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Abstract

Image matching, that is, establishing correspondence between the selected primitives

in two or more images so that the matched primitives are projected from the same
physical elements in the three dimensional world, is a basic and critical problem in
many applications of computer vision. In the present thesis, a region-based approach,
that is, an approach which uses regions as matching primitives, is proposed to match
two images flexibly, robustly and efficiently. Such flexible and robust matching
technique, which can obtain appropriate matching results for images in presence of
noise, deformation, occlusion and inconsistency in feature exaction in two images, is
essential for real applications of computer vision.

According to the difference in the purposes and the problem settings in various
applications, image matching problems are classified into three types: 1) stereo
matching for obtaining the disparity map by fusing the pixels in the two stereo
images along epipolar lines; 2) image correspondence or registration of two images
of the same scene but taken from different viewpoints where the relative positions
are not constrained, nor known; and 3) image matching for object identification,
location or recognition. In this work, the image matching problems in all the cases
are investigated from the region-based matching paradigm, and for each type of the
problem, an algorithm of region-based approach is proposed.

In stereo image matching, instead of matching each individual pixels in the
images, the patches, which correspond to the regions projected from continuous
surfaces so that they can be matched continuously between two image, is the regarded
as matching primitives. To find the matching of such patches, we divide the range of
the depth in the scene into small intervals, and find continuous matchin gs of segments
on the epipolar line in each small interval. Then the continuously matched segments

are merged into patches, by considering the continuity between epipolar lines. The
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matchings of patches obtained in individual intervals, which may partially conflict
or overlap with each other, are integrated to obtain the matchings of patches in the
whole scene by considering the consistency among the matchings of patches.

For image correspondence in a general case, we propose a robust region
matching method which utilizes both local region structure similarity and global
consistency of the region matchings. The method consists of two stages. In the first
stage, local ternary relations among regions, that is, three triangles composed of the
centers of gravity of the region in question and its three nearest neighbors, are used
together with chromatic features of regions to establish region correspondences. In
the second stage, the optical flow generated by the camera movement, which can
be estimated using all obtained correspondences, is used as the global consistency
constraint to validate individual correspondences. The ones which do not obey the
optical flow are detected as mistakes and then corrected using the estimated optical
flow. |

A region-based syntactic approach are also attempted for the region matching
problem. The regions and their relations in an image are represented by a Region
Adjacency Graph(RAG), in which the nodes correspond to the regions, the edges
between nodes represent the region adjacency, and both nodes and edges are char-
acterized by some features of them, such as the average color for a region, length
of boundary between two regions. The problem of matching the regions projected
in two images is formulated into the problem of finding the optimal inexact graph
matching between two RAGs. It is noticed that a RAG is an attributed planar graph,
and it has some specific properties. Therefore, by utilizing these properties, we can
construct an efficient algorithm to find the optimal inexact matching between two
RAGs. This syntactic approach can be extended for object identification, location
and recognition, where matchings between the models of objects and an input image

should be attempted.

1ii



Contents

Acknowledgments i
Abstract ii
Chapter 1 Introduction 1
1.1 Historical Review of Image Matching . . . . . .. ... . .. .. . 1
1.1.1 ImageMatching . . . ... ... ... .. .. .. ... . . 1

1.1.2 StereoMatching . . . . . ... .. .. ... ... ... . 3

1.1.3  Image Correspondence in General Case . . . . . ... ... 5

1.1.4  Object Identification, Location and Recognition . . . . . . . 6

1.2 Research Objective: Region Matching ................ 7

13 Outlineofthe Thesis . . . . . . ... ... ... ... .. . . .. . 9

Chapter 2 Stereo Matching: A Region-Based Part-to-Whole Approach 11

21 Imtroduction . .. . ... ... ... .. .. ... 11
2.2 Finding Matchings of Patches in Each Interval . . . .. .. . ... 14
22.1 Matching in Epipolar Lines . . . . ... .. ... . ..., 15
2.2.2  Taking One-to-many Matching into Account . . . ... . . 16
223 Continuity in the Matching . . . ... ... ... . cee 17
2.2.4  Continuity between Epipolar Lines . . . . .. ... .. . . 22
2.3 Integrating Matchings of Patches . . . ... ... . B 25

iv



2.3.1 Selecting the Most Mature Matchings of Patches . . . . . . 27

2.3.2 Judgment for Occlusion . . . . . ... ... ... .. ... 29

2.4 Experimental Results . . . ... ... ... ... ......... 30
25 Summary. ... oo L e e e e e 34
Chapter 3 Region Matching Based on Similarity of Local Structure 36
3.1 Imtroduction . .. . ... .. ... ... 36
3.2 Segmentationofthe Images . . . . ... ... ... ... .. ... 37
3.3 Local Structure of Regions . . . . . ... ... ... .. ... ... 41
3.3.1 Ternary Relationof Regions . . . . . ... ... ... .... 41

3.3.2 Similarity of Local Structure . . . . . . .. .. .. .. ... 43

3.3.3 Consideration for Region Occlusion . . . . . .. ... ... 46

3.4 Region Matching Using Local Structure Similarity . . . . . . . .. 46
3.4.1 Initial Matching by Chromatic Similarity . . . ... . ... 46

3.4.2 Relaxation Based on Local Structure . . . . . .. ... .. 47

3.5 ExperimentalResults . . ... ... .. ... ... .. ... 48
Chapter 4 The Global Consistency of Region Matching 52
4.1 Introduction ... .. ........ S 52
4.2 Estimation of the Parameters of Camera Movement . . . . . . . . . 53
421 Model of Camera Movement . . . .. ........... 54

4.2.2  Bstimating the Parameters of Camera Movement . . . . . . 56

4.3 Detection of Mistaken Correspondences . . . . . . .. ... .. .. 59
4.3.1 Error in Image Plane . . . . . T 60
4.3.2 Error in Parameter Estimation . . . . . ... ... .. .. 62

4.4  Correcting Mistaken Correspondences . . . . . . . .. e 65

45 Summary. . . .. ..o e 67

Chapter 5 Region Correspondence by Inexact Attributed Planar Graph



Matching

5.1 Imtroduction . ... ............. . ... . _ ..
5.2 Descriptionof the Problem . . . . .. ... ... ... .. .
5.3 Propertiesof RAG . . . . ... .... ... ... .. ..
5.4 Framework of the algorithm . . . . .. ... .. . ... . .
5.5 Matching atthe TreeLevel . . . . . . ... ... . .. .. .

