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‘Abstract

In this study, fiber-typed optical bistable devices, especially the kinds of
fiber Fabry-Perot resonator and double-coupler fiber ring resonator have
been studied in detail. Transient effect of stimulated Brillouin scattering
(SBS), interplay between Kerr effect and Brillouin gain effect in a fiber and
one- coupler fiber ring resonator has also been investigated in detail to give a
gmdance to the design of optlcal blstable devices. All contents are orgamzed
‘in seven chapters. ‘ ‘ : oo '

In chapter 1, a 31mp1e descrlptlon for the background and purposes of this
study has been given. S

In chapter 2, 'experimental study for the nonlinear absorption and
nonlinear refraction of BDN (bis(4-dimethylaminodithiobenzil)-nickel) in
nitrobenzene solution is reported. First, saturable absorptiOn properties of
BDN are determined by using a transmission method. The response time of
_ the dye solution is about 1.5 ns. Next, the nonlinear refraction is investigated
by using a single beaimn z-scan and a two-color z-scan methods. It is found
that the main origin of the nonlinear refractive index chaﬁge is not the
population redistribution ‘of the dye molecules but the thermal effect. In
particiilar', the nonlinear refraction in the nanosecond regime is attributed to
~ density change due to pr'op”ag'atiorx of an acoustic wave excited by the laser
pulses. It 'isf'e'xpec‘ted that the results and discussions presented in this
chapter will be applicable for many absorbing materials.

In chapter 3, two iterative methods have been described for calculating the
dynamic properties of the plane Fabry-Perot resonator filled with nonlinear
fiber itself. The iterative method based on the midpoint rule however is not
‘suitable “bec‘au‘se‘of numerical instability. Moreover, a steady-state analysis
and linear stability analysis have been 'p'reSentedk.' The threshold powers for
Tkeda ‘instability in the bistable device have been examined. It is found that
optical biStabﬂityjis hardly affected by Ikeda instability since the instability
threshold is much higher than the bistability switching power for the initial
detumng where the bistable device is operated.

" In chapter 4, the iterative method have been presented for calculating the

dynamic properties of the double-coupler nonlinear fiber ring resonator when



an optical pulse with an arbitrary temporal profile is incident on it. Fur-
thermore, a linear stability analysis‘ has been performed to examine whether
TIkeda instability affects bistable device application or not. Nearly the same
results as that of chapter 3 have been obtained.

In chapter 5, theoretical and exper]mental results for the dynamlcs of SBS
in a single-mode fiber have been given. It is found that SBS can occur even in
the nanosecond region and steady state of SBS can be obtained when the
pulse width of the mc1dent light is 100-fold greater than that.of the round-
trip tlme within the fiber. Following the process of the transient SBS, pulse
narrowing for the transmitted pulse is also observed. Moreover, it is found
that SBS mstab]hty can occur when the nonlinear refractive mdex is one
order of magnitude larger than that of the fused-silica fiber. .

In chapter 6, theoretical results for the transient SBS and. transwnt
mterplay between Kerr effect and. Brillouin. gam effect in a fiber ring
resonator have been given. It is found that owmg to the interaction of the
nonlinear. refractlon with the: SBS .gain effect a Stokes wave in the ring
resonator is generally. unstable for, a high incident power.; These instabilities
depend strongly on the pump power and the parameters of the fiber resonator,
including the finesse and the initial phase detuning of the cavity. It is also
foundwthatﬂ due to the occurrence of SBS, optical bistability described in
chapter 4 cannot be observed in a fiber ring resonator made of fused-silica
fiber. However, if other optical fibers with nonlinear refractive index at least
one order larger than that of fused-silica fiber are used, transient thical
bistability may be obtained at low power. ... . . . . ‘ ‘

In chapter 7, all the results obtained from the above chapters are summa-
rized. It is assured that in order to demonstrate optical bistability on
experiment, SBS must be restrained in a fiber resonator. The most attractive
way is the utilization of other kinds of fibers with nonhnear refractive index
at least one order larger than that of fused-silica fiber. This method will make
the optical bistability appeared at a. power . lower than the SBS threshold. As
matter of the fact, large nonlinearity with two order larger than that of silica

fiber has already been found in chalcogenide glass fibers, which make the

explo1tat10n of fiber optical bistable device probable. Further study for the

restraint of SBS in a fiber ring resonator is needed.
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Chapter 1. Introduction

1.1 Basis of Optical Nonlinear Effects

In intense electromagnetic fields, the response of optical fiber becomes
nonlinear. As a result, the induced polarization P is not linear in the electric
field E, but is expressed in power of the electric field:

P= 80-(x(f1)'E+x(2-)EE+)((3)EEE+--f-')', SREEI @)

where &, is the free-space permittivity and %% '(]'t=’1’, 2, +++) is jth order
susceptibility. x? is a tensor of rank j+1. The linear susceptibility x"
represents the dommant contribution to P. It can be divided into the linear
refractive index n and the linear attenuatlon coefﬁc1ent o.. The second-order
susceptlblhty x? is respons1ble for such nonlinear effects as second-harmonic
generation and sum frequency generation. However, it vanishes for silica
fiber since Si0, is a symmetry molecular. The lowest-order nonlinear effects
in a fiber 'originate fro'ni”the third-order susceptibility x®, which is responsi-
ble for the phenomena such as third-harmonic generatmn four-wave mixing,
and nonhnear refraction. However, the first two phenomena rarely occur
unless the condition of phase matching is given, the last one is the most

efficient nonlinear effect in a fiber.

A: Nonlinear Refraction
Nonlinear refraction refers to the intensity dependence of the refractive
index resultmg from the contrlbutlon of %9, i.e., the refractlve index is

expressed by :

- n(E)=n, +n,[E, | b s o a

where n, is hnear refract1ve mdex of the fiber, |E| is the optlcal intensity
inside the ﬁber and n2 1s nonhnear refractlve 1ndex related to x(g) by the
relatlon ‘ ’ L

n, =‘8';Re(X§c3r)xx) (1.3)



where Re stands for the real part and the optical field is assumed to be
linearly polarized so that only one component x®  of the fourth-rank tensor

contributes to the refractive index.

B. Self- and Cross phase modulation . S ,

The intensity dependence of the refractive mdex leads toa large number of
interesting nonlinear effects; the two most widely studied are self-phase
modulation (SPM) and cross-phase modulation (XPM). SPM refers to the
self-induced phase' shift experienced by an optical field during its propaga-
tion in optical fibers. The phase of an optical field changes by

‘~~¢;nk0L;'(n+n2|E|2-)ki0L,' o (1.4)

“where k, is the wave number and L is the fiber 1ength 'The intensit_y-
dependent nonlinear phase shift ¢y, = n2k(,L|E|2 is due to SPM. - V
XPM refers to the nonlinear phase shift of an optical ﬁeld mduced by a
‘copropagating field at a different wavelength. When two optical fields at
frequencies «, and w, copropagate simultaneously inside the fiber, the
nonlinear phase shift for the fields at w, and w, are then given by

o (@) =0,k L(E | +2E,[), (1.5)
¢NL(m2)=n2k0L(2lE1|2+IE2|2)' o (18)

The two terms on the rlght hand of the Eq (1 5) (Eq (1 6)) are due to SPM
XPM) and XPM (SPM), respectively. The most important charactenstlc of
XPM is that, for equally intense optlcal ﬁelds,;the»contrlbutlon of XPM to the
‘nonlinear phase shift is twice compared with that of SPM.

: 1 2 Enhancement of Nonhnearltles 1n a Smgle mode Flber o
Table 1.1 shows the nonlinear effects and parameters for various materlals
11, [2]. As is shown, the nonlinear refractrve index of the fused-silica fiber is



Table 1.1 Nonlinear effects and parameters for various materials [1].

Nonlinear Effect Typical material | ny | (M2V? t(6  aelem?)
Band filling GaAsetc. - ~10°  ~10%  ~10?
Super lattice GaAs/GaAlAs MQW ~107 ~10%  ~10*
n-electron excitation | PTS etc. ~10 " <10 ~10!
Thermal refraction’ | Zns, ZnSe etc. ~101%° 108~1
Molecular orientatio | CS,, Nitrobenzene ~10" ~1012 ~103
Liquid crystal |'TN liquid crystal 108~10¢ o~ —
Photorefractive | Bij5SiOg0, BaTiO; - — - ~10° —
Kerr effect in SiO, | Fused-silica fiber ~10%[2] <10*  ~10%[2]

about 1.0 X 10 m?/V?, Compared to most of other bulk nonlinear materials,
itis found that th1s value is much small. In spite of this, ‘the nonlinear effects
in a optical fibers can be observed at relatively lower power level. Single-
mode optical fiber is an attractlve med1um for nonlinear optics, because of its
long interaction length, small core diameter with several micrometers, and
extremely low loss (<1 dB/km). A figure of merit for the efficiency of non-
linear process in bulk media is the product IX L ; where I is the optical
intensity and L. is the effective length of the interaction. The ratlo of thls
merit of single-mode ﬁber to that of bulk can be expressed by [2]

(I : Lef"f )fiher : )\'
(I'Leff)bulk ’ TC(Dg(X.O ’

(W)

Where o, is the beam spot size Wh1ch is dependent on the ﬁber core radius.
d, is the fiber loss. It i 1s eas:ly to see that the enhancement factor is in the
range of 107 ~10° for a conventional smgle-mode fiber. It i 1s thls tremendous
enhancement in the efficiency of nonhnear processes that makes the fiber a
sultable nonlinear medium for the observatlon of wide varlety of nonlinear
effects at relatlvely low power evels. ‘Moreover, large enhancements can also
be obtained by enclosmg a s1ng1e mode fiber in an optlcal resonator. In this
case both - the circulating intensity and the effectlve path length are
1ncreased and threshold effects such as stimulated Brillouin scattermg and
optlcal bistability will appear. Most of the nonlinear effects and the1r

applications reported to date are summarlzed in Table 1.2. Here we concen-



Table 1.2 Nonlinear effects in optical fiber and their applications.

Nonlmear effect ., ~Application
- - ' nght wavelength change
: *Stlmulated Brillouin scatterlng Fiber optical amplifier -
- | Fiber sensor
Stimulated Raman scattermg Mode-locked laser

~ Pulse compression . .

: S Pulse shaping
 Optical Kerr effect - Optical switching
: Optical bistability

SRS | Parametric amplification =
- Four-wave mixing Squeezing
i = ' Fiber sensor
Optical Soliton transmlssmn
~Self- and cross-phase modulation | Optical pulse compressmn
| Fiber coupler.

) - DFBlaser
' Photosensitive effect Narrow-band filter =~

' : : - |'Temperature and pressure sensor
| Light source = S e

Wavelength change

- ‘Second-harmonic generation

trate our study on the apphcatlon of opt1ca1 blstabﬂlty and st1mulated

Brillouin scattermg in a fiber resonator.

1.3 Fiber-typed Optical Bistable Devices

Bistability is a very common characteristic of nonlinear feedback system
and can be found in many different fields such as ferromagnetism, electron-
ics, or chemistry. The phenomenon ‘of optical:b\istabﬂity was first predicted by
Szoke et al. in 1969 [3] and then observed in a Fabry Perot resonator filled
with sod1um [4]. Since then, optical b1stab1]1ty has been observed in dJﬂ‘erent
types of non]mear resonators using materials with vanous nonlmeanty
mechamsms [5-\11]. Optical brstable device ,refers to that the optlcal system
CouldeXhlblt two ystates of Qutplit for the same input, a typical example of the
input:ontput characteristic:s& in such a device is shownvin‘;]i‘ig. 1.1. For each
incident power P, the transrnissiOn remains low until P,, is ‘increased
beyond the critical value Pgy (called switch-on power) The transm1ss1on then
remalns high even as P, is decreased unt11 another cr1t1cal value Py, (called
swltch-off power) is reached, and the device jumps to the off state.‘ This type
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Fig. 1.1. Typical input-output characteristics for an optical bistable device.

of hysteresis is considered as evidence for optical bistability. Such a device
could be used to perform many fundamental operations, such as optical
latching switch, optical logic gate, pulse shaper, power limiter, and differen-
tial amplifier, etc. [12], some of them are shown in Fig. 1.‘2. So far, all
observations of bistability have involved a combination of nonlineaities and
feedback. Depending on the "non]inearities,, optical Dbistability can be
absorptive, increasing absorption; or dispersive. In the case of absorptive
bistability, a saturable medium is generaﬂy inserted into a resonator [11,13].
Increasing-absorption optical bistability is based on an increase of the
absorption at the operating wavelength with an increa{sed of laser intensity.
This kind of optical bistability is generally obtained in a semiconductor. For
dispersive bistability, a ‘mediurvn with iiifensity-dependent refractive index is
inserted into a resonator, which is based on optical Kerr effect. Recently, this
kind of fiber optical bistable devices have ',receiyéd'c‘ons’iderable attention
because of the strong enhancement of fiber nonlinearities and their potential
direct application to optical signal processing for optical communications.
The configurations of fiber biStablkek devices proposed to date can be
classified into three groups as shown in Fig. 1.3. The first is in-line nonlinear
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Fig. 1.2. Basic optical circuit elements: (a) latching switch, (b) logic gate,
(c) pulse shaper, (d) differential amplifier. o
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Fig. 1.3. Schematic of fiber-typed optical bistabie devices: (a) medium-
embedded resonator, (b) all-fiber Fabry-Perot resonator, (c) fiber

grating resonator, and (d) fiber ring resonator.



Fabry-Perot resonator [10] including the medium-embedded fiber Fabry-
Perot and all fiber Fabry-Perot resonator, as shown in Figs. 1.3(a) and (b),
_respectively. For the one shown in Fig. 1.3(a), a nonlinear material is
embedded in a fiber resonator. Here a saturable absorber seems to be one of
the best nonlinear materials. At the wavelength of 1.06 um,'bistable3’ei)tical
device using a saturable absorber BDN (bis(4-dimethylaminodithio-benzil)-
nickel) has been reported [11]. Ttis genera]ly believed that optical bistability
observed in Ref. [11] arises from an intensity 'dependeht phase change due to
the refractive index difference between the ground and first tnplet states ‘of
the dye molecules and is not thermal and that the dye is a potentlal
nonlinear material [14]. The second group refers to nonlinear fiber grating
resonator [15-17] as shown in Fig. 1.3(c), where a nonlinear distributed
feedback structure (also called Brag fiber grat'in‘gj)'i‘s?iﬁsertediﬂ;co afiber. The
refractive ‘index is periodically changed inside the fiber-grating region,
bistable phenomenon can be observed in this' device whilé no mirror is
needed. The third is nonlinear fiber ring resonator, typical '»exémp‘l‘e.is"shown
in Fig. 1.3(d), which consists of a fiber loop and two coupler called double-
coupler nonlinear fiber ring ‘resonator [18- 20] This kind of* devmes is based
on the intensity-dependent phase shift accumulated over a fiber ring and one
can decrease the switching power by making the ring longer. -

" So far, steady-state optical “bistébﬂity in a nonlinear Fabry-Perot [21], a
single-coupler nonlinear fiber ring resonator [22-24], double-coupler non-
linear fiber ring"resonator;r fiber double-ring resonator [25] and nonlinear
fiber loop mirror with feedback [26] have been investigated theoretically. The
double-coupler nonlinear fiber ring resonator is one of the most important
configurations since transmission bistability is available in addition -to
reflection bistability as well as ‘a nonlinear Fabry-Perot resonator.” The
operating principle of the fiber ring resonator or the nonlinear Fabry-Perot
resonator is well understood using the steady-state analysis, for example

the graphlcal method developed by Marburger and Felber [2 1] ’I‘ransmnt
analy51s for the nonlinear Fabry-Perot resonator was first studied by
Bischofberger and Shen [27] using the so-called multiple-beam interference
method. Until present,'th‘e transient analyses of a Sin'gle"-‘COuplei' fiber rmg
résonator [28], [29], double-coupler fiber ring resonator [19],“[30]i*'"‘and7n6'n-f



linear fiber loop mirror with feedback [31] have already been carried out by
using a multiple-beam interference method developed by B1schofberger and
Shen or an iterative method developed by Ikeda [32]. However the iterative
method has not yet been reported for the nonlinear Fabry-Perot resonator
and the double-coupler fiber ring resonator. . ,

- In other respect, one feature of the dynamics of ring cav1ty or Fabry Perot
resonator containing a nonlinear medium with an instantaneous response
time is the existence of instabilities. Ikeda et al. have first found that a fiber
cavity can exhibit perlodlc and chaotlc mstablhtles under certain conditions
[32], [33]. Therefore dynamic propertles including 1nstab1ht1es .are very
unpo_rtant for the de_s1gn and Implemer;itathnk of bistable optical devices. -

1 4 Stulated Br1llou1n Scatterlng o naribo
~Brillouin scattering is the scattering of light from acoustic dlsturbance ina
medium. The principle of Brillouin scattering is illustrated schematically in
Fig. 1.4 [34], where an incident optical wave interacts with an incoming or
outgoing acoustic wave. Conservation of momentum and. energy requires
that the f‘requencyhand wave vector of the scattered wave (v..k,) berelated
k,) by the relations |

to those of incident wave (v, ,

=vpEvy, ko=ko=k,, o o (A8

where +k, and v, are the wave vector and frequency of acoustic wave,
respectively. The negative sign in Eq. (1) corresponds to the Stokes-shifted
wave scattered from an. outgoing acoustic wave, and the positive sign
co.,rresponds to. the anti-Stokes ‘wave. The equ‘en(;y’ Shlftof the BI’].“OIun
scattered wave is a maximum for 8- 180° scattering (i.e., backscattering).
At this angle the frequency shift is called the Brillouin frequency and.is
defined as - | J |

v,

Ve ¢/n, Ve G PE e LU ( )

where v, is the velocity of the acoustic wave, n, is the linear refractive

indexes, and c/n; is the velocity of the light in the medium. Spontaneous

10
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_—>
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Fig. 1.4. The principle scheme of the Brillouin scattering.

Brillouin scattering occurs due to scattering from thermally excited phonons.

