W_s$  becomes smaller
- 178 than  $W_T$ . Here a fish has two options: either to attempt to make a new territory or
- remain in a school. We specifically consider the fitness of an attempted territory holder

180  $(W_T *)$ . Note that there is an essential difference between increasing and decreasing 181 stages: in the increasing stage, the intruders are floaters, while in the decreasing stage 182 the intruders are school fish. Hence, the defense time ratio  $\tau_d$  is proportional to the 183 density of school fish.

184 
$$\tau_d = aN_s \tag{8}$$

185 The fitness  $W_{T}^{*}$  of an attempted territory holder can be expressed as

186 
$$W_T^* = (K_r / N_{T \max}) \tau_f - c_{dS} \tau_d$$
 (9)

187 where  $c_{ds}$  is the defense cost of a fish against school fish. Note that the defense cost 188 against school fish is much larger than that of floaters, such that  $c_{ds} >> c_{dF}$ . This 189 difference is very important. Below the critical density ( $N < N_2$ ), all school fish should 190 switch to the territory option; we have the critical point ( $N_2$ ) of territory formation by 191  $W_T^* = W_S$  (10)

192 When all fish can hold a territory, they become territory holder. Their fitness jumps up 193 to the maximum value  $W_{T \max}$ .

#### 195 **3-3. Numerical estimations**

| 196 | We insert the empirical data into the model to estimate the expected dynamics and                                      |
|-----|------------------------------------------------------------------------------------------------------------------------|
| 197 | transition points numerically. Since an ayu fish forms a territory of ca. 1 [m <sup>2</sup> ] (Miyadi                  |
| 198 | 1960; Kawanabe 1973), we set that $N_{T \max} = 1 [/m^2 \text{ rapids}]$ . (We consider the fitness                    |
| 199 | based on 1 m <sup>2</sup> rapids in a midstream of a river.) In a typical Japanese river, the                          |
| 200 | midstream consists of about 55% of rapids and about 45% of pools (Kawanabe 1973).                                      |
| 201 | This means that 1 m <sup>2</sup> rapids are associated with 0.81 [m <sup>2</sup> pools]. The defense time ( $\tau_d$ ) |
| 202 | and feeding time ( $\tau_f$ ) are estimated from empirical studies (Kawanabe 1969, Kawanabe                            |
| 203 | 1970) as follows. Let $n_f$ and $n_d$ be the times (numbers: [/min]) of feeding and defense                            |
| 204 | (attack), respectively, per one territory holder. The maximum number of defense in a                                   |
| 205 | minute is 15 times, whereas that of feeding is 30 times. Therefore, we get $\tau_d = n_d/15$                           |
| 206 | and $\tau_f = n_f/30 = 1 - n_d/15$ , since $\tau_d + \tau_f = 1$ . Because the times of defense (attack) $n_d$ ,       |
| 207 | increases with the number of floaters, we assume that $n_d = aN_F$ . From low density ( $N_F \leq$                     |
| 208 | 1) experiments in pools, the attack rate is estimated that $a = 1.8 - 6.3$ , on average, ca. 3.4                       |
| 209 | (Table 1). Therefore, we set $a = 3.0$ .                                                                               |

The algal food amount in the rapids,  $K_r$ , is estimated 3.3 [g/day/ (m<sup>2</sup> rapids)] for a 20cm long fish (11 Kcal equivalent) (Kawanabe 1969). Since the defense cost  $c_{dF}$  against a floater is estimated between 0.01 ~ 0.2 (Iguchi and Hino 1996), we set  $c_{dF} =$ 0.1. Numerically, we derive that  $W_T = K_r - (K_r + c_{dF})(a/15)(N-1)$  Next, we estimate the amount of food available in pools,  $K_p$ . The average diatom dry weight for rapids and pools are 6.25 and 0.42 [g/m<sup>2</sup>] (Miyadi 1960). Therefore, numerically, we get  $K_p =$ [(0.42 · 0.81)/6.25)] $K_r = 0.054K_r$ .

