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Abstract

We propose an evolutionary mechanism of phyllotaxis, regular arrangement of leaves on a plant stem. It is shown
that the phyllotactic pattern with the Fibonacci sequence has a selective advantage, for it involves the least number of
phyllotactic transitions during plant growth.
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1. Introduction

Phyllotaxis, regular arrangement of leaves on a plant
stem, has since long attracted the minds of botanists,
mathematicians and physicists ([24, 11, 2, 12]). Most com-
monly, alternate leaves along a twig execute a spiral with
an angle of 1/2, 1/3, 2/5, 3/8 of a full rotation, or other-
wise with a limit angle of 137.5 degrees (Fig. 1). Patterns
with the other fractions are also observed, though uncom-
monly. Hence phyllotaxis is regarded not as a universal
law but as a fascinatingly prevalent tendency ([4]). For
decades, mathematical works have elucidated number the-
oretical structure of phyllotaxis and deepened our under-
standing of the subject significantly ([5, 1, 17, 15, 18, 19,
20, 14]). Nevertheless, there still remains a fundamental
problem of why and how only some specific numbers are
favored by nature. This is a problem of natural science.

Physical or chemical models studied thus far are mostly
based on dynamicalmechanism, according to which a phyl-
lotactic pattern is supposed to be realized autonomously
as an end result of its own mechanical or chemical dynam-
ics ([1, 25, 20, 14, 6]). This is mechanical determinism.
Mathematicians and physicists generally appreciate this
point of view. On the contrary, biologists generally take
the opposite viewpoint that there are so strong reasons
for the plants to have genetic information that a diver-
gence angle between adjacent leaves must be determined
genetically. This is genetic determinism. In this case, we
still have to make clear how the plants inherit the math-
ematical characteristics, i.e., a static or statistic mecha-
nism of phyllotaxis is asked for. When it comes down to
it, there seems no hope to do without mathematics, for we
have to explain why the divergence angle is programmed to
take neither 130◦ nor 140◦ but the magic number 137.5◦.
Unfortunately, candidate explanations have been only de-
scriptive and qualitative, or otherwise quantitative but
teleological such that packing efficiency ([17]) or unifor-
mity ([15, 18, 3]) is meant to be maximized resultingly.
In any case, at this fundamental level, we have to regard

phyllotaxis as a conundrum of theoretical physics (or the-
oretical biology), for we have to deal with mathematics
observed in the real world. The aim of this paper is to
present a satisfactory static mechanism to be contrasted
not only with the existing dynamical models but with the
teleological explanations.

We propose a new mechanism based on a growth model
of a plant. The model is basically characterized by two pa-
rameters, an initial (preset) value of the divergence angle,
2πα0, and a vertical range of repulsive interaction, nc. The
model is based on the observation that a plant has inherent
abilities (1) to arrange leaves primarily on a regular spiral
with a constant angle of rotation 2πα0, and (2) to exert
secondary torsions between the leaves within reach of nc.
The former is consistent with experiments on apical meris-
tems ([8, 23]). The latter is supposed to operate in a vas-
cular system ([13]). The secondary interaction reinforces
the regularity of the helical arrangement, thereby the ob-
served angle α generally undergoes changes from the initial
value α0. With the vertical range nc regarded as a growth
index, it is shown that α goes through stepwise transitions
between phyllotactic fractions (PF) in the course of the
growth (Fig. 6). In fact, many plants progress through
distinct phyllotactic transition (PT) during early stages of
development. It should be rather remarked that the sec-
ondary changes, essential for us, are usually noticed but
often disregarded as irrelevant (as secondary). To outline
the proposed mechanism, consider a population of ran-
dom samples with all possible values of the preset angle
α0, and let them grow according to the model. As they
grow, each sample will exhibit its own PTs respectively,
depending on α0. With all the grown samples, we leave
from formal analysis. At this point, we appeal to biologi-
cal reasoning according to natural selection, by which all
but that with the golden angle 2πα0 = 137.5◦ turns out to
be eliminated. The selected sample is favored in nature,
for it is structurally the most stable because it undergoes
the least PTs. To put it concretely, we show how the num-
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Figure 1: A pattern with a phyllotactic fraction (PF) α = 2/5. The
angle between consecutive leaves (points) is 2/5 of a rotation. As
a guide to the eye, a spiral, called the ontogenetic or genetic spiral,
is drawn through the points in their order of succession. Repulsive
interaction between the points is represented by (imaginary) prolate
spheroids around the points.

Figure 2: Interaction Vn(θm−θn,m−n) between the points (m, θm)
and (n, θn) is periodic in θm − θn with a period of 2π. By definition
of X and nc, Vn(θm − θn,m−n) vanishes for X < |θm − θn|/2π < 1
and |m− n| > nc.

ber of PTs, NPT, depends on the preset angle α0 and the
growth index nc (Fig. 8). To the author’s knowledge, no
such mathematical evolutionary mechanism of phyllotaxis
has ever been put forward.

2. Model

We restrict ourselves to the most common case of a
spiral or helical pattern with a single ‘leaf’ at each level
(node). We use an integer n to label successive points
along a genetic spiral (Fig. 1), whose positions are given
by the coordinates (θn, n) or by (xn, n) in terms of θn =
2πxn. In this dimensionless representation with normal-
ized length scales, the coordinate may be regarded to rep-
resent the position of either leaf primordia on apical meris-
tem or leaf traces in vascular system. Here the important

point is that physical quantities are periodic with respect
to the angular coordinate θn. The angle θn is measured
from θ0 = 0 for n = 0, and is regarded to take a value
within −π ≤ θn < π (or −1/2 ≤ xn < 1/2). To describe
phenomenologically a torsional force between two points
(θn, n) and (θm,m) (n ̸= m), we introduce repulsive in-
teraction Vn(θm − θn,m − n) (Fig. 2). As a theoretical
and phenomenological tool to clarify number theoretical
structure of the macroscopic phenomenon, details for im-
plementation of the interaction need not be specified.

For the sake of simplicity and convenience, let us write

Vn(2πx,m) = unV (2πx,m) = unvmV (x). (1)

The angular dependence is represented by V (x) and the
vertical (internode) dependence is described with vm, both
of which are defined by the last equation. The factor un

represents the dependence on the subscript n of Vn(2πx,m),
which occurs because translational invariance along the
stem (in the vertical direction) is broken in general. How-
ever, it turns out that the factor un drops out of our prob-
lem.

The interaction Vn(θ,m) is characterized by two pa-
rameters. They are finite ranges of Vn(θ,m), in the angular
direction θ (or x = θ/(2π)), and in the vertical direction
m. For the former, we introduce a half-width X (< 1/2)
of V (x), i.e.,

V (x) > 0, 0 ≤ |x| < X,

V (x) ≃ 0, X < |x| < 1/2.

For example, let us use

V (x) = e−(
2x
X )

2

, |x| ≤ 1/2. (2)

Note that V (x) is periodic so that V (x) = V (x + 1), and
we may set V (0) = 1 arbitrarily. In terms of the width X
thus defined, the angular width of the original interaction
Vn(θ,m) is given by

∆θ ≃ 4πX. (3)

The second parameter is the vertical range of influence nc.
By definition, we have Vn(θ,m) > 0 for 0 < m ≤ nc and
Vn(θ,m) ≃ 0 for m > nc, or

vn > 0, 0 < n ≤ nc,

vn ≃ 0, nc < n.