5.5.1 Building two Isomorphic Biconnected Components . . .

552 Reorganizethe Trees. . . . .. ... ....... . . .

83

5.5.3  Matching the remaining nodes of matched articulation nodes 85

5.5.4  Extending the Matching of Trees. . . . . .. ... ...
5.6 Matching within Biconnected Components . . . .. ... ...

5.6.1 Matchingof BRAGS . . . . . ........... . . .

5.6.3 Processingof Conflicts . . . .......... .. . .
5.7 Experiments . . ... .......... ... . .. .. . B

S8 Summary. . .. ...

Chapter 6 Conclusion and Future Works

Appendix A The Relation of Corresponding Points in Two Images
Appendix B Proof of Property 3 of RAG

Appendix C About Node Merging

Bibliography

vi

103

105

107

109



CHAPTER 1

Introduction

1.1 Historical Review of Image Matching

1.1.1 Image Matching

Image matching, that is, establishing correspondence for the selected primitives in
two or more images so that the matched primitives are projected from the same
physical elements in three dimensional worlkd, is one of the oldest tasks in computer
vision research. This is because many basic tasks in computer vision involve image
matching as an unavoidable and critical problem. For example, in the stereopsis for
constructing three dimensional information of the scene, the depth information of each
primitive in an image can be computed by triangulation only after its correspondence
to that in the other image was established by matching two stereo images. Other
examples include time-varying images analysis where the images taken at different
time are matched to detect the changes in the scene; image retrieval searching in
image database for an image of a particular scene or containing particular objects;
image identification to judge whether two iniages are taken from the same scene,
object location which determines the location of an object by matching a sample

image of the object with a part of the image which may contain the object, and so on.



Image matching is also one of the most active fields which attracts enormous
research efforts in computer vision nowadays, because it is still an open problem of
essential importance, which have not been solved completely yet. Image matching is
made difficult by several complications in that problem. First, it is a reversal problem
of perspective projection and therefore ill-conditioned. That is, a point in an image
may be projected possibly from anyone of the points along a line in the scene which
passes through the image point and the center of the lens of camera, but in another
image, all those points in the scene will project to distinct points. It means that for
a given point in one image, there are often many possible matchers of it in another
image. Second, due to the inaccuracy of measurements and the effects of variation in
illumination between two images, even if the primitives in two images are projected
from the same physical element in the scene, they may have features different in some
way. Third, due to occlusion, there are almost certainly some regions of half-oceluded
points which appear in only one image and, consequently, have no match in the other
image. |

According to the difference of the purposes and the problem settings in various
applications, image matching problems are classified into three types: 1) stereo
matching to obtain the disparity map by fusing the pixels in the two stereo images,
where a priori knowledge about the camera settings is available so the epipolar line
constraint, which can be derived from camera settings, can be used to restricts the
possible matches of a point in one image to those lying in the corresponding epipolar
line in the other image. 2) image correspondence or registration of two images of the
same scene but taken from the different viewpoints which are neither constrained nor
known; and 3) object identification, location or recognition by matching an image of
an object with a sample image or a model }of the object or with the ima ge taken from
another viewpoint. |

There are many approaches[1-35] proposed to deal with image niatching prob-

lem, in which the majority are proposed for stereo matching[1-26], and only a small



part of them deals with image correspondence in general case[27-35]. There are also
a few methods[36-38] of matching a sample image of an object with a part of the
input image proposed for object location and recognition. Matching of a model of an
object with an image[38-49] is deeply dependin gon the mode] used for representation

of the object, that is not concerned substantially in this thesis.

1.1.2  Stereo Matching

All the algorithm proposed for stereo matching can be characterized from three
aspects: the constraints they impose on the images; the primitives they select for
matching; and the matching strategy they employ.

Constraints: 'Because even after the epipolar constraint was applied to restrict
the matchers of a given primitive to that lying on the corresponding epipolar line
in the other image, there are always too many candidates of matchers for it, many
algorithms proposed previously impose also various constraints on images to simplify
the huge search space for matching. Kanade and Ohta[12], Bensrhair[11] and Li[18]
employed the ordering constraints along corresponding epipolar lines so that the
optimal matchings of primitives between the corresponding epipolar lines in two
images can be found efficiently by dynamic programming. The continuity of the
disparity constraint, which is directly related to smoothness of the scene surfaces, is
used in most of the existing stereo matching techniques[1-26] for suppressing some
impossible matchings. The figural continuity constraint is introduced by Grimson[10]
to utilize disparity continuity along the boundaries of the surfaces in the scene.

Matchihg Primitives: Selection of primitives for matching has a special im-
portance in stereo matching, because using more discriminating primitives which can
be distinguished from each other more easily can restrict the search for matching a
given primitive to fewer candidates which have similar features. Hannah[5], Mori[6],

Kanade[7] and some other method [3,4] utilized SSD (sum of squared difference)



measurement to match every pixel by comparing the density distributions in a local
neighborhoods of a pixel in one image with that in a corresponding neighborhoods
of a pixel in the other image, instead of by comparing the gray values of the two pix-
els only. The interesting points matching methods, which extract some points with
specific intensity pattern in their neighborhood from images as matching primitives,
also compute the correlation bétwcen the neighborhoods of two corresponding pixels
in two images to measure the matching similarity of them. Marr[9] suggested that
the zero-crossings should be used as matching primitives upon the psychophysical
evidence on human vision system, and Grimson[10] gave an implementation of Marr-
Pioggio theory. Connected linear features such as line segments and edge segments |
are preferred by many proposed techniques[18], because those features are usually
more stable to photometric variations and are less in number, that will lead to more
reliable and efficient matching algorithms. A few methods by Marapane[16] and
Lee[20] used regions as matching primitives.

Matching Strategies: In addition to imposing constraints on images and se-
lecting discriminating features for matching, several control strategies have been
employed in many stereo matching techniques to reduce further the matching ambi-
guity and enhance the matching efficiency. In coarse-to-fine strategy used by Marr[9],
Grimson[10], Vleeschauwer[26] and others[20], the matchings obtained in a coarser
scale of resolution is used to guide and limit the search for the matching of primitives
at finer scales. Marapane[16] and Hoff[24] employed a multi-primitive hierarchal
matching strategy which used more than one abstract levels of primitives, such as
pixels, edges and regions, simultaneously. In structural stereo approaches proposed
by Horand[19] and Boyer[25], the relational structure information between primitives

is used to eliminate the ambiguity of matchings.