| 217 | Now we estimate the fitness of a school fish, $W_S$ . The relative feeding rate of                 |
|-----|----------------------------------------------------------------------------------------------------|
| 218 | fish is estimated that $r = 0.4$ from the relative sizes of territory holders and school fish      |
| 219 | (Kawanabe 1969). Therefore, we get $W_S = 0.454K_r$ (if $N \le 1$ ) or $0.454K_r/N$ (if $N > 1$ ). |
| 220 | Finally, we estimate the fitness $W_T^*$ of an attempted territory holder. We estimate the         |
| 221 | defense cost against school fish, $c_{dS} = 10$ (Iguchi 1996). Therefore, the defense time of      |
| 222 | an attempted territory holder is $T_d^* = (a/15)(N-1)$ . Then we derive numerically that $W_T^*$   |
| 223 | $= K_r - (K_r + c_{dS})(a/15)(N-1).$                                                               |

224

### 225 **4. Analysis and Results**

| 226 | We compare the theory with empirical data which were obtained previously.                             |
|-----|-------------------------------------------------------------------------------------------------------|
| 227 | First we deal with the case that the fish density increases. The fitnesses of ayu fish                |
| 228 | against the population density are plotted in Fig. 3. When the density exceeds $N_{T_{\text{max}}}$ , |

floaters emerge in the pool. Above the breakdown point  $(N > N_1)$ , territory holders should give up the territory and switch to schooling. The breakdown point is given by  $N_1 = 5.486$  [fish/m<sup>2</sup>] in the current model.

| 232 | Table 2 shows the sensitivity of the attack rates and the defense cost against             |
|-----|--------------------------------------------------------------------------------------------|
| 233 | floaters for their observed ranges and selected values. These results indicate that the    |
| 234 | defense costs against floaters ( $c_{dF}$ ) have almost no effects on the outcomes. On the |
| 235 | other hand, the attack rates have much more profound effects on the optimal switching      |
| 236 | points from 2 to 8 individuals. As our best estimate, we here keep the optimal switching   |
| 237 | point for $a = 3$ and $c_{dF} = 0.1$ .                                                     |

| 238 | Table 3 shows the observation data of fish state in increasing fish density.                              |
|-----|-----------------------------------------------------------------------------------------------------------|
| 239 | From Table 3, territoriality is maintained for $N < 4.1$ [fish/m <sup>2</sup> ] and schooling is seen for |
| 240 | $N > 5.5$ [fish/m <sup>2</sup> ]. These data mean $4.1 < N_1 < 5.5$ , which are consistent with the       |
| 241 | theoretical estimation ( $N_1$ =5.486). We should also note that the estimated breakdown                  |
| 242 | point is fairly robust in the estimated range of defense cost $c_{dS}$ (=5~15).                           |
| 243 | Next, we deal with the case that the fish density decreases. At a high density,                           |
| 244 | all fish form a school ( $N > N_1$ ). In Fig. 4, the fitnesses in decreasing process are                  |

245 depicted against the density N. When the density decreases below  $N_1$ , a school fish

attempts to have a territory. The fitness of territory holders  $(W_T)$  is not available for an attempted territory holder. Even if  $N < N_1$ , the fitness of attempted territory holder  $(W_T *)$  may be smaller than that of school fish  $(W_S)$ . However, when  $N < N_2$  $(W_T * > W_S)$ , all school fish should switch to the territory option.