In what follows, nc plays an important role.
We investigate a regular spiral arrangement with the

divergence angle 2πα, namely,

θn = 2πnα. (xn = nα.) (4)

In principle, the phyllotactic index α may take any real
number (Fig. 1). Nevertheless, in our model, and in real
life, α turns out to be a fraction, called phyllotactic frac-
tion (PF). Phenomenologically, α obeys a mechanical re-
laxation equation,

dα

dt
= −dE

dα
. (5)
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The right-hand side is a torsional force, represented by the
total interaction E,

E =
∞∑

n=0

∑
m>n

Vn(θm − θn,m− n) (6)

=
∞∑

n=0

∞∑
m=1

Vn(2πmα,m). (7)

Substituting Eq. (1), we obtain

E = v(α)
∞∑

n=0

un, (8)

where

v(α) =

∞∑
m=1

vmV (mα). (9)

The factor
∑∞

n=0 un in Eq. (8) may be dropped hereafter,
as it is a constant independent of α. Substituting Eq. (8)
in Eq. (5), we find the phyllotactic index α in static equi-
librium as a minimum of the effective interaction v(α).
For instance, when v(α) has a single minimum at ᾱ, we
may assume a parabolic potential E = k

2 (α − ᾱ)2 around

the minimum α ≃ ᾱ. Then we obtain dα
dt = −k(α − ᾱ)

from Eq. (5), and α(t) = ᾱ+(α(0)− ᾱ)e−kt as a solution.
Therefore, in the end, we reach static equilibrium at the
minimum α(∞) = ᾱ, irrespective of the initial value α(0).
In general, v(α) may have many local minima. To which
minimum α evolves into depends on the initial value α(0).
This is the third parameter α0,

α(0) = α0. (10)

We introduced several quantities to define our model.
Among others, nc and α0 are the most important. Main
results given below are not affected essentially by the other
quantities as X and vm for v(α) in Eq. (9). In the next sec-
tion, we investigate conditions to realize a local minimum
of v(α). Hereafter we restrict ourselves to 0 < α ≤ 1/2,
because v(1− α) = v(−α) = v(α) by bilateral symmetry.

3. Results

3.1. Phyllotactic Fraction (PF)

By way of illustration, v(α) in Eq. (9) is plotted for
nc = 5, 6 and 7 in Fig. 3, where we use Eq. (2) with X =
0.1 and vn = 0.8n for n ≤ nc.

Consider the case nc = 5, the solid curve in Fig. 3.
We observe that v(α) has five minima. In effect, they lie
around fractions α = 1/6, 2/9, 2/7, 3/8 and 3/7. Let us
increase nc from 5 to 7 to see if the minima are affected.
For nc = 7, the two minima at 2/9 and 3/8 remain almost
intact, whereas the other three minima 1/6, 2/7 and 3/7
for nc = 5 are lost (Fig. 3).

To reach the minimum at PF 3/8, the initial value α0

has to be in a range 1/3 . α0 . 2/5. Let us introduce

 0  0.1  0.2  0.3  0.4  0.5

v
(α

)

α

∆α

3/82/9 2/7

3/11 3/10

nc=5
6
7

Figure 3: Effective interaction v(α) for nc = 5, 6 and 7 (X = 0.1 and
vn = 0.8n for n ≤ nc). To reach a minimum at α = 3/8, the initial
value α0 must fall within ∆α denoted by the double-headed arrow.

the total width ∆α of a range allowed for α0. For PF 3/8,
we have ∆α = 2

5 − 1
3 ≃ 0.067. The range is indicated

with the double headed arrow in Fig. 3. Similarly, we get
∆α ≃ 0.05 for 2/9, which is narrower than ∆α ≃ 0.067 for
3/8. Therefore, if α0 is to be chosen randomly for a fixed
nc, it would be (0.067/0.05=1.3 times) easier to realize PF
3/8 than to realize 2/9.

From Fig. 3, we note that the minimum at 2/7 for
nc = 5 and 6 turns into a local maximum for nc = 7.
Similarly, the minimum at α = 3/8 becomes a maximum
for nc = 8 (not shown in Fig. 3), whereas the minimum at
2/9 remains intact for nc = 5, 6, 7 and 8. For each PF, we
define n0 and ∆n by the condition

n0 ≤ nc ≤ n0 +∆n (11)

for the fraction to be a minimum. We obtain (n0,∆n) =
(5, 2) for 3/8, and (n0,∆n) = (5, 3) for 2/9.

When a minimum becomes a maximum, two new min-
ima appear on both sides of the maximum. For example,
the local minimum at α = 2/7 for nc = 5, 6 ((n0,∆n) =
(4, 2)) becomes a local maximum at nc = 7. When a
‘mother’ PF 2/7 is lost to become the maximum, it is
flanked on both sides by two newborn ‘daughter’ minima
at 3/11 and 3/10 (Fig. 3). In other words, the mother PF
α = 2/7 branches (fissions) into the daughter PFs 3/11
and 3/10 at nc = 7.

In this manner, we can locate the positions of the local
minima of v(α) and construct their branching structure.
They are shown in Fig. 4, where each dot representing a
minimum is labeled with a fraction (PF). In Fig. 4, there is
a vertical segment stretching upward from each dot. The
length of the segment is ∆n for the fraction. In Fig. 5,
we plot the fractions in the ∆n-∆α plane, as well as in
the ∆n-∆α-n0 space. In the figures, the observed main
sequence of phyllotaxis is drawn with the bold line.

In the above and the following, we make good use of
the interesting and important property of the model that
the divergence angle α of a phyllotactic pattern is given by
a fraction (PF). Indeed, deviation from an exact fraction
may be expected in general. This is discussed in Sec. 4.
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n c

α
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1/3

1/4 2/5

1/5   2/7  

1/6     2/9

 

 3/8     3/7

1/7         2/11    

1/8          2/13  3/11           3/10  5/12          4/9

1/9       2/15     4/11             5/13  

1/10        2/17   3/14           3/13    7/16         5/11

Figure 4: Position α of a local minimum of v(α) is represented by a
point labeled with a fraction. Lines connecting the points represent
hierarchical branching structure of the fractions. The length of the
vertical segment stretching from a point represents ∆n for the frac-
tion (e.g., ∆n = 0 for 1/4 and ∆n = 1 for 2/5). Fractions on the
bold line comprise the main sequence of phyllotaxis.
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Figure 5: For lower order fractions in Fig. 4, ∆α is plotted against
∆n. The inset shows a 3D plot of n0 against ∆n and ∆α (defined
in Sec. 3.1). The bold arrows represent the main sequence.

Figure 6: An initial pattern (α0 = 0.382) of leaf primordia on the
apex (top). A ‘developing’ leaf pattern for α = 2/5 (nc = 3) (middle)
lies on top of a ‘mature’ leaf pattern for α = 1/3 (nc = 2) (bottom).
Torsional motion is indicated by an arrow.

3.2. Phyllotactic Transition (PT)

To compare with a real plant, we regard nc as a growth
index. This is reasonable because the increase of nc in our
normalized (cylinder) representation corresponds to a de-
crease of plastochron ratio in a disc representation ([16]),
and to a decrease of the internode distance if it were intro-
duced explicitly ([1]). The index nc, presumably related to
the length of leaf-trace primordia, is supposed to increase
in the course of plant growth so that a stem is vertically
organized into zones with different values of nc. In a devel-
oping leaf zone near the apex, nc is large. In a mature leaf
zone near the plant base, nc is small. For a given value of
α0, we obtain patterns for different nc standing in a row
along the stem, as illustrated in Fig. 6. Thus we explain
phyllotactic transition (PT), the transition of α between
different PFs along the stem.

For given nc, from Fig. 4 we can read α resulting from
arbitrary α0. Firstly, locate the reference point (α0, nc)
in the figure. Then, the PF α is selected from the neigh-
boring two minima on both sides of the reference point
by comparing the horizontal coordinate α0 with that of a
maximum between the two minima. If α0 is on the left
(right) of the maximum, then the minimum in the left
(right) hand side is chosen. For example, for α0 ≃ 0.3, we
get α = 1/2 for nc = 1, and α = 1/3 for nc = 2. For
nc = 3, we choose α = 1/4 from the two minima 1/4 and
2/5 because α0 ≃ 0.3 < 1/3, the maximum between the
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5/117
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Figure 7: Diagram for phyllotactic fractions (PF). PF α = 2/5 is
obtained for nc = 3, 4 and 1/3 < α0 < 1/2 (∆n = 1,∆α = 0.17).

two minima.
As a result, we obtain a diagram in Fig. 7. The dia-

gram may serve to get PF α for arbitrary pair (α0, nc). In
Table 1, sequences of PF α for randomly chosen values of
α0 are given representatively. With real plants in mind,
four of them are displayed in Fig. 8.