In laser scattering from acoustic disturbance, the incident laser and
Brillouin scattered wave superimpose to form a traveling beat wave with
frequency v, and wave vector k, . If the laser is sufficiently intense, this
beat wave can coherently drive the acoustic wave through electrostrictive,
and possibly thermal forces. The enhanced acoustic wave more strongly
scatters the incident laser radiation, which in return leads to a stronger beat
wave. The mutual reinforcement results in an ‘amp]jﬁed Brillouin wave. The
process is called stimulated Brillouin scattering (SBS). The most important
parameters of SBS are the gain coefficient g, and the acoustic lifetime
(phonon damping time) T';'. In general SBS gain coefficient (SI units) is

expressed as [34]

o Ve®p (FA/Z) ) o 1.1
| = I ’ B . 0
ST goPonV, ¢ Ty [VB —(vl;ﬂ:—v;)]z (T, 2 - (1:10)

Where p0 and n are the average den31ty and the lmear refractlve indexes of
the medlum v, 18 the electrostrlctlve coeﬁiment For sohd matenal it is

g1ven as ‘

ve=sopo—a;=eopon4p12,r R ¢ 1% )

11



where p,, is the photo-elastic constant of the medium. Equation (1.10) can

also be expressed as

2n'n"p}, (r,/2Y

€p = g - : ’ (1-12)
® Npev,Ty [VB - (Vp .—Vs’)]2 +(Ty /2)2f -
A is optical wavelength. The maximum gain coefficient gpols obtain
2 2.7..2
gxo ___‘Ln_l’_l_g_ (1.13)
T eNpv,aTy

where it is noted that T';=1/,= nAvB,v Avg -is the Brillouin linewidth

- In a. smgle mode fiber, one can eas11y decrease the SBS threshold by
increasing the fiber length. It is known that SBS can be produced at an input
power level of a few milliwatts for a several kilometers single-mode fiber
[35-37]. Dynamic behavior of SBS in a single-mode fiber was first investigat-
ed by Ippen and Stolen [38]. They found that there existed a relaxation
oscillation in the Stokes radiation intensity. This phenomenon has been
confirmed by Bar-Joseph et al. [39] and Dianov et al. [40] The pulse width
used in these experiments is in the range of 0.2 to 1.0 us, which is one or two
order larger than the phonon damping time of the fiber.: For SBS; if the
pump-pulse width is less than or roughly equal to the phonon damping time,
the transient effects must be considered. Dynamic behavior of SBS for a
short fiber under a short pulsed pump (in a time region which is nearly the
same order of magnitude 'asi.ﬁgtjhe'phondh lifetime) has not been reported to
date. i | '

Compared with SBS ina smgle-mode ﬁber SBS in a short and hlgh-ﬁnesse
ﬁber nng resonator is not Wldely studled to date Steady state of SBS m a
fiber ring resonator was first mvestlgated by Stokes et al. [41] who presented
a simple equation for the dependence of the Brillouin threshold on the
resonator finesse and showed that the threshold of SBS would be greatly
reduced in the resonator of high finesse. This result has also been confirmed

12



by Kadiwar and Giles [42], [43] through measuring the variation of finesse in
a polarization-maintaining fiber ring resonator for changing input power.
Since the transient effect of the acoustic wave and optical Kerr effect
inducing self- and cross’-phase modulations have been neglected in their
theoretical model, no information about the instability of SBS has been given.
Besides the above works, SBS in a cw-pumped low-finesse fiber ring
resonator (also called Brillouin fiber ring laser) has recently attracted a
considerable interest because of its varied types of /‘dynamic behaviors [44-49].
The most important feature of this device is the existence of periodic
intensity modulation in the created Stokes signal, which is also called self-
pulsing and has recently been studied by Montes et al. in detail [44]. It is
known that SBS instabilities including periodic, quasi-periodic and chaotic
oscillations may arise only when the length of the fiber cavity is large enough
[44], [46]. The experimental results also show that the Brillouin emission is
stable for a short fiber at any input power. Therefore, "phy’sical'origin of the
instabilities in the fiber ring resonator is attributed to the existence of a
large number of longitudinal modes beneath the Brillouin gain curve rather
than the optical Kerr effect [44], [48]. Among most of the previous papers,
both the pump and Stokes waves are assumed to be resonant within the
cavity. The linear phase detuning of cavity for either the circulating p'ump
" wave or the Stoke waves has not been considered. Moreover, compared with
researches into many different nonlinear effects and phenomena associated
with optical fiber such as self- and cross-phase modulation, research for the
effect of stimulated Brillouin scattering on optical bistability in a fiber ring
resonator is less understood. This information is necessary for us to develop

optical bistable devices in a high-finesse fiber ring resonator.

1.5 Purposes of this Study

In this study, fiber-typed optical bistable devices, especially the kinds of
fiber Fabry-Perot resonator and double-coupler fiber ring resonator will be
investigated in detail. Moreover, the transient effect of stimulated Brillouin
scattering, the interplay between Kerr effect and Brillouin gain effect in a
fiber and one-coupler fiber ring resonator will be investigated in order to give

a guidance to the design of fiber bistable devices. All the works are outlined
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as follows: ;

First, we 1nvest1gate the nonhnear absorption and nonlinear refractlon of
BDN in nitrobenzene solution and to examine its potential utilization as
nonlinear material for the development of a medlum-embedded fiber blstable
device with a response time less than several nanoseconds. \

Second, we present an iterative method for analyzing the transient
propertles of the nonlinear Fabry-Perot resonator and apply it to perform a
hnear stability in terms of the input power. ,

. Third, we perform a transient analysis of a double-coupler nonlinear fiber
ring resonator using an iterative method and examine the instability.
Investigate in detail the dynamic properties of optical bistability and
instability to gain a good guide for demonstrating optical bistability in the
double-coupler ﬁbei rmg resonator. ‘Make sure whether Ikeda instability
affect bistable device application or not. e S -

. Fourth, we examine the dynamic behavior of SBS ina smgle-mode ﬁber in
a time region which has nearly the same order of magnitude as the phonon

‘hfenme , . . ER

Fifth, we mvestlgate the transient SBS in a ﬁber ring resonator and
determine the factors which give rise to a instability in the output Stokes
signal. Moreover, we investigate the transient interplay of the Kerr effect
with the SBS gain effect in a fiber ring resonator try to determine whether
the optical bistability could be observed in a fiber ring resonator.
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Chapter 2. Optical Bistable Device Based on a Saturable
Absorber BDN | -

2.1 Introduction

In this chapter, the nonlinear absorption and nonlinear réfraction of BDN
in nitrobenzene are studied in detail using a nonlinear transmission method
[1] and two kinds of z-scan methods [2], [3], respectively, to examine its
potential application as nonlinear material for the ,deVelopment of a novel
fiber bistable device with a response time less than 2~3 ns. We show that the
main origin of the intensity-dependent refract'iVe 1ndex change is neither the
population redistribution of the dye molecules nor the saturable absorption,
but thermal effect.

2.2 Saturable Absorption of BDN

BDN is a nickel complex and has a strong absorption in the infrared region.
The absence of fluorescence from the dye at 1.06 um or any other infrared
wavelength and a response time of 0.2~9 ns were reported [4], [5]. Structural
formula of BDN is shown 'i,n Fig. 2.1, which is the ti‘an‘sition-metal complex.
Absorption spectrum of BDN in a mixture of nitrobenzene is shown in Fig.
2.2. From the figure, wekc.an see that there exists strong absorption in the
near infrared waveband. The electronic structure of this dye molecule can be

described by a four-leveljmodelxas shown in Fig. 2.3. Energy levels 1 and 2

HsC,
HsC
) .. »CHs
N\/
CHs

Fig. 2.1. Structural formula of BDN.
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- Fig. 2.2. Absorption spectrum of BDN in a mixture of nitrobenzene.

'Singlet ~ Triplet
. states = states

Fig. 2.3. Energy-level diagram of BDN dye molecules. The absorption
cross section are giveg byoq , 61, and 0,. The intralevel re-
laxation lifetime are given by <,,,t,,, andx,,. The intersystem
crossing rate are given by~,, andx,,.

are the ground state and the first excited singlet state, respectively, and
~ levels 3 and 4 are the excited triplet states. o, and o, are the absorption cross

sections for the 1-2 and 3-4 transitions, respectively. t,,;, T;;, and <t are the
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relaxation times of levels 2, 3, and 4, respectively. When a laser pulse is
incident into a absorbing dye sample, optical excitation from the ground
state 1 to the first singlet state 2 takes place and then the texcited state
relaxes very quickly to the lowest triplet state 3 (1:’231.50). In ”gener'al, the
relaxation rate from the higher-lying triplet state is very fast, i.e., 1,5~ 0.
Therefore the population of level 4 can be ignored and the response time 1 of
the dye is given by the transition time t,,. Saturable absorption or reverse
saturable absorptlon of many organic dyes can be explained by usmg such a
four-level model. From the rate equatlons of the four level model the

steady state optlcal 1ntens1ty Iin the dye sample is glven by [6]

‘d_I__I I+nI
o dz I +I

@

where z is the depth in the medium, I, =(hv/c,7;)(Ty [ty +1) ~§~»hv5/cot3l is
the saturation intensity, n= o, /c, 1s the cross section ratio, and o,(= No,,
where N is the total density of the dye) is the absorption eoefﬁt:iént of the
ground state. Solving Eq. (2.1) for an incident intensity,Iin‘ at z=0, the

transmittance T of the sample with thickness d is given by

T=T, BXI.O[(Tl l)ln(itl‘m_)} iR (22
TI | ; ;
where T, = exp(—a d) is the hnear transmlttance for I - O If n< 1 ie.,
G, <0y, saturable absorption is obtamed If n> 1 ie, cr1 >0,, reverse
saturable absorptlon is obtained [1] o C
In our experlment we use a Q-switched YLF laser operatlng at 1 047 pm
as the light source and mtrobenzene as the solvent of BDN because of its
high boiling point and good solvablhty The thlckness of the sample is 160 um.
Repetition rate of the pulses is 100 Hz and the pulse width is 22.5 ns. The
laser beam is focused at the sample p0s1t10n with a focal lens to obtain a high
optical intensity. ‘Moreover we use a neutral-deni'sity filter to change the
incident intensity while keeping the temporal and spatial profiles of the

incident pulses constant. To decrease the effect of self-defocusing of the beam
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in the dye solution on the output power measurement, we detect the total
trahsmitted beam ;through a lens. Figure 2.4 shows the measured transmit-
t‘ance T as a functio‘n;_of the input intensity for four BDN concentrations. The
BDN solution exhibits saturable absorption. We investigate the saturable
absorption propertles using the four-level model. The most important
_parameters are the saturatmn Intens1ty I and the ratio of two absorption
cross. sections YI We can eas11y determme these parameters by fitting the
expenmental data to the theoretical values calculated from Eq. (2.2). The
solid ]m,,esr in F1g.;; 2.4 are the best-fit curves. Moreover we can obtain the
response time v of BDN in nitrobenzene and the nonsaturable absorption
coefficient a; by using Vt'=h\)/voOIs and a1~= no,, respectively. All results
obtained from the best fit are sumiharized in Table 2.1. The excited state is
less absorbing than the ground state"‘(i.e., 71=61 /o,<1) and the magnitude of v
increases slightly with increasing BDN concentration. The calculated re-
sponse time is about 1.5 ns, which agrees with experimental data in Ref. [5],
where the response times for different solvents were measured by using a

ﬂash-photolys1s techmque

T T . T [ T T T T T T T T T T

- Concentration N (x 10'cm™®)

10 -

Transmittahee T

£ 0.0 e IR TN el P T s b ey 'l-f"ll’ l B
0. 10 20 . a0

Inmdent mtensuty I (MW/cmz)

F1g 2 4 Transmlttance of BDN in mtrobenzene solut1on versus. the inci-
. dent intensity for four BDN concentrations N. The solid. curves are
. theoretical predictions based on Eq. (2.2).. '
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Table 2.1. Linear and nonlinear parameters of BDN in nitrobenzene at
various concentrations N. Heren=0; / o,and o, =na,.

N(x10%cm?) {o,(x10"cm?) o,(cm?) I MW/em® 1 a,(cm™) 1 (ns)
0.68 5.6 37.6 2.0 0.10 38 1.7
0.92 5.6 51.5 2.3 0.13 6.7 1.5
1.13 5.6 62.7 2.0 0.19 119 1.7
1.58 56 8717 27 022 193 1.3

2.3 Nonlinear Refractive Index Change
A. Experiment Using the Single Beam Z-scan Method
The single beam z-scan method [2] is used to determine the change in the

nonlinear refractive index. Principle of this method is illustrated in Fig. 2.5
Light transmits through a thin sample with the focal lens. The transmit-
tance of a sample is measured through a finite aperture in the far field as the
sample is moved along the direction of h'ght propagation. Due to the non-
linear refractive index of the sample, the medium acts like intensity-
dependent lens, whether it is ’negative' or _positive lens depend on the sign of
the nonlinear refractive index of the sample. Such lens' effect will make the
aperture transmittance (as function of sample position) depend on the magni-
tude and the sign of nonlinear refractlve index (n,). For example, a material
with positive n,, as shown in Fig. 2.5, for z<0, the lensmg effect would causes
the beam to come to focus earlier, so that it d1verges more rap1dly in the far
field. Thls result is that the aperture transm1ttance decreases On the other
hand for z>0 the lensmg eﬂ'ect causes the beam d1vergence to decrease,
resultmg m an mcreased aperture transmlttance Near z=0, thls lensmg
effect has little effect on a focused beam Obwously, a materlal Wlth negatlve
n2 will produce a 31m11ar curve but vnth the peak and va]ley reversed about

z=0. If a Gaussmn TEM00 beam is focused ona thm nonhnear med.lum then

the fo]lowmg approx1mat10n equatlon can be obtamed [2]

AT, o ~$0.406(0—9)°FJAD,[, @3
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" Laserbeam  Sample Without sample Detector

- Position

where AT ' is the deference between the normahzed pea_k and va]ley
transmlttance (as shown in Flg 2. 5), S 1s the hnear transmlttance and
ACDO is the change of on axis phase The 31gn and magmtude of the nonhnear
refractlon can be deduced from such a transmlttance curve (z scan) B

In the expenment We use the same hght source and the same sample cell
in a]l the expenments The concentratlon of BDN is 0 68 X 1018 cm. A 70- mm
focal- length lens prov1des a t1ght focusmg and the spot 31ze w is about 47 um.
An aperture is placed at a distance of 30 cm from the sample and its linear
transmittance S is 0.4. Figure 2.6 shows an example of the experimental
results, where the avera‘ge\inp‘ut power is 1.32 mW and the repetition rate of
incident pulses is 100 Hz. Figure 2.6(a) is the measured z-scan transmittance

with a fully-open aperture (S=1). Since the z-scan trace without an aperture
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Fig. 2.6. Single beam z-scan results. (a) no aperture (S = '1),: (b) 40% aper-
ture (S =0.4), and (c) normalized results of the division of (b)/(a).
The solid curve is the theoretical fit with A®_ =-0.95.

is insensitive to nonlinear refraction, only the effect of nonlinear absorption
can be obtained. The transmittance has a peak at the focus (z=0), which is
the property of a saturable absorber. In this case, the incident intensity at
the focus is 8 MW/cm®. Figure 2.6(b) shows the measured z-scan transmit-
tance with a 40% "apértu're ‘(Sik0.4), that includes ﬂie effects of both the

nonlinear refraction and saturable absorption. Fig. 2.6(c) shows the normal-
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ized results of the division of Fig. 2.6(b) by Fig. 2.6(a), where the effect of
saturable absorption is eliminated. In this figure, the peak-va]ley configura-
tion indicates that the sign of the nonlinear refractive index is negative. The
solid line is the theoretical result with the average on-axis phase change
Ad, =-0.95, which gives an index change of An=-096x10°. Assuming the
intensity-depentlent refractive index of the form n = n, + n,l; we obtain the
nonlinear refractive index n,=-1.2 X 10" ¢m%W, which is four orders of
magnitude higher than the known value of n, = 2.8x10" cm2/W [7] obtained
using degenerate four-wave mixing with picosecond pulses. The origin of the
nonlinearity is the electronic Kerr effect. We believe that the index change is
attributed to the laser-induced thermal effect. In order to confirm this, we
measure the dependence of AT, ., (the difference between the normalized
peak and valley transmittance) on the pulse repetition rate. Sqich an experi-
ment has not yet been repoi'ted thus far. In this experiment we fix the input
power at 1.32 mW and change the repetltlon rate of laser pulses from 0.1 to 1
kHz. The experimental results are shown in F1g 2.7. Atheoret1ca1 considera-
tion of the expenmental results using a heat conduction equation [8], [9] is
given in the Appendlx. The calculated values agree well with the experimen-
tal ones. This means that the therma]ly-induced nonlinearity is dominant in

0.8 T T T T
® Experiment: '
_g 06 |- - Fitted curve ; E N
c
o=
8 04 7
>
a.
l = —
] 0.2
00 | | | | |

0 200 400 600 800 1000 1200
- Repetition rate of laser pulses (Hz)

F 1g. 2.7. ATP_’V’,_ask a fuileti_On of the pulSe repetition ’xate.
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‘the nonlinearity mechanism of the BDN solution. Moreover, it should be
noted that the thermal diffusion timez, can be determined by using Eq.
(AT): it is 4.5 ms in our case. Using the thermal ‘diffusion time 71, =
(0o)’pc,/4q [see Eq. (A3)] and with the known values of pc,=1.85 J/Kcm®,
q=1.5X10? W/cm [10], we obtain 1= 6.8 ms. It apprommately agrees with

the experimental result determined by the smgle beam z-scan.

