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Abstract A class of virus dynamics model with intracellular delay and nonlinear infection rate
of Beddington-DeAngelis functional response is analysed in this paper. By constructing suitable
Lyapunov functionals and using LaSalle type theorem for delay differential equations, we show that
the global stability of the infection-free equilibrium and the infected equilibrium depends on the basic
reproductive ratio R0, that is, the former is globally stable if R0 ≤ 1 and so is the latter if R0 > 1.
Our results extend the known results on delay virus dynamics considered in the other papers and
suggest useful methods to control virus infection.
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1 Introduction

A class of virus dynamics model was introduced by Anderson and May [1], and Nowak and Bangham
[2]. Considering universal nonlinear infection rate in the process of virus infecting target cells, in [3] we
proposed a class of virus dynamics model with Beddington-DeAngelis functional response as follows,

x′(t) = λ− dx(t)− βx(t)v(t)
1 + ax(t) + bv(t)

,

y′(t) =
βx(t)v(t)

1 + ax(t) + bv(t)
− py(t),

v′(t) = ky(t)− uv(t).

(1)

In situation, there may be a lag between the time for target cells to be contacted by the virus particles
and the time for the contacted cells to become actively affected, that is, the contacting virions need
time to enter cells. Recently, it was realized that time delay should be taken into consideration [5, 6, 7].

In this paper we incorporate the intracellular delay in model (1), obtaining the following system
of delay differential equations

x′(t) = λ− dx(t)− βx(t)v(t)
1 + ax(t) + bv(t)

,

y′(t) = e−pτ βx(t− τ)v(t− τ)
1 + ax(t− τ) + bv(t− τ)

− py(t),

v′(t) = ky(t)− uv(t).

(2)
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Here x(t), y(t), v(t) represent the populations of uninfected cells, infected cells and free virus at time t,
respectively. The constant λ(λ > 0) is the rate at which new healthy cells are generated. The positive
constant d and β are the death rate of uninfected cells and the rate constant characterizing infection
of the cells. The function βx(t)v(t)/(1 + ax(t) + bv(t)), where a, b > 0 are constants, represents the
Beddington-DeAngelis infection rate. The constant p(p > 0) is the death rate of the infected cells
due either to virus or the immune system. e−pτ denotes the surviving rate of infected cells before
it becomes productively infected. Free virus is produced from the infected cells at the rate ky. The
constant u(u > 0) is the rate at which virus particles are removed from the system. We assume that
the generation of virus producing cells at time t is due the infection of target cells at time t− τ , where
τ is a constant.

Strightforward incorporating delay into a mathematical model generally leads to delay differential
equations which are difficult to handle mathematically. We have studied the global properties of
ordinary differential equations model (1) in [3] by Volterra-type Lyapunov functions. Recently, using
Goh-type functionals McCluskey [8, 9] solved elegantly global stability for delay SIR epidemic models.
Utilizing the technology of constructing Lyapunov functionals in [3, 8, 9], we give complete global
stability analysis for delay differential equations model (2) and discuss the impact of time delay.

2 Non-negativity and boundedness of solutions

Let C = C([−τ, 0];R3) be the Banach space of continuous functions from [−τ, 0] to R3 equipped with
the sup-norm. The initial condition of (2) is given as

x(θ) = ϕ1(θ), y(θ) = ϕ2(θ), v(θ) = ϕ3(θ) θ ∈ [−τ, 0], (3)

where ϕ = (ϕ1, ϕ2, ϕ3)T ∈ C, such that ϕi(θ) ≥ 0 (τ ≤ θ ≤ 0, i = 1, 2, 3).
The following theorem establishes the non-negativity and boundedness of solutions of (2).

Theorem 1. Let (x(t), y(t), v(t))T be any solution of system (2). Then under the initial condi-
tions (3), all solutions (x(t), y(t), v(t))T are non-negative on [0,+∞) and ultimately bounded.

Proof. If x(t) were to lose its non-negativity on some local existence interval [0, T ) for some constant
T > 0, there would have to be a time at t1 > 0 such that x(t1) = 0. By the first equation of (2) we
have x′(t1) = λ > 0. That means x(t) < 0 for t ∈ (t1 − ε, t1), where ε is an arbitrarily small positive
constant. This leads to a contradiction. It follows that x(t) is always positive. Further, form the
second and the third equations in (2), we have , respectively

y(t) =y(0)e−pt +
∫ t

0

e−pτβx(θ − τ)v(θ − τ)
1 + ax(θ − τ) + bv(θ − τ)

e−p(t−θ)dθ,

v(t) =v(0)e−ut +
∫ t

0

ky(θ)e−u(t−θ)dθ.