1.1.3 Image Correspondence in General Case

This problem is generalized from the stereo matching by removing the epipolar
constraint so that we can deal with other applications such as image retrieval, scene
_identification, motion with large frame interval, and other tasks in which image
correspondence is required but the relative positions of the viewpoints are unknown.
In principle, all the feature-based stereo matching techniques can be extended to the
general case, but the increase of the dimension of search space for matching and the
ambiguity of the matching will be too severe for most of those approaches.

Contrary to those for stereo matching, there are only a small number of
approaches proposed for image matching in the general case. Kahl[28] and Skea[29]
used a control point matching approach to find the maximum matching of points, that is
subjected to satisfy some geometric invariant properties in two images. Strickland[30]
proposed an edge matching approach, in which the edges in aimage are considered as a
network where the cross points of edges are presented as nodes and the edge segments
between the cross point are presented as branches. A relaxation scheme is used to
find the matching of branches and nodes in two images with the maximal similarity
between the structures of two networks of the edges in two images. Weng[35]
proposed a hierarchal multi-primitive matching approach, which adopted local rigid
movement constraint, that is, the displaces of the matched primitives must obey the
movement of a rigid object locally. |

Chen and Nakatani[33] proposed a region-based image matching approach
using color feature of regions and the region adjacency relations. In their work,
the region structure is represented by region tables, in which the first item contains
a region which is concerned and the sth item contains a list of regions which are
away from the concerned region in distance : (that is, they are separated from the
concerned region by 1 — 1 regions in between). The region correspondence is carried

out matching the regions at similar levels in the region table.



1.1.4 Object Identification, Location and Recognition

Though this third type of image matching problem is not dealt with substantially in
this thesis, a short review of it is in order.

The matching problem involved in object identification, location and recog-
nition is essentially a problem of finding a correspondence between a model of the
object and the image (or a part of it) in which the object is projected. There are many
methods proposed for matching of models with im\ages, where the type of model used
for representation of the object will greatly influence the matching procedure. The

majority of model matching methods falls in the following classes:

L. Template matching. Template matching[36-38] has been a traditional approach
to two dimensional object identification, location and recognition, where the the
object is represented by a sample image of it, called template. The most simple
template matching program just slide the template over the image and find the
place at which the template is matched with the image best. A parametric
template matching approach are proposed in [38] to deal with not only the
translations of the pattern in images, but also the rotation and scaling. Recently,
deformable template matching[36] are proposed to deal with shape deformation

caused by the projections from different viewpoints.

2. Shape matching. This approach are proposed for recognition of 2D objects or
planar objects. In this case, the object is considered to be decisively described
by the features of its contour, that is, its 2D shape. Matching the model of an
object with the image is to finding the correspondence of the contour in the

model to that extracted from the image[39-42)].

3. Local feature matching. In this approach, the object model is described by
a set of local features, which are always selected as point features such as

corner or vertices. The same features are detected from the image, and then



the number of local features, which may be projected in the images from the
object features under certain transformation, are counted. This is carried out
by the technique called geometric hashing[43-49]. The transformation my be
affine transformation[44], general transformation of translation, rotation and

scaling[43], or perspective transformation[45].

4. Structural matching. An object is described by some features and the relational
structure of the features. The problem of object recognition becomes the
problem of matching two structures, one represent the model of the object and
the other is extracted from the image. This problem is generally described as
a so called consistent labelling problem in [64], and a solution of state space
searching was given. There are also many graphic approaches[62,63,65-67]
proposed for this problem, where the features and their relational structure of
the object was represented as attributed graph and the then find a maximal

inexact matching between two graphs.

5. Global feature matching. Murase[49] proposed a appearance learning methods
which learns all the appearances of the objects, and each appearance (the image
of the object taken from certain viewpoirit) of the object is approximated by its
eigenvalue. In the recognition stage, the eigenvalue of an input image of the
object is first computed and then are compared with that of the appearances
learned in the previous stage. The appearances which is closest to the input

image are regarded as the corresponding appearances of the observed object.

1.2 Research Objective: Region Matching

Efficient and robust image matching technique for establishing correspondence be-
tween features from two perspective projected or temporarily and/or spatially shifted

images is essentially important for real applications of computer vision. For such an



efficient and robust matching, regions are more appropriate as features than edges
or points, because using regions as matching primitives has the advantages (1) that
there are much fewer regions in an image than other primitives such as edges, (2) that
regions possess more information (such as area, average color, shape and moment)
which supplies higher discriminating capability of regions, and (3) that they are also
more stable against occlusions than, for instance, edges[31]. These advantages enable
a more efficient and reliable matching by using regions, and the result can be used
as guiding information for matching of more detailed primitives, such as edges and
corners, when it is necéssary. The objective of this thesis is to describe a region-based
approach proposed for efficient and robust image matching.

In the numerous literatures on image matching, only a few address the region—
based techniques, and various deficiencies can be found in them. The ear]iér methods
which only use region features (Marapane[31] and Trivedi[24], Fuh[32]) suffered
from the matching ambiguity when there are similar regions in the images. Lee[20]
computed the matching probability of a region and its corresponding candidates using
region features, and then improved them by relaxation based on the pair of similar
triangles in two images. However, the relation of similar triangle is neither stable
nor discriminating, because the triangle of fhe centers of gravity of triple regions can
hardly keep in similarity and, on the other hand, two triples of regions of two similar
triangles may be unrelated. The recent method proposed by Chen[33] tried to use
structural information of region adjacency relations, but neither the region adjacency
relation is meaningful and stable for regions of separated objects, nor the region table
used there is an inherent way to describe the relations of region structure similarity.
Another problem of the proposed region-based techniques s that they can obtain only
sparse disparity from region corréspondence, when they are applied to stereopsis.