3.3. Mechanism of Phyllotaxis

Nature’s preference of particular PFs is accounted for
simply by the following hypothesis: (H) A phyllotactic pat-
tern of a fraction with larger ∆n is more favored.

For nc = 3 in Fig. 4, we have two possible patterns
α = 1/4 or 2/5, depending on α0. According to (H), the
latter 2/5 is favored, because ∆n = 1 for 2/5 is larger
than ∆n = 0 for 1/4. In this manner, as nc is increased,
the hypothesis (H) gives us a sequence on the thick line in
Figs. 4 and 5, that is,

1/2, 1/3, 2/5, 3/8, 5/13, · · · . (12)

This is the main sequence of phyllotaxis almost always
observed. In fact, the main sequence covers more than
90% of all observed cases ([11]). The numerator and the
denominator of the PF in (12) are alternate numbers of a
Fibonacci sequence,

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, · · · , (13)

in which every number is the sum of the preceding two.
As a limit number of the sequence in (12), we obtain α =
(3 −

√
5)/2 ≃ 0.381966 (2πα ≃ 137.5◦), the golden angle

or the Fibonacci angle.
We argue that the hypothesis (H) is biologically plau-

sible, because the larger ∆n ensures the more stability
against expected variations of the growth index nc. To
show this explicitly, let us define NPT as the number of
PTs encountered in a sequence for a given α0. NPT counts

Figure 8: Lower part of four sequences in Table 1 are displayed
vertically. (a) α0 = 0.146317 (NPT = 6), (b) α0 = 0.281978 (NPT =
4), (c) α0 = 0.375791 (NPT = 3), (d) α0 = 0.469168 (NPT = 4). The
most favorable is (c) with the least number of phyllotactic transitions
(NPT = 3).

how many times PF α changes as the index nc is increased,
so that it depends on α0 and the upper bound of nc. Hence
NPT may be used as a measure of stability of a pattern
with a given phyllotactic sequence. By definition, NPT

is small for a sequence comprised of PFs with small ∆n.
Therefore, (H) may be rephrased as follows: (H’) A favor-
able sequence has small NPT.

Biological implications of (H’) may be understood in-
tuitively from Fig. 8. According to (H’), the case (c)
for α0 ≃ 0.38 (2πα0 = 137.5◦) is the most favorable,
because NPT = 3 for (c) is the smallest of all. What
this means must be quite obvious from the figure. We
give NPT in the last column of Table 1. See the eighth
row for α0 = 0.375791 in Table 1. We find that NPT is
the smallest for the main sequence, (12), for α0 ≃ 0.38
(2πα0 = 137.5◦). As a second sequence with small NPT,
we notice a sequence for α0 ≃ 0.28 (2πα0 = 99.5◦), the
fifth row in Table 1, and (b) in Fig. 8. This sequence is
observed but less commonly, and sometimes called the first
accessory sequence. In general, the main sequence always
sets the lower limit of NPT, although there may be other
sequences with the same lowest value.

In Fig. 9, NPT for nc up to 4, 5, 6, and 7 is plotted
against α0. The figure indicates how the samples with
different α0 are discriminated as they grow. In the pro-
cess of increasing nc to 4, any sample for 1/3 < α0 < 1/2
(∆α = 0.17) is more favorable than that for 0 < α0 < 1/3,
because the former has a smaller value NPT = 2 than the
latter with NPT = 3. As we increase nc to 7 (the solid line
in Fig. 9), only restricted samples within a narrow win-
dow 1/3 < α0 < 2/5 (∆α = 0.07) are favored because of
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Table 1: Sequences of PF α resulting from arbitrarily chosen initial values of α0. NPT in the last column counts the number of phyllotactic
transitions (the number of times PF α changes) for 1 ≤ nc ≤ 17.

HHHHHα0

nc 1 2 3 4 5 6 7 8 9 10 11 13 17 NPT

0.025714 1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
10

1
11

1
12

1
14

1
18 16

0.104117 1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
10

2
19

2
19

2
19

2
19 9

0.146317 1
2

1
3

1
4

1
5

1
6

1
7

2
13

2
13

2
13

2
13

2
13

3
20

3
20 7

0.175101 1
2

1
3

1
4

1
5

1
6

2
11

2
11

2
11

2
11

2
11

3
17

3
17

4
23 7

0.281978 1
2

1
3

1
4

2
7

2
7

2
7

3
11

3
11

3
11

3
11

5
18

5
18

5
18 5

0.286878 1
2

1
3

1
4

2
7

2
7

2
7

3
10

3
10

3
10

5
17

5
17

5
17

7
24 6

0.305352 1
2

1
3

1
4

2
7

2
7

2
7

3
10

3
10

3
10

4
13

4
13

7
23

7
23 6

0.375791 1
2

1
3

2
5

2
5

3
8

3
8

3
8

5
13

5
13

5
13

5
13

8
21

8
21 5

0.437801 1
2

1
3

2
5

2
5

3
7

3
7

4
9

4
9

7
16

7
16

7
16

7
16

11
25 6

0.469168 1
2

1
3

2
5

2
5

3
7

3
7

4
9

4
9

5
11

5
11

6
13

7
15

15
32 9
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nc= 4

Figure 9: The number of phyllotactic transitions NPT for nc = 4, 5,
6, and 7 are drawn against α0. As nc increases to 7, initial values α0

within 1/3 < α0 < 2/5 (∆α = 0.07) are specifically selected because
NPT is the smallest there.

NPT = 3, which is the lowest value for nc = 7. In this fil-
tering process, the width ∆α for α0 decreases rapidly as nc

increases. In Fig. 10, we plot NPT against α0 and nc. The
figure indicates that the minimum of NPT with a decreas-
ing width ∆α develops around α0 ≃ 0.38 (2πα0 = 137.5◦)
as nc increases. In the end, a single value is selected for
α0, namely, the golden angle α0 = (3−

√
5)/2 ≃ 0.381966

(∆α → 0).
In Fig. 11, we plot NPT for nc up to 20 and 50, indicat-

ing how the stepwise ridges and troughs of NPT develop
as nc increases. As nc increases, α0 should be gradually
trapped in a minimum of NPT. We find a small and shal-
low local minimum around α0 ≃ 0.22 (2πα0 = 78◦), be-
sides the absolute minimum at α0 ≃ 0.38 and the first ac-
cessory α0 ≃ 0.28 mentioned above. These three cases are
collectively called normal phyllotaxis (Sec. 3.5 and (B.13)).
It is remarked that NPT (or NPT/nc) becomes singular in
the limit nc → ∞, for all the steps are subdivided and the
widths of the steps shrink without limit as nc increases.
This is clear from Fig. 12, in which n(α0) ≡ NPT/nc is

 0
 0.1

 0.2
 0.3

 0.4
 0.5 0

 5

 10

 15

 20

 0

 5

 10

 15

 20

NPT

α0

nc

NPT

Figure 10: NPT as a function of α0 for 1 ≤ nc ≤ 20 (cf. Fig. 9). A
narrow trough develops around α0 ≃ 0.38 (2πα0 = 137.5◦), as nc

increases.

plotted for nc =100 and 500. Note that n(α0) is mini-
mized at the golden angle. But, from the figure, it appears
almost impossible to reach the golden angle continuously
by variational optimization. In our static mechanism, the
golden angle is singled out through the screening process.