B. Expeﬁnleht Using the Two-color Z-scan Method

" As described in above section, one can’ measure the thermally-induced
nonlinearity using a single beam z-scan, but cannot investigate the rise time
of the index change. Similarly to Ref. [9], we here measure the fall time and
the rise time of the index change using a two-color z-scan method [3]. Fig. 2.8
shows an experimental setup for the z-scan. The high intensity of a pulsed
pump beam induces phase distortion of a CW probe beam that propagates
through the medium. The thermally induced index change is determined by
the detection of the intensity of the probe field passing thrqugh a diaphragm
in front of the detector. A Q-sWitchedeLF laser (A=1.047 um) is used as the
pumping source and a CW He-Ne laser (A= 0.633 pm) is used as the probe
beam. The pump beam is set at vertical p'dla'rizaﬁ(m by a half-Wavélength
plate (HWP1) and a polai'izer (PR), While the"probe‘béam is set at horiz'ont‘al

HWP B L1 ~Sample BP P,

L0 b
= |2
YLF | Ua U . [
aser PR -Z b4
—— HWP = —i— p,
P, =1,

- He-Ne laser |o— ‘
- Oscilloscope

Fig. 2.8. Schematic of a two-color z-scan experimental setup.
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polar1zat10n The transmltted probe beam 1s adjusted by the pinhole P to
keep the probe beam size at the focus equal to that of the pump beam. BPis a
beam splitter. P, and P are diaphragms. D, and D, are pin photodiodes with
a response time of 0.5 ns, and D, is used to measure the transmitted pump
beam The vanatron of the probe signal is detected with D1 and dlsplayed on
a digital oscﬂloscope If the power of the probe beam is set to be much lower
than the pump power and the absorption coefficient of the BDN solution at
0.633 um is less than that at 1.047 um, the thermal effects resulting from the
probe beam can beneglected.’,When the sample is located at position z with
reepect to the focus, in the limit of a small nonlinear phase shift, the nor-

malized z-scan transmittance T can be written as [2]

| T(z AD,) = OA¢ %)Io )l @29

rvhere Eka is the electrical ﬁeld at the aperture P, plane ‘and’A¢0 is the on-axis
phase shift of the electrical field within the sample. The phase shift A¢, is
related to the on-axis phase Shlft at the focus Ad, by A¢, = A<I>O/(1+z2/zo2),
where Zo = k(wo)2/2 is the defractlon length of the beam. Usmg the far-ﬁeld

condition, transmittance change can be described as [2]

AT( AD ) 4XA¢0 . ! :f; P 2.5)

: X;+9 e M
where x =1z/z,. Since the probe signal AT COrresponds to the change in the
refractive index, the rise time T, and the fall t1me tr of the index change can
be directly obtamed by measurmg AT. It should be noted that the sign of
AT depends on that of the sample position. .

In this experiment, a 7 O-mm focal-length lens is also used and the spot size
w, at the sample is about 47 um. Figure 2.9(a) shows the dependence of the
probe signal on time’at a repetition rate of 16 Hz, where the arrow lines
represent the input ,pum‘/pinvgkpu_lses.‘ As a laser pulse is incident, the probe
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Fig. 2.9. Dependence of the probe signal on time for a beam size o, =47 pm.
(a) In a millisecond time range, (b) In a nanoseccond time range. -

signal AT is relaxed with a fall time. Using the exponential function (i.e., 1-
exp(-t/1;) ), the fitted curve to the experimental results is obtained, which is
also shown in Fig. 2.9(a). The fall time 71, is estimated to be 7 ms, which
agrees well with the thermal diffusion time 1,= 6.8 ms. Figure 2.9(b) shows
the dependence of the v‘ariétion of the probe signal on time in the nanosecond
regime. The relaxing curve is not a simple exponential function and the rise
time of index change 1, is about 47 ns. The same experiment was conducted

for other beam spot sizes of 16 and 23.5 um. The obtained experimental
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results for the fall time and the rise time of the index change are summa-
rized in Table 2.2. It is confirmed that the fall time is proportional to the
square of the beam spot size w, and they agree well with the theoretical
values for the thermal diffusion time calculated by using <, = (n)’pc,/4q. It
is found that the rise time Ty, is proportional to the beam size wy,. This means

Table 2.2. Experimental results for the fall time and the rise time
- of the index change for different beam spot sizes ..

0, (um) T (ms) __ Ty (0s)

47 7.0 47

235 18 25
6 | o086 o 16

that the nonlinear refraction is attributed to excitation and propagation of
an acoustic wave. The 31gn of mdex change due to the photoacoustlc effect is
negative and the rise time is determmed by the acoustlc transmit time, i.e.,
T, =w,/V,, where v, is the velocity of sound i in the solvent [2], [9]. In our case,
the velocity of sound in nitrobenzene is calculated to be about 1000 m/s and it
agrees with the reported value N ’=\1463 m/s [11].

2.4 Expenmental Investlgatlon for the Optlcal Blstablhty in
BDN Dye

Here optical blstablhty in a Fabry Perot resonator usmg the BDN dye is
demonstrated. The experlmental setup is shown in Fig. 2.10. Parameters
used in the experiment are listed in Table 2.3. The resonator consists of two
multilayer mirrors separated by 200-um and the BDN concentration is 1.9
mg/ml. The initial phase detuning is a key factor to determine the appear-
ance of optical bistability, which is adjusted by changing the incident angle
8. Typical an experimental result is shown in Fig: 2.11, where the input peak
power is 450 W. Figure 2.11 (a) shows the temporal profiles of incident and
transmitted pulse in F-P resonator. Figure 2.11(b) shows the input-output
characteristics. It is found that a rough hysteresis loop is obtained in the
output-input curve.. : R

F1na]ly, it must be dlscussed whether one can use the dye BDN as a non-
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Fig. 2.10. Experimental setup based on bulk Fabry-Perot resonator.

Table 2.3. Parameters used in the experiment for observing bistability.

Medium BDN in nitrobenzene solvent
Concentration 1.9 mg/ml

Length of the resonator x 200 pm (bulk resonator)
Light source LD pumping Q- sw1tched YLF
Wavelength 1.047 pm

Pulse width 23 ns

Frequency of the laser pulses 1 KHz

Average output power 10 mW ‘ |

Mirror reflectivity o 2%

Focal lens 16 mm

linear material to develop a novel bistable optlcal dev1ce with a response
time less than a few nanoseconds. In view of the above theoretical and
experimental results, we think that the dye is not su1table for such a device
application, since the observed nonlinear refraction is not the population
redistribution of the dye molecules but the thermal effects. In fact, we tried
to dope the dye into a polymer However no measurable nonlinear refraction
could be obtamed usmg the same z-scan method. We therefore consider that
optical b1stab1]1ty observed in our exper1ment results from strong self-
defocusmg 1nduced by the photoacoust1c effect ' : o
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2 5 Conclusmn ot o , .

A nonlinear transmlssmn expenment and z-scan experlment are per-
formed to clarify the origin of the nonlinearities of a BDN-mtrobenzene
solution in the nanosecond regime. The saturable absorp‘aon properties were
first determined by using a transmission. The response time . of the dye
solution is about 1.5 ns. Next, the nonlinear refraction was 1nvest1gated by

using a single beam z-scan and a two-color z-scan. The main origin of the
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nonlinear refractive index chahge is not the'populatien redistribution of the
dye molecules but the thermal effect. In particular, the nonlinear refraction
in the nanosecond regime is attributed to density change ‘due to propagation
of an acoustic wave excited by the laser pulses. The results and discussions

presented in this chapter will be applicable for many absorbing materials.

Appendix

For convenience, we assume that the incident pulse duration tp is much
smaller than the period of laser pulse TO, as shown in Fig. 2. 12. Here the
dependence of optical intensity I(t) on time can be regarded as the comb

function,
Ity =1,> 8(t-iT,), (A1)
i=1

where I, represents the peak intensity of the incident pulse. Moreover, if we
consider only the thermal effect, the temperature dlstnbutlon can be

described by the following heat conduction equatlon [81, [9]:

. OAD(x,t) azAD(r t) 1 0AD(z, t)
P T A x ar

:l al(r, t), (A2)

where AD is the change in temperature, o is the absorption coefficient of the

A
lo
‘Cp=23 ns
—le—
»
< ;Toz SR, PR ‘TO o ol 7 t

Fig. 2.12. Simple model for the incident pulses.
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sample, p is the density, c_is the specific heat and q is the thermal conduc-
t1v1ty The right hand s1de of the above equatlon acts as a heat source.
Assuming the ’Gauss‘lan profile of the pulse and neglecting the 'second
deriv‘ative with teepect to rin Eq. (A2), we can obtain the fo]lowing equation:

awo

I(t) (A3)

Tp JAD(Y) + AD(t) =

Where T = (wo)zpc /4q is the thermal relaxatlon t1me and Y is the rad1us of
the beam waist. The steady- state solut10n of Eq. (A3)is glven by

(A9)

AD(t) = (a(oglo )( exp(-(t -iT,)/tp)

4qry, 1-exp(T, /7p) .

iT, <t <@+1T,,

where i is an kintegei', Since the change in the refractive inde‘xh An(t) 1is

proportional to AD(t), we have

An() =& (O‘“"’ )( xpC(t- i) %)) (45)

oD\ 4qty | 1-exp(T,/ty)

iT, <t<@+DT,,

where an/dD is the thermo-optic coefficient. The time-averaged index change

is expressed as

ﬁ” I(t)An(t)dt
ﬁ” It)dt

- An = (An(t)) = (A6)
In the single beam z-scan method, since the normalized transmittance AT;_
is proportional to the change in on-axis refractive index, we can obtain the

following equation: -
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T, expl--2) exp(-—-)

AT,y = 1:.[1') o 1}“ ftDl , C o (AD)
1-exp(-—2) l-exp(-—) S
R 7 pi Ty

where f is the repetition rate of the incident laser pulses, P;, is the input
power (in our case, it is set to be a constant). We can determine the thermal
relaxation time <, by fitting Eq. (A7) to the experimental results in Fig. 2.7.
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Chapter 3. Optical Bistability in a Nonlinear F1ber
Fabry-Perot Resonastor

3.1 Introduction
In this chapter, optical‘ bistability in a nonlinear fiber Fabry-Perot resona-
tor is 1nvest1gated B1schofberger and Shen have studied the dynamlc be-
havior of dispersive optical bistability from the quasi-stead-state case to the
extremely transient situations using a multiple-beam interference approaeh
[1]. HoWever the iterative method first developed by Ikeda [2] has not yet
"been reported for the nonlinear Fabry-Perot resonator. Here we present an
iterative method for analyzmg the transient propertles of the nonlinear fiber
Fabry-Perot resonator and apply it to linear stability in terms of the input
power. We plan to develop a nonlinear fiber Fabry-Perot resonator utilizing
the Kerr nonlinearity of the optical fiber as shown in Fig. 3.1(a), and hence

these analySes are required to obtain a good guide for the design.

Mirror  Optical Fiber

@

error Nonlmear Medlum M|rror
n_n°+n2I '

%SF(O,t) | sF(L!t)\_%)

E;,,(t)‘
TH <es0)  ElL<—

| Z=0 | Pt s N EL AN Z=L
()

F1g 31 (a) Schematlc dlagram of a nonhnear ﬁber Fabry-Perot resonator
o and () its plane -wave model '
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3.2 Analysis of Transient Optical Bistability and Stability in a
Nonlinear Fiber Fabry-Perot Resonator

3.2.1 Basic Theory ,

Figure 3.1 shows a schematic diagram of a nonlinear ﬁber Fabry-Perot
resonator and a plane-wave model with the definition of each field for analy-
sis. The forward and backward propagating waves in the cavity can be ap-

proximately expressed as plane waves propagating along the z axis by

E@d-jn@oexdiot-nkalee, @

E;(z, t)- sB(zt)exp[](mt+n0 0z)]+cc G e e 3.2)

where w and k, are the angular frequency and wave number-:in"the;free-space.
er and e are the complex amplitudes of the forward and backward waves,
respectively. n, is the linear refractive index of the fiber. Like all electromag-
netic phenomena, optical propagatlon in a fiber resonator is governed by

Maxwell's equatlons The wave equatlon @in SI un1ts) is given as

| a“’E .t 0* G
V?E(z,t) = g,u, ag ,)+ 003 {PL(z,t)+PNL(z,’t)}, | @3.3)

where the loss in t‘hemediu'n‘l has been' rieﬂe‘glected";e0 and p, are the electric
and magnetic perm1tt1v1ty of vacuum, respect1vely E(z t) is the total optical
field, i.e., E(z, t) = Eg(z, t) + EB(z t) PL and P are the linear and nonlinear

polarization, respectlvely, which are expressed as

PL(z,t)=eo(n(2)—1)E(z,t), @
Py, (z,t) = 26,n,An(z, t)E(z,t), (3.5)

where An(t z) 1s the variation of refractive mdex ansmg from the 1nterfer-

ence of the forward and backward propagatmg waves in the cav1ty For Kerr
material, it obeys the Debye relaxation equation [3]
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f r—(?'(')ATn-{-An - n,[EG bt /2, 3.6)

‘ where © and n, are the response time and nonlmear refractwe mdex of the
Kerr medlum respect1vely For a fused sﬂma ﬁber since its response t1me is
very small (~ 07" s), it is general assumed that the nonhnearlty takes place
kmstantaneously Subst1tut1ng ‘Egs. 3.1)-(3. 2) and Eqs (3 4)- (3 6) into Eq.
(3.3), us1ng a slowly varying amphtude approx1mat10n and settmg t =0, the

“followmg amphtude equatmns are obta_med

) ’t 0 ’t . 9 . ’ 2
aeF;zz ) f%aepgf ) jnk, {IaFi(z,t)} +‘2|er(z,t>. Jer(@,0), (3.7
- 9ep(zt) P_p_aeB(z t)_ i,k fen @ 0" + 2z @O len @), @9

The factor of two on the mght s1de of Eqs (3 7) and (3 8) arises ﬁ‘om the
standmg-wave effect (. e the so- called cross-phase modulat10n) ‘In case of

steady state, Eqs (3.7) and (3.8) become

95% ‘J'“é‘ka{lséf oo (39)
"j—dz—: _Jn k {IEB| +2!5F| }33 . o . (3.710)

It is easy to show that |ez| and |ez|* do not change with z. Analysis for the
Steady-state of 'o‘p‘tical bistyabi]‘ibty in a Febry-Perot resonator has been per-
formed by Marburger and Felber [3] using the above equatlons and the
related boundary condltlons ' T ‘

3.2.2 Transient Analys1s Based on Iterative Method

A.Formulation ’ SN

In Fig. 3.1, the resonator consists of a nonlinear med.lum of thickness L

and two identical mirrors of reflectivity R. For Kerr medlum, the nonlinear
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refractive index is given by

27]0 Lo 1 _ ‘o 2"]01’12 P , (311)
n, n, Seff

n=n,+ nzlEI2 ;no

‘where 710 is the wave 1mpedance in the - vacuum I P, and E are the opt1cal
mtens1ty, opt1cal power and optlcal electrlc ﬁeld respectlvely Seff is the

'feffectlve mode area of the fiber. Flrst we derlve the transmitted wave Eout(t)
‘When an optlcal pulse w1th slowly t1me-vary1ng electric field E.(@®) is incident
on the nonlinear resonator The boundary cond1t10ns for the mput m1rror at

z=0 and the output mirror at z=L may be expressed as

5 (00)=(A+0E, 0)-re508), . (312

Eout(t)‘= (]‘_I')SF (L’t)’ - ‘ ‘ , (313)
eB(Lt)=—reF(Lt) (3.14)

Where 1(= J— R) is the amplitude reﬂect1v1ty of the mirrors. In the limit of
mstantaneous relaxatlon of the nonlmearlty, the forward wave at z= L is

related to that at z=0 as follows:
ep(Lot) = &g (O’t - "R)exp[f (6o + ¢NF (t -w), (3.15)

where 1y (=n,L/c) is the cavity trans1t (half round-trip) time. ¢,(=n,k,L)
is the linear phase shift and x (t - 75 ) is the nonlinear phase shift given by

L (t—_rR,>=(<n2k;>}(‘1eF bt =vc + ) 4'jz;eg<,z‘,t-maqz‘/“cxz-‘) . 610

Note that, in Eq. (3.16), the contribution of the backward intensity to the
phase shift is double that of the forward intensity due to the cross-phase
modulation. Since the integration of the backward intensity cannot be car-
ried out exactly, we approx1mate Eq (3 16) by applymg adequate numencal

1nteg'rat1on formulas:
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dur (b —7r) = 0 ko (Ler (0,6 - 75| + 2L a0t "‘Rz)l i |8B(d’t)|) . (3.17a)
= 0,k L(er (L0 +[es (Lt - 200" +[en Lo t))),

=0,k L(er (0.t — )" +Zes Lt -v)*). (3.17b)

E(juation (3.17a) is the approximation due to a trapezoid rule. Here we use
relations, |e5(0,t-15) |%=|ex(L,t-27) |* and |ex(0,t-v) |*=|ex(L, t) |, which hold
because of no loss. On the other hand, Eq. (3.17b) is the approximation due to
a midpoint rule. Similarly, the backward wave at z=0 is related to that at z=

as follows:
5(0,£) = 5 (Lt — vy Jexpl- (0o + bup -7, @19

* where the nonlinear phase shift ¢, (t -5 )is given by

J¢NB(t—tR)=n2kof{ 2|eF(L—z,t -ty +nlz/c]2+lx»:B(L--z,t—'cR +n1z/c]2} dz,
. 0 . . )

= .k Liles Lyt )| +[er@ut =) +[eeO,0)), - (3.199)
snzkod(leB(L,tftR)l2+2[8F’(0,t—tR)|2). | | (3.19b)

Equation (3.19a) is the trapezoid appioximation, Equation (3.19b) is the
midpoint approximation and | ex(L,t-t) | 2=] ££(0,t-275) |2 is used. Substituting
Eq. (3.15) into Eq. (3.13), we obtain the transmitted field

E,(t)- (1 ~1)er (0, -5 Jexp[- (0o + de (t 72 ))] - (3:20)

Here, uSing Egs. (3.1-2)-(3.14) and (3.18), the field BF(O,t—TR) can be ex-

pressed as

'eF(o,t;tR)=(1+r)Em(t-1;R)+1—1-‘l;Eout(t-2IR) ‘ (3.21)

X exp[— j(% +np (t -2, ))] .

Further, substituting Eq. (3.21) into Eq. (3.20), we obtain the final expres-

sion for the transmitted field
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E,..(t) = TE,, (t - v Jexpl- i(0, + de (t 75 )]
+ REeut (t - 2"’3 )exp[—- j(2¢o +Qnr (t —Tr )"‘ O (t -2ty ))] ) (3.22)

where T(=1-R) is the transmissivity of the mirrors. In our case, we may
regard the values of E, (t-tz)and E_,(t-2t;)as known. The problem is

the calculation of nonlinear phase shifts ¢z(t—7;) and ¢5(t-27;). It
should be noted that the forward and backward intensities at the output
mirror (z=L) can be related to the output intensities in terms of the trans-
missivity T=|E,_.(t) | %/, | ex(L,t) | %).