Then, it is easy to see that y(t) and v(t) are non-negative on [0, T ).
For t ∈ [0, T ), we have from (2) that x′(t) ≤ λ− dx(t). Hence, well-known comparison principle

implies that x(t) is bounded on [0, T ), i.e., M1 = supt∈[0,T ) x(t) < +∞. Therefore, we again have
from (2) that on [0, T ),

(i) if b = 0, then y′(t) ≤ βM1
1+M1

v(t− τ)− py(t), and v′(t) = ky(t)− uv(t).
(ii) if b > 0, then y′(t) ≤ βM1

b − py(t), and v′(t) = ky(t)− uv(t).
Hence, we also have from comparison principle that y(t) and v(t) are bounded on [0, T ). Bound-

edness of the solution (x(t), y(t), v(t))T implies that the local existence interval [0, T ) can be continued
to T = +∞. This proves that the solution (x(t), y(t), v(t))T is existent and non-negative on [0,+∞).
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Define F (t) = e−pτx(t)+y(t+τ), and δ = min{d, p}. By non-negativity of the solution, it follows
that

F ′(t) = e−pτλ− e−pτdx(t)− py(t + τ) < e−pτλ− δF (t).

This implies that F (t) is ultimately bounded, and so are x(t), y(t). By the third equation, v(t) is also
ultimately bounded. This completes the proof.

The basic reproductive ratio of the virus for system (2) is

R0 =
λβke−pτ

pu(d + aλ)
.

System (2) has always an infection-free equilibrium E0(x0, 0, 0) where x0 = λ/d, and an infected
equilibrium E∗(x∗, y∗, v∗) when R0 > 1 where

x∗ =
λbk + puepτ

kβ + bdk − apuepτ
, y∗ =

λβke−pτ (1− 1
R0

)
p(kβ + bdk − apuepτ )

, v∗ =
λβk2e−pτ (1− 1

R0
)

pu(kβ + bdk − apuepτ )
.

3 Global stability of the two equilibria

In this section, we would consider the global stability of the two equilibria. At first, we prove E0 is
globally asymptotically stable for any time delay τ ≥ 0 under the condition R0 < 1, by using stability
theorems and Lyapunov-LaSalle invariance principle.

Let (xt, yt, vt)T = (x(t+ θ), y(t+ θ), v(t+ θ))T (−τ ≤ θ ≤ 0) be any solution of (2) with the initial
condition (3) for t ≥ 0. Define a Lyapunov functional as follows,

V1(xt, yt, zt) =
x0

1 + ax0

(
x(t)
x0

− 1− ln
x(t)
x0

)
+ epτy(t) +

epτp

k
v(t) + U−(t). (4)

Here

U−(t) =
∫ τ

0

βx(t− θ)v(t− θ)
1 + ax(t− θ) + bv(t− θ)

dθ.

Calculating the derivative of U−(t),

dU−(t)
dt

=
d

dt

∫ τ

0

βx(t− θ)v(t− θ)
1 + ax(t− θ) + bv(t− θ)

dθ

=
∫ τ

0

d

dt

βx(t− θ)v(t− θ)
1 + ax(t− θ) + bv(t− θ)

dθ

= −
∫ τ

0

d

dθ

βx(t− θ)v(t− θ)
1 + ax(t− θ) + bv(t− θ)

dθ

= − βx(t− θ)v(t− θ)
1 + ax(t− θ) + bv(t− θ)

|τθ=0

=
βx(t)v(t)

1 + ax(t) + bv(t)
− βx(t− τ)v(t− τ)

1 + ax(t− τ) + bv(t− τ)
.

Hence, we obtain

dV1

dt
=

1
1 + ax0

(1− x0

x(t)
)(dx0 − dx(t)− βx(t)v(t)

1 + ax(t) + bv(t)
)− epτpu

k
v(t) +

βx(t)v(t)
1 + ax(t) + bv(t)

=− d(x(t)− x0)2

x(t)(1 + ax0)
+

1 + ax(t)
1 + ax0

βx0v(t)
1 + ax(t) + bv(t)

− epτpu

k
v(t)

=− d(x(t)− x0)2

x(t)(1 + ax0)
+

epτpuv(t)(1 + ax(t))
k(1 + ax(t) + bv(t))

(R0 − 1)− epτpub

k(1 + ax(t) + bv(t))
v(t)2.
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Obviously, R0 ≤ 1 ensures that dV1/dt ≤ 0. It is clear that V1 ≥ 0, and V1 = 0 iff x(t) = x0, y(t) =
0, v(t) = 0. Hence, it follows from stability theorems [10] that the infection-free equilibrium E0 is
stable for any time delay τ ≥ 0 under the condition R0 ≤ 1. Furthermore, note that for each t ≥ 0,
dV1/dt = 0 iff x(t) = x0, v(t) = 0. For (ϕ1, ϕ2, ϕ3)T ∈ C(ϕ1 ≥ 0, ϕ2 ≥ 0, ϕ3 ≥ 0), let M be the
largest invariant set in the set

E = {(ϕ1, ϕ2, ϕ3)T |V ′
1(t) = 0} = {(ϕ1, ϕ2, ϕ3)T |ϕ1(0) = x0, ϕ3(0) = 0}.

