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   Theoretical calculations of Seebeck coefficients and 

electronic thermal conductivity for general materials such 

as metals, semiconductors, and quantum structures are 

described, and dependence of the Seebeck coefficient on 

doping level and temperature is discussed for lead salt 

materials. Experimental Seebeck coefficient was measured 

for PbS films and the value agreed well with the theoretical 

one, indicating high thermoelectric performance comparable 

to PbTe. Temperature dependence of electronic thermal 

conductivity is also discussed for the lead salts. It is shown 

that minority carriers in the narrow gap semiconductor 

significantly affect the electronic thermal conductivity and 

electronic thermal conductivity at high temperature can be 

reduced by highly doping.  
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1.  Introduction 

    Developments of materials with high thermoelectric 

conversion efficiency are important for energy and 

environmental issues. Dimensionless figure of merits 

κσ /2 TSZT =  or power factor σ2SPf = ,  where S is the 

Seebeck coefficient, σ the electrical conductivity, and κ  the 

thermal conductivity, are used as indicators of the 

conversion efficiency. Among the parameters, thermal 

conductivity is an important parameter because the 

reduction of thermal conductivity increases the ZT and 

furthermore reduces the necessary amount of the material 

for device fabrication. Introduction of nanostructure is 

efficient to reduce the thermal conductivity.1-3 )  Seebeck 

coefficient is another important factor because it has the 

effect of second power on the efficiency. Various materials 

and quantum structures have been reported as high 

efficiency thermoelectric materials,1-5 ) and theoretical 

calculations of Seebeck coefficients through band structure 

calculations have been also performed. In the theoretical 

calculation Mott formula is usually used to predict the 

Seebeck coefficient of metals,6) and the formula is sometimes 

used to discuss the Seebeck coefficients of semiconductors 

and quantum wells qualitatively.7,8 ) Recently, first principle 

calculations for band structures of complicated material 

systems and quantum wells are available owing to the 

developments of computers,9 ,10)  and these calculations are 

becoming important to predict high efficiency thermoelectric 

materials. In this paper, first, we describe theoretical 

calculations of Seebeck coefficients and electronic thermal 

conductivity for general materials such as metals, 
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semiconductors, and quantum structures on the basis of 

solid state physics, which would be useful for both 

theoretical and experimental thermoelectric researchers. 

Next, we discuss Seebeck coefficient and electronic thermal 

conductivity of lead salt IV-VI materials.  

 

2.  Theoretical Calculations of Seebeck Coefficient and 

Electronic Thermal Conductivity 

Figure 1 shows schematic carrier distribution on energy 

and carrier flows in n-type semiconductors under 

temperature gradient. The Seebeck coefficient is determined 

by the equation: 

 

( ) ( ) ( ) dTdEedTEEdedTdEeS CFCF /)/1(//1//1 +−−== ,   (1) 

 

,where EF and EC are the Fermi level and conduction band 

edge energy, respectively. The first term on the right side of 

the equation is determined by the density of states, and the 

second term is determined by the balance between drift and 

thermal diffusion currents:  0=+++= hthddted JJJJJ , 

where Jed and Jhd represent drift current densities for 

electrons and holes, respectively, and Jet and Jht represents 

thermal diffusion currents for  the electrons and holes, 

respectively. In general, the total current density is given by 

the equation below under the background of solid-state 

physics and Boltzmann equation11) 
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where the summation is taken for all energy bands related to 

the conductions. The equation for the Seebeck coefficient S 

is obtained from the condition J=0: 
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where τ  is the scattering time of carrier, vx the electron 

velocity along temperature gradient, f0 is the Fermi-Dirac 

distribution. In the calculation, phonon-drag effect in which 

phonon flow causes significant enhancement of the Seebeck 

coefficient at low temperature is not considered.12)  After 

integrations over the constant energy surfaces, the equation 

becomes the following energy integral: 
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where D(E) is the density of states in the V-th valley and 

)(2 EvX  is the value given by 

 

kk 222 )(1)( dv
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X ∫= .                                (5) 

 

Here, Sk represents the area of constant energy surface with 

energy E in the V-th valley.  

For simple metal with parabolic band, Eq.(4) becomes 

Mott formula: 
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where we assumed τ  is constant and replaced  

( ) xkTEE F =− / .  In the calculation, we also used EEvX ∝)(2  ,  

EEN
dE

EdNED 2/)(3)()( ==  , in which N(E) is the number of 

states below E, and we put 

( ) )(/)()( FEEF EEdEdNENEN
F

−+≈ =  and mENeE /)()( 2τσ = . 

Detailed calculation is discussed in Ref.13. In general, band 

structure of metals are more complicated and it is necessary 

to calculate the Seebeck coefficient from Eq.(4) in the case 

many valleys affect the conductivity. 