Under the trapezoid approximation, the two nonlinear phase shifts are
given by ' - :

B, (t- 2% ) ), (3239
Eout(tlz)a (3.24)

due(t-72)= A1+ R)E, (6 +R
dxp (6~ 275 ) = AL+ RE,, (¢ - 20, )" +

where A =n,k L/n,T. Substitution of Egs. (3.23) and (3.24) into Eq. (3.22)
gives the final difference equation describing the dynamics of the nonlinear
resonator. Since the equation is an implicit formula for the transmitted field
E..®), ie., E .(t) to be determined is a function of itself, a self-consistent
solution for the transmitted field on the computer must be determined.

" Under the midpoint approximation, on the other hand, the two nonlinear
phase shifts are given by ' ' | | ‘

e (6-5) = Al Tlep 0,6 -7 ) +2R[E,, (6 -, )7 (3.25)
onplt-275) = AR, (t- 20, ) + 2B, (t- v )) . (326

where we can calculate |&x(0,t-tp) |2 in Eq. (3.25) from Egs. (3.21) and (3.26).
Substitution of these equations into Eq. (3.22) gives the final difference
equation. The equation is explicit, in contrast to the case of trapezoid ap-

proximation.

B. Linear Stability Analysis
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Setting E, (t)=E, and E_,(t)=E_, (t-2t;) =E, in Eq. (3.22), we have
the following equation for the steady-state solution E,: |

out

E, = TE,, exp}-jlpo + AL+ ZR)E, " J}+ RE, exo}- 2o, + 340+ R )} 3.2D
From the above equation, we have the transmissivity as

AIEtlz _ 1

2 ’
E 1+F-sin®(¢, +§A—(-12+ﬁ|Etkl2)

(3.28)

in

wheré F(=4R/1-R)?) is the finesse of the cavity. Since the right-hand side
of Eq. (3.28) is a function of |E,|? the input-output characteristics can be
~ determined by computing the input intensity |E,,|* for a given output inten-
sity |E,|2. In the linear case, A=0 and resonance takes place when
¢, = k,n,L = Mz (where M is an integer).kWe hereafter define the initial

detuning of the cavity as A¢, = 2(¢, — Mm).
According to Refs. [4] and [5], we add a slight perturbatlon e(t) to the
'steady-state solution E_, in one round-trip time as
E_. t)=E, + e(t) |e| <E_ . (3.29)
with | o R
e(t) = dexp(jot) + pexp(-jot)- (3.30)

Substituting Eq. (3.29) into Eq. (3.22) with Egs. (3.23) and (3.24), we have
the following difference equation for perturbation: '

E ,(t+2t;)=E, +¢(t+273) : , '(3.31)
=E, +6exp(Jot)exp(120tR)+uexp( Jcrt)eXp( j20ty).

Since the perturbation from the steady state is assumed in a penod of

round-tnp, Eq.(3.31) becomes
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E, (t+2c)= (1_'R)Ein exp {— j(% +Ad +R)(Et +£(t+2c§))(E; +¢(t +21:R)*)+
A+R(E, +s(t))(Et* +8(t)*))}+R* (E, +e(t))x
exp {12, + AQ+R(E, +o(t+ 2B, +(t+25)’)
AL+ 2RE, +o OB+

(3.32)

after some algebra, including a series expansion and neglecting the terms
which include the powers of e(t)and e(t + 2t;) greater than 1, we can obtain

the following equation:

e(t +2t5) = <jUA(L + R)(E.e"(t + 25) + B, "elt + 25))+ R(E,e"(0) + E,"e(t))
_VEA(2+R)(E.e" (b + 25,) + B, et + 210))+ 1+ 2R)(E,e*(®) + E, o) 3-33)
+ Ve(t), ‘ ) ‘
where eE s e o o
U-Q-RE, expl-ilpo +A+2RYE), (339
'V -Reexpl-i2g, +38a+RIE[). @33

On the other hand, the perturbation e(t+2ty) 1s given by |
e(t + 27;) = dexp(jot)exp(j20ty ) + pexp(-jot) exp(-j2oty) - - (3.36)

Substituting Eq. (3.26) into Eq. (3.23) and further expressing Eq. (3.23) in

matrix form, we have the following eigenvalue problem:

B, exp(j20t;)+B, -2 C, eXD(J:ZOTR) +C, H d } -0, ’ (3.37)
C;exp(j2otz)+C;  Bjexp(j2oty)+B; |{n’ ' -
with
B, - -jUA(L+R)E; - jVA@+R)E,[* -1, (3.38)
‘B, = —jUARE," - jVAQ+2R)E, +V, 1(3.39)
C, - -jUA1+R)E, -jVAQ+R)E,*, (3.40)

C, - -jUARE, - jVA(1 +2R)E,”, | | (3.41)
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where A = exp(j2oty) is an eigenvalue to be determined. Note that Eq. (3.37)
is a pseudo-eigenvalue problem since the element of the matrix contains the
eigenvalue M. Setting the determinant of the coefficient matrix equal to zero,

we have the following characteristic equation:
A2(B, -1]" -|C,[* )+ 2 Re((B, - 1B," -C,C,")+ (B, [ - [C4[*)=0. (3.42)

The steady state solution E_, is stable only when the absolute value of A is

Jless than umty

C. Numei'ical Results and Discussion

"In this sectien, we present the numerical results for the dynamic properti-
' es of a nonlinear F.abry~PerOt resonator made of fused optical fiber and two
reflection mirrors; All numerical results presented here are calculated for the

fiber parameters shown in Table 3.1 in correspondence with the practical

Table 3.1. The related parameters used in the theoretical calculation.

Medium ' Single-mode fiber
Linear refractive index n, 1.454
Nonlinear refractive index n, | 1102 m?/V?
Effective mode area S, 50 um?
Fiberlossa ‘ ; ‘ 0 '
Wavelength A. ' 1.06 pm

conditions. As an incident pulse, we take the following Gauss1an temporal
pulse of

‘E n () = Eg exp ln«/_(

2 ‘ | ‘ ) |
- (3.43)

=
where tp is the pulse width defined by full width at half-maximum of the

power.

First, we presentthe numerical results celculated by the iterative method
based on the two approximations and compare them with those determined

by the multiple-beam method. Figure 3.2 shows the typical numerical results
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Fig. 3.2. Nonlinear pulse response and input-output characteristics of the
fiber Fabry-Perot resonator with t, =20 ns, L=1 cm, R =0.9, and
A¢,=-0.1x. The results are calculated by three methods: (a) itera-
tive method using the trapezoid rule and multiple-beam method
(note that the two results are indistinguishable), (b) iterative
method using the midpoint rule.

for the temporal change of the output pulse and the corresponding input-
output characteristics when an optical pulse of 20-ns pulse width and 1-kW
peak power is incident on the fiber resonator with L=1 cm, R=0.9 and
A¢, = -0.1x. The numerical results calculated by the iterative method using
the trapezoid rule agree with those given by the multiple-beam method to
three significant figures. Therefore, those results are indistinguishable when
plotted, as true for the case of the nonlinear ring resonator. We can see,
however, that instability takes place at the high-transmission level in the
midpoint approximation (shown in Figs. 3.2 (c) and 3.2(d)); moreover, there is

a large discrepancy between the magnitudes of the output power calculated
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with the two approximations. The present phenomenon is not the inherent
instability of the nonlinear resonator but numerical instability in the compu-
tation procedure. ‘ '

Next, we present the numerical results of linear stability analysis. Figure
3.3 shows a typical example of the stationary input-output characteristics
and unstable regions. Unstable regions exist in the positive-slope branch as
Jwe]l as in the negative-slope branch. The negative-branch instability leads to
optical bistability and the positive-branch instability is called Ikeda insta-
bility. We here focus on the positive-branch unstable regions marked by A
and B and define threshold power P, P'yy(where I=A, B) for Ikeda insta-
bility. We also define switch-on and switch-off poweré, Py, Py, respectively.
Figure 3.4 shows the dependence of Ikeda instability threshold and bistabil-
ity switching powers on the initial detuning A¢, for the mirror reflectivity
R=0.9 and 0.8 and a resonator length of L=10 cm. Note that the results in Fig.
3.4 are useful for other lengths of the resonator since these threshold and
switching powers are inversely proportional to the resonator length. The
switch-on power Pg; increase with initial detuning |Ado|. As the initial
detuning |A¢0| decreases, the width of the hYsteresis loop, Py —Pg, de-
creases and vanishes at a critical point A¢, = —A¢, (in this case, A¢; =0.10x

Output Power P,

{VPsu PG
Po Pl

Input Power P,

Fig. 3.3. Typical curve of steady-state optical bistability and unstable region.
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F1g 3.4. (a) Dependence of bistability switching power Pgy and Pg, on A¢,
and (b) dependence of instability threshold power P;; and Py on
the initial detuning A¢, for two values of mirror reflectivity R.

for R=0.9, A¢, =0.15x for R=0.8), where we can obtain differential gain. The
bistable devices are usually operated at a small detuning of n < A¢, <A¢,.
The ratio of minimum power for Ikeda instabi]ity to minimum power for
bistability, P®y;/Pg, , is also shown in Fig. 3.4 (b) since one of our interests is
whether Tkeda instability affects bistable device application or not. The
power‘ratiofPBUL/PsH, is found to increase with decreasing detuning and to
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exceed 100 near the differential gain region. The instability threshold power
P®,, also becomes less than P*; in the low-transmission state for A¢, <-x.
However, it should be noted that, since P*;<Pg; in such a region, the output
is unstable in the low-transmission state before being switched to the high-
transmission state. We therefore conclude that Ikeda instability hardly
affects bistable device application since bistable devices are always operated
at near resonance. It is interesting to compare the results for the instability
threshold with those given by Firth in Ref. [4], a stability map defined by the
intracavity intensity and initial detuning is shown for a special case of zero
transmission. Although it generally agrees with that in Fig. 3.4, we can see a
few disagreements. The instability threshold P®;; in the high-transmission
state does not increase with detuning |A¢,|; moreover all the instability
threshold powers P!, Py, decrease with decrease in mirror reflectivity.
Next, we show an example of the numerical results where instability takes
place in addition to optical bistability. Figure 3.5 shows the input-output
characteristics of the fiber resonator when an input pulse with 10-us pulse

duration and 40-kW peak power is incident in the resonator with L. = 10 cm,
A, = -0.4x, and R=0.9. It is found that Ikeda instability occurs when the

300 , :
g lkeda Instability—=—
o 200 /
B
o
=
°
a
5 100 [ L
Q.
i
3 —~— Optical Bistability

0 ] |

0 10 20 30

Input Power P, (kW)

Fig. 3.5. Input-output characteristics of the fiber Fabry-Perot resonator
with L=10 cm, A¢,=-0.4x,t,=10 us, and R=0.9, where both opti-
cal bistability and Ikeda instability occurs.
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incident power P, =28.0 kW, according to the linear stability analysis shown
in Fig. 3.4, the threshold power for Ikeda instability is P, °=26.9 kW, it
approximately agrees with the transient results.

Finally, we present the numerical results for transient optical bistability
calculated from the iterative method based on the trapezoid rule. Figure 3.6
shows the input—output characteristics of the fiber resonator with L = 2 c¢m,
A¢, = -0.15x, and R= 0.9 for several values of the input pulse duration <.
As the pulse width is increased, the width of the hysteresis loop decreases
and approaches one of steady-state solution. An overshoot and undershoot in
the transient analysis exist, however, even if the pulse width reaches infinity.
In the quasi-steady state, the switching speed of the bistable device is gov-
erned by the Cavity decay time t, =2 nlL/ (1-R?)c. In present case, t; =1.0
ns. We can have the quasi-steady-state for t, >500t, — 1000t . Figure 3.7
shows transient optical bistability in the fiber resonator with L =2 cm and R
= 0.9 for several values of initial detuning |A¢,|. The width of hysteresis loop
and switching power increase with increasing detuning |A¢,| as predicted by
the steady-state analysis. It is also found that as the detuning is increased,
the shape of the hysteresis loop sharpens.

320 T T T
‘I?P=1000 ns

s —— 100 ,
L 240 - —-- 40 . A -
o m
o Y et T
2 160 |- ' \,"\.;," —
é 80 - ,-"/}’ | I/ L=2em -
o I‘ J/// A¢y=-0.15x

oL A | | !

0 250 500 750 1000

-Input Power P, (W)

Fig. 3.6. Transient optical bistability in the fiber Fabry-Perot resonator

with L =2 cm, A¢,=-0.15x, and R = 0.9 for several valuse of initial
input pulse duration <.
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Fig. 3.7. Transient optical bistability in the fiber Fabry-Perot resonator
with L=2 cm and R = 0.9 for several values of initial detuning A¢,.
The pulse width of the input pulse is t, = 20 ns.

3.3 Experiment on a Nonlinear Fiber Fabry-Perot Resonator :
In this section, we try to demonstrate optical bistability in a nonlinear

fiber Fabry-Perot resonator. The experimental setup is shown in Fig. 3.8,

where an injection-seeded and Q-switched YAG laser (Continuum HPO-

N
I

Q-switched PR
YAG laser

0 O
Oscilloscope

Fig. 3.8. Experiméntal setup for a fiber Fébry-Perot resonator.
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1000) operating at 1.06 um is used as the pump source. A half-wave plate
(WP) and a polarizer (PR) are used as an attenuator to adjust the input
power. The pump light is coupled into the fiber by a 10x microscope objective.
A single-mode nonpolarization-maintaining fiber with a length of 5 cm is
used to form the resonator, which is mounted on a brass block. All parame-
ters about the fiber are listed in Table 3.2. The fiber ends are carefully pol-
ished normally to the fiber axis and multilayer dielectric mirrors are de-
posited on the fiber endfaces by evaporation. The reflectivity of the mirrors
are larger than 0.9. One piezoelectric transducer (PZT) is used to control the
cavity phase detuning. The PZT can be driven by a stabilizing DC source. D,
and D, are pin photodiodes with a response time of 0.5 ns, which are used to
measure the temporal intensity profiles of input and transmitt\ed pulses,
respectively. Figure 3.9 shows the input-output characteristics of the fiber
resonator when an input pulse with 30-ns pulse duration and 1.5-kW peak
power is incident in the resonator. HoweVer, cohtrary to the theoretical
results shown in above section, we cannot observe ahy hysteresis whenever
the initial detuning is changed. Under the detail measurement, we found
~ that there exist a stimulated Brillouin scattering in the fiber resonator,
which will decréase the resonator finesse considerably. We will describe and

discuss it in Chaps. 5 and 6.

Table 3.2. Parameters for a typical single-mode fiber.

NAME F-SY(NEWPORT)

Type of fiber | Single-mode fiber
- Core diameter IR 6 pm

Clad diameter | 1252 um

Clad outside diameter ' 245+15 ym

Mode field diameter 7.7 pm

Core refractive index -~ 1.4541

Clad refractive index - 1.4496

Coupling efficiency (Exp. data)| 10 dB _

Fiber loss ‘ - 1.6 dB/km

e
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Fig. 3.9. (a) Experimental results for the temporal incident and output
pulses in a fiber Fabry-Perot resonator with L =5 c¢cm, R = 0.9,
and v, = 30 ns, (b) input-output characteristics of the resonator.

3.4 Conclusion

We have described two iterative methods for calculating the dynamic
properties of the plane Fabry-Perot resonator filled with a nonlinear medium
which has an instantaneous response time when an optical pulse with an
arbitrary temporal profile is incident on it. Further, we performed a linear
stability analysis to examine whether Tkeda instability affects bistable de-
vice application or not. Comparison with the multiple-beam method showed
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that the iterative method based on the trapezoid rule is much simpler and
gives accurate results. The iterative method based on the midpoint rule
however is not suitable because of numerical instability. We found that Ikeda
instability hardly affects bistable device application because the instability
threshold is two orders of magnitude larger than the switching power. Fi-
nally, we cannot experimentally demonstrate optical bistability due to the

occurrence of stimulated Brillouin scattering in the fiber resonator.
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Chapter 4. Optical Blstablhty in a Nonhnear F1ber Rlng
Resonator

4.1 Introductlon
TIn this chapter, a fiber rlng resonator Wlth a double fiber coupler is consid-

ered, where two outputs are available. We develop a tran51ent_ analysis for
this kind of resonator using an iterative methed and examine the inStabﬂity.
The numerical results for both transmission bistability and reflective bista-
bi]ity will be presented. Although a linear stability analysis requires a sim-
ple and exact equatlon descrlbmg the dynamlcs of the resonator and a
steady state analysis, such analyses have not yet ‘carried out. The great
interest here is whether Ikeda mstab]hty affects blstable devme apphcatlon

or not

4.2 Analysis of Tran31ent Optlcal B1stab1].1ty and Stab111ty
A. Trans1ent Analys1s R

F1gure 4.1 shows a schemat1c dlagram of a nonhnear fiber rmg resonator
which consists of a ﬁber ring of length L and two identical fiber couplers. In

this case, there are two output ports, i.e., transmlssmn and reﬂectlon ports

Input Port Ein(t) (t) Reflection

Transmission
Port t(t)

F1g 4.1. Schematic of a double-coupler nonlinear fiber ring resonator and
the definition of each electric field for analysis.
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on the analogy of a nonlinear Fabry-Perot resonator.