The observation data of fish state in decreasing process are listed in Table 4. 250251When N > 25.0, all fish form school. In contrast, when N < 1.5, all have territories. In the intermediate case, the fitness  $W_s$  is lower than  $W_T$ , but larger than  $W_T^*$ 252 $(W_T > W_S > W_T^*)$ . Thus, few school fish attempt to have their territories, but they 253cannot have stable territories. The data N = 5.0 in Table 4 just indicate the emergence 254of attempted territory holders (Th\*). In this case, the territories are small and unstable 255and a floater never emerges. This observation agrees with the theoretical prediction at 256 $N_2 < N < N_1$ . When the density further decreases at or below  $N_2$ , then every fish can 257hold a territory. Hence, the fish switch to territoriality to keep a higher fitness. The 258critical value may be close to  $N_{T \max}$ . Although  $N_{T \max}$  is unity for natural river, it takes 259a value larger than unity in experimental (rich food) condition. 260

### 262 **5. Discussion and Conclusion**

| 263 | We apply a fitness theory (Gross 1982; Tainaka et al. 2007; Tanaka et al. 2009)                                                         |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------|
| 264 | to obtain both cost and benefit for three behavioral strategies: territory holder (Th),                                                 |
| 265 | floater (Fl), and school fish (Sc). The empirical data (see Tables 1 and 3) show the                                                    |
| 266 | behavior of ayu fish changes depending on its density. When the density ( $N$ ) increases,                                              |
| 267 | the fish state changes as Th $\rightarrow$ (Th+Fl) $\rightarrow$ Sc (see Fig. 2 a $\rightarrow$ b $\rightarrow$ c). In contrast, in the |
| 268 | decreasing process of N, the phase changes as $Sc \rightarrow Th$ (Fig. 2 c $\rightarrow$ a). The different                             |
| 269 | phase transitions between increasing and decreasing processes denotes the historical                                                    |
| 270 | effect (hysteresis). The breakdown point ( $N_1$ ) of territory should be larger than the                                               |
| 271 | formation point $(N_2)$ . This is because each fish easily forms the territory in increasing                                            |
| 272 | stage, but the territory formation is very hard against school fish in decreasing stage.                                                |
| 273 | The value $N_1$ is determined by $W_T = W_S$ [see Eq. (7)], while $N_2$ is determined by                                                |
| 274 | $W_T * = W_S$ [see Eq. (10)].                                                                                                           |
|     |                                                                                                                                         |

Our results show the unique properties of ayu decisions along with the increase (decrease) in density. When the density increases, the decision maker is not a floater, but a territory holder (Th). When  $W_T = W_S$ , then the Th fish gives up the territoriality. In contrast, when the density decreases, a school fish is a decision maker: when  $W_T *= W_S$ , then the Sc fish gives up schooling. In both processes, the floater is not an option but a

| 280 | forced option. No fish wants to be a floater (loser)! Such a difference of transition       |
|-----|---------------------------------------------------------------------------------------------|
| 281 | points causes the emergence of attempted territory holder (Th*) in the decreasing           |
| 282 | process of fish density. Even if a fish tries to hold a territory (Th*), school fish ignore |
| 283 | and swim over the territory and feed algae freely (Iguchi 1996; Tachihara and Kimura        |
| 284 | 1992). The fitness of Sc is much smaller than that of Th, but is larger than that of Th*.   |
| 285 | This is because Th* defends against school fish, while Th defends against                   |
| 286 | scattered/sporadic floaters. Note that the defense against school fish is known to be very  |
| 287 | hard (Iguchi 1996; Tachihara and Kimura 1992).                                              |
| 288 | The historical effect (hysteresis) is well known in physics, such as ice-water              |
| 289 | transition and magnetism. However, biological hysteresis was rare (Caraco 1980; Ronce       |
|     |                                                                                             |