   The Mott formula is not applicable for semiconductors 

and superlattices. The Seebeck coefficients must be 

calculated from Eq.(3) or (4). In semiconductors and 

semimetals, constant energy surface near the Fermi energy 

often becomes rotational ellipsoid with longitudinal effective 

mass ml and transverse effective mass mt, and )(2 EvX  is 

written as 
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where E is measured from the band edge, and φ is the angle 

between the longitudinal direction and temperature 

gradient. In narrow gap semiconductors and semimetals, the 

E-k relationship is often represented by 

ijg mkEEE 2/)/1( 22∑=+ h  in two band flame work, and 

density of states D(E) and )(2 EvX are given by  

 

32

2 )21()1(2

)(
hπ

gg
lt E

E
E
EEmm

ED

++

= ,            (8) 

 

and 

 

( )2
22

2

/21

)/1(sincos
3
2)(

g

g

tl
X EE

EEE
mm

Ev
+

+
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

φφ
  .        (9) 

 

In many valley semiconductors such as lead-salt IV-VI 

materials, n-type Ge, or n-type Si, there is no directional 

dependence of Seebeck coefficient under no strain, because 

the summation below shows no directional dependence. 
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However, if electron distribution in each valley is varied by 

strain, directional dependence appears. 

    Figure 2 shows conduction band densities of states for 

bulk, two-dimensional, and one-dimensinal Si. In the bulk, 

two-dimensional, and one-dimensional systems for the host 
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materials with parabolic E-k relationship, the Seebeck 

coefficients are given by a simple equation: 
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where s is constant depending on the material system. 

Assuming τ(E)∝E-1/2 for optical phonon scattering, and 

EvX ∝2 , s becomes 1 for bulk materials, and s=1/2 for two 

dimensional system, and s=0 for one-dimensional system, 

depending on the densities of states for bulk, 

two-dimensional, and one-dimensional systems. If more than 

two type of carriers or quantum levels affect the conduction, 

summation given by Eq.(4) is necessary. Since the Seebeck 

coefficient is given by an average value of ( ) eTEEF /− , it 

strongly depends on the carrier concentration, and if the 

carrier concentration is same, the materials with large 

density of states have higher Seebeck coefficient. In low 

dimensional systems such as superlattice, enhancement of 

Seebeck coefficient is possible owing to a high and step-like 

density of states.14) However, a high density of quantum 

structures is necessary to obtain enhanced Seebeck 

coefficient and resultant higher thermoelectric performance 

compared to bulk materials since the density of states D(E) 

is proportional to the density of quantum structures. Other 

possibilities to enhance the Seebeck effect are filtering 

effects of carriers, caused at the boundary of 

nanostructures15), caused by strain in many valley 

semiconductors and effective mass modulation in 
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superlattice.16) In this calculation we did not consider 

phonon drag effect, which increases the Seebeck coefficient 

of the material with long phonon mean free path such as Si. 

In nanostructures such as Si nanowire, mean free path of 

phonon is restricted strongly by the interface or surface 

scattering. Thus phonon-drag effect is strongly reduced.  

    For the materials with low lattice thermal conductivity 

or metals, carrier contribution to the thermal conductivity 

becomes important. The electronic part to the thermal 

conductivity is calculated by considering the energy transfer 

of each electron under the condition J=0 in the Eq.(2). The 

energy carried by one electron may be considered to be E-E0V 

where E0V is the average energy of electrons in the valley V. 

However, the correct energy is E-EF taking into account the 

recombination of excess carriers caused by the multiple 

carrier flow. Thus we can calculate the total energy transfer 

or thermal conductivity by multiplying (E-EF)/e in the 

integral of Eq.(2) as given by 
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IV-VI materials such as PbTe, PbSe, and PbS have small 

lattice thermal conductivity as low as 2 W/mK at low 

temperature and relatively high carrier mobility. Thus the 

electronic thermal conductivity becomes important. 
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3.  Seebeck Coefficients and Electronic Thermal 

Conductivity of IV-VI Materials 

Figure 3 (a) shows the dependence of Seebeck coefficients 

on donor and acceptor concentrations for PbS, PbTe, and 

EuTe/PbTe superlattices at 300K, and Fig. 3(b) shows 

temperature dependence of Seebeck coefficient for PbTe and 

PbS. The dots ■ ,  ○ ,  and □  indicates the experimental 

data for PbS, PbTe, and EuTe/PbTe superlattices, 

respectively, and solid, dashed, and dashed-dotted lines 

indicates theoretical dependence for PbS, PbTe, and 

EuTe/PbTe superlattice, respectively. Detailed calculations 

and parameters for the PbTe and EuTe/PbTe superlattice are 

given in Ref. 11. Band gaps and effective mass parameters 

for PbS and PbTe are indicated in table I.17,18 )  We used same 

effective masses for conduction and valence band of PbS 

owing to almost symmetric band edge structures at L-point. 