In this thesis, we will describe three region-based image matching methods.
The first is a region-based part-to-whole stereo matching algorithm, in which the

patches to be matched continuously between two images (that is, the regions which are



projected from the same continuous surfaces in the scene) are regarded as matching
primitives. The second is a region-based technique for image correspondence in
general case, which consists of two stages: the matching stage that establishes
region correspondence using both features similarity and local structural similarity of
regions, and the validating and correcting stage which utilizes the global consistency
of the whole obtained correspondences to detect and correct some apparent mistakes
in the derived local matching results. The third is a region-based syntactic approach
to image matching problem, where the regions and their relations in an image are
represented by a Region Adjacency Graph (RAG), and the problem of matching the
regions in two images are formulated into the problem of finding the optimal inexact
graph matching between two RAGs. This syntactic approach can be extended for
object identification, location and recognition, where matchings between the models

of objects and an input image should be attempted.

1.3 Outline of the Thesis

This thesis is organized as follows. In Chapter 2, the stereo matching problem is
considered. Stereo matching is represented aS a problem of finding between two
images the matching of the regions which are projected form the continuous surfaces
in the scene. Such a regjon is equivalent to a patch which can be matched continuously
in two images. A part-to-whole approach is described in this chapter, which first finds
patch matchings in each small interval of depth by dynamic programmin g with the
continuity of matching being taken into account, and then integrates the matchings of
patches in each individual interval to obtain the matchings of patches for the whole
scene, by considering the consistency’ among the matchings.

In Chapter 3, a region matching method is proposed for ima ge correspondence
in general case where the epipolar constraint is not available. The method utilizes

both local region structure similarity and global consistency of the region matchings



to suppress the matching ambiguity occurred when only the features of regions are
used. The local ternary relations among regions, that is, three triangles composed
of the centers of gravity of the region in question and its three nearest neighbors,
are used to describe the local structure of regions. In Chapter 4, the optical flows
generated by the camera movement are estimated from the whole of the region
correspondences obtained by the method described in Chapter 3, under the assumption
that the majority of them are guaranteed to be correct. The estimated optical flow,
which should be followed by every correspondence of regions, is used as the global
consistency constraint of region matchings to detect and correct apparently mistaken
correspondences.

Chapter 5 gives a region-based syntactic representation of region matching
between two images. The regions and their relations of the objects in an image are
represented with a Region Adjacency Graph (RAG), in which the nodes correspond
to the regions, the edges between nodes represents the region adjacency, and both
nodes and edges are characterized by some features of them, such as the average color
of region, length of adjacency of edge, etc. The problem of matching the regions
in two images are formulated into the problem of finding the optimal inexact graph
matching between two RAGs. In this chapter, the RAG is shown to be an attributed
Planar graph, and some of its properties are noticed. From these properties, we
can obtain that an attributed RAG can be partitioned into biconnected components
connected by articulation nodes as a tree, and within the biconnected components, the
edges of each node must be matched with order reserving. Utilizing these properties,
an efficient algorithm to find the optimal inexact matching between two RAGs is
developed. In Chapter 6, we summarize what we attained, and discuss the remaining
problems of the proposed methods as well as possible extensions of them for wider
range of applications, including the exfension’ of the region-based syntactic approach

for the purpose of object location, identification and recognition.
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CHAPTER 2

Stereo Matching: A Region-Based
Part-to-Whole Approach

2.1 Introduction

For the past decades, a major portion of the research efforts in computer vision
has been directed towards the study of three-dimensional structure of scenes using
machine analysis of images. Stereo vision is essentially a process to construct
three-dimensional structure of the scene which has two major advantages over other
methods such as laser range finding. First, it is a passive method, which means that
it does not alter the environment. Second, it is potentially better for high resolution
of three dimensional description of moving objects or changing scenes in less than a
thousandth of a second, whereas the current laser range findin g technology usually
requires objects to be relatively motionless.

The central task in stereo vision is stereo matching, that is, finding correspon-
dences of pixels in two images. Although big efforts have been made for stereo
matching for decades, it is still an open problem due to its complexity. There are

many methods proposed for stereo matching, and most of them fall into the two
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categories: the feature-based approach[1,9-26] and the area-based approach[2-8].

In the feature-based approach, features such as regions, edges, corners, or
ZEro Crossings Vof Laplacian of Gaussian extracted from images are used as matching
primitives. As the number of features is always much smaller than that of pixels,
the feature-based matching can be carried out efficiently, but at the same time only
with sparser disparity' information. Usually, interpolation is applied to compute the
disparity for non-feature pixels, but it has a flaw. When a part of a homogeneous
region (or nearly homogeneous region where no feature can be extracted) is occluded
in another image, as shown as the shaded areas in Figure 2.1, the disparities of
pixels between the edges can not be computed correctly just by interpolating from

the disparity of the matched edges.

front

background

a) The edges matched.

b) The regions to be machted.

Figure 2.1. Interpolating disparity in regions using
disparity obtained from matchings of edges.

"Disparity is defined as the locational shift of the corresponding pixels which are projected from
the same scene point in two images.

12



Another problem of the feature-based approach is that it requires that the same
features should be extracted in both images. However, in real applications the features
extracted from images are neither complete nor consistent in two images. The error
arisen from the feature extraction will bring about the error in matching of features
in turn.

On the other hand, the area-based approach matches each pixel in an image
to a pixel in the other image by comparing the density distributions in a window
centered at the two pixels to be matched. This approach can generate dense disparity,
but there are three problems to be solved. First, it is very computationally expensive
when the size of the window is large. Second, it is not easy to determine the size of
the window. When the window is too small, correlations computed from the window
will have not enough ability to discriminate the correct matching of a pixel from its
matching candidates. When the window is too big, the correlation of pixels near the
edge of a surface which are different in depth from other neighbor surfaces will be
low and they may not be matched although they should be. The approach using an
adaptive window[2] had been proposed to solve this problem, but it is computationally
expensive due to its iterative nature. Third, the continuity constraint employed in this
approach requires that the disparity should change smoothly over the image. This
condition is not satisfied when the objects locate in a large range of depth in the scene
or the change of viewpoint is large. 7

In this chapter, a new approach for stereo matching to obtain dense disparity is
described. In that approach, we assume that the scene is composed of some piecewise
connected surfaces. Thus the images of the scene taken from different viewpoints
can be considered of containing some patches which can be matched continuously
between two images. These patches correspond to the regions of the surfaces in the
scene, but they need not to be homogeneous regions, that is, regions of pixels with the
same gray value or color. Our objective is to find out the matching of these patches.