We have from equation (2) and the invariance of M that M = {E0}. Since any solution of (2) is
bounded, it follows from Lyapunov-LaSalle invariance principle for FED that E0 is globally asymp-
totically stable when R0 ≤ 1.

Next, we consider the stability of E∗(x∗, y∗, v∗) when it exists, that is, when R0 > 1. Define a
Lyapunov functional

V2(xt, yt, vt) = U(t) + py∗U+(t), (5)

where

U(t) = e−pτ

(
x(t)− x∗ −

∫ x(t)

x∗

1 + aθ + bv∗

1 + ax∗ + bv∗
x∗

θ
dθ

)

+
(

y(t)− y∗ − y∗ ln
y(t)
y∗

)
+

p

k

(
v(t)− v∗ − v∗ ln

v(t)
v∗

)
, (6)

and

U+(t) =
∫ τ

0

{
e−pτβx(t− θ)v(t− θ)

py∗(1 + ax(t− θ) + bv(t− θ))
− 1− ln

e−pτβx(t− θ)v(t− θ)
py∗(1 + ax(t− θ) + bv(t− θ))

}
dθ. (7)

We note that the function (6) is similar to the Lyapunov function for E∗ in ordinary differential
equations model (1) in [3] and only the first term of (6) has an additional term e−pτ . It is easy to
find, that

dU+(t)
dt

=
∫ τ

0

d

dt
{ e−pτβx(t− θ)v(t− θ)
py∗(1 + ax(t− θ) + bv(t− θ))

− 1− ln
e−pτβx(t− θ)v(t− θ)

py∗(1 + ax(t− θ) + bv(t− θ))
}dθ

=−
∫ τ

0

d

dθ
{ e−pτβx(t− θ)v(t− θ)
py∗(1 + ax(t− θ) + bv(t− θ))

− 1− ln
e−pτβx(t− θ)v(t− θ)

py∗(1 + ax(t− θ) + bv(t− θ))
}dθ

=
e−pτβx(t)v(t)

py∗(1 + ax(t) + bv(t))
− e−pτβx(t− τ)v(t− τ)

py∗(1 + ax(t− τ) + bv(t− τ))

+ ln
x(t− τ)v(t− τ)

1 + ax(t− τ) + bv(t− τ)
1 + ax(t) + bv(t)

x(t)v(t)
.

Hence, we obtain

dV2

dt
=e−pτ (1− x∗

x(t)
1 + ax(t) + bv∗

1 + ax∗ + bv∗
)x′(t) + (1− y∗

y(t)
)y′(t) +

p

k
(1− v∗

v(t)
)v′(t) + py∗

dU+(t)
dt

=− de−pτ (1 + bv∗)(x(t)− x∗)2

x(t)(1 + ax∗ + bv∗)
+ py∗ ln

x(t− τ)v(t− τ)
1 + ax(t− τ) + bv(t− τ)

1 + ax(t) + bv(t)
x(t)v(t)

+ py∗
(

3− x∗(1 + ax(t) + bv∗)
x(t)(1 + ax∗ + bv∗)

− y(t)v∗

y∗v(t)
− y∗(1 + ax∗ + bv∗)x(t− τ)v(t− τ)

y(t)x∗v∗(1 + ax(t− τ) + bv(t− τ))

)

+ py∗
(
−v(t)

v∗
+

v(t)(1 + ax(t) + bv∗)
v∗(1 + ax(t) + bv(t))

)
.
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Using equality

ln
x(t− τ)v(t− τ)

1 + ax(t− τ) + bv(t− τ)
1 + ax(t) + bv(t)

x(t)v(t)

= ln
x∗(1 + ax(t) + bv∗)
x(t)(1 + ax∗ + bv∗)

+ ln
y(t)v∗

y∗v(t)