290and Kirkpatrick 2001). Caraco (1980) dealt with dynamics of avian flocks foraging in two patches, and reported the animal hysteresis. When a population size increases, the 291292incoming birds continue to join a single crowded feeding ground, until choosing a 293vacant risky site becomes better than joining the already crowded patch. When the population size decreases with birds leaving the feeding grounds, the number of birds in 294both grounds becomes much less than the optimal flock size. The dynamics of flock 295296sizes are shifted from the optimal flock size (a single transition point) when flock sizes 297 are increasing or decreasing (Caraco 1980). The territoriality in ayu is another case of

| 298 | animal hysteresis. We show the different phase transitions as illustrated in Fig. 2.           |
|-----|------------------------------------------------------------------------------------------------|
| 299 | Moreover, we report a distinct property never seen in other hysteresis systems. Namely,        |
| 300 | we can see the historical effect in fish behaviors. In the decreasing process of the           |
| 301 | population size $N$ , attempt territory holders (Th*) often appear instead of floaters.        |
| 302 | The empirical data in increasing stage (Table 3) indicate that the breakdown                   |
| 303 | point ( $N_1$ ) of territoriality can be represented by $4.1 < N_1 < 5.5$ . This result is     |
| 304 | consistent with the theoretical estimation ( $N_1$ =5.486). On the other hand, empirical data  |
| 305 | in decreasing stage (Table 4) suggest that $1.5 < N_2 < 5.0$ . This slightly differs from our  |
| 306 | prediction ( $N_2 \approx 1$ ). The discrepancy may come from the estimation of parameters. In |
| 307 | particular, the number of fish which intrudes into the territory of Th* may be                 |
| 308 | overestimated [see Eq. (8)]. Our model is an extremely simple cost benefit model, so           |
| 309 | that other important factors are not included, e.g., individual variations in fish traits      |
| 310 | (Katano and Iguchi 1996), interference by other fish species (Katano et al. 2000), the         |
| 311 | quality and size variations of the territories (Iguchi and Hino 1996), and the time scale      |
| 312 | of increasing/decreasing fish densities. The reproduction (regeneration) of algae after        |
| 313 | feeding may be also important, because the rate of regeneration is different between           |
| 314 | territorial feedings and school foraging (Katano et al. 2000).                                 |

315

# 316 Acknowledgments

| 317 | We thank Fugo Takasu and Hiroya Kawanabe for valuable comments. This                 |
|-----|--------------------------------------------------------------------------------------|
| 318 | work was partly supported by grants-in-aids from the Ministry of Education, Culture, |
| 319 | Sports, Science and Technology of Japan to J. Y. and to K. T.                        |
| 320 |                                                                                      |

#### 322 References

- 323 Biggs, B. J. F., D. G. Goring, and V. I. Nokora. 1998. Subsidy and stress responses of
- 324 stream periphyton to gradients in water velocity as a function of community growth rate.
- Journal of Phycology 34: 598-607.
- Biggs, B. J. F., and C. W. Hickey. 1994. Periphyton responses to a hydraulic gradient in
- a regulated river in New Zealand. Freshwater Biology 32: 49-59.
- Brown, J. L. 1964. The evolution of diversity in avian territorial systems. Wilson Bull.
  76: 160-169.
- Brown, J. L. and G. H. Orians. 1970. Spacing patterns in mobile animals. Annual
- 331 Review of Ecology and Systematics 1:239-262.
- Caraco, T. 1980. Stochastic dynamics of avian foraging flocks. American Naturalist
  115: 262-275.
- 334 Clark C. W. and M. Mangel. 1986. The evolutionary advantages of group foraging.
- Theoretical Population Biology 30: 45-75.

- 336 Davies, N. B. and A. I. Houston. 1984. Territory Economics. In J. R. Krebs and N. B.
- 337 Davies (eds.), Behavioral Ecology: An Evolutionary Approach, 2nd ed., pp. 148–169.
- 338 Blackwell Scientific Publications, Oxford.
- 339 Ebersole, J. P. 1977. The adaptive significance of interspecific territoriality in the reef
- 340 fish *Eupomacentrus leucosticus*. Ecology 58: 914-920.
- Foster, S. A. 1985. Group foraging by a coral reef fish : a mechanism for gaining access
- to defended resources. Animal Behaviour 85: 782-792.
- 343 Gill, F. B., and L. L. Wolf. 1975. Economics of feeding territoriality in the
- 344 golden-winged sunbird. Ecology 56: 333-345.
- 345 Gross, M.R. 1982. Sneakers, satellites and parentals: polymorphic mating strategies in
- North American sunfishes. Zeitschrift für Tierpsychol. 60: 1–26.
- 347 Gross, M. R. 1985. Disruptive selection for alternative life histories in salmon. Nature
- 348 313, 47–48.
- Iguchi, K. 1996. "The territory of Ayu" revisited. Gekkan Kaiyo 28: 281-285 (In
- 350 Japanese).