In Figs. 13 and 14, the range of α0 within which the
number NPT is the smallest for given nc is filled with the
solid horizontal bar. It is clearly shown that several values
are specifically favored for α0. Among others, we remark
that the golden angle 2πα0 ≃ 137.5◦ (α0 ≃ 0.382) is sin-
gled out for nc near but less than the Fibonacci numbers
in (13). The accuracy ∆α for the golden angle converges
rapidly, as mentioned above. We have ∆α = 1/15 for
nc = 7 in Fig. 9, and ∆α = 1/1870 around nc ≃ 85 (cf.
Table B.3).

To conclude, we may regard the hypothesis (H) as a law
of phyllotaxis. In plain words, the Fibonacci phyllotaxis
with the main sequence is favorably singled out because of
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Figure 11: NPT for nc = 20 (solid line) and 50 (dashed line). The
arrow at the minimum of NPT indicates the golden angle α0 ≃ 0.3820
(2πα = 137.5◦).
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Figure 12: NPT/nc for nc = 100 (dashed line) and 500 (solid line).
The minimum at α0 ≃ 0.38197 is indiscernible for nc = 500 (∆α ≃
10−5).

its special stability against inevitable structural changes
expected in the growing process.

3.4. Mathematics

The main results presented above are obtained directly
from simple numerical analysis as shown in Fig. 3. Indeed
it is straightforward to check them by hand when nc is
small, but it soon gets complicated as nc becomes large.
Mathematical analysis helps us not only to derive useful
formula but also to deepen understanding of the mathe-
matical structure of the problem. In particular, it is help-
ful for us to have analytical expressions of (n0,∆n) and
∆α for PFs belonging to typical sequences found in na-
ture. The mathematical analysis is indispensable if we do
not content ourselves with several specific circumstances of
lower phyllotaxis. Mathematical results are delegated to
the appendixes. Here we point out only that Fig. 4 has the
same structure as the Stern-Brocot tree of number theory
([9]), which contains each rational numbers exactly once.
Relations between numbers in the tree are concisely repre-
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Figure 13: The range of α0 within which NPT takes the smallest
value for given nc is filled with horizontal bars, thereby favorable
values for α0 are pointed by ‘tapering needles’. They are α0 ≃
0.38, 0.28, 0.22 (normal phyllotaxis), α0 ≃ 0.42, 0.44, and also α0 ≃
0.30, 0.37 (cf. Sec. 3.5). The golden angle α0 ≃ 0.38 (2πα0 = 137.5◦)
is singled out for nc ≃ 20, 30, 50, 80.

 10

 20

 0  0.5

n c

α0

 20

 40

 60

 80

 100

 0.37  0.38  0.39
α0

Figure 14: The range of α0 for the least NPT is filled with horizontal
lines (Fig. 13 enlarged vertically and horizontally).
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sented in terms of mediants (Appendix A) and continued
fractions (Appendix B).

3.5. Sequences

As given in Table 1, a general phyllotactic pattern
derived from a random value of α0 does not fit in with
observed regularity. Indeed, if PT would have to occur
too frequently, the concepts of the PF and PT themselves
could become indefinite. As a matter of fact, fortunately,
observed sequences come around with astonishing regu-
larity. Only several types of sequences exist in nature.
For the purpose of classifying the observed sequences, one
often adopts a tacit theoretical procedure of inferring a
mathematical limit α of a given sequence by extrapolation.
The limit divergence α, generally an irrational number, is
then used to represent the sequence. However, it must be
kept in mind that any phyllotactic sequence does terminate
finitely in practice, and inferring a limit from a finite se-
quence may be problematic. Be that as it may, a sequence
of principal convergents of a noble number (Eq. (B.9)) has
been a central subject. We can assess frequencies of oc-
currence of various sequences quantitatively by compar-
ing NPT for the sequences. Below we use a shorthand
bracket notation for a sequence given in a paragraph be-
low Eq. (B.14) in Appendix B.

The main sequence with the limit divergence α0 =
0.382 (2πα0 = 137.5◦) is given by

[2] : 1/2, 1/3, 2/5, 3/8, 5/13, 8/21, 13/34, 21/55, · · · . (14)

The first accessory sequence with the limit α0 = 0.276
(2πα0 = 99.5◦) is

[3] : 1/2, 1/3, 1/4, 2/7, 3/11, 5/18, 8/29, 13/47, · · · .

The second accessory sequence for α0 = 0.217 (2πα0 =
78.0◦) is

[4] : 1/2, 1/3, 1/4, 1/5, 2/9, 3/14, 5/23, 8/37, · · · .

These are called normal phyllotaxis. As an example of
anomalous phyllotaxis, the first lateral sequence for α0 =
0.420 (2πα0 = 151.1◦) is

[2, 2] : 1/2, 1/3, 2/5, 3/7, 5/12, 8/19, 13/31, 21/50, · · · .

In addition, we can think of the sequence for α0 = 0.296
(2πα0 = 106.4◦),

[3, 2] : 1/2, 1/3, 1/4, 2/7, 3/10, 5/17, 8/27, 13/44, · · · .

And, for α0 = 0.367 (2πα0 = 132.2◦),

[2, 1, 2] : 1/2, 1/3, 2/5, 3/8, 4/11, 7/19, 11/30, 18/49, · · · .

There is controversy concerning the existence of the last
two sequences ([27, 11]). As the general fact of observation,
any other sequence than the main sequence [2] may be
regarded as exceptional.
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Figure 15: NPT is plotted against nc for major sequences. The
sequences with the limit index α0 ≃ 0.38, 0.28, 0.22, 0.42, 0.30 and
0.37 are represented as [2], [3], [4], [2,2], [3,2] and [2,1,2], respectively.
The main sequence [2] sets the lower limit of NPT.

For these sequences, NPT is plotted against nc in Fig. 15.
The main sequence always sets the lower limit of NPT. At
nc = 4, [2,2] and [2,1,2] have NPT = 2, and the others
have NPT = 3. This is because the first three terms of
[2,2] and [2,1,2] (up to 2/5) are the same as the main se-
quence [2]. From around nc = 10, the priority order of
occurrence of the sequences is inferred as [2,2], [3], [3,2],
and [4]. For such small nc as shown in Fig. 15, the order
of [2,1,2] and [2,2] cannot be decided uniquely. Note that
[3,2] and [2,1,2] may be regarded as satellite sequences of
[3] and [2], respectively. This is seen from Fig. 13. There-
fore, according to our result, extraordinary [3,2] and [2,1,2]
are less unlikely than [4] of ‘normal’ phyllotaxis. In Ta-
ble 2, for general sequences, we tabulate the values of nc

at which NPT is minimized. Many sequences become fa-
vorable when nc is equal to a Fibonacci number in (13).
This is clear from Fig. 13. We find that normal phyllotaxis
of higher order [n] (n = 4, 5, · · · ) appears not so specially
preferable as widely supposed. In fact, Fig. 13 indicates
that NPT has no absolute minimum for 0 < α0 < 0.2 and
nc ≥ 4 (α0 = 0.178 for [5] and α0 = 0.151 for [6]). A
low-order sequence with [l,m, n] (l,m, n ≤ 3) looks rather
favorable.

The order in the frequency of occurrence is generally
consistent with the available data, though the number of
observations is still too limited to draw a definite conclu-
sion ([7, 11]).