Similar to that when we look at object near to us we do not care about the

13



objects far from us or vice versa, in our method we first try to find possible matchings
of patches of surfaces located within a small interval of depth in the scene at one time.
In the second step, we integrate these matchings of patches in each small interval
of depth to generate the matching of patches of the whole scene. The matchings of
patches obtained within each interval of depth may be overlapped or conflicting with
each other. Thus we consider the relation among the matchings of patches and select
the best-matched one among the overlapped or conflicting matchings of patches as

the unique matching of the patches.

2.2 Finding Matchings of Patches in Each Interval

As shown in Figure 2.2, a point in the scene projects to different points in the left and
the right images. The shift of the location of the point p’ in the right image relative
to that of p in the left image along the epipolar line, shown as vector v, is called the
disparity between the corresponding points p and p'.

According to perspective projection theory, an interval of depth is equivalent
to an interval of disparity. Therefore, here we will use intervals of disparity instead
of depth. We divide the range of dispafity into some small intervals and find the
matchings of patches within each interval of disparity.

We assume that the surfaces cbncemed should be projected to a region in the
images with its width not less than w. If we divide disparity into some intervals not
larger than w, then objects within such a small interval of depth will be projected to
two images in the same order along an epipolar line, which is assumed to be horizontal
here. Therefore dynamic programming can be used to find the matchings of patches
along the epipolar lines in each interval of disparity. |

In this section, we will first consider how to find the optimal matching of con-
tinuous segments of the pixels along the epipolar lines, by matching two sequences of

pixels with continuity being taken into account. Then we merge the matched segment
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Figure 2.2: The disparity of corresponding points in two images

in each epipolar line into patches, considering the continuity between epipolar lines.

2.2.1 Matching in Epipolar Lines

Let agaias......am and bobib,......b, be two sequences of pixels along an epipolar line
in the left and right images. For each ‘pixel, we regard its color (their RGB value)

as its features. Define the cost of matching two pixels as their chromatic distance in
RGB space.

d(as,b;) = /(R(as) — B(b;))? + (G(as) — G(b))2 + (B(as) — B(b;))®  (2.1)

If a pixel has no matching pixel in the other image, a special matching null is assigned
to it. This means that the pixel is occluded in the other image. A constant cost M /2
is assigned to the cost of an occlusion, where M is the maximal chromatic distance
allowed for matched pixels. That is, if two pixel a; and b; are quite different in

color so that the chromatic distance between them is over M, then they will never be
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matched because matching both of them with null has less cost.

As noticed aBove, in a small interval of disparity, {a;} and {b;} must be
matched with order reserving. That is, if a; is matched by b;, then a;y; can only
match with b where & > j (here the case where more than one pixels may match to

one pixel in the other image is not considered). That is shown in Figure 2.3.

ala a; ®®ee 5,3...2 $oev.

SN

bl bybzecee blbi+1bl+2bi+3 ®®®bn

Figure 2.3: Matching of pixel sequences with order reserving

The optimal one-to-one matching of two pixel sequences with order reserving

can be computed using dynamic programming[54,55,57] as follows:

O(Z,j) = rmn{ C(i——l,j—l)—}-d(ai,bj),
Cli—1,5)+ M2,
Cli,j —1) + M/2) 2.2)

The optimal matching is obtained as the matching which yields C'(m, n).

Under the constraint that two sequences are matched within a disparity interval
Ry = [dy, dy11], for every matched pair of pixels (a;,b;), d, < j —1i < di+1 should
hold. Thus only a small part of {C(s, j)} satisfying the above condition needs to be

computed.

2.2.2 Taking One-to-many Matching into Account

For a slant surface, as shown in Figure 2.4, the projected region in one image may be

narrower or wider than the projected region in the other ima ge. In other words, a slant
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surface may project to a segment of n connected pixels on thé epipolar line in one
image, and project to a segment of m pixels on the corresponding epipolar line in the
other image, where n # m. Therefore, the segment of . pixels will correspond to the
segment of m pixels in the other image. In this case, we must allow one pixel in one
image to be matched to more than one pixels in the other image, so that a narrower
region can match to a wider region, or vice versa.

The optimal matching of two sequences of pixels with one-to-many and many-

to-one matchings being allowed can be computed as follows:

C(,j) = min{ CE-1,7—1)+d(a,b;),
C(t=1,7) + d(as, b)),
C,5 — 1) + d(as, by),
Cle—1,7)+ M/2,
Cle,g —1)+ M/2} (2.3)
The second and third items the Equation 2.3 are computed for one-to-many
matching in the pixel sequences. We can show that only if a one-to-many matching
occurred, the second or third item will be the minimum of Equation 2.3. For example,

consider the second item with the case that b; was matched to null before the matching

of a; and b;. In this case,

Cli—1,§) +dlanby) = (Cli—1,j— 1)+ M/2) +d(asy) @4
> C('I, -1,7— 1) + d(a,,;,bj)

That is, the second item will be suppressed by the first item in this case.

223 Confinuity in the Matching

Because a continuous surface projects to continuous segments in the epipolar lines

in both the left and the right images, these segments projected from a surface should

17



0 =

Figure 2.4: The regions of a slanting surface in two images

be matched continuously. Two segments P and P’ in an epipolar line are said to be

matched continuously if the following conditions are satisfied:

1. For Vp; € P, there exists p; € P’ so that pi — p; (— means ‘matches’) .

The same is true for Vp! € P'.

2. For any p;, p; € P and their corresponding pixels p! and i, if p; and p; are
adjacent, i.e., Dist(p;,p;) = 1, then Dist(p}, p}) < 6. The same is true for P".

where Dist(a, b) stands for the distance between two pixels ¢ and b, and § is a number
to control the allowed change of depth of two neighboring pixels on a continuous
surface. In the following, we consider the case of § — 2.

The optimal matching with the least discontinuity of two sequences of pixels
on an epipolar line can be obtained by imposing a large matching cost when a
discontinuity occurred in the matching. According to the above definition of matching

continuity, the discontinuity of matching occurs in the following cases.
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1. a; — bj, when b;_; — null or a;_1 — null
2. a; = null or b; — null, when a;,_; — b;_1.

these two disconnected points occur in pairs, one at the left edge of matched patch
and one at its right edge. So we need to impose a discontinuity cost on just either case,
say, on the first one. Another case of violating the conditions of matching continuity
is that more than two pixels matched to one pixel (in case of § = 2).