- 351 Iguchi, K., and S. Abe. 2002. Territorial defense of an excess food supply by an algal
- 352 grazing fish, ayu. Ecological Research 17: 373-380.
- 353 Iguchi, K., and T. Hino. 1996. Effect of competitor abundance on feeding territoriality
- in a grazing fish, the ayu *Plecoglossus altivelis*. Ecological Research 11: 165-173.
- Iguchi, K., K. Ogawa, M. Nagae and F. Ito. 2003. The influence of rearing density on
- 356 stress response and disease susceptibility of ayu (Plecoglossus altiveilis). Aquaculture
- 357 220: 515-523.
- 358 Iguchi, K. and M. Yamaguchi. 1994. Adaptive significance of inter- and
- 359 intra-populational egg size variation in ayu Plecoglossus altivelis (Osmeridae). Copeia

3601994: 184-190.

- 361 Katano, O., S. Abe, K. Matsuzaki, and K. Iguchi. 2000. Interspecific interactions
- between ayu, Plecoglossus altivelis, and plae chub, Zacco platypus, in artificial streams.
- 363 Fisheries Science 66: 452-459 (In Japanese).
- 364 Katano, O., and K. Iguchi. 1996. Individual differences in territory and growth of ayu,
- 365 *Plecoglossus altivelis* (Osmeridae). Canadian Journal of Zoology 74: 2170-2177.

| 366 | Katano, O., K. Uchida, and Y. Aonuma. 2004. Experimental analysis of the territoria |
|-----|-------------------------------------------------------------------------------------|
|     |                                                                                     |
|     |                                                                                     |

establishment of ayu, Plecoglossus altivelis. Ecological Research 19: 433-444.

Kawanabe, H. 1958. On the significance of the social structure for the mode of density

- 369 effect in a salmon-like fish, "Ayu", *Plecoglossus altivelis* Temminkck et Schlegel.
- 370 Memoirs of the College of Science, University of Kyoto, Series B 25: 171-180 (In
- 371 Japanese).

367

- 372 Kawanabe, H. 1970. Social behaviour and production of ayu-fish in the River Ukawa
- between 1955 and 1969, with reference to the stability of its territoriality. Japanese
- Journal of Ecology 20: 144-151 (In Japanese).
- 375 Kawanabe, H. 1969. Kawa-to-Mizuumi-no-Sakanatati (Fishes in Rivers and Lakes).
- 376 Tokyo: Chuo Koronsha, Tokyo (In Japanese).
- 377 Kawanabe, H. 1973. What is the 'Nawabari (territory)' of ayu?: an attempt for the
- theory of community. Kagaku 43: 74-83 (In Japanese).
- 379 Krebs, J. R. 1971. Territory and breeding density in the great tit, *Parus major* L.
- 380 Ecology 52: 2-22.

- 381 Miyadi, D. 1960. Ayu-no-hanashi (Stories of Ayu). Iwanami-shoten, Tokyo (In
  382 Japanese).
- 383 Mizuno, N., and H. Kawanabe. 1981. A topographical classification of streams, with an
- introduction of the system widely used in Japan. I. Reach type, stream zone and stream
- type. Verhandlungen der Internationale Vereinigung für Limnologie 21: 913.
- 386 Pyke, G. H. 1979. The economics of territory size and time budget in the golden-winged
- 387 sunbird. Am. Nat. 114: 131-145.
- Pulliam H. R. and T. Caraco. 1984. Living in groups: Is there an optimal group size? In
- J. R. Krebs and N. B. Davies (eds.), Behavioral Ecology: An Evolutionary Approach,
- <sup>390</sup> 2nd ed., pp. 148–169. Blackwell Scientific Publications, Oxford.
- Robertson, D. R., H. P. A. Sweatman, E. A. Fletcher and M. G. Cleland. 1976.
- 392 Schooling as a mechanism for circumventing the territoriality of competitors. Ecology
- **393 57: 1208-1220.**
- Ronce, O. and M. Kirkpatrick. 2001. When sources become sinks: migrational
- meltdown in heterogeneous habitats. Evolution 55: 1520-1531.