4. Discussion

We have made full use of an important result of our
model that the phyllotactic index α is given by a fraction.
As a problem of macroscopic physics, it goes without say-
ing that this is but a good approximation and mathemat-
ical rigor should not be expected in this respect. In this
section, we investigate the effect of the lateral width X of
the interaction V (x) in Eq. (2). There is an optimal value
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Table 2: Table for the growth index nc at which a given sequence makes a pattern with the minimum NPT. In the first row, the minimum
value NPT is given. The main sequence [2]: (1,2) covers all integers for nc (NPT = 2 for nc = 3, 4, etc.). The bracket notation for the
sequence in the first column is explained in a paragraph below Eq. (B.14). (A pair of numbers in the round bracket are parastichy pairs, i.e.,
seed values for a Fibonacci recurrence relation. )

NPT 2 3 4 5 6 7 8 9
[2] : (1, 2) 3,4 5-7 8-12 13-20 21-33 34-54 55-88 89-143
[3] : (1, 3) 3 5,6 8-10 13-17 21-28 34-46 55-75 89-122
[4] : (1, 4) 3 8 13 21,22 34-36 55-59 89-96
[5] : (1, 5) 3
[2, 2] : (2, 5) 3,4 5,6 8-11 13-18 21-30 34-49 55-80 89-130
[2, 3] : (2, 7) 3,4 5,6 8 13-15 21-24 34-40 55-65 89-106
[2, 4] : (2, 9) 3,4 5,6 8
[3, 2] : (3, 7) 3 5,6 8,9 13-16 21-26 34-43 55-70 89-114
[3, 3] : (3, 10) 3 5,6 8,9 21,22 34,35 55-58 89-94
[3, 4] : (3, 13) 3 5,6 8,9
[4, 2] : (4, 9) 3 8 21 34 55,56 89-91
[4, 3] : (4, 13) 3 8
[2, 1, 2] : (3, 8) 3,4 5-7 8-10 13-18 21-29 34-48 55-78 89-127
[2, 1, 3] : (3, 11) 3,4 5-7 8-10 13 21-24 34-38 55-63 89-102
[2, 1, 4] : (3, 14) 3,4 5-7 8-10 13
[2, 2, 2] : (5, 12) 3,4 5,6 8-11 13-16 21-28 34-45 55-74 89-120
[2, 2, 3] : (5, 17) 3,4 5,6 8-11 13-16 21 34-38 55-60 89-99
[2, 2, 4] : (5, 22) 3,4 5,6 8-11 13-16 21
[2, 3, 2] : (7, 16) 3,4 5,6 8 13-15 21,22 34-38 55-61 89-100
[2, 3, 3] : (7, 23) 3,4 5,6 8 13-15 21,22
[2, 3, 4] : (7, 30) 3,4 5,6 8 13-15 21,22
[2, 4, 2] : (9, 20) 3,4 5,6 8
[3, 1, 2] : (4, 11) 3 5,6 8-10 13,14 21-25 34-40 55-66 89-107
[3, 1, 3] : (4, 15) 3 5,6 8-10 13,14
[3, 2, 2] : (7, 17) 3 5,6 8,9 13-16 21-23 34-40 55-64 89-105
[3, 2, 3] : (7, 24) 3 5,6 8,9 13-16 21-23
[3, 3, 2] : (10, 23) 3 5,6 8,9 21,22 55
[3, 3, 3] : (10, 33) 3 5,6 8,9 21,22
[4, 1, 2] : (5, 14) 3 8 13
[4, 1, 3] : (5, 19) 3 8 13
[4, 2, 2] : (9, 22) 3 8 21

X̄ forX around which α is given by a fraction, as expected.
The optimal width X̄ may be used to see if a minimum of
v(α) is really achieved practically. If the potential function
v(α) is nearly constant and flat in a wide region around a
minimum, it will take too long time to reach the true min-

imum because the torsional driving force −dv(α)
dα toward

the minimum, in the right-hand side of Eq. (5), becomes
practically zero. This happens if X ≪ X̄, as shown in
Fig. 16 for X = 0.05. It is known that the use of a frac-
tion, as originally made by Schimper and Braun, is not
always adequate ([8]).

To put it concretely, let us examine PF 3/8, which
occurs in between 1/3 and 2/5. We consider

1/3 < α < 2/5, (15)

and
5 ≤ nc < 8. (16)

Then, for v(α) in Eq. (9), all the other terms than m = 3
and m = 5 are effectively neglected, so that we get

v(α) ≃ v3V (3α) + v5V (5α)

= v3V (3α− 1) + v5V (5α− 2), (17)

for V (x) is periodic. In effect, this is a minimal model
for PF 3/8. This may be interpreted as a mathematical
expression of Hofmeister’s rule, that new ‘leaf’ arises in
the largest gap between the previous ones. Note, however,
that we are not concerned with mechanical dynamics of
phyllotaxis at the apex.

On the one hand, as a function of α, V (3α − 1) has a
peak with the width X/3 at α = 1/3, the lower boundary
of (15). On the other hand, V (5α − 2) has a peak with
the width X/5 at α = 2/5, the upper boundary of (15).
An optimal width X̄ is estimated by equating the total
width X̄/3 + X̄/5 with the allowed range for α, that is,
∆α = 2/5 − 1/3. We obtain the result X̄ = 1/8 for 3/8.
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Figure 16: For various X around an optimal value X̄ = 0.125, the
effective potential v(α) is plotted by using Eq. (2) and vn = 0.6n for
n ≤ nc (5 ≤ nc < 8). For X = 0.05 (≪ X̄), v(α) has a flat bottom
for a wide range of α.

According to Eq. (3), the optimal angular width of inter-
action is ∆θ ≃ 90◦ for 3/8. In the ideal case X = X̄, v(α)
has a minimum at α = 1/3 + X̄/3 = 2/5− X̄/5 = 3/8, as
expected. The derivation outlined here indicates that the
result will not depend on V (α) specifically.

We present Fig. 16 to show the effect of X on v(α). To
draw the figure, we use a full form of v(α) and did not use
the approximation in Eq. (17). In any case, the difference
due to the approximation is negligible. As mentioned, for
X ≃ X̄, we obtain α ≃ 3/8 properly with good accuracy.
As X is decreased from X̄, v(α) around the minimum gets
flattened. As a matter of practical fact, the minimum
would not be reached in the extreme case of X ≪ X̄.
When X < X̄, there appears a flat region in

1

3
+

X

3
< α <

2

5
− X

5
, (18)

the width of which is ∆αflat = (1− 8X)/15 = (1− X
X̄
)/15.

This is smaller than the full width ∆α = 1/15 of (15), as
it should be. In practice, insofar as α stays within the flat
region, we may rather observe the primary angle α = α0

as it is, since the secondary torsion is not effective any
longer.

In general, the optimal width X̄ for a fraction p/q is
given by X̄ = 1/q, and the width of the flat region is

∆αflat =

(
1− X

X̄

)
∆α, (19)

for X < X̄ (Appendix C). As we follow any sequence up
in the tree of Fig. 4, the denominator qn of PF α = pn/qn
stays constant or increases, so that X̄ is constant or de-
creases. In effect, it decreases roughly as X̄ ∼ 1/nc. By
contrast, the model parameter X should be fit with a real
plant. Consequently, the condition X < X̄ may hold in
early few terms of a sequence (namely, 1/2, 1/3, etc., when
nc is small). Then we could no more expect to observe
these low order PFs. We rather observe an inherent value
α = α0 so far as it falls within a flat region with the width
∆αflat. This is consistent with observations.

5. Conclusions

With the aid of biological hypotheses, we showed that
prevalent sequences of phyllotactic fractions are satisfac-
torily explained by a physical model of plant growth. The
model has interesting mathematical properties. Among
others, we bring to light a Stern-Brocot type number-
theoretical structure that has been unnoticed thus far in
this field. To extract the mathematical essence of the
phenomenon, we have to base our theory on the abstract
model by discarding real biological implementation as non-
essential details. According to the proposed static mech-
anism, the phyllotactic pattern with the main Fibonacci
sequence is naturally selected because it entails the least
number of phyllotactic structural transitions while grow-
ing to a mature plant.
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Appendix A. Mediant

The mediant of two fractions m/n and p/q is given by
(m + p)/(n + q), where m and n (p and q) are relatively
prime integers. Let us callm/n and p/q as parent fractions
of a child fraction (m+ p)/(n+ q).