+ ln
y∗(1 + ax∗ + bv∗)x(t− τ)v(t− τ)

y(t)x∗v∗(1 + ax(t− τ) + bv(t− τ))
+ ln

1 + ax(t) + bv(t)
1 + ax(t) + bv∗

,

we obtain

dV2

dt
=− de−pτ (1 + bv∗)

x(t)(1 + ax∗ + bv∗)
(x(t)− x∗)2

+ py∗
(

1− x∗(1 + ax(t) + bv∗)
x(t)(1 + ax∗ + bv∗)

+ ln
x∗(1 + ax(t) + bv∗)
x(t)(1 + ax∗ + bv∗)

)
(8)

+ py∗
(

1− y(t)v∗

y∗v(t)
+ ln

y(t)v∗

y∗v(t)

)
(9)

+ py∗
(

1− y∗(1 + ax∗ + bv∗)x(t− τ)v(t− τ)
y(t)x∗v∗(1 + ax(t− τ) + bv(t− τ))

+ ln
y∗(1 + ax∗ + bv∗)x(t− τ)v(t− τ)

y(t)x∗v∗(1 + ax(t− τ) + bv(t− τ))

)

(10)

+ py∗
(

1− 1 + ax(t) + bv(t)
1 + ax(t) + bv∗

+ ln
1 + ax(t) + bv(t)
1 + ax(t) + bv∗

)
(11)

+ py∗
(
−1− v(t)

v∗
+

1 + ax(t) + bv(t)
1 + ax(t) + bv∗

+
v(t)(1 + ax(t) + bv∗)
v∗(1 + ax(t) + bv(t))

)
. (12)

By calculating the term (12), we have

py∗
(
−1− v(t)

v∗
+

1 + ax(t) + bv(t)
1 + ax(t) + bv∗

+
v(t)(1 + ax(t) + bv∗)
v∗(1 + ax(t) + bv(t))

)

=− py∗b(1 + ax(t))
v∗(1 + ax(t) + bv(t))(1 + ax(t) + bv∗)

(v(t)− v∗)2

Since the function

H(t) = 1− f(t) + ln f(t)

is always non-positive for any function f(t) > 0, and H(t) = 0 iff f(t) = 1. Therefore, the terms
(8)-(11) are always non-positive.

It is easy to see that dV2
dt ≤ 0. It is clear that V2 ≥ 0, and V2 = 0 if and only if x(t) = x∗, y(t) =

y∗, v(t) = v∗. Hence, it is also follows from stability theorems [10] that the infected equilibrium E∗ is
stable for any time delay τ ≥ 0 under the condition R0 > 1. Furthermore, note that for each t ≥ 0,
dV2
dt = 0 iff x(t) = x∗, y(t) = y∗, v(t) = v∗. From the Lyapunov-LaSalle invariance principle, it shows

that E∗ is globally stable when R0 > 1.
We have proved the following theorem.

Theorem 2.(i) If R0 ≤ 1, then the infection-free equilibrium E0 is globally asymptotically stable
for any time delay τ ≥ 0.

(ii) If R0 > 1, then the infected equilibrium E∗ is globally asymptotically stable for any time delay
τ ≥ 0.
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4 Conclusion

Usually, it is difficult to obtain global properties for a delay differential equations model with nonlinear
functional response. Lyapunov direct method and LaSalle theorem provide effective approach to prove
global dynamical properties for FDE. In this paper, by constructing two suitable and simple Lyapunov
functionals, we found the sufficient and necessary conditions of the global stability for all equilibria.
For a special case a = 0, b = 0, system (2) is similar to that considered by Nelson et al. [7], and Zhu
et al. [11]; For the case a = 0, b = 1 our results provide an answer to the open question given in
[12]. For ax(t) À 1, or bv(t) À 1, the Beddington-DeAngelis functional response is simplified to ratio
dependent functional response; Gourley et al. [13] consider HBV infection model with time delay for
this case, and our results are also applicable to it.

Recently, Korobeinikov [14, 15] considered more general epidemic and virus dynamic models
with nonlinear transmission. It is expected that the type of Lyapunov functionals in this paper are
also useful to study delay virus dynamics model with more general infection rate [4]. Compared
with the results obtained in this paper with those for the ODE model (1), this paper shows that
the global dynamical properties of the DDE model (2) also depend on the basic reproductive ratio.
The reproductive ratio plays a crucial role for virus infection dynamics. Actually, in model (2), the
basic reproductive ratio R0 is a decreasing function on time delay τ . When all other parameters are
fixed and delay τ is sufficiently large, R0 becomes to be less than one, which makes the infection free
equilibrium globally asymptotically stable. By biological meanings, intracellular delay plays a positive
role in virus infection process in order to eliminate virus. Sufficiently large intracellular delay makes
the virus development slower and the virus has been controlled and disappeared. This gives us some
suggestions on new drugs to prolong the time of infected cells producing virus.
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