The Seebeck coefficients of the n-type and p-type PbTe films, 

and n-type EuTe/PbTe superlattices have been reported 

before.11 ,14) Enhancement of Seebeck coefficient in the  

EuTe/PbTe superlattices were obtained through the 

modulation of the density of states.14) The Seebeck 

coefficient of p-type PbTe was higher than that of n-type 

owing to indirect valence band extrema near the L-point 

valence band tops.11) Measurement system for the PbTe films 

and superlattices has been described in Ref.14. 

Experimental setup for the temperature dependence of 

Seebeck coefficient for PbS is shown in Fig.4. The sample 

film was contacted by pushing the sample on the Cu heat 

sink, and the temperatures of sample in both sides were 
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measuresd by Cu-Constantan thermocouples buried in the 

heat sink. Seebeck voltage was measured by measuring the 

voltage between Cu lines in high and low temperature sides.  

Theoretical values for PbS films at 300K agreed well with 

the experimental ones as well as PbTe and EuTe/PbTe 

superlattice. Seebeck coefficient of the n-type PbS was 

higher than that of PbTe, since PbS has large density of 

states compared to PbTe due to large effective masses. On 

the other hand, Seebeck coefficient of p-type PbS was 

comparable to that of p-type PbTe, and absolute value of the 

Seebeck coefficient for the p-type PbS was comparable to 

that of n-type PbS owing to the symmetric band structure 

with small higher band effect. In the temperature 

dependence of Seebeck coefficient shown in Fig.3(b), 

experimental values for the n-type PbS agreed well with the 

theoretical values with relatively high Seebeck coefficient 

compared with theoretical values for PbTe. The PbTe has 

been utilized as good thermoelectric materials with small 

thermal conductivity. However, Te is not abundant in the 

earth. Thus PbS is preferable if the comparable ZT is 

obtained for PbS.  

Lattice thermal conductivity of IV-VI materials such as 

PbTe, PbSe, and PbS has the value 2W/mK at room 

temperature, and the value decreases with the temperature. 

Electronic thermal conductivity becomes important for the 

IV-VI materials owing to the small lattice thermal 

conductivity, and the electronic thermal conductivity is 

calculated from Eq.(12). Figure 5(a) shows the calculated 

dependence of electronic thermal conductivity on 

temperature for n-type PbTe with the parameter of carrier 
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concentration. At room temperature, the electronic thermal 

conductivity is almost proportional to the carrier 

concentration as expected. In simple consideration, 

electronic thermal conductivity decreases with temperature 

owing to rapid decrease of carrier mobility. However, an 

enhancement of thermal conductivity with temperature is 

predicted by the theoretical calculation. This is considered 

to be due to a minority carrier effect. Minority carrier 

concentrations for the PbTe films with ND=1×1019, 5×1018, 

1×1018, and 1×1017cm-3 are estimated to be 2.5×1017, 4.7×

1017, 1.2×1018, and 1.6×1018 cm-3 at 800K, respectively. The 

enhancement of total carrier concentration is significant for 

low carrier concentration films. However, the lower thermal 

conductivity in higher carrier concentration film at high 

temperature in Fig.5(a) cannot be explained only by the 

carrier concentration enhancement. At low temperature, 

minority carrier concentration is negligibly small, and 

energy transfer or electronic thermal conduction occurs 

under the balance of thermal diffusion and drift currents, 

conducting relatively small energy. However, in two carrier 

conductions at high temperature, thermal diffusion current 

and drift current have the same direction for the minority 

carrier as shown in Fig.1, and balance between thermal 

diffusion current (Jet) and drift current (Jed) in the majority 

carrier is broken. Thus higher thermal flow is caused in the 

two carrier conduction because of the same directional flows 

of electrons and holes. The additional thermal flow is simply 

estimated to be (Eg+3kT)(Jhd+Jht)/e as the energy generated 

by the electron-hole recombinations, and the value becomes 

significant even if the minority carrier coincentration is 
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relatively low, because the interband transition energy 

Eg+3kT is much higher than the intraband transition energy 

proportional to kT. 