The Stern-Brocot tree of fractions between 0 and 1/2 is
obtained by the following operation ([9]). Start from the
initial fractions 0/1(=0) and 1/2. Repeat inserting the
mediant of two adjacent fractions, and arranging them in
numerical order. The first mediant is 1/3 between 0/1
and 1/2, and they are arranged as (0/1), 1/3, (1/2). In
the second order, we obtain 1/4 between 0/1 and 1/3, and
2/5 between 1/3 and 1/2. They are arranged as (0/1),
1/4, (1/3), 2/5, (1/2). In the third order, we obtain (0/1),
1/5, (1/4), 2/7, (1/3), 3/8, (2/5), 3/7, (1/2). Here we
put the fractions in the previous orders in parentheses.
The Stern-Brocot tree has been anticipated by Schimper
([21, 10]).

Our tree in Fig. 4 is related to but not the same as the
Stern-Brocot tree. As an important difference, we have to
order fractions by the growth index nc. In other words, we
need to know (n0,∆n) of the fractions. For instance, let us
consider 2/5. For nc = 3 in Fig. 4, (m+ p)/(n+ q) = 2/5
is the mediant of p/q = 1/3 and m/n = 1/2 (m = 1, n =
2, p = 1, q = 3). By ordering the fractions according to the
denominators, q and n, let us call p/q = 1/3 and m/n =
1/2 as the younger and the older parent of 2/5. On the one
hand, the mediant 2/5 is born when the younger parent
p/q = 1/3 dies at nc = q = 3. On the other hand, 2/5
dies at nc = n+q = 5, the denominator of 2/5. Therefore,
we obtain 3 ≤ nc < 5 and ∆n = 1 for 2/5. In general,
the mediant (m+ p)/(n+ q) of m/n and p/q (n < q) has
q ≤ nc < n+ q. For (m+ p)/(n+ q) (n < q), we obtain

(n0,∆n) = (q, n− 1). (A.1)

Next we consider ∆α. In order to realize α = (m +
p)/(n + q), α0 has to lie between the parents m/n and
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Figure A.17: The branching structure in Fig. 4 is schematically
shown (a) for p/q < m/n and (b) for p/q > m/n, where m and n, p
and q are relatively prime numbers satisfying n < q. In both cases,
two daughter fractions (m+2p)/(n+2q) and (2m+p)/(2n+q) at the
top of the figure are derived from a mother fraction (m+ p)/(n+ q)
in the middle. The mother (m+p)/(n+q) is derived as a child of the
parents p/q and m/n. We obtain ∆n = q− 1 for (m+ 2p)/(n+ 2q),
and ∆n = n − 1 for (2m + p)/(2n + q) and (m + p)/(n + q). The
path to increase ∆n traces the bold zigzag line.

p/q, and we get ∆α = |mn − p
q |. The parent fractions

belonging to the tree are shown to satisfy |mq − np| = 1
([9]). Hence we conclude

∆α =
1

nq
(A.2)

for (m+p)/(n+q). These formulas may be used for Fig. 5.
For the hypothesis (H) in Sec. 3.3, we have to compare

∆n of two daughter fractions derived from a mother frac-
tion in Fig. 4. (We tell a mother-daughter relation from
a parent-child relation.) Consider (m + p)/(n + q) as a
mother fraction, derived as a child of parents m/n and
p/q (n < q) (Fig. A.17). One daughter fraction (2m +
p)/(2n+ q) occurs between (m+p)/(n+ q) and m/n. The
other daughter fraction (m+2p)/(n+2q) occurs between
(m+p)/(n+q) and p/q. On account of Eq. (A.1), the for-
mer (2m+p)/(2n+q) has (n0,∆n) = (n+q, n−1), whereas
the latter (m+2p)/(n+2q) has (n0,∆n) = (n+q, q−1). By
assumption n < q, the daughter fraction (m+2p)/(n+2q)
has the larger ∆n = q − 1 than (2m + p)/(2n + q) with
∆n = n − 1. For two daughter fractions derived from a
mother fraction, the one with a larger denominator always
increases ∆n, whereas the other does not change ∆n from
the mother fraction.

This rule is read from Fig. 5. At every branching point
(node), one branch grows to the right to increase ∆n. The
other goes down along the ordinate in the main figure. Ac-
cording to (H), the sequence with ever increasing ∆n com-
prises the most favorable branch of our evolutionary tree.
A favored sequence in the tree diagram of Fig. 4 traces
a zigzag path as depicted with the bold line in Fig A.17.
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Figure A.18: Patterns with the same divergence angle α = 0.38
appear to have different parastichy pairs (n, q) = (3,5) (left) and
(5,8) (right), depending on a vertical length scale. The 5-parastichy
winds up clockwise. Thus this ‘transition’ of a parastichy pair is a
superficial phenomenon. The apparent change from (3,5) to (5,8) is
called rising phyllotaxis. Rising phyllotaxis restricts a range allowed
for α (Fig. A.19).

This result may be compared with a dynamical counter-
part (Appendix B, Appendix C).

In practice, when the divergence angle α deviates from
an exact fraction, a pair of integers (n, q), called a paras-
tichy pair, is used to represent a phyllotactic pattern con-
sisting of most conspicuously visible families of n and q
secondary spirals (parastichies) crossing with each other.
A q-parastichy is a secondary spiral running through the
points (p, θp), (p+q, θp+q), (p+ 2q, θp+2q), (p+ 3q, θp+3q),
etc., where p = 0, 1, 2, · · · , q − 1 (Fig. A.18). To derive a
parastichy pair for given α is a purely geometrical prob-
lem ([1, 11]). In our tree system, we find a simple result
that we obtain a visible parastichy pair (n, q) when α lies
between two neighboring (parent) fractions m/n and p/q
in our tree. Accordingly, PF α = (m+ p)/(n+ q) may be
replaced by the parastichy pair (n, q). In place of Fig. 7,
we obtain Fig. A.19, which may be useful to analyze real
systems.

Appendix B. Continued Fraction

A real number α (0 < α < 1) is represented as a con-
tinued fraction,

α =
1

a1 +
1

a2 +
1

a3 + · · ·

≡ [a1, a2, a3, · · · ], (B.1)

where ai (i = 1, 2, · · · ) is an positive integer. Every ratio-
nal number has two continued fraction expansions. In one
the final term is 1, that is, a rational number α is repre-
sented finitely as α = [a1, a2, · · · , an, 1]. For an irrational
number α, there is a successive rational approximation,
pn/qn = [a1, · · · , an] (n = 1, 2, · · · ), in terms of relatively
prime positive integers pn and qn satisfying the recursion
relations,

pn+2 = an+2pn+1 + pn, (B.2)

qn+2 = an+2qn+1 + qn, (B.3)
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Figure A.19: Diagram of a phyllotactic system with one genetic
spiral, showing the visible opposed parastichy pair (n, q). For
3/8 < α < 2/5, we may obtain (1,2), (2,3), (3,5) or (5,8), depending
on a vertical length scale (Fig. A.18). Conversely, if we observe ris-
ing phyllotaxis through parastichy pairs (1,2), (2,3), (3,5) and (5,8),
then the divergence angle α must meet the constraint 3/8 < α < 2/5
(∆α = 0.025). For a system with J genetic spirals, α and (n, q) are
replaced by Jα and J(n, q), respectively.

and

p0 = 0, p1 = 1, q0 = 1, q1 = a1. (B.4)

The fraction pn/qn (n = 1, 2, · · · ) is called a principal con-
vergent of α. The difference between successive principal
convergents is given by

pn+1

qn+1
− pn

qn
=

(−1)n

qnqn+1
, (B.5)

and α lies between even and odd order convergents,

p2k
q2k

< α <
p2k+1

q2k+1
. (B.6)

Thus the principal convergent pn/qn approaches to the
limit α in a zigzag manner.