Suppose the cost imposed for a discontinuity be a constant D. Appending this

cost into the computation in (2.3) yields:

C(z,j) = min{ C(i—1,5 — 1) + d(a;, bj)+g(i—1,7— 1),
Cz—1,7) +d(as, b;) + hy( — 1,7),
Clirj = 1)+ d(as, by) + hali,j — 1),
C(r—1,5) + M/2,
Clé,5 — 1) + M/2} (2.5)

where
D ifC(i—1,j—1)=C(—2,5—1)+M/2
gi—1,7—1)= orCi—1,j—1)=Cli—1,5—2) + M/2 (2.6)
0 otherwise

It means that, if the optimal match until (@i-1, b;_1) is arrived by deleting a;_; or

b;_1, then the disconnected cost is imposed for matching a; and b;.

D lfO(Z - 17]) = O(?' _2aj) +d(ai—1=bj)

0 otherwise

hali —1,5) = { (2.7)

It means that, if the optimal match until (ai_1, ;) is given by matching a;_, and i1
with b;, then an additional cost for discontinuity is imposed if «; is still matched to

b;.
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D ifO(z',j - 1) = O(Z,] - 2) + d(ai,bj_l)

0 otherwise

ho(,5 — 1) = { (2.8)

The meaning of h,() is similar to that of hy().

We can see from (2.5) that in the case of D > M, if a discontinuity have
occurred when a; and b; are going to be matched, then all the pixels after a; and b, in
the two sequences will never be matched. This is because matching a; and b; after a
discontinuity will be imposed of a cost D additional to the matching cost, which is

greater than the cost of deleting them. So the deletion of them will be chosen, and
the same will be repeated for the following pixels, leading to the whole subsequences
thereafter un-matchable. However, when some subsequences of considerable length
after a; and b; can be matched, the cost of matching on those successive pixels, even
added with D, may become less than the cost of deleting all of them, and thus the
former should be chosen.

Therefore, we modified (2.5) so that this possibility occurs, resulting in the
following dynamic programming using two computing arrays. The first array C'(z, 7)
is computed similarly to (2.5), where just the deletion of pixels is considered after
a discontinuity has occurred. The second array F(i,7) is computed for possible
matchings of pixels after the discontinuity. When F'(i,5) gets less than C(i, §),
C(t,7) takes the value of F(3, 7).

CG,7) = min{ F(,j)
Cl =17 = 1) +d(ai, b) + g(i — 1,5 — 1),
Cz—1,7) + d(a;, b;) + hi(s — 1,7),
Ct,7 — 1) +d(ai, bs) + hai, j — 1),
Ci—1,5) + M/2,
Cli,5 — 1)+ M/2} (2.9)
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F(i,j) = min{ F(G—1,j—1)+d(a;,b;),
Cli—1,7—1)+d(a;,b;) +g(z—1,5 —1)
P(i=1,j) + d(ai, bj) + Iy (v = 1,5),
F(i,j — 1)+ d(a;, b;) + k(3,5 — 1)} (2.10)
' where () and R5() are defined similar to /() and A3(), though they are defined on
F(i,7).

a) Left and right images

b) Matching reuslts: c¢) Matching reuslts:
no continuity considered continuity considered

Figure 2.5: Random dot stereo images of a square over background.

Figure 2.5 illustrates the effects of taking continuity of matching into account.

Figure 2.5(a) shows a pair of random-dot-stereo images of a scene where a square
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is floating over the background. Figure 2.5(b) shows the disparity obtained by the
matching without continuity being considered. The disparity is shown as a gray-scale
image, with brighter grey-level showing larger disparity. The black part shows the
occluded part. Figure 2.5(c) shows the disparity obtained when the continuity is

considered.

2.2.4 Continuity between Epipolar Lines

In general, when the interval of disparity is small, the optimal continuous matching of
segments of pixels in epipolar lines can be considered t6 be'the unique matchings in
the interval. However, if occlusions exist, there may be ambiguity in some matchings.

Consider the case of random-dot-stereo images. *As shown in figure 2.6(b),
B}, and B, are parts of the same surface, but By, is occluded in another image. If By,
is consistent with the left part A;, of the surface A; which is located in front of By,

then the following two matchings are possible.

1. Ay, — By, By — {null}, that is, Ay, is matched correctly as the left part

of the front surface, and By, is regarded as occluded.

2. Ay, — By, By, — {null}, that is, A, is matched to a part of the back

surface Bj and Bj, is regarded as occluded.

Which matching is obtained depends on the order in which the matching is
performed. For example, we will obtain the matchings Ay, — By, Ay, — B,
{null} — B,, and A, — {null} as shown in figure 2.6(c), by proceeding the
matching from left to right. On the other hand, if we proceed the matching from
right to left, Ay, and B;, will be mismatched to By and Aj , respectively, but
Ay, and B,, will be matched correctly. From these two sets of matchings obtained
by performing matchings in different directions, we can select the correct ones by
considering the continuity of matchings within each epipolar lines and the continuity

between vertically adjacent epipolar lines.
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Disparity

Epipolar line

a) The surfaces in the scene
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c) The matchings from left to right
Bo Bo, B:1 Bi, B2

d) The matchings from right to left

Figure 2.6: Complementary matchings of two pass matching
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Denote 1, j as the vertical and horizontal coordinates of a pixel, respectively.
Let {P(%,7)} and {Q(z, )} be the disparity of pixel (¢, 7 ) obtained from the matchings
performed from left to right and from right to left, respectively, and let { B(4, j)} be
the set of pixels where P(4,7) # Q(z,7), i.e.,

B(i,j) = (2.11)

0 otherwise

{ 1 if P(i,5) # Q(i,7)

Let {D(4,5)} be the disparity which we want to compute. For every pixel
such that B(i,5) = 0, the disparity is unique, so D(i,7) = P(i,j) = Q(%,). For
a pixel in {B(s,7) = 1}, we select a disparity from P(i,j) and Q(%, ), so that the
following conditions are satisfied. |

(i) Continuity within an epipolar line: |D(%,j — 1) — D(,7)] < é or [D(4,5 +1) —
D(i, )| < é.