For the purpose of analysis, the slowly-varying complex electrlc field at
each position are defined as shown in Fig. 4.1. E_(t) is the complex electric
field of an incident wave. E,(t) and E_(t) are transmltted ﬁelds at the
transmission and reflection ports, respectlvely Ecl (z, t) is the ﬁeld inside
the nght half cavity and Ecz(z t) is the left half cav1ty field. For the two
couplers at the mput (or reﬂectlon) and transm1ssmn ports the complex ﬁeld

amphtudes are descrlbed as follows

B, =7 w8, O WRB, L), @y
By 0,8) = Y-y (- VB, © + VI- kB, L, v, @2
E, () = -iyI-yVxE, L/2,1), @3

cz(le,t)_F ﬂEd(L/z,t),' @

Where Y and K are the fractional 1ntens1ty loss and mtens1ty couphng coefﬁ-

cient of the coupler, respect1vely From Eqgs. (4 3) and (4.9, the cav1ty
ﬁeldsEc1 (L/ 2,t) and Ec2 (L/2 t) can be related to the output ﬁeld E (t) at

the transmssmn port. In the limit of mstantaneous relaxatlon of the non-
lmearlty, the two cavity ﬁelds at both ends of each half ring can be expressed

as follows:

B (LI2,t) =B, (0t —tp)exp(-oL/2expl- ih + 6 -T0),  (45)
Ec2 (L’t) = Ec2 (L /27t - tR)exp(_ale)eXp[— J(¢O + ¢N2 (t —Tg )]’ (4'6)

where o is the amplitude attenuation coefﬁcient of the ring fiber and (=
n,L/2c) is the half round-trip time of the cavity. ¢,(=n k,L/2) is the linear
phase shift per half round-trip. ¢,,(t-v,) and ¢yo(t-73) are nonlinear
phase shifts due to propagation ‘around theright-half and left-half rings,

respectively, which are given by

E, (z,t-T; + noz/c)lzdz

oy (6 —TR) =n2k0f‘12
Ec1 (L/2 t)l =n, k IE (t)l

4.7)
~:—nkLel
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boa(b=1) =1k, [ [E, (L/2 42,6 -1 +npz/0) dz

BN (4.8)
=n,k,L_, Ecz(L/2,t - 'cR)|2 =n,k, 9—% E, (t —‘l:R)l2 ,
where L, and L., are theueffe(itkivek hé]f cax}ity length gﬁen by
Lel _ eXp(OCL)—l ’ h .Lez_: 1 —_— exp(—OLL) i o (4.9)
20 2a

If the fiber is lossless (o = 0), ‘we have Lél =L, = L/2. Using Eqgs. (4.2) to

(4.6), we obtain the expression for the output field at the transmission port

as : . . : :
E,(t)=T-E,, (t—t5)exp[- j(do + by (t — )]

+R-E, (t—21;) exp[- j(2b, + by, (t— T3 ) + Opo (t = zzR))], (4.10)

T= —‘(1 -yxexp(-al/2), ’ (4.11)

R=0-y)0-x)exp(-al), 4.12)

where T and R just coffesﬁbhd to the mirror tréhsmissivity and reflectivity
of the Fabry-Perot resonator, respectively. Equation (4.10) is formally the
same as that for the nonlinear Fabry-Perot resonator [1]. However it should
be noted that the nonlinear phase shifts ¢y;(t-1x) and d)ﬁz(t—— TR) are
dj.fférent from those of the non]ine?i' Fabry-Perot resonator, i.e., the two
rqsqnators are. not. equal in “»response,, because there exist counter-
propagating fields in the Fabry-Perot resonator. Equation (4.10) is an im-
plicit expression for the,Ou:tI‘)yli’p field E(t),i.e., E((t) tobe determihed is a
function of itself in addition to the former input field B (t-1z) and output
field E((t-271R). Therefore a self-consistent ,ksolutiokn, ‘fofl E((t) is needed. To
the same as above, the expressiori for the output field at the reflection port

can be obtained as

E,(t)={1-vJ1-x{E, t)+

(4.13
exp(-aL/2)E, (¢ ~15)exp[- j(0, + ne (t —12)]} ; )
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Since this equation is an explicit expression for the output field E_ (t), one
can easily calculateE_(t) using the known values of E; (t) andE,(t-<g).

B. Steady-State Analysis

Once the difference equation for describing the dynamics of the ring reso-
nator is given,‘ dne can easily derive the steady-state solution by ﬁxing the
time-varying input and output fields. Letting E, (t-tg)=E;, E,(t)=
E,(t-2t;)=E,, and SuBStituting these in Eq. (4. 10), we have

. T-E, eXp[—J(¢0 +¢n)] =B, {ll—R‘exp[— 1260 + by +¢N2)]} o “. 14)

From the above equation, the foiloWing' fraiisnﬁsSiVity of the nonlinear nng

resonator is obtained:

. ) PR : S , )
E : e
I t|2 = T » (4.15)
Eal”  a-ry? +'4Rfs‘in2(¢o' + vt ON2 ;‘¢N2) }
where | ” »
ST Rotako |t (1 K)Lez B - (4.16)
2 4710 a- Y)K= K AR

Since the right-hand side of Eq. (4.15) is a function of |E,|? the output
intensity '|E,|? may become a multipIe-valued function with reépeet to the
input intensity|E, |2 Therefore, the ‘input-output characteristics can be
determined by computing the input intensity | E, |? for a given output inten-
sity |E,|% The transmissivity (4.15) is the same form as that'foi"the“]iri’ear‘
Fabry-Perot resonator. In the linear case, (¢y; + ¢N2) /2 =0 and resonance
takes place when ¢, = nOkOL/ 2 =Mgn (where M i is an mteger) We hereafter
deﬁne the initial detunmg as Ap, = 2¢, ~2Mxmn. -
Inserting E, ®)=E,, E,(t-t,)=E,, and E, .&)=E_ in Eq. (4.13) and
further substituting Eq. (4.14) in Eq. (4.13), we obtain the"‘followmg reflec-

tivity of the nonlinear ring resonator:



2 (1-A)? +4Asin2[¢0 +ﬂ’_Nl_i‘1’A12_J -

E '
- — : f¢ , @17
B (1-R)? +4Rsin2(¢0 +%}

where A = R-Texp(-oL/2). We can dii‘éCtly determine the butput charac-
teristics at the reflection port by substituting the intensities |E,, | and |E,|?
in Eq. (4.17). h

C. Analysis of Optical Instability

A linear stability analysis of the nonlinear ring resonator is presented on
the basis of the above steady-state analysis. Similar to the approach taken in
Chap. 3, we add a small disturbance to the steady-state solution over one
round-trip time to find a sufficient condition that the output field is unstable.
We now consider the following perturbed output field E(t):

E,®)=E, +e(t),  E®)|<<E,, B @)

where E; is the steady-state one and the perturbation is given by
e(t) = 6exp(jot) +pexp(-jot). ' | (4. 19)

From Eq. (4 10), the perturbed output ﬁeld E, (t +213 ) after one round-trlp

is given by the following equation:

B, (t+21,) = T-E,, expl (0o + b, (6 +27,))]

‘ +R-By(t)exp[- j(20 + by (t +275) + 0z (1)) (4.20)
where ' '
¢Nl(t+21:R) n k [( Lg :||E (t +2'cR)| =A |E (t+2‘tR)| o 4.21)
ouw=np [P lp of camof.
Wlth - Alznzko[_li_e_l__} ’ Azznzko[%:l . : Lo (423)
' 1A-7x : K k
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Substituting Eq. (4.18) in Eq. (4.20) and further linearizing Eq. (4.20) around
the steady-state solution, i.e., neglecting powers of ¢(t) greater than unity,

we have the following difference equation for the perturbation:

et +215) = —jUA, (Be” (b + 2v,) + Ele(t + 21))
= VE (A, (E.e” (6 + 2v0) + Ere(t + 20))+ A, (Bee™ () + Eje(t)))+ Ve(t),  (4.24)

where | o
U =T-E, expl-il¢o + A,[E,[")), (4.25)
V-Reewlife+ A +AJE[). . @26

On the othézf hand the pert’:u’rba;tion g(t+2tg) is given by

| elt+20,) = dexp(jot) exp(i20m,) + pexp(-jot)exp(-jZoty). - (4.27)

Substituting Eq. (4.27) in Eq. (4.24) and further expressing Eq. (4.24) in

matrix form, we have the following eigenvalue problem: .

B, exp(l20t;) +B, -1 C,exp(2otz)+C,  ][d

~ [Clexp(2otp)+C, B, exp(j2ot)+ B, - A ||u

with ' o
B, = —iA, V[ +V, N X )
C, --iA(UE, +VE?), (4.31)
Cy=-jA,VE, (432

where A= exp(j2oty) is an eigenvalue to Be“’detérmined.'l\iﬁtxé that Eq. (4.28)

is a pseudo-eigenvalue problem since the elements of the matrix contain the
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eigenvalue A. Setting the determinant of the coefficient matrix equal to zero,

we have the following characteristic equation:

22(B, -1 _|01|2)+2>;Re[(13.1 -DB; -C,C;J+ (B, -[c.[)-0. @3

The steady-state solution E, is stable only when the absolute value of the

eigenvalue A is less than unity.

4.3 Numerical Results and Discussions |

We investigate numerically the dynamic properties of optical bistability
and instability in the double-coupler nonlinear fiber ring resbnator with a
mind to a subsequent experimental study. If we use commercially available
fiber couplers, the attainable minimum length of the ring is 10~20 cm at the
most. Parameters in Table 3.1 and the form of temporal incident pulse, Eq.
- (3.43) are also used in the following calculation. Switch-on and switch-off
powers Pg; and Py for optieal bistability and threshold powers P';;, and P'
(where i=A,B) for Ikeda instability have been defined in Fig. 3.3.

Figure 4.2 shows the dependence of the switching powers Pg; and Py, and
the threshold powers P’y and P'y on the initial detuning A¢, for two values
of the coupler loss y =0 and 0.1. Since our interest is whether Tkeda insta-
bility interrupts bistable device application or not, the ratio of minimum
power for Ikeda instability to minimum power for bistability, P/ Pgy, is

also shown. Flgure 4.3 shows the dependence of these four critical powers Pg;,
Pg, Py, and Piyy on the initial detuning A¢, for two values of the coupling
coefficient « = 0.1 and 0.2. The results in Figs. 4.2 and 4.3 also are useful for
other lengths of the fiber ring since these threshold and switching powers are

‘inversely proportional to the ring length The threshold power P?y, to’in'duce
Ikeda mstablhty in the high-transmission state (marked by B) decreases
with increasing initial detuning IA<|>0| The 1nstab1]1ty threshold power PR,
also becomes less than P4, in the low- transm1ss1on state (marked by A) for
Ady <-m. However it should be noted that, since P4 <Pgyin such a reglon

the output is unstable in the low- transm1ss10n state before it is switched to
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unstable regions in Fig. 3.3. T

the high-transmission state. The width of the hysteresis loop, Pyi—Pg,
decreases with decreasing initial detuning |A¢| V'and' vanishes at a critical
point near resonance where we can obtain differential gain. On the other
hand, the ratio, P2,/ Pg;, increases with decreasing initial detuning and
reaches about 100, almost independently of the values of y and x. We
‘the’refgre' c’on"cluy.'de that Tkeda instability hardly interrupt bistable application
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since the device operation is usually done near resonance. It is also interest-

1ng to compare the dependence of the unstable regions on the initial detumng

vnth that of other nonlinear resonators. From a resemblance of the struc-

tures, we found that the general dependence of the two-coupler ring resona-
tor is similar to that of the Fabry-Perot resonator [1]. Although the instabil-
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ity threshold of a special Fabry-Perot resonator of zero transmission has
been calculated in terms of the intracavity intensity by Firth [2] the results
are not always useful for experimentalists.

Next, we present the numerical results obtained from the transient analy-
sis based on the iterative method. First, we show an example of the numeri-
cal results where instability takes place in addition to optical bistability in
Fig. 4.4. Figure 4.4(a) shows tempOral,proﬁle of the output pulse at the
transmission port when an input pulse with 1000-ns pulse duration and 60-
kW peak power is incident in the fiber ring resonator with y = 0.1 , k=0.1,
and A¢, = -0.3x. In this example, the cavity round-trip time is 2v; = 0.483
ns and the very long pulse was used to attain the quasi-steady state. Figure
4.4 (b) is the output profile enlarged in the short time interval from -5 ns to
+5 ns. We can find that periodic doubling takes place, i.e., the transmitted
power oscillates with the period2 x (21R). Figure 4.4(c) shows the corre-
sponding input- output characterlstlcs Accordmg to the linear stability
analysis, the threshold power for Tkeda instability is P® 1=49.2 kW. In the
transient analysis, however, it depends on the pulse width of the incident
pulse. The instabﬂity begins at P, =57 «.3, 54.5, 52.1, and 51.0 kW for pulse
width <, =100, 200, 500, aknd‘ 1000 ns, respectively. Note that the beginning
of the instabi]ity is not very distinct and that, in Fig. 4.4(c), it is hidden by
the oscillations when the input power 1s decreased. Flgure 4.5 shows the two
input-output characteristics of the nonlinear fiber ring resonator with
y=0.1, x=0.1, and A¢, =-0.2n for four pulse widths Tp- The values of
these parameters used in the calculatlon are probably practlcal and the
pulse width of the laser that wﬂl be used in our experiment is several tens of
nanoseconds. We obtain a counterclockwise hysteresis loop in transition and
a clockwise hysteresis loop in reflection. An overshoot and undershoot al-
ways take place in the on- off switching‘ ‘As the pulse width increases, the
width of the hysteres is Ioop decreases and approaches the steady-state
solution. The response for a pulse ‘widtht, =2000 ns almost agrees’ the
steady-state solution except for the overshoot and undershoot The sw1tch1ng
speed of the device is governed by the cavity bulld-up t1me T, = 2’CR /(1 Rz)
where R is the eﬂ'ectlve mirror reflectivity given by Eq. (4.12). In thlS exam-
ple,t, = 1. 41ns: We can have the qua51-steady state for v, >500t, ~10001:
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Fig. 4.5. Input-output characteristics of the double-coupler ring resonator
- withL=10cm, A$,=-0.2x, y =0.1, and x=0.1 when an optical
pulse with different pulse width =<, is 1nc1dent on 1t “(a) Transmis-

sion blstabl_hty (b) Reﬂectlon blstablhty

We moreover investigate the dependence of the input-output characteristics
on the detunmg, the fractlonal mtens1ty loss and 1ntens1ty couphng coeffi-
01ent of the coupler by usmg an mput pulse w1th 40- ns pulse duratlon and 4-
kW peak power. Figure 4.6 shows the input-output-characteristics for the
different values of the initial detuning. The width of the. hysteresm loop
increases with the initial detunmg as predicted by the steady-state analysis.
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Since a ring length L= 10 cm is too transient for a pulsewidth 1, =40 ns, we
c‘annvtl)vyt koll)(tain;the distinct hysteresis loop when the detuning is small Flg

ures_’4.7” and 4.8 show the ’input-ycr)utput charéctéristiés when theﬁfraétionajlt

500 |
a0
-300 -

200

Output Power P, (W)

100

00 08 16 24 32 40
Input Power P, (kW)

Fig. 4.7. Transient transmission bistability ‘of the double-couple ring
. . resonator with L= 10 cm, Ap,=-0.2%, and x= 0.1 for several
values of coupler loss y. The input pulse is the same as that in

Fig. 46.

67



T T T T
Tp=40 ns, ¥ =0.1, A¢,=-0.27]

— - %=0.10 A\ e
[ N7 : 7]

o
0
A
1l
(=)
&

o
S
i

Output Power P, (W)

00 08 . 16 24 32 40
" ~ Input Power Pin _(kW)

Fig. 4.8. 'Transient transmission b1stab1]1ty of the double-coupler ring
. resonator with L =10 cm, A¢,= -0.2m, and y = 0.1 for several

values of coup]mg coefﬁc1ent K. The 1nput pulse is the same as
that in F1g 4.6. ~

intensity loss y and intensity couphng coeﬂic1ent K of the coupler are
changed respect1vely From Egs. (4 11) and (4 12) we can understand that
the coupler loss aﬂ'ects the mirror transm1ss1v1ty and reﬂect1v1ty of the
equ1valent Fabry Perot resonator equally and the increase in the coup]mg ‘
coefficient leads to the decrease in the mirror reﬂect1v1ty. ‘Although the
increase in the couplef loss induces the decrease 1n thev transmitted power
and the degradation of the hysteresis loop, it suppl'esses the overshoot and
ringing. The increase in the coup]jng coefficient also induces the decrease in
the width of the hysteres1s loop and the increase in the output power. 7
In order to ‘obtain more 1nformat1on about the transient charactenstms of
the device, we moreover perform the theoret1cal calculat1ons using a step
input. Figures 4.9 and 4.10 show the variation of the outputmgnal at the
transmission port as a function of time when the fractional intensity loss y
and intensity coupling coefficient x of the coupler are changed, respectively.
In Fig. 4.9, three values of intensity coupling coefficient x are used when a
step 1nput W1th 40-kW peak power is mc1dent in the fiber ring resonator with
L=10 cm, k= O 1; and A, = -0. Zn In F1g 4. 10 three values of coupler loss
y are used while other parameters are kept constant. From both of these
figures, it is found that there exists a relaxation oscillation in the output
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signal and the duration of this oscillation decreases with increasing the
values of vy or x.Moreover, it is found that the relaxation duration is ap-
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proximately the order of 8~10 times the cavity decay time <, (=215 /(1-R?)).
It is general considered that the response time of tkhekﬁber ring device is
nearly equal to the Cavity decay time. However, duey td the occurrence of
relaxation oscillation in the output signal, it is considerably larger than the
time t,. The reason is that there must be appréciable interference between
the input and the output for this device to operate properly. :

Here we must discuss the possibﬂity‘of the experimental demonstration of
the fiber bistable device. As seen from the above numerical results, we must
use a high power laser for the operation of the device made of a fused silica
fiber because of its -small nonhnear refract1ve index. The development of
fibers made of appropnate materlals w1th the large nonlinear index and fast
response time is strongly required [3]. We can also decrease the switching
power by inCreasing the length of the fiber ring. However the increase in the
ring length brings about the decrease in the sw1tch1ng speed and requires
the long coherence time of the excmng source correspondmg to its cavity
decay time. Therefore we will aim to develop a high-speed device at the cost
of an increase in the switching power. To gain the response time of a few
nanoseconds, we must require a ring length of about 10 cm and an operating
power of about 1 kW. '

4.4 Conclusion
We have presented an iterative method for calculatmg the dynamic prop-

erties of the double-coupler nonlinear fiber ring resonator with an instanta-

neous medium response time when an optical pixlsé with an aﬂiitrary tempo-
ral profile is incident on it. On the basis of the iterative method, we have also

presented a steady state’ analys1s and linear stab1]1ty analysis, and have

examined the threshold powers for Ikeda instability in the bistable device in

detail. It is found that optical blstabﬂlty is hardly affected by Ikeda instabil-

ity since the mstablhty threshold is much higher than the bistability

switching power for the initial detunmg where the bistable dev10e is operated.
It is also found that the general features of the 1nstab1]1ty in the bistable

device is similar to that of the nonlinear Fabry-Perot resonator. The tran-

sient optical bistability and instability have been calculated by using the

iterative method. Although we are vplan'n'ingf to demonstrate optical bistabil-
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ity and instability in the present device, we could obtain sufficient informa-

tion about the instability and a goOd guide to the design of the device.
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Chapter 5. Stimulated Brillouin Scattering in a Single-
Mode Opt1ca1 Fiber

5.1 Introduction

As descnbed in chapter 1, there has been a considerable interest in a ﬁber
resonator in recent years because of its potent1a1 apphcatlons to optical
bistable devices and other ﬁber based devices. However most of the applica-
thllS using the nonhnearmes of the fiber have not been explo1ted because
the c1rculat1ng power in such a resonator is hmlted by stimulated Brillouin
scattermg (SBS) [1] 1In this chapter, we discuss the dynam1c behavmr of SBS
in a t1me reglon wh1ch is nearly the same order of magmtude as the phonon
lifetime. We 1nvest1gate experlmenta]ly the tran31ent SBS in a short fused
fiber of length 50 cm with 14-ns pulse from a smgle mode YAG laser. The
experimental results are also compared with the theory based on the couple-
amplitude equations. It is general considered that SBS can not occur when
the pulse width of the pump pulses is in the range of several nanoseconds [2],
but contrary to this, we theoretically and experimentally show that SBS can
occur even in the nanosecond region and pulse narrowing for the transmitted
pulse also takes place as a result of the transient process. Moreover we
investigate theoretically the instability of SBS when a pump pulse is inci-

dent into a short fiber.