In terms of the bracket notation defined in Eq. (B.1),
we obtain Fig. B.20 in place of Fig. 4. From the figure, we
immediately notice the bifurcation rule holding at every
node,

[a1, a2, · · · , an, 1] −→
[a1, a2, · · · , an, 1, 1]

[a1, a2, · · · , an + 1, 1].
(B.7)

It is easily checked that the upper branch in (B.7) increases
∆n, and the lower one conserves ∆n (Appendix A). There-
fore, according to (H) in Sec. 3.3, it is particularly impor-
tant for us to study the following sequence of fractions
(ai ̸= 1 for i = 1, 2, · · · , n):

[a1, a2, · · · , an, 1],
[a1, a2, · · · , an, 1, 1],
[a1, a2, · · · , an, 1, 1, 1],
[a1, a2, · · · , an, 1, 1, 1, 1], · · · . (B.8)
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Figure B.20: Fractions in Fig. 4 are represented with the bracket
notation for continued fractions defined in Eq. (B.1).

These are comprised in the principal convergents of a noble
number,

αnoble = [a1, a2, · · · , an, 1, 1, 1, 1, · · · ]. (B.9)

Owing to the succession of ai = 1 (i > n), for a sequence
of fractions pn/qn on a favored branch according to (H),
the numerator pn and denominator qn obey the Fibonacci
recursion relations pn = pn−1 + pn−2 and qn = qn−1 +
qn−2.

A sequence of principal convergents of a noble num-
ber has been given a special status in theoretical stud-
ies of phyllotaxis ([5, 15, 18, 19]). The most important
is the golden angle (per 2π) for a1 = 2 and an = 1
(n = 1, 2, 3, · · · ),

α = [2, 1, 1, 1, · · · ] = 1/(2 + τ−1) = τ−2 = (3−
√
5)/2,
(B.10)

where the golden ratio τ is given by

τ = 1 + [1, 1, 1, · · · ] = (
√
5 + 1)/2, (B.11)

or
τ−1 = [1, 1, 1, · · · ] = (

√
5− 1)/2. (B.12)

In the literature, a sequence is referred to in several
ways. In particular, a sequence with a limit index

α = [t, 1, 1, 1, · · · ] = 1/(t+ τ−1) (B.13)

(t = 2, 3, · · · ) is called normal phyllotaxis. The main se-
quence for Eq. (B.10) corresponds to the special case t = 2.
The cases t = 3 and t = 4 are called the first and the sec-
ond accessory sequence, respectively. On the other side, a
sequence with a limit angle

α = [2, t, 1, 1, 1, · · · ] = 1/(2 + (t+ τ−1)−1), (B.14)

(t = 2, 3, · · · ) is sometimes called the lateral sequence.
For convenience sake, let us introduce another concise

notation. To denote a whole sequence with a limit of

α = [a1, a2, · · · , an, 1, 1, · · · ] = 1/(a1+(a2+(· · ·+(an+τ−1)−1)−1)−1),
(B.15)

we simply reuse a symbol for a continued fraction [a1, a2, · · · , an]
(an ̸= 1). Hence the main sequence is

[2] : 1/2, 1/3, 2/5, 3/8, 5/13, 8/21, 13/34, 21/55, · · · .
(B.16)

To obtain the sequence [3, 2] with a limit α = 1/(3 + (2 +
τ−1)−1), collect the fractions from 1/2 to [3, 2] = 2/7
up along the tree in Fig. 4, namely, 1/2, 1/3, 1/4, 2/7.
Then, from the daughter fractions 3/10 and 3/11 of 2/7,
choose the unfavorable one with a smaller denominator,
namely, 3/10. After them follow all the fractions on the
favorable branch ramifying from 3/10, namely, 5/17, 8/27,
13/44, 21/71, 34/115, 55/186, 89/301, · · · . As noted be-
low Eq. (B.9), these obey the Fibonacci recursion relation
(e.g., 13/44 = (5+8)/(17+27)). To summarize, we obtain

[3, 2] : 1/2, 1/3, 1/4, 2/7, 3/10, 5/17, 8/27, 13/44, 21/71, 34/115, · · · .

Major sequences are given in Sec. 3.5.
A sequence is commonly represented by parastichy num-

bers instead of fractions. Translation is made without dif-
ficulty by noticing the denominators (Appendix A).

[2] : (1, 1), (1, 2), (2, 3), (3, 5), (5, 8), (8, 13), (13, 21), · · · .
(B.17)

[3, 2] : (1, 1), (1, 2), (1, 3), (3, 4), (3, 7), (7, 10), (10, 17), (17, 27), · · · .
(B.18)

We may combine repeated numbers on favored branches.

[2] : 1, 2, 3, 5, 8, 13, 21, · · · . (B.19)

[3, 2] : (1, 2), (1, 3, 4), (3, 7, 10, 17, 27, · · · . (B.20)

All but the last branch may be omitted.

[3, 2] : 3, 7, 10, 17, 27, · · · . (B.21)

Most concisely, only the first two numbers may be given
as seed values of recurrence.

[2] : (1, 2). (B.22)

[3, 2] : (3, 7). (B.23)

In this notation, typical sequences are generally given as
follows (cf. Table 2).

[a] : (1, a). (a = 2, 3, · · · .) (B.24)

[p, a] : (p, ap+ 1). (a, p = 2, 3, · · · .) (B.25)

[p− 1, 1, a− 1] : (p, ap− 1). (a, p = 3, 4, · · · .) (B.26)

[p− 1, 2, a− 1] : (2p− 1, a(2p− 1)− p). (a, p = 3, 4, · · · .)
(B.27)
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Table B.3: The main sequence with the limit divergence angle α = τ−2.

n 1 2 3 4 5 6 7 8 9 10

pn

qn

1

2

1

3

2

5

3

8

5

13

8

21

13

34

21

55

34

89

55

144

n0 1 2 3 5 8 13 21 34 55 89
∆n 0 0 1 2 4 7 12 20 33 54

∆α 1
1

2

1

6

1

15

1

40

1

104

1

273

1

714

1

1870

1

4895

X̄
1

2

1

3

1

5

1

8

1

13

1

21

1

34

1

55

1

89

1

144

According to [7], the first sequence system [a] is common,
the second sequence system [p, a] is rarely observed, and
the third sequence system [p−1, 1, a−1] is extremely rare.
This is consistent with our results in Table 2.

Now our task is to get ∆α and (n0,∆n) for a se-
quence of principal convergents of a noble number. From
Eq. (B.5), we get

pn
qn

− pn−1

qn−1
=

(−1)n−1

qn−1qn
, (B.28)

and
pn
qn

− pn−2

qn−2
=

(−1)nan
qnqn−2

. (B.29)

These equations signify that pn/qn lies between pn−1/qn−1

and pn−2/qn−2. We find that pn/qn has

∆α =

∣∣∣∣pn−1

qn−1
− pn−2

qn−2

∣∣∣∣ = 1

qn−1qn−2
. (B.30)

According to our model, a child fraction pn/qn is born at
nc = qn−1 from a parent fraction pn−1/qn−1, and dies at
nc = qn. Hence, we obtain qn−1 ≤ nc < qn for pn/qn.
Using Eq. (B.3), for pn/qn of a noble number with an = 1,
we conclude

(n0,∆n) = (qn−1, qn−2 − 1). (B.31)

To put it more concretely, hereafter we restrict our-
selves to the most important case of the golden angle
in Eq. (B.10). The principal convergent pn/qn, ∆α and
(n0,∆n) are presented in Table B.3. In this simplest case,
we have pn = Fn and qn = Fn+2, where Fn is the Fibonacci
number defined by the recurrence

F0 = 0,

F1 = 1,

Fn = Fn−1 + Fn−2. (n > 1)

(Table B.4.) The number of phyllotactic transition NPT

simply counts the number of pn/qn. Consequently, we ob-
tain NPT = 2n+ 1 for

p2n
q2n

< α <
p2n+1

q2n+1
(B.32)

and
q2n+1 ≤ nc < q2n+2. (B.33)

In terms of Fn, we obtain NPT = 2n+1 for F2n+3 ≤ nc <
F2n+4, and ∆α = 1/(F2n+2F2n+3). As a result, irrespec-
tive of whether n is even or odd, we obtain

NPT = n (B.34)

for
Fn+2 ≤ nc < Fn+3, (B.35)

and

∆α =
1

Fn+1Fn+2
. (B.36)

Using a formula ([9])

Fn =
1√
5

(
τn − (−τ)−n

)
≃ τn√

5
, (B.37)

we may regard nc ≃ τNPT+2.5/
√
5 by (B.35). Then, we

get
NPT = log(

√
5nc)/ log τ − 2.5, (B.38)

and
∆α = (τ/nc)

2. (B.39)

Thus NPT/nc and ∆α vanish in the limit nc → ∞. The
logarithmic dependence in Eq. (B.38) for the irrational
number α = τ−2 is contrasted with a linear dependence
NPT ≃ nc/n for a rational number α = 1/n (Fig. 12).
These results are used to guess a growth index nc inversely.
To achieve accuracy of ∆α = 0.02 (i.e., α = 0.38 ± 0.01),
we need nc ≃ 11 according to Eq. (B.39). To obtain a
parastichy pair (F10, F11) = (55, 89) of a sunflower head,
we have to attain ∆α = 1

F10F11
= 1/4895, for which we

need nc ≃ 113. Indeed this lies between F11 ≤ nc < F12.