(ii) Continuity between epipolar lines: |D(: —1,7) — D(¢,5)] < 6 or |D(i+1,5)—
D(@i,5)l <6

The detailed procedure is:
1. Compute {P(i, )}, {Q@, 1)}, {B(,5)}, {D(3,7)} as stated above. D(z,5) =
o0, if B, ) = 1.
2. Scan {B(4,7)}, and for every pixel such that B(z, ) # 0 do:

(a) Set D(i,5) = P(i,7). If the above conditions are satisfied, then B(3, j) =
0 and go to (d).

(b) Set D(4,5) = Q(4, 7). If the above conditions are satisfied, then B(z,7) =
0 and go to (d).

©) D, ) = oo.

(d) Process next B(z, 7).
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3. repeat steps 2 and 3 until all B(¢, j)’s become zero.

Figure 2.7(a) shows the result obtained from Figure 2.5(c) by applying this
process. Figure 2.7(b) shows the true disparity.

a) Disparity obtained | b) The true disparity

Figure 2.7: Disparity after processed between epipolar lines
for the random dot stereo images in Figure 2.5(a)

2.3 Integrating Matchings of Patches

If all the objects in the scene project to the images with the same order along the
eppipolar lines, then the matching process described in the previous section will be
sufficient for obtaining the matchings of patches in the whole scene by treating the
whole range of depth as one interval. However, when the scene contains objects
spread in a large range of depth and/or the distance between viewpoints is large, the
left-right relation of the regions of two objects in different depth may change in two
images. Figure 2.8(a) shows an example of random dot stereo images. These images
are generated from a scene which contains two vertical rectangles in front of the
background. The right rectangle in the left image locates much nearer to the viewer

so that it came to the left of the farther one in the right image. In this case, each

25



rectangle can only be matched with the disparity (depth) interval where it locates, and
integration of each matching generates the structure of the whole scene. Figure 2.8(b)
and (c) show the matching results in the intervals R;(the interval of disparity from 10
to 19) and Ry (disparity from 90 to 99), respectively. In each interval, a rectangle is
matched. In this section, we will consider the integration of such matchings obtained

within individual disparity intervals, in a general case.

a) Left and right images

b) matching reuslt in R, b) matching reuslt in Ko

Figure 2.8: Random dot stereo images of two vertical rectangles.
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2.3.1 Selecting the Most Mature Matchings of Patches

A patch in one image should be matched to a unique patch in the other image.
However, the matchings of the patches obtained from the individual intervals of
depth may not satisfy this condition. For example, when there exist more than one
objects with similar color, which are projected on the same epipolar lines but locate
in different depths, the projected region of the objects in one image may match to
different regions (in different depths) of other similar objects in the other image.
For an object which projects to large homogeneous regions, while it is matched
completely in the depth interval where it exists, it can also be matched partially in
the neighboring intervals. Among those contradicting matchings, we select as the
desirable one the matching of patches which is matched most maturely, that is, the
matching with the lowest matching cost and the biggest matched area.

Consider a surface S which exists in interval R; of depth in the scene. Suppose
that .5' projects to patch P in the left image and to patch P’ in the right image. P and
P' are completely matched in interval R;. This matching is denoted as A; — A,
where A; = P and A} = P'. In another interval R;, P and P’ are matched only
partially. The matching in R; is denoted as A; — A’, where A; C P. Figure 2.9(a)
shows this situation by segments on epipolar lines.

Let A;; = A; N A; # 0 be the intersection of A; and A;, and assume that Ajj
is matched to B; and B; in R; and R;, respectively. If B; # B;, they are conflicting
matchings for A;;. In general, we can expect that the cost of the correct matching
Aij — B;in R; is lower than A;; — B, in R;, so we can select the one with the
lowest cost as final matching of A;;. However, the cost of A;; — B; may be equal to
that of A;; — B; when P is a homogeneous region, and may become larger under
some conditions of illumination.

Instead of comparing the cost of A;j — Biand 4;; — B;, we consider both

these two matchings in R; and R;, simultaneously. We can see in Figure 2.9(b) that
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a) The overlapping mathings b) The matching of B; and B; in R; and R;

Figure 2.9: The overlapped matching of patchs in two intervals.

in Ri both B; and B; are matched well, but in R;, B; can only be matched partially
while B; is niatched well. This is because that B; and Bj are parts of patch P’ and
that P’ is matched with P more maturely in R; than in R;.

Using the fact above, we can recompute the matching cost of conflicting

matchings of A;; — B; and Aij — B; as follows.
Mi(Aij) = (Ci(Aij, By) + Ci( X3, B}))/2 (2.12)

M;(Ai;) = (Ci(X;, B:) + C;(Ayj, B;)) /2 (2.13)

where My (P) is recomputed matching cost for patch P in RL..A Cr(A, B) is the
average of the matching costs of pixels in 4 and B matched in R;. X; and X; are
the corresponding patches of B; and B; in R; and R;, respectively. In R;, as both
B; and B; are well matched, M;(As;) will be low. On the other hand, in R;, B; is
matched only partially and the unmatched part will have high costs (cost of deletion),
s0 M;(A;i;) will be larger.

The computation above are stated for a whole patch. However, when depth
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of a surface changes gradually along the vertical direction, the whole patch may
not be completely matched in one interval. Therefore, instead of carrying out the
above computation for a whole patch, we just recompute the matching similarity
with respect to a part of it, that is, the computation above is carried out by using the
concerned epipolar line and the neighboring lines below and above it.

This recomputation is repeated for all the patchés matched in two neighboring
intervals R; and R;;;. After this recomputation of matching costs, the costs of
matchings of patches in the correct depth interval remain in low values, but the costs
of matchings of patches in other intervals become larger. Finally, from the conflicting
matchings of patches, we select the one with the lowest recomputed cost as the unique

matching.

2.3.2 Judgment for Occlusion

In the above processing, a unique correspondence is selected for each patch in one
image, say left image. However, different patches in left image may match to the
same patch in the right image. For example, suppose that a scene has a nearly constant
colored background and a part of the background is visible in the left image and is
occluded in the right image. This occluded part of background may match to another
part of the background in the right image, which will be also matched by a correct
correspondence in the left image. For those many to one matchings of patches, we
must decide that which patches are matched correctly and which patches are occluded.