- Schaller, G. B. 1972. The Serengeti Lion: A Study of Predator-Prey Relations. Chicago
  University Press, Chicago.
- 398 Stephens, D. W. and J. R. Krebs. 1986. Foraging Theory. Princeton University Press,

399 Princeton.

- 400 Tachihara, K., and S. Kimura. 1992. The ecological significance of the yellow oval
- 401 marks on body of landlocked ayu in Lake Ikeda. Nippon Suisan Gakkaishi 58: 1191 (In

402 Japanese).

- 403 Tainaka, K., J. Yoshimura and M. L. Rosenzweig. 2007. Do male orangutans play a
- 404 hawk-dove game? Evolutionary Ecology Research 9: 1043-1049.
- 405 Takahashi, I., and K. Azuma. 2006. Kokomade Wakatta Ayu No Hon (The Up-to-now
- 406 Knowledge Book of Ayu). Tsukiji-shokan, Tokyo, xviii+267pp. (In Japanese).
- 407 Tanaka, Y., T. Hayashi, D. G. Miller III, K. Tainaka and J. Yoshimura. 2009. Breeding
- 408 games and dimorphism in male salmon. Animal Behaviour 77: 1409–1413.

### **Tables**

Table 1. The attack frequency of a territory holder against an intruder at low density in
experimental running-water pools of 2×5 square meter in 1991 in Japan (Iguchi 1996).

| TF | NT | NF | F/T | Territory size<br>[m <sup>2</sup> ] | Attack frequency<br>[1/min] | Attack frequency<br>[1/min/holder] |
|----|----|----|-----|-------------------------------------|-----------------------------|------------------------------------|
| 3  | 2  | 1  | 0.5 | 3.68                                | 2.12                        | 4.24                               |
|    |    |    |     | 2.00                                | 3.14                        | 6.28                               |
| 6  | 5  | 1  | 0.2 | 0.32                                | 0.55                        | 2.75                               |
|    |    |    |     | 0.96                                | 0.35                        | 1.75                               |
|    |    |    |     | 0.80                                | 0.74                        | 3.70                               |
|    |    |    |     | 0.40                                | 0.60                        | 3.00                               |
|    |    |    |     | 0.56                                | 0.40                        | 2.00                               |

Entries are: TF: total fish; NT: number of territory holders; NF: floater number; F/T: the
ratio of floater per a territory holder. The average attack frequency/min/holder is 3.39
times. Estimation of attack frequency is based on the 5 minutes observation of every

431 fish per day. Attack includes against both floaters and other territory holders.

Table 2. The switching point from territory holders (T) to school (S) in relation to the attack rates (*a*) and the defense cost against floaters ( $c_{dF}$ ). The unit is the number of individuals /unit area.