5.2 Transient Stimulated Brillouin Scattering in a Single-Mode
~ Optical Fiber
A. Theory |
SBS is a three-wave parametric mixing process which couples two radia-
tion fields (i.e., the incident pump field E, and the created Stokes field E,)
with an acoustic matter-density field Ap in the active medium. For a single-
mode optical fiber, these fields can be approximately expressed as plane

waves propagating along the z axis by

E, (z,t) 3¢, (2, t)exp(J(oo t-k z))+cc v | (5.1)
E, (z,t) = 1, (z,t)exp(j(w,t + ksz)) +c.c., o (5.2
Ap(z,t) = %p(z, t)exp(i(w,t —k,2))+c.c., (5.3)
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where 0, = 0, — o, and k, = k+k; = 2k,. o,(k), o,k), and o,(k,) are the
angular frequencies (wave numbers) of pump, backward-propagating Stokés,
and acoustic waves, respectively. The eoupled equations are derived from the

following wave equation (in SI units) and the Navier-Stokes equation [3]

n0 o°E noaaE P

VZE c atz c —a—‘:“=UO at H (5'4)
o* 0 z‘ ol 1 _ on? 2 |
'éE—'FerE_‘VAV Ap-:-EPoe a—p'V (EE)’ (5'5)

where PN is the nonlinear polarizatien, a is the fiber loss eoefﬁcient, cis the
velocity of the light in the vacuum, v, is the velocity of the acoustic wave, n,
and p, are the linear refractive indexes and the average dens1ty of the fiber,
respectlvely 1,=T, " is the phonon damping t1me g, and |, are the electrlc
and magnetlc permittivity of vacuum. E is the total opt1ca1 ﬁeld 1. e, E= E +

E,. The nonhnear polarlza’aon is expressed as
- PpNE =—80(Ap%1——+2n0-n2[1E{2JE. (5.8

In Eq.(5.6), the first term of the rikght-hand side_ is the electrostriction effect,
which is related to the Brilleuil‘i:gain. The second term is the optical Kerr
effect. Substituting Eqgs. (5.1)-(5.3) and (5.6) into Egs. (5.4) and (5.5), and
using a slowly varying amplitude approximation, we obtain the. following

coupled-amplitude equations:

o, coe,@Y)  ac .
. Fo— = € Z,t —1g. - s Z,t M Z,t
% 'n oz o, » (2 1) 8 .(21)-p(z 1)

. N,®

;(5.,7)

; qep @t ?)-sp(z, t),

n,
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ass(z,t)__c_ oe, (z,t) __oc
ot . 0z 2n0

£,(z,t)-Jg, ‘¢ (zt) p'(z1t)
(5.8)

n2 : (2|s (z, t)l (z,t)l ) e (z,t),

ap((;,t) apgzz 1) _ -T,p(z,t) - jg,¢, (2. t) ¢ (z t) +£(z,t), (5.9)

with

— , 5.10

B1= 4k c? n0 ap - 2\p, ( )
k, on’ ’Wn(s)pmso ‘ ' '

= € = R 5.11

) gzk 4v, Po 0 p AV, B ( )

Where o =0=0 and k]u k - 10K, (—27!3110/)\.) are assumed and i and g, are
the photon-phonon couplmg coefﬁ(:lents P, is the photoelastlc constant of
the ﬁber Ais the opt1ca1 Wavelength in the free -space. The term VAap(z t)/az
in Eq. (5. 9) is neglected since the velocity of the acoustlc wave is much less
than that of the light. The term f(z,t) in Eq. (5.9) is the Langevm noise source
which describes the thermal fluctuation in the density of the fiber that leads
to spontaneous Brillouin seattering [4]. The Brillouin gain coefficient gz, is

related to g, and g, by [2]

gBo e\’ PoVAFA N U s

2n'nipd g, - - :(5,12;);
Tt should be noted that the pump and Stokes waves are assumed to be polari-
zation matched in the above formulation (i.e., the fiber used is assumed to be
a polarization-maintaining fiber). For the case of nonpolarization maintain-
ing fiber, due to the polarlzatlon scrambhng effect, the Brillouin ga1n coeffi-

c1ent is reduced to gB0/2 for 451 polarlzatmn scrambhng [2].

B. Numerical analysm S ;
We transform Eqs.(5.7)-(5.9) along the characteristics by substituting
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H,(z,t)=5,@+v-5,1), R A )
H@t=¢cG-vtt), - (5.14)
~A(z;t)=p(z+vA-t,t), ' R ",?k':(5.15)

then Eqgs.(5.7)-(5.9) become F

(2 ): ac H (z,t)-jg, -H.(z+2v-t,t)- Az +(v—v,)-t,t) =
ot 2n, ‘ ; _v '
n,
@Y __ % g Gty-jg H@—2v-t,8) A'-v+v,)-t,0)
ot 2n, ‘ '
. R L (5.17)
—j%(zlﬁp@— v, 11, @1,
n, ' , sl
aAé: t) = —F A(z t)— ngH (z Vt t)- H (z+vt t)+f(z t) , (518)

The above equatlons wﬂl no longer have part1al der1vat1ves W1th respect to z.
We can then use a fifth- order Runge- Kutta algorlthm to 1ntegrate the above
equation from one time step to the next. We numerically solve the Egs.
(5 16)-(5.18) by using the method of characteristics [5] and examine the
transient effect of SBS ina smgle-mode ﬁber We also assume that the pump
source is a Q- smtched YAG laser and the value of 7, = 14 ns is used in our
simulation as a comparison with our experimental results Other parameters'
used in the fo]lowmg calculation are listed in Table 5. 1 -
First, we 1nvest1gate the dependence of the transient SBS on d1fferent
parameters such as the input peak power, the pulse W1dth of the 1n01dent
pulse, and the fiber length. Flgure 5.1 shows the temporal 1ntens1ty proﬁles
of transmltted and Stokes pulses for the ﬁber length L=05m and the 1n01-
dent pulse Wldth 7, =14 ns. This pulse w1dth is nearly equal to the phonon
damping time 1 . In Flg. 5.1, the 1n01dent, transmitted, and Stokes pulses are
represented by P, P,andP,, respectively. The pump wave is hardly depleted
when the input peak power is lower than 150 W, as shown in Fig,,;é,l(a). This
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Table 5.1. The related parameters used in the theoretical calculation.

Medium Single-mode fiber
Linear refractive index n, | 1.454
Nonlinear refractive index n, 1x102% m?*V?
Effective mode area S, S 50 um?
Fiber loss o \ R 0
Wavelength A. ' 1.06 ym
Phonon damping time 1, 1.0X10%°s
Average density of the medium p, 2210 kg/m®
Velocity of the acoustic wavev, | 5960 m/s

.- Photo-elastic constant of the fiber p,, 0.286
Maximum Brillouin gain coefficient gy, |5.0x10™ m/W

°
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Fig. 5.1. Temporal intéﬁsity prdﬁles of incident, transmitted and Stokes
.+ pulses for L=0.5 m, n, = 1x10* m*/V? and v, = 14 ns at different
. input peak powers: (a) 0.15 kW, (b) 0.27 kW, (c) 0.5. kW, and (d)

value is larger than the cw threshold P,= 21xA_ /gL = 42 W [6]. However,
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when the input peak power is several times larger than the threshold, the
pump wave is significantly depleted as a result of the occurrence of SBS. A
large change in the temporal intensity profile of the transmitted pulse is
observed. SBS occurs even if the incident pulse has a pulse width of 14 ns, as
long as the incident power is higher than the SBS threshold. It is found that
the pulse width of the transmitted pulse is compressed cornp ared with that of
the incident pulse. The compression ratio increases with increasing incident
power. This pulse compression is attributed to the transient effect of SBS.

Figure 5.2 shows the temporal intensity profiles of transmitted and Stokes
pulses for P, =500 W, L=0.5 m, and 1, =2 and 50 ns. SBS does not occur for T,
=2 ns even if the incident power is nearly 12-fold higher than the cw thresh-
old, as shown in Fig. 5.2(a). As the pulse width is increased to 50 ns, the
pump wave is significantly depleted and pulse compression for the transmit-
ted signal becomes poor as shown in F1g 5. 2(b) Compared with Fig. 5.1, it is
also found that the SBS threshold depends on the pulse w1dth of the incident
pulse and increases with decreasing pulse W1dth

Figure 5.3 shows the temporal intensity profiles of the three pulses for P
270 W, t,= 14 ns, and L =2 and 4 m. It is found that the pump wave is sig-
nificantly depleted in both of these cases, as shown in Figs. :5.3(a) and (b).
However, the transmittedsignal and the created Stokes signal change negli-
gibly as the fiber length is changed from 2 to 4 m. Compared w1th Fig. 5.1(b),
it is found that there exists a strong saturation for the power of SBS when
the fiber is longer than 2 m. This phenomenon has also been observed i in a
long fiber under a cw pump 21, 171. f

To obtain more 1nformat1on about the trans1ent SBS we investigate the
dependence of SBS on the pulse Wldth as it is much larger than the phonon
damping time. Figure 5.4 shows the temporal mtens1ty proﬁles of incident,
transmltted and Stokes pulses for three values of Ty In this figure, the ﬁber
length 1s assumed to be 100 m, the mput peak power 1s ﬁxed at 1 W and the
other parameters remaln the same ~We can see that the pulse compress1on
descnbed above does not occur It is also found that there exists a relaxatlon
oscﬂlatlon in the transmltted and Stokes S1gnals in F1gs 5. 4(a) and o), and
the perlod durat1on of the oscﬂlat1on 1s almost equal to the round tr1p t1me t

(— 2n,L/c) within the fiber. The phys1cal origin of such a relaxation oscﬂlatlon
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has been descrlbed m Refs [8] and [9] However 1t should be noted that th1s
oscx]latmn does not appear 1n Fig. 5 1 Where the ﬁber used is very short The
reason may be explamed as follows For a short ﬁber the round-trlp t1me is
less than the phonon response t1me and thus ‘the transm1tted and Stokes
pulses cannot follow the round-tr1p t1me oscﬂlatmn The osc1]lat1on can be
observed only 1f the cond1t1on tr >> tA 1s sat1sﬁed Furthermore the pulse
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for 1, = 14 ns, n, = 1x10"* 2/V2 and P, =270 W. F1ber lengths are
(a)2:mand(b)4m ;

widths of the mc1dent pulse in F1gs 5.4(a), (b), and (c) are approx1mately
equal to 5t, 10t ‘and 100tr, respect1vely As the pulse w1dth increases, the
amphtude of the oscillation decreases and finally disappears. For 7, = 100t,,
we obtain- the steady-state solution of SBS. , ~ :
F1na]ly, we mvesngate the mstablllty of SBS under a pulsed pump. It is
generally conps1dered; that SBS may become unstable if the pump power is
high enough; even if there is no external feedback [10], [11]. In our numerical
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simulation shown in Fig. 5.1, we do not observe the inStabi]lties even if the
input peak power is increased to 200 kW. However we ﬁnd that when the
nonlinear refractive index n, is 1x10" 2 m?/VZ, which is an order of magmtude
larger than that of a conventlonal fused-silica fiber, SBS mstablhty appears.
Tt should be noted that such mstablhty only occurs When the self and cross-
phase modulations are included in the coupled amphtude equations.

Flgure 5.5 shows the temporal varlatlon of the transm1tted pulses for four
values of the mput peak power when an mput pulse is 1nc1dent to an opt1cal
fiber with n, = 1x10° 21 2/V‘2 L =0.5 m, and 1, = 30 ns. We obtain a smooth
transn;utted pulse for an mput peak power of 400 W, As the 1nput power 1s
mcreased an oscﬂlatory structure 1n the transnntted 81gnal appears as
shown 1n Flg 5 5(b) The osc1]lat1on is rapldly relaxed As the 1nput peak

0.60 — T T - ‘ 24 — - T T

(a) P=04kW =ons | (€) P =1.4kW -
045 - L-osm21 2‘;2 R, B SR ”
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80, L 0 30 0 - 30 60

.Time (ns) Time '(ns) L
‘Fig. 5.5. 'Dependence of transmitted signals on the pump power for n, =
S 1x10% m%V?, L= 0.5 m, and 1, = 30 ns. Input peak powers are
() 0.4 kW, (b) 0.7 kW, (c) 1.4 kW and (d) 5.0 kW. The insets.are
enlarged profiles.
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power is further mcreased the period becomes smaller and the oscillation
becomes qua51-per10d1c as shown in the inset of Fig. 5. 5(c) We also note that
both the amphtude and the oscillatory range of the oscﬂlatlon become larger
‘As the input power is 1ncreased to 5 kW, the oscillation becomes complex and
random (see F1g 5. 5(d)) In order to examme the effect of the nonhnear
refract1ve index n2 on SBS we 1nvest1gate the mstab1hty by changing the
magmtude of n,. F1gure 5 6 shows a numerlcal example where the ﬁber
length is assumed to be 100 m and the mput power is fixed at 5 W We see a
relaxation oscﬂlatmn in the transmltted signal for n, = 1x10% and 1x10™ 21

2/V2 For larger Values of n,, the oscﬂlatlon becomes complex and eventu-
ally 1rreg'ular as shown in F1g 5 6(c) We conclude that the mstablhty of SBS
depends strongly on the magmtude of the nonhnear refract1ve mdex of the
fiber. It is difficult to observe the SBS mstablhty in an expenment using a
conventional short silica fiber. However, experimental observation of the SBS
'1nstab1hty can be expected When using other optmal fibers W1th larger non-

7hnear1ty, e. g chalcogemde glass ﬁbers [12]

C. Experlment and Results ‘ s

The experlmental setup for measuring the tran31ent SBS in an optlcal
fiber is shown m Flg 5.7. An injection-seeded and Q- svmtched YAG laser
(Continuum HPO- 1000) operating at 1.06 pm is used as the pump source. It
produces quas1-Gauss1an pulses with a spectral bandwidth of less than 80
MHz. A half-wave plate (WP1) and a polarizer (PR) are used to adjust the
mput peak power. ‘The peak power within the fiber is estimated by measur-
1ng the average power incident to the frond end of the fiber and the couplmg.
eﬂ,_icrency 1nto the fiber. A quarter wave plate (WP2) and PR are used to
produce the 1nc1dent wave in c1rcular polar1zat10n and to prevent the reﬂect-
ed light from entermg the laser Dl, D,, and D, are pin photodlodes W1th a
response t1me of 0.5 ns, wh1ch are used to measure the temporal intensity
proﬁles of 1nput Stokes ‘and transmltted pulses, respect1vely All s1gna1s are
detected simultaneously and displayed on a d1g1tal oscilloscope in the real-
time mode.. In th1s experlment there 1s zero electronic delay among these
pulses All other parameters used in the expenment are listed in Table 5.2.
Figure 5.8 shows the measured temporal proﬁles of 1nc1dent transmltted
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F1g 5 6 Dependence of transmitted s1gnals on the nonhnear refractlve

indexes of the fiber for L = 100 m, 7, = 12 ps, and P, = 5 W. Non-
~ linear refractive indexes n, are (a) 1x10722 m?/V?, (b) 1x10% m?/V?
~and () 1x10* m* V2, . > §

and Stokes I;ulsee fer T, =14 ns and the incident beak pewer 'Pm 0 5 1.0, and
4.0 kW. It is found that SBS occurs ‘when the incident peak power is hlgher

than 0.5 kW, Whlch’ is several times higher than the numerical results shown
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Flg 5.7. Schematic of experimental setup for measuring the transient SBS.

Table 5.2. The related parameters used in experiment.