Suppose that P; and P, are two patches in left image, and P’ is a patch in
right image so that P, — P’ and P, — P’. Here we simply compare the cost
of P, — P’ and P, — P, and select the one with the lower cost as the correct

matching and regard the other as occluded patch.
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2.4 Experimental Results

We applied our method to several random-dot-stereo images and some real images.
The final result of matching for the random dot stereo images in Figure 2.8(a)

are shown in Figure 2.10(a). The true disparity of them are depicted in Figure 2.10(b).

b) matching reuslts ¢) true disparity

Figure 2.10: Result for images in Figure 2.8(a)

Figure 2.11(a) shows another pair of random dot stereo images which contain
two squares floating over the background, one of them is in the front of the other.
Figure 2.11(b) shows the matching result of them, and (c) depicts the true disparity.

Figures 2.12(a) shows a pairs of stereo images of the real world obtained
form the “Database of Multi-viewpoint Image for Research” by Ohta et al., Tsukuba
University, Japan. These images are complicated since the objects in the scene
located in a large range of depth. The patch matching similarity in several intervals
are shown from (b) though (f). The final result is shown in Figures 2.12(e). We can
see that method generated reasonable results for this complicated scene.

Figure 2.13 shows the experimental results of another pair of images from the
“Database of Multi-viewpoint Image for Research”. This pair of images looks not
so complicated, but there exist some surfaces with nearly constant color whose depth

changes gradually. Reasonable results are obtained by our method.
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a) Left and right images

b) Disparity obtained c¢) The true disparity

Figure 2.11: Random dot stereo images of two squares.
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a) Left and right images

d) Matching in interval 4 ¢) Matching in interval 5
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The computation for the images in Figures 2.12 and 2.13 (size of 640 x 480,
full color) takes about 20 minutes (user time on SUN SPARC-10), though it would
be much decreased by various considerations for speeding up.

Figure 14(a) shows a picture which are called as magic card. Some other
structure will be revealed from the picture if we see it in the way that the sight of one
eye is shifted from that of the other eye. In principle, this is equivalent to the stereo
fusion. Figure 14(b) shows the result “seen” by our algorithm, that is, the result of

matching the picture with itself with a nonzero shift.

2.5 Summary

In this chapter, we proposed a new approach for stereo matching to obtain dense
disparity. In this approach the patches which can be matched continuously between
two images are regarded as matching primitives. The stereo matching problem was
then represented as a problem of finding consistent matchings of such patches in the
scene. This is done in a part-to-whole approach which consists of two steps. In the
first step, we divide the range of disparity of the scene into some small intervals,
and use dynamic programming, where continuity of the matching was taken into
account, to find continuous matchings of patches in each interval of disparity. In the
second step, we integrate these matchings of patches to generate a consistent set of
matching of patches of the whole scene, by considering vertical continuity between
adjacent epipolar lincs as well as consistency and competition among matchings in
different depth intervals, and selecting the best-matched one among the overlapped or
conflicting matchings of patches. Experimental results on random dot stereo images

and the images of real scene showed the effectiveness of our method.
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CHAPTER 3

Region Matching Based on Similarity

of Local Structure

3.1 Introduction

In this chapter, we consider the image correspondence problem in general case, in
which the images are taken of the same scene from different viewpoints which are
not constrained. This can be thought as a prob]em generalized from stereo matching
by removing the epipolar line constraint. This generalization allows us to be able to
deal with other applications such as image retrieval, scene identification, motion with
large frame interval, and other tasks in which image correspondence is required but
the relative positions of the viewpoints are not known previously.

The edge matching approach has been used most widely for image correspon-
dence, but the region-based approach, that is, using regions as matching primitives,
are more promising for our purpose here, for the reason stated in Section 1.2.

There are a few methods proposed for region matching[20,31-33]. While
the early works by Marapane[31] and Fu[32] only used the features of regions for

matching, the recent one by Chen[33] tried to use structural information of region
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adjacency relations, which unfortunately tends to be meaningful and stable only for
regions belong to the same object. Lee[20] computed the matching probability of
a region with its corresponding candidates using region features, and then improved
them by relaxation based on the pair of similar triangles in two images. However, the
relation of similar triangles is neither stable nor discriminating, because the triangle
of the centers of gravity of triple regions can hardly keep in similarity and, on the
other hand, two triples of regions composing two similar triangles may be irrelevant.

In this chapter, we describe a region approach which utilizes both the features
of the regions and the local structures of regions to suppress the matching ambi guities
occurred when only the features of regions are used. The local ternary relations among
regions, that is, three triangles composed of the centers of gravity of the region in
question and its three nearest neighbors, are used to describe the local structure of the
region which is concerned. The matching similarity of a given region in one image
with a corresponding candidate in the other image are computed with both feature
similarity and local structural similarity between them, and from the corresponding
candidates, the one having the highest matching similarity is selected as the most

suitable matching of the given region.

3.2 Segmentation of the Images

Assume that the objects and surfaces in the scene are composed of some faces which
have uniform reflecting property so that they are projected to nearly homogeneous
regions of color in the images. Therefore, the images can be segmented into regions,
which are sets of connected pixels with similar color.

All the pixels in the image are first classified into some clusters so that all the
pixels in one cluster have similar color. This is done by clustering[73] the pixels with
their chromatic features, that is, the three coordinates of their color in HSV space.

Here the HSV model proposed by Abe and Yagi[71] is adopted for the chromatic
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space.

The image is segmented initially based on the clusters obtained, that is, the
pixels in each cluster are assigned with a same label indicating the cluster. Because
two pixels which have the same able are just just the pixels which have similar color
in the image, so there is no guarantee for the pixels which have the same label to
be connected with each other. This means that the pixels of the same label do not
compose a unique region. Therefore, all the pixels need to be relabeled so that all the
pixels having the same label are connected with each other to form a region.

After relabeling of the pixels, all the regions, that is, the sets of connected
pixels with the same label, in the image will have distinct label. Due to noise and
local distortion of the chromatic feature of pixels, some meaning-less small regions
may appear. These small regions are merged to the one of regions nei ghboring them
by the following two steps.

In the first step, small regions with the area less the T} are first merged to
the adjacent region with the longest common boundary, regardless of their chromatic
features. That is, for a region R; that a(R;) < Ty, where a() stands for the area,

merge it to &y, such that
C(R;, Ry) = RjrenJ\