| Defense cost Attack cost |     |     |     |
|--------------------------|-----|-----|-----|
| against floaters         | 1.8 | 3   | 6.3 |
| 0.01                     | 8.8 | 5.6 | 3.0 |
| 0.1                      | 8.6 | 5.4 | 3.0 |
| 0.2                      | 8.4 | 5.3 | 2.9 |

| Year | River or | Natural or  | Density $N [1/m^2]$ must be | State     | Reference |
|------|----------|-------------|-----------------------------|-----------|-----------|
|      | Pond     | experiment  | IV [1/m rapids              | S OF TISH |           |
| 1955 | Ukawa    | Natural     | 5.5                         | School    | [1]       |
| 1956 | Ukawa    | Natural     | 0.9                         | Territory | [1]       |
| 1957 | Ukawa    | Natural     | 0.3                         | Territory | [1]       |
| 1958 | Inukai   | Experiment  | 4.1                         | Territory | [1]       |
| 1987 | Pond     | Experiment  | 195.2                       | School    | [2]       |
| 1987 | Pond     | Experiment  | 97.6                        | School    | [2]       |
| 1989 | Pond     | Experiment  | 120.4                       | School    | [2]       |
| 1989 | Pond     | Experiment  | 25.0                        | School    | [2]       |
| 1991 | Experime | ntal stream | 1.0                         | Territory | [3]       |
| 1991 | Experime | ntal stream | 0.6                         | Territory | [3]       |
| 1999 | Pond     | Experiment  | 1250.0                      | School    | [4]       |
| 1999 | Pond     | Experiment  | 400.0                       | School    | [4]       |
| 1999 | Pond     | Experiment  | 100.0                       | School    | [4]       |

Table 3. The existence of territoriality against an increasing fish density.

465 References [1] Kawanabe 1969, [2] Iguchi and Yamaguchi 1994, [3] Iguchi 1996, and466 [4] Iguchi et al. 2003.

| Year | River or pond | Natural or experiment | Density<br>[1/m <sup>2</sup> rapids] | State<br>offish | Referenc |
|------|---------------|-----------------------|--------------------------------------|-----------------|----------|
| 1958 | Inukai        | Experiment            | 1.5                                  | Territory       | [1]      |
| 1958 | Inukai        | Experiment            | 0.5                                  | Territory       | [1]      |
| 1987 | Pond          | Experiment            | 195.2                                | School          | [2]      |
| 1987 | Pond          | Experiment            | 97.6                                 | School          | [2]      |
| 1989 | Pond          | Experiment            | 120.4                                | School          | [2]      |
| 1989 | Pond          | Experiment            | 25.0                                 | School          | [2]      |
| 1991 | Experin       | nental stream         | 5.0                                  | School(Th*)     | [3]      |
| 1991 | Experin       | nental stream         | 1.5                                  | Territory       | [3]      |
| 1991 | Experin       | nental stream         | 1.0                                  | Territory       | [3]      |
| 1991 | Experin       | nental stream         | 0.6                                  | Territory       | [3]      |
| 1991 | Experin       | nental stream         | 0.3                                  | Territory       | [3]      |

468 Table 4. The state of fish in an decreasing stage.

485 Th\*: Attempted territory holders appear; their territories are small and unstable.

486 References [1] Kawanabe 1969, [2] Iguchi and Yamaguchi 1994, and [3] Iguchi 1996.

| 489 | Figure | Captions |
|-----|--------|----------|
|-----|--------|----------|

490 Fig. 1. The territoriality in ayu. (a) Two fish check with each other at the boundary of
491 both territories. (b) A territory holder (behind) attacks against an intruder.



(gram diatom food)/[day(1m<sup>2</sup> rapids+0.81m<sup>2</sup> pools)]. The parameter settings are: a=3, c=505 = 0.1,  $K_r=3.3$ ,  $K_p=0.1782$  and r=0.4.

506

**Fig. 4.** The result in decreasing stage. The fitnesses of an attempted territory holder  $(W_T *, \text{ solid purple line})$  and a school fish  $(W_s, \text{ solid green curve})$  are plotted against the density (N). For the comparison, the fitness of a territory holder  $(W_T, \text{ broken red})$ line) is shown. The transition (formation) point is represented by  $N_2$  which is much less than the breakdown point  $(N_1)$ . The parameter settings are the same as in Fig. 3.

- **Fig. 1**
- **(a)**

**(b)** 



521 Fig. 2



**Fig. 3** 



31 **Fig. 4** 