Type of fiber Single-mode fiber (F-SY) (see table 3.2)
Light source Q-switched YAG laser (Continuum HPO-1000)
Wavelength A. 1.06 pm - -
Pulse width | 14~50 ns
Frequency of the laser pulse 10 Hz o

Focal lens 10 X microscope objective
Fiber length L. 05m '

in Fig. 5.1(a). At higher incident pe'él; kpower,y the pump wave is Signiﬁcantly
depleted and the pulse width of the ’transmitted wave is shortened, as ex-
pected from theoretical results. Thef:trahsmittance for the ‘pump light de-
creases as the input power «i,ncreases.«Moreover, if the polarization scram-
bling effect is cohsidered (it decreases the SBS gain to gB(,/Zkin our case), it is
found that the experimental results shown in Flgs 5.8(2)-(0) almost agree
Wlth the numencal results shown in Flgs 5 l(b) (d) Figure 5. 9 shows the
temporal proﬁles of mc1dent transmltted and Stokes pulses for 7, = 50 ns
and the incident peak power P =200 and 360 W. Pulse compression for the
transmitted s1gnal becomes poor, as shown in Fig. 5.9(b). Compared w1th Flg
5.8, it is found that the gam obtamed in the produced Stokes 51gnal becomes
larger,b as expected from the numerlcal results. Here, it should be notedthat
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the optical elements WP2 and PR used in our experiment cannot avoid the
feedback of the Stokes waves from the laser-cavity mirror back into the fiber.

Moreover, optical reflection at the fiber ends was neglected in our numerical
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model. These two factors will céu‘se the experimental results to be different

from the numencal ones partlcularly When the pulse W1dth of the incident
pulse is greater than 50 ns . '

5 4 Conclusmns , o " i
~The transient SBS in a smgle-mode fiber was theoretlcally and experimen-
tally investigated under Gaussian pulse irradiation. Theoretical and experi-
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mental results revealed that SBS can occur even in the nanosecond region. It
was determined that the steady state of SBS can be obtéined when the pulse
Width of the incident light is greater than 100-fold that of the'round trip time
within the fiber. Following the process of the transient SBS, pulse narrowmg
for the transmitted pulse is observed Moreover, we numerlca]ly demonstrat-
ed that the instability of SBS is closely connected with the magnltude of the
nonlinear refractive index. SBS 1nstab1]1ty can occur When the nonhnear

refractlve 1ndex 1s one order of magmtude larger than that of the fused sﬂlca
ﬁber ' ’
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Chapter 6 Stimulated Brillouin Scattermg in a Fiber
Ring Resonator

6.1 Introduction

In this chapter, our first aim is to investigate the transient SBS in a short
fiber resonator with high finesse and determine the factors which may give
rise to an instability in the output Stokes. Although the instability of SBS in
a long fiber with or without a weak external feedback has been Widely stud-
ied so far, the instability of SBS, especially the self-pulsing phenomenon in a
short fiber ring resonator has not been comprehensively studied to date. We
investigate the instability of SBS by solving the time-dependent coupled-
amplitude equations numerically. Second, we discuss the dynamic behavior
of SBS in a time rég:ion which is neaﬂy the same order of magnitude as the
phonon lifetime. ‘We theoret1ca]ly and expenmentally investigate the tran-
sient SBS in a fiber ring resonator with 14 ns pulses from a single-mode YAG
laser. Finally, in order to determine whether the optical bistability could be
experimental observed in a fiber ring resonator, we moreover investigate the
transient interplay of the Kerr effect with the SBS gain effect. Both the Kerr
effect and the h'neér phase detuning of the fiber cavity have been considered
in our theoretical model. This information is necessary for us to develop
optical bistable devicesin a high-finesse fiber ring resonator [1-3].

“Figure 6.1 shows a schematic diagram of a fiber ring resonator, which con-

Pump E;, Coupler

> 0 11 3

— , ™~ Out’pit Eou

- Stokes E, 12 4 \ ~ 5
ep(m)(L) sp(m)(o)

&™n  |&"O

Fiberloop

| Fig. 6.1. Schematic of a fiber ring resonator with a directional coupler.
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sists of a ﬁber ring of length L and a fiber directional c‘oupler. The coupled-
amplitude equations for the slowly-varying complex amplitudes of the pump,

Stokes and acoustic waves is described as follows [4]:

0E™(zt) ¢ E™EY) o gy, . L m m
p \%Y P = -—eM(z,t)-jg; £ (2, t) p™ (2,t)

¢ n, 9z  2n,
| o % S 2 , ©6.1)
—j—z—‘l[‘sgm)(z,t)l ]s;’“)(z,t),
n,
683“) z,t) \c 3™ (2, ac m . m L) @ 1y |
¥ (@b c k7Y o ()-8, &7 @)™ ()
9t n, 9z 2n, , s ' P
(6.2)

i Jn2‘” [2[ <m>(z t)l ] <m>(z ),

p™ (z,t) iy op™ (zt) -

p AT -T p‘m) (z t) nge(m) (z t) a‘m’* (z t) +f(z t) (6 3)

where ¢, ¢, and p are ,the complex amplitudes of the incident pump field,
the backward-propagating Stokes field, and the acoustic field, respectively.
o, and o, are the angular frequencies of pump and Stokes waves, respec-
tively. The superscript (m) refers to the number of pump and Stokes circula-
tion around the fiber loop. Other parameters remain the same as the ones of
chapter 5. As shown in Fig. 6.1, the pump wave propagates from z=0toz =L
and the Stokes wave travels in the opposite direction (from z=L to z = 0). The
boundary conditions for the pump wave and Stokes wave are given as fol-

lows:

e™(0,t) = —jv/ky1-y xe" P (L, t)exp<—3¢p)+Em<t)x\/1 \/ , (6.9
e (L,t) = -jVx4/1 yxe““-”(o texp(-i¢,), (6.5)

where y and x are the fractional intensity loss and intensity coupling coeffi-
cient of the coupler. E, (t) is the input pump ﬁeld amplitude. ¢, and ¢, are the
total linear phase accumulated by the pump and Stokes waves per round trip,
respectively. We can solve Egs. (6.1)-(6.3) by usmg the method of characteris-
tics under the following initial condition: s :

90



e®(0,8) = VI- k41 7B, 0 0<t<ty, 6.6)
e’ (L,t)=0 o 0<t<ty, 6.7

where t;(=n,L/c) is the round-trip time throﬁgh the ﬁbei loop. Once the
values of e¥,(L,tg) and e (0,tz) are given, using EEqs. (6.6) and (6.7), we can
obtain the magnitudes of ¢ (0,ty) and £®,(L,tp), which are used as the initial
condition of the second circulation (i.e., t; <t<2t;). Repeating the above

steps for certain tinies (in our case, we investigate SBS in a time range of 0-
1000ty), we can obtain the outputs of pump field E_, and Stokes field E,

which are expressed as:

B, () =itk J <, )+, (Lt exp(—io, >xJ1 K\/ e
E,(t) =¢,(0,t)exp(—jd,) x V1 —1x4/1- et 6.9)

Among the most previous papers, the linear phases ¢, and ¢, are taken as
b,=0.=¢o =kon,L=2Mn (M is an integer). It should be noted that this assump-
tion is not correct, especially when the cavity finesse is h1gh enough The
d]ﬂ‘erence between ¢, and ¢, is glven by '

where v, is the frequency of acoustic wave, it is about 16 GHz at a wave-
length of 1.06 pm for a "si]iea’ fiber [5]. One can easily see that the phase
difference between ¢, and ¢, is much larger than the magmtude 27 even if the
length of fiber loop is several centimeters. In the absence of fiber nonlinearity,
the resonance condition of the ring (see Flg 6.1) is given by ¢, =k,n L
=2Mn—n/2 and it is convenient to replace ¢, by the detuning from reso-
nance A¢ =kon,L~2Mn. Figure 6.2 shows the dependence of the ratio of

the c1rculat1ng pump power to the: input power P, /P, on the initial phase
detuning Ad) for four values of k, where the generation of SBS is neglected.

Since the cn'culatlng pump power depends strongly on the phase detuning
Ad) as shown in Fig. 6. 2, the efect of the initial phase detuning on SBS must
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o y =0 as a function of the initial phase detumng A¢p for four values

of the coupling coefficient .
be qonsidered.

6 3 Instablhty of Stlmulated Brllloum Scattermg ina F1ber ng

Resonator .
In this section, we investigate SBS mstablhty in a ﬁber ring resonator. The

1pc1dent signal is assumed to be a step pulse. Other parameters used here
ai'e shown in Table 5.1. For simplicity, the fractional coupler intensity loss is
assumed to be zero and the ring length ring is assumed to be 2 m.

Firét, we investigate the dependence of SBS instability on the ‘incident
peak power. Figure 6.3 shows the variation of the output Stokes power as a
function of time for three values of input peak power, where the initial phase
detuning is assumed to be zero (i.e. A¢,=0), the coupling coefficient of the
coupler « is fixed at 0.5, and the output Stokes power is represented by P,.
At a low pump power, such as 20 W shown in Fig. 6.3(a), it is found that the
output Stokes signal is relaxed to its steady state after the time of ~20t, and
the period of the relaxation oscillation is approximately equal to t;. When the
input peak power is increased to 100 W, the Stokes signal is also relaxed to
its steady state, but the relaxation oscillation becomes irregular (Fig, 6.3(b)).
As the’input peak power is further increased to 600 W (Fig. 6.3(c)), it is found
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that the*‘steady -st_ate of SBS‘cann’ot be obtained, the Stokes signal becomes
complex and eventually chaotic. Moreover, as the initial phase detuning Ad,
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Fig. 6.4. Variation of the output Stokes power as a function of time for
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becomes -0.5x (i.e., the circulating pump wave is resonant in the fiber ring),

the variation of the output Stokes power as a function of time is considerably
changed, as shown in Fig. 6.4. It is found that the Stokes signal is not stable
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for all the three values of the input powers. At a pump power of 20 W (Fig.
6.4(a)), the output Stokes signal is first relaxed in a short-time range of
0~40t; and then becomes periodic oscillation. The period of the oscillation is
approximately equal to t; as shown in the inset of Fig. 6. 4(a)‘ When the input
peak power is increased to 100 W, the oscillation becomes a sustamed pulsa-
tion consisting of a steady train of short pulses (Flg 6. 4(b)) As the input
peak power is further increased to 600 W, The output Stokes slgnal becomes
complex and eventually chaotic (Fig. 6.4(c)). | - .

Next, we investigate the dependence of SBS instability on the coupling
coefficient of the fiber couplerFlgure 65 shows the variation of the output
Stokes signal as a function of time for the coupling coefﬁcients x=0.3, 0.5,
and 0.7. In this case, the input power is fixed at 160 W and the initial phase
detuning Ad,1s assumed to be -0.57. It is found that the output Stokes signal
is relaxed to its steady state for k=0.3 in. a time range of ~20t; as shown in
Fig. 6.5(a). As the couplmg coefﬁc1ent s mcreased we obtain a stationary
oscillation cons1st1ng of a steady tram of short pulses for x=0. 5 (Fig. 6.5(b)).
When the couplmg coefﬁment is further 1ncreased to 0.7, the output Stokes
signal becomes chaotic (F1g 6. 5(c)) * ‘

Here it should be notedthat the ehaotic’ behavior of SBS described above
takes place when the se]f— and cross- phase modulations are taken into ac-
count in the coupled amphtude equat1ons In order to make sure of the origin
of the SBS 1nstab]]1ty, we moreover perform our calculations by neglecting
the effect of self- and cross-phase modulatlons The numerical results corre-
sponding to F1gs 6. 4(a) (b) and (c) are shown in Figs. 6.6(a), (b), and (c),
respectively. It is found that the 1nstab1]1 ‘;mcludmg periodic and chaotic
behaviors shown i 1n F1gs 6 4(b) and (c) does not appear There only exists a
relaxation oscﬂlatmn in the output Stokes signal in a time range of 20~50tR
as shown in Flgs 6. 6(b) and (). These results obviously show that the physi-
cal origin of the SBS mstablhty appeared in Figs. 6.4(b) and (c) is mainly
attr1buted to the nonlmear refraction. Contrary to the above results, the
perlodlc behavior shown m F1g 6.4(a) also occurs even 1f the Kerr effect has
been neglected, as shown in Fig. 6. 6(a). ' a

To galn more 1nformat10n about the SBS 1nstab1]1ty, we also evaluate the
dynamlcs of the output Stokes s1gnal in the pump power and the couphng
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F1g 6. 5 Varlatlon of the output Stokes power as a funct10n of t1me for A¢ =

- 0.5, L=2m, and the input peak power P, =160 W atdifferent
coup]mg coefﬁc1ents K: (a) 0.3, (b) 0.5, and (c) 0 7

coefﬁc1ent domam as shown in F1g 6 7. Flgures 6.7(a), (b) and (c) correspond
to the three values of phase detunlng 0.5x, 0, and -0.5x, respect1ve1y In these
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symbol (O), (A), and (+), are designated to the steady, periodic,

and chaotic behaviors, respectively. (a) Ag,

- ©A¢,=-0.5m.

Fig.6.7.

0.5, and

0.0, ®) A9,

coupling coefficient « is changed in the range of 0.05-0.9. The steady, peri-

odic, and chaotic behaviors of the output Stokes signal are designated by the
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symbol (O), (A), and (+), respectively. For A¢,=0.5x, as shown in Fig. 6.7(a),
it is found that a stable Brillouin emiSsion can"he obtained at any input pump
power when the coupling coefficient x is smaller than 0.3. This result agrees
with that obtained for a low- ﬁnesse resonator {61, [7] because alow value of
in our case corresponds to alow finesse of fiber resonator. Iti is also found that
the chaotic behavior of SBS appears only when the mput power is hlgh and
the value of the coupling coefficient i is large, and that the perlodlc behav10r of
SBS has not been observed in these cases For A¢,=0, as shown in Fig. 6. 7(b),
it is found that e1ther the chaotlc or the penodlc behavmr of the output
Stokes s1gna1 occurs when the value of the coup]mg coefﬁc1ent K is large
enough. However the perlodlc behavmr of the output Stokes s1gnal appears‘
only in a small regron of Pm—30~120 w and x=0. 5~0.85. For A¢p- -0. 5n ‘as
shown in Flg 6. 7(c) it is found that the region where the SBS mstablhty,
especially the perlodlc behavior of SBS occurs becomes larger than that of Flg
6.7(b). The perlodlc behav10r of the output Stokes 31gnal generally appears at
a low input power and F1g 6. 4(a) is a typlcal example When the couphng
coefﬁment is mcreased the periodic behavior can occur at high mput power
but in a sma]l reglon A typical example is shown in F1g 6. 5(b) Moreover m
order to make sure of the or1g1n of SBS mstablhty shown in F1g 6. 7 (c) we
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F1g 6.8. Theoretical map for the dynamics of output Stokes signal, where
~the Kerr effect is neglected G.e.,n —0) and the m1t1al phase de-
tunmg of the cavity is -0.5x. P
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also perform the célcﬁlations by neglecting the Kerr effect. Figure 6.8 shows
the result for Ad,=-0.5t. Compared with Fig. 6.7(c), it is found that the
chaotic state disappears for any input power. Moreover, the periodic behav-
iors at high input power region disappear. These results mean that the
enhancement in the high- finesse resonator would make the Kerr effeCt larger
than the Brillouin gain effect and the origin of this SBS mstablhty is mamly
attributed to the Kerr effect when the input power is high. From Fig. 6.8, it is
found that the perlodlc behaviors occurs in Fig. 6.7(c) also appears when the
input power is less than 55 W and the region where the periodic behavmr
occurs becomes large. The results make us believe that at a low level of the
input power the Kerr effect becomes comparable with the SBS gain effect
and the SBS mstablhty at low 1nput power is attrlbuted to the mterplay
between these two effects. '

In conclusion, we have investigated theoretically transient SBS in a high-
finesse fiber ring resonatOr with a short length. It is found that a Stokes wave
in the ring resonator is generally unstable for a high-finesse or high incident
power. SBS instability including the self-pulsing and chaotic behaviors
depends 'StrOngly on the input power, the linear phase detuhing of the cavity,
and the coupling coefficient of the coupler. AlthOugh the instability is very
harmful to fiber-based devices such as a Brillouin fiber ring laser and sensors,
the self-pulsing phenomenon in the output Stokes signal may be used to form
a series of short pulses with duration of 10~100 ps.

6.4 Transient Stmulated Br1llou1n Scattermg in a F1ber Ring
Resonator -
A. Numerical results - | ,

In this section, we 'dlscu;ss the dynamic behavior of SBS. First, we investi-
gate the dependence of SBS on diffefeﬁt parameters, sueh as pulse width of
the incident pulse, input peak power, couphng coefﬁc1ent of the coupler, and
the linear the phase detunmg fora 0.5-m fiber cavity. Flgure 6.9 shows the
temporal intensity profiles of the 1n01dent output pump and Stokes pulses
for Pln 50 W k=0.1, y=0, and the pulse width of 1n01dent pulse <, =14, 50,

and 200 ns. In this example the circulating pump wave is assumed to be
resonant in the fiber loop (i.e, A$,=-0.57) and the incident, output pump and
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Fig. 6.9.

T T

| (@) t=14ns - P; =50 W,x=0.1,y=0
80 L=0.5m,A$,=0.51 -
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Theoretical results of the temporal ‘intensity profiles of incident,
output pump and Stokes pulses for Ad) =40.57,L=0.5m,x=0.1,y

=0; and P.=50 W. Pulse w1dths are (a) 14 ns, (b) 50 ns, and (c)
200 ns.
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Power (W)

Stokes pulses are represented by P, P,, and P,, respectively. It is found
that SBS occurs when the input peak power is larger than 50 W (Fig. 6.9(a)).
This value is three times smaller than the one (=150 W) where SBS begins to
occur in a 0.5-m single-mode fiber [4]. As the pulse w1dth is increased, the
created Stokes signal becomes stronger as shown in Figs. 6. 9(b) and (c). This
result means that transient SBS threshold in a fiber ring resonator is de-
creased with increasing the pulse width of incident pulse. The same phe-
nomenon has also been observed in a single-mode fiber. k | :
Figure 6.10 shows the temporal intensity profiles of the incident and
Stokes pulses for ¢, =14ns, x=0.6, y=0, A¢,=-0.5x, and the incident peak
power P, =15, 50, 200, and_‘SOO' W. In this case, SBS occurs when the input
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F1g 6.10. Theoretical results of the temporal intensity proﬁles of 1nc1dent :
v and output pump pulses for A¢p,=-0.5z, L =0. 5 m,k=0.6, y= =0,

| ~and 1, = 14 ns at different input peak powers (a) 15 W (b) 50 W,
(c) 200, and (d) 800 W.
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peak power is larger than 15 W (Fig. 6.10(a)). Compared with Fig. 6.9(a), it is
found that SBS threshold decrease with increasing the coupling coefficient
k. As the input peak power is increased, the Stokes s1gnal is converted into a
series of short pulses with pulse width much less than that of incident pulse
(Figs. 6.10(b) and (c)). The created pulses oscillate strongly and periodically
with increasing incident peak power. When the input. peak power is in-
creased to 800 W, the created pulses in the Stokes signal become 1rregu1ar as
shown in Fig. 6.10(d). Here we also perform the same calculations for the
initial phase detuning A¢,=0. A typical example is shown in Fig. 6.11, where
the incident peali power P, are 400 and 800 W;"'and other parameters remain
the same with those of Fig. 6.10. It is found that SBS occurs only when the
incident power is higher than 400 W (Flg 6.11(a)). Compared with Fig.
6.10(a), it is found that SBS threshold is considerably increased when the
circulating pump wave is not resonant in the cavity. Moreover, it is found
- that temporal intensity profile of the output Stokes pulse shown in Fig.
6.11(b) is very different from that in Fig. 6.10(d).