Enhancements in lattice thermal conductivity at high 

temperature have been reported for various materials.5) 

However, the enhancement of the thermal conductivity may 

be due to the electronic part derived here. Figure 5(b) shows 

comparison of electronic thermal conductivities for n, p-type 

PbTe, and n, p-type PbS with carrier concentration of 1×

1019cm-3. In this calculation, we assumed room temperature 

carrier mobilities 1500, 750, 600, and 600cm2/Vs for n-type 

PbTe, p-type PbTe, n-type PbS, and p-type PbS, respectively, 

and temperature dependence µ(T)∝T-2.5 for all the 

materials.19) The theoretical value for n-type and p-type PbS 

is the same because they have the same carrier mobility and 

effective masses. Among lead salt materials such as PbTe, 

PbSe, and PbS, enhancement of the electronic thermal 

conductivity is highest in PbTe, because of temperature 

independent band gap above 400K, owing to direct gap to 

indirect gap transition,11)  and smallest in PbS owing to 

positive temperature dependence of band gap with relatively 

large value and small carrier mobility. Thermoelectric figure 

of merits for n-type PbTe and n-type PbS were calculated in 

the temperature range of 300-800K assuming lattice thermal 

conductivity κL∝T-1.5. Figure 6 shows the calculated ZTs for 

the materials. Expected ZT for p-type PbS is the same with 

n-type PbS because Seebeck coefficients and carrier 

mobilities are almost same for n-type and p-type PbS. PbS 

has smaller ZT than PbTe at room temperature owing to 

small carrier mobility. However, the ZT increases strongly 
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with temperature, and it has comparable values with PbTe 

around 600-800K. Thus PbS is expected as good 

thermoelectric materials in this temperature range.  

 

4.  Summary 

We described general calculations of Seebeck effect 

including metals, semiconductors, and quantum structures, 

which would be useful for both theoretical and experimental 

thermoelectric researchers. Mott formula is satisfied in 

simple metal approximation. The calculations for many 

valley semiconductors and nonparabolic cases were also 

described, and it was discussed how directional dependence 

appears in Seebeck coefficients. Theoretical calculations of 

Seebeck coefficient and electronic thermal conductivity were 

performed for IV-VI materials. Theoretical Seebeck 

coefficients of p- and n-type PbS agreed well with 

experimental values as well as PbTe films and EuTe/PbTe 

superlattices. In IV-VI narrow gap materials, electronic part 

of thermal conductivity becomes important, and significant 

enhancement of thermal conductivity is caused by the 

minority carriers.   
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Table I  Band parameters used for the theoretical 

calculations in PbS.17,18)   

 

 Eg(T) 

[meV] 

mt(0)

[m0] 

ml(0)

[m0] 

mt(T) 

[m0] 

ml(T) 
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PbS 263+(400+0.256T2)1/2 0.08 0.105
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Indirect gap: 370  
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Figure Captions 

 

Fig.1 Schematic diagram of electron and hole distribution 

on energy under temperature gradient. The Jed and Jhd 

represent drift current densities for electrons and holes, 

respectively, and Jet and Jht represents thermal diffusion 

currents for electrons and holes, respectively.  

 

Fig.2 Conduction band densities of states for bulk Si, 

two-dimensional system grown to [111] direction with 106 

quantum wells/cm, and one-dimensional system with 1012 

wires/cm2. 

 

Fig.3 (a) the dependence of Seebeck coefficient on donor and 

acceptor concentrations for PbS, PbTe,11,14)  and EuTe/PbTe 

superlattice14) at 300K, and (b) the temperature dependence 

of Seebeck coefficient for PbTe and PbS with a carrier 

concentration of 1 × 1019cm-3. The dots ■ , ○ ,  and □  

indicates the experimental data for PbS, PbTe, and 

EuTe/PbTe superlattices, respectively, and solid, dashed, 

and dashed-dotted lines indicates theoretical dependence for 

PbS, PbTe, and EuTe/PbTe superlattice, respectively. 

 

Fig.4 Seebeck voltage measurement system used to measure 

the temperature dependence of Seebeck coefficient of PbS. 

 

Fig.5 (a) Dependence of electronic thermal conductivity on 

temperature for n-type PbTe with the parameter of carrier 

concentration, and (b) comparison of electronic thermal 

conductivities for n, p-type PbTe, and n, p-type PbS with a 
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carrier concentration of 1×1019cm-3. 

 

Fig.6 Thermoelectric figure of merits for (a) n-type PbTe and 

(b) n-type PbS in the temperature range of 300-800K with 

100K step, calculated assuming temperature dependent 

lattice thermal conductivity κL∝T-1.5  and carrier mobility 

µ∝T-2.5.  
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Fig.1 

 

 

 

 

 

 

 

 

EC

EV

EF

TLow THigh

-Jet

-Jed

Electric field

Jht+Jhd

 

 

 

 

 

 

 

 

 



 20

Fig.2  
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Fig.3 
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Fig.4 
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Fig.5 
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Fig.6 
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