Appendix C. Deviation from Fraction

To generalize the discussion in Sec. 4, let us consider a
minimum of v(α) around a mediant

ᾱ =
m+ p

n+ q
(C.1)
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Table B.4: Fibonacci sequence.

n 0 1 2 3 4 5 6 7 8 9 10 11 12
Fn 0 1 1 2 3 5 8 13 21 34 55 89 144

of reduced fractions m/n and p/q (Appendix A). As in
Eq. (17), the minimal model for this purpose is given by

v(α) = vnV (nα−m) + vqV (qα− p). (C.2)

Differentiating this with respect to α, and substituting
Eq. (C.1), we obtain

v′ (ᾱ) = nvnV
′
(
np−mq

n+ q

)
+ qvqV

′
(
qm− np

n+ q

)
. (C.3)

On physical grounds, it is natural to assume that V (x)
is an even function, V (x) = V (−x). Then, because of
V ′(x) = −V ′(−x),

v′ (ᾱ) = (qvq − nvn)V
′
(
mq − np

n+ q

)
. (C.4)

By definition, V (α) = V ′(α) = 0 for α > X. Hence, we
get v′(ᾱ) = 0 for X < X̄, where X̄ = |mq − np|/(n+ q).
Without loss of generality, we may assume

m

n
<

p

q
. (C.5)

Using mq − np = 1 ([9]), we obtain

X̄ =
1

n+ q
(C.6)

for (m+ p)/(n+ q). The optimal width X̄ for a fraction
p/q is given by X̄ = 1/q. For X < X̄, the potential v(α)
is nearly constant for

m

n
+

X

n
< α <

p

q
− X

q
, (C.7)

the width of which is

∆αflat =

(
1− X

X̄

)
∆α, (C.8)

where we used Eqs. (A.2) and (C.6). The optimal width
X̄ = 1/qn for the main sequence is given in Table B.3.

Strictly speaking, the minimum is not at α = ᾱ in
Eq. (C.1), but lies at α = ᾱ + δα by which a small cor-
rection δα is defined. Let us find δα by the condition
v′(ᾱ+ δα) = 0. In the lowest order in δα, we have

v′ (ᾱ+ δα) = (qvq−nvn)V
′ (X̄)+(n2vn+q2vq)δαV

′′ (X̄) .
(C.9)

Hence we find

δα =
nvn − qvq
n2vn + q2vq

(
−V ′ (X̄)
V ′′
(
X̄
) ) . (C.10)

Figure C.21: A ’vascular leaf-trace primordium’ of an 8-parastichy
(dashed line) for α = 3/8 + δα (δα = 0.003, nc = 6) is shown along
with a parastichy pair (3,5) (solid lines). The sign of δα coincides
with the sign of 2/5 − 3/8 > 0, thereby the divergence angle α is
slightly shifted from the PF 3/8 toward a limit α = 0.382.

By the assumption that V (x) is localized with a half width
X around x = 0, it is physically reasonable to suppose
V ′ (X̄) < 0 and V ′′ (X̄) > 0 at a tail of V (x). Accordingly,
the sign of δα is determined by the difference between the
denominators of the parent fractions m/n and p/q. Un-
der a weak condition that vn decreases more rapidly than
1/n, around a mediant ᾱ = (m + p)/(n + q) between par-
ent fractions m/n and p/q, a minimum of v(α) is slightly
shifted from α = ᾱ to the side of m/n or p/q with a larger
denominator. This is consistent with Levitov’s maximal
denominator principle on a Farey tree ([14]). For instance,
the position of the minimum in Fig. 16 is slightly shifted
from 3/8 to the side of 2/5 (instead of 1/3). The effect of
δα is neglected in Sec. 3. It is surely negligible mostly as
confirmed explicitly. Still there are cases where the devi-
ation δα has discernible effects. First of all, non-zero δα
deforms an ‘orthostichy’ α = (m+p)/(n+ q) into a paras-
tichy (Appendix A). According to the above theorem, the
sign of δα = α − (m + p)/(n + q) is given by the sign of
m/n− (m+ p)/(n+ q) (n > q) (Fig. C.21). The deviation
from a fraction δα tends toward a limit divergence angle
(Sec. 3.5).

Dynamical models aim to derive α = 1/τ2 determin-
istically ([1, 20, 14, 6]). Their results are consistent with
each other. The original idea of the dynamical mecha-
nism can be traced back to [26] and [22]. Most of them
are based on a geometric assumption that the interaction
V (|rm − rn|) depends only on the distance |rm − rn| be-
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tween the two points n andm. Generally, in an anisotropic
system like plants, the assumption does not hold true. In
short, a leaf is not a sphere on a cylinder surface (Fig. 1).
If we had adopted this strong assumption, we would have
failed to reproduce PFs. This is because δα enforced by
the assumption is relatively large and not negligible. To
compare with our model, however, it must be remembered
that dynamical models mostly follow a long tradition of
reseach focused on shoot apices. Unlike ours, they are not
aimed at PFs of mature leaves.

Finally, as a possible generalization, let us mention a
dynamical variant of our model. In the dynamical model,
any slight deviation δα can be effectively important to
determine a dynamical path of α. In the main text, we
assumed that α0 is a preset constant independent of nc. In
contrast, one may consider a model in which α0 is variable
such that α = αmin to minimize v(α) at a growth step nc

determines the initial value α0 of the next step nc+1, i.e.,

α0(nc + 1) = αmin(nc), (C.11)

or let α0 evolve continuously or adaptively along a branch
in the tree of Fig. 4. To begin with, the initial condi-
tion must be set for α0(1). To avoid confusion, α0 of this
model should rather be written as α. Consider what hap-
pens when a local maximum begins to appear around a
minimum at α = αmin, when nc reaches n0+∆n for αmin.
The maximum occurs just at a rational number near but
not at αmin. As discussed above, αmin is shifted by a finite
amount δα from the position of the maximum. Therefore,
the sign of δα uniquely determines the next minimum to
be chosen. Between two newborn daughter fractions, the
one with a larger denominator is always chosen (a daugh-
ter fraction with a larger denominator lies on the same side
of a parent fraction with a larger denominator). Thus, we
obtain α & 1/3 at nc = 2, then α . 2/5 at nc = 3, and
α & 3/8 at nc = 5, then α . 5/13 at nc = 8, and so
forth. By following the main branch of Fig. 4, we reach
α = 1/τ2 finally in the limit nc → ∞. The bifurcation rule
of this dynamical mechanism accords with (H) in Sec. 3.3.
Nonetheless, the causal relationship between PFs and the
golden angle is reversed here. In the dynamical mecha-
nism, the golden angle is the effect, or the end result α(∞)
to be obtained generally. In the static mechanism, it is the
cause α(0) to be selected specifically.
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