Next, we investigate the transient SBS using another ilength of fiber ring.
Figure 6.12 shows the temporal intensity profiles of output pump and Stokes
pulses for L =2 m,r, =14 ns, ¥=0.1, y=0, A¢, =-0.57, and the incident peak
power P, =30 W, 60 W, and 120 W Oscillation with a burst of short pulses
appears in the output Stokess1gna1 for P, =60 and 120 W. Moreover, it is
found that thereemstsseveral ”\sh‘o'f't piil"s"es' Wlios'e intensity is much larger
than the other created pulses (Figs. 6.12(b) and (c)). The same phenomenon
has also been observed in Flgs 10 (b) and (c)

B Exper]ment and results -

The expenmental setup for measurmg the trans1ent SBS is shown in Fig. 6.
13 which is the same with the one shown in Fig. 5.7 except for the existence
of a fiber coupler. Parameters of the fiber and the coupler are listed in Tables
6.1 and 6.2, respectively. Figure 6.14 shows the temporal profiles of incident,
output pump, and Stokes pulses for t, =14 ns, ¥ =0:1, and the incident
peak power P,=60, 120, and 230 W. It is found that there exists an oscilla-
tion in th’e output Stokes"v'signalvs’ for Pm=60 W 'The périod- of the relaXation
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Fig. 6.11. Theoretical results of the temporal mtens1ty proﬁles of mc1dent
and output Stokes pulses for A¢,=0.0,L=0.5m,x=06,y=0,

and T, = 14 ns at dlfferent 1nput peak powers (a) 400 W and (b)
| "’800 w.

ns) As the 1nc1dent peak power is further mcreased the oscﬂlatlon is d1v1ded
into a series of pulses (Figs. 6.14(b) and (c)) just as. expected from the theore-
tical predication. Here it is noted that the experimental ‘results for output
pump and Stokes pulses shown in Figs. 6. 14(a) and (b) are different from the
theoretical results shown in Figs. 6. 12(b), (c) These 1nequa]1t1es can be
attrlbuted to that the coupler and the ﬁberloss have not be considered in the
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; y=0, and zP- 14 ns. The mput powers are (a) 30 W (b) 60 W"
"and (c) 120 W ’
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Fig. 6.13. Experimental setup for measuring the transient SBS in a fiber
ring resonator.

Table 6.1. Parameters for a typical polarlzatlon-mamtammg
single- mode ﬁber :

NAME e HBIOOO(FIBERCORE)

Type of fiber I | Polarization-maintaining fiber
Clad diameter =~ = 125 ym=*1%

Clad outside diameter 245 ym=%5 %

Numerical aperture NA 0.16+10 %

Coupling efficiency (Exp. data)] "15dB

Fiber loss : <3 dB/km

Design wavelength ~ 1.06 Om

Table 6.2 Parameters for a typlcal fiber coupler

Fiber coupler I Model 904p(NETRON)
Name of fiber o | HB1000

Intensity coupling coefficient x« | 0.125

Fractional intensity loss 0.4%

Polarization 1solat10n 17 dB

Excess loss <0.15dB.

Des1gn Wavelength o 1 1.06 um

theoretlcal model If the deference between the 1nc1dent peak power in Flgs
6. 12(a) (c) and the correspondent ones in F1gs 6. 14(a) (c) are not ‘considered,
it can be found that the measured temporal profiles of the output pump and
Stokes pulses are very similar to the theoretical results. To confirm the above
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Flg 6.14. Measured temporal intensity profiles of incident, output pump
and Stokes pulses for A¢,=-0.5x, L=2m, x =0.1,and 1, =14

ns. The input peak powers are (a) 60 W, (b) 120 W, and (c) 230 W.
results, we also investigate the created Stokés signal with increasing pulse

with of incident pulse. Figure 6.15 shows the temporal profiles of incident,
output pump, and Stokes pulses for t,=50 ns, and incident peak power P, =
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Fig. 6.15. Measured temporal intensity profiles of incident, output pump

and Stokes pulses for Ap, =-0.5x, L=2m,x=0.1, and t,=50ns.
The input peak powers are (a) 20 W and (b) 60 W.

20 and 60 W. In this case, both the relaxation oscﬂlatlon and pulsatlon have
also been observed at dlfferent level of mc1dent peak power ‘

In view of the above results, we believe that the theoretlcal model used
here is reasonable.

6.5 Transient Interplay of the Kerr Effect w1th the SBS Ga1n
Effect in a Fiber Ring Resonator
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In this section, we investigate the transient interplay of the Kerr effect
with the SBS gain effect in a high-finesse fiber resonator. 'Using the Brillouin
gain coefficients gy, to snbstitute g, and g,, we rewrite Eqgs. (6.1)-(6.3) as

oY z,t / B t > N
p @0, ¢ 8y @D e i, ) B o, 1). Q0 (5,1)

ot n, 0z 2n, © 7 A, (6.10)
~ SIS ¥ I NN S 2| (m) .
—rﬁl%y@d }y@u
. 7 n, \
(m) A () ) U .
G, aiz’t) _niass,ﬁagt? - o (z,t)+%’—8f,m)‘(Z, £): Q™" (2,t)
to : no‘; P . (6.11)
_ le:zlgp ( }si‘“) (z,t),
(m) |
1 Q™ (=, t) Q(m) (z,t) = 8(m)(z t)- 8<m) (z,t) + f(z t) 6.12)
r, ot ig:
] | (m) | P ) (Z t)
with Q™ (z, t) (6.13)

2

The boundary conditions for the pump wave and Stokes Wa\?e are given in
Egs. (6. 4) and (6.5). In Egs. (6 11) and (6.12), the Brillouin gain coefficient gg,
and the nonlinear refractive mdex n2 are the only two factors which decide
the interaction between SBS gain effect with Kerr effect. We quant1tat1vely
investigate the finterplay by changing the magnitﬁ'des ef these two factors.
For simplicity, parameters for the fiber ring cav1ty are chosen as follows: L =
0.15 m, Ap,=-0.6n, «k=0.9, ‘andy = 0.15.

Flrst we 1nvest1gate the effect of Brﬂloum gam on the temporal output
pump 31gnal Flgure 6 16 shows a numerlcal example for 1, =40 ns and the
input power P,.= 400 W. Temporal profiles of the output pump signal for
three magnitudes of gz, are shown in Fig. 6. 16(a) and their input-output
characteristics are shown in Fig. 6. 16(b) It is found that the 1nput output
characterlstms depends on the Brillouin gain coefﬁc1ent For gg, = 5.0x1072
m/W, which is one order of magmtude smaller than that of a conventional
fused-silica fiber, there exists a b1stab1e hysteres1s in the curve of input-
output and this hysteresis is identical to the one obtamed by neglectmg the
effect of Brﬂloum galn (1 e., gBo—O) Optlcal b1stab1]1ty has been obtalned here
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Fig. 6.16. (a) Temporal profiles of the mc1dent and output pump 51gnals for
a three magnitudes of gy, where L =0.15 m, P,,= 400 W, 0¢,=-0.6,
=40 ns,x=0.9, andy = 0.15. (b) Input-output characteristics of

: the ﬁber ring- resonator

as expected from the prev10us paper [1] As the Bn]loum gain coeﬂiaent is
mcreased the hystere31s begms to dlsappear due to the occurrence of SBS
and a relaxat1on osc:]latlon appears m ‘the output pump signals. When Eao is
increased to 5.0x10°! m/W, which is Just the value of SBS gain coeﬂic1ent for
a convent10na1 fused-sﬂlca ﬁber the hystere51s completely d1sappears ThlS
result means that the stimulated Brillouin scattering is the most dominant
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nonlinear effect in the ring resonator made of fused-silica fiber. Moreover, we
perform the same calculation as Fig. 6.16 by increasing the pulse width of
incident pulse. Typical example for 1, =80 ns iys'show'n in Fig 6.17. Tt is found
that a fine hysteresis loop is obtained for gz, = 5.0x10 13 m/W, which is two
order of magmtude smaller than that of a conventmnal fused sﬂlca ﬁber '

600 1 T 1 1 | 1) 1 1 1 I LK ¥ 3 I | T 1 I‘ I
: f(a) '——— 930‘5X101132mIW |
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F1g 6.17. (a) Temporal profiles of the incident and output pump signals for
three magnitudes of gy, where L =0. 15 m, P,=400 W, A¢,= -0.6,
- 1,=80ns,k=0.9, andy=0. 15 (b) Input-output charactenstlcs of

the ﬁber ring resonator.
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However, one cannot obtain a hy§teresis like one (shown in Fig. 6.16) for g,
= 5.0x10" m/W. This phenomenon means that the transient Brillouin gain
effect depends on the pulse width of the incident pulse. -

- Next, we investigate the Kerr effect on the transient mput output charac-
teristics for several values of input pulse duration. A Numerical example is
shown in Fig. 6.18(a), where the input peak power P, is 40 W and n,is

- L ' -
g | (@) gpe=5x10"mMW  n,=1x10"" m*V?
> 20 — . | P;,=40 W /" B
a” s /2
= 15| ‘ /. / ]
o L Z
o T (i /
2 10| - N 7]
3 5[ / Tt AU 40 B
o 10 20 30 40
Input power P,, (W) -
25
gi 20
D:'j »
3 15
3
2 10
el
: B
o
5 s
O

'} Inputpoweer (W)

Fig. 6.18. Dependence of input-output characteristics of the fiber ring
\ resonator on the input pulse duration for L=0.15m, A¢,=-0.6x,

- x=0.9,y=0.15, P,= 40 W, and n, =1x10* m*/V*. The Brillouin
gain coefficients are (a) 5%10"" m/W and (b) 0.
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assumed to be 1x10% m%V? which is one order of magnitude larger than that
of a conventional fused-silica fiber. Figure 6.18(b) shows ‘the numerical
results only by neglecting the Brillouin gain effect (gz,=0). It is found that
there exists a hysteresis loop in the input-output curve for 17,=40 ns. Com-
pared with the correspondent result shown in Fi:g 6.18(b), it is found that the
hysteresis loop rarely changes even if the Brillouin gain effect is neglected
This result means that the Kerr effect is dominant for 17,40 ns. As the pulse
vndth'rpis 1ncreased, difference between the input-output curve shown in Flg.
6.18(a) and the‘di:)rrespondent one shown in Fig" 6.18(b) appears. The hyste-
resis shown in F1g 6.18(a) becomes | poor ‘and ﬁnally dlsappears for r'—80 ns.
These results can be’ explamed by the fact that the transient SBS threshold
depends strongly on the pulse width of 1nc1dent pulse ‘When the pulse width
is 1ncrea‘sed, the transient SBS threshold is decreased and thus, the cavity
conditions to obtain optical bistability are damaged due to the occurrence of
SBS. This is why we can obtain a hysteresis for 7,=40 ns but cannot obtain it
for 1,=80 ns by decreasing the magnitude of gg, or increasing the magnitude
of n, one order. However, if the magnitude of n, is assumed to be two orders
magnitude lérgerthan‘ that of a conventional fused-silica fiber, 'optical‘ bista-

blhty can been_ obtamed even ]f the pulse w1dth is larger than 200 ns. The

numencal exarnple is shown in F1g 6. 19 where the mput peak power is4 W

=

o

T
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e R

~ Output power P,
E ° o 3
(3] o
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: | 1:'*,=200 nls |
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o .
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(=]

Fig. 6.’19; Dependence of input-output characteristics of the fiber ring
resonator on the input pulse duration for L= 0.15 m, Ap,= -0.6m,
k=0.9,y=0.15, P,=4 W, and n, =1x 102 m?/ V2.
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n, =1x10* m?/V? and t,=40 and 200 ns. It is found that there exists a hyste-
resis in the input-output curve for both of these pulse widths and the hyste-
resis loop decreases with increasing the pulse width of incident pulse. Since
these results completely agree with those obtained by neglectiug the Bril-
louin gain effect [1], it is believed that Kerr effect become the most dominant
effect for n, =1x10*° m*V=.

~ In conclusion, it.is found that due to the occurrence of SBS optlcal bista-
bility is hardly observed in a fiber ring resonator made of fused-silica fiber.
However, if other optieal fibers with nonlinear refractive index at least one
order larger than that of fused-silica fiber is used, transient optical bistability
may be obtained at low power. As matter of fact, large nonlinearity with two
order larger than that of silica fiber has already been found in chalcogenide
glass fibers [8], which make the exploitation of fiber optical bistable device
probable. . PR

66 Conclusmn e e . RN

We have mvestlgated theoretlca]ly transwnt SBS m a ﬁber ring resonator
It is found that owing to the interaction of the nonlinear refraction with the
SBS gain effect, a Stokes wave in the ring resonator is genera]ly unstable for
a high incident power. It is also found that the instability of SBS including
the periodic (self-pulsing) and chaotic behaviors depend strongly on the
pump power and the parameters of the fiber resonator, including the finesse
and the initial detuning of the cavity. The instability of SBS in resonator may
be used to form a short pulse generator. It is also found that due to the
occurrence of SBS and its instability in a fiber ring resonator, optical bista-
bility described in Chapterk 4 cannot be obtained in general situation. In
order to design a fiber optical bistable device and make it practical, SBS
must be restrained or other optlcal fibers with nonhnear “refract1ve 1ndex at
least one order larger than that of fused s1hca ﬁber should be used
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Chapter 7. Conclusions

In this study, transient properties and instability of the fiber Fabry-Perot
resonator and double-coupler fiber ring resonator have be studied in details.
The transient effect of stimulated Brillouin scattering and the interplay
between Kerr effect and Brillouin gain effect in a fiber and one-coupler fiber
ring resonator have also been investigated in details to give a guidance to the
design of optical bistable devices. All our results obtained are summarlzed as
follows: ' '

1. A nonlinear transmission experiment and z-scan experiment are pre-
formed to clarify the origin of the nonlinearities of a BDN-nitrobenzene
solution in the nanosecond regime. It is found that the main origin of the
nonlinear refractive index change is not the population redistribution of
the dye molecules but the thermal effect. In ‘particular, the nonlinear

- refraction in the nanosecond regime is attributed to dehsifj; change due to
propagatmn of an acousti¢ wave excited’ by the laser pulses ‘We think that
the dye is not suitable as a nonlinear material to develop a novel blstable
optlcal device with a response time less than a few nanoseconds.

2. An iterative method have been described for calculating thé dynamie
properties of fiber Fabry-Perot resonator when an eptical pulse ‘with kan
arbltrary temporal profile is incident on it. Further, a hnear stablhty
analys1s was performed to examine whether Ikeda mstablhty affects

| blstable device application or not. It is found that Ikeda 1nstab1hty hardly
affect blstable device apphcatlon because the instability threshold i is two
orders of magnitude larger than the switching power.

3. The iterative method has been presented for calculatmg the dynamlc
properties of the double- coupler nonlinear ﬁber ring when an optical pulse
with an arbitrary temporal profile is incident on it. On the basis of the
iterative method, a steady-state analysis and linear stability analys1s
have also been presented. It is found that optical bistability is hardly
affected by Ikeda instability since the mnstability threshold is much higher
than the bistability switching power for the initial detuning where the |
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bistable device is operated. It is also found that the general features of the
instability in the bistable device are s1m11ar to that of the nonlinear

Fabry- Perot resonator

. Dynamics of SBS in a single-mode fiber has been theoretically and
;,experlmentally mvestlgated under Gauss1an pulse irradiation. Theoretl-k
cal and expenmental results revealed that SBS could occur even in the
nanosecond regron It was: determmed that the steady state of SBS can be
obtained when the pulse wrdth of the 1nc1dent hght is greater than 100-
fold that of the round tr1p t1me within the fiber. Following the process of

" the’ trans1ent SBS ?"‘ulse narrowmg for the transmltted pulse is observed
Moreover, 1t was numencally demonstrated that the mstablhty of SBS is
closely connected with the magnitude of the nonlinear refractlve index.
SBS instability can occur When the nonlmear refractlve mdex is one order
of magmtude larger than that of the fused-silica fiber.

. Transient SBS and the transient interplay between Kerr ;effect' and
Brllloum gam effect in a fiber rlng resonator have been theoret1cally and
experlmenta]ly “mvestlgated 1t is found that owing to the mteractlon of )

~ the nonlmear refract10n W1th the : SBS gam effect cw Stokes wave 1s’
generally unstable for a hlgh mc'dent power These mstablhty 1nclud1ng

% fthe perlod1c (se]f-pulsmg) and ohaotlc behav10rs depend strongly on the
fpump power and the parameters of the ﬁber resonator mcludmg the
ﬁnesse and the m1t1al phase detumng of the cav1ty It is also found that;

due to the occurrence of SBS in a fiber ring resonator, optlcal blstablhty:
cannot be obtained in a fused-silica fiber resonator In order to des1gn a
ﬁber opt1cal b1stable devme and make it pract1ca1 SBS must be’ restramed-
or other optlcal ﬁbers vnth nonlmear refractive index at least one order
larger than that of fused-s1hca fiber should be used. Since such large
nonhnearltles have been found in other kind of ﬁber ‘such as chalcogenide
glass fibers, we beheve that experimental demonstration of optlcal blsta-
 bility in this device is poss1ble Moreover, further study for the restramt of
SBSin a fibér ring resonator is needed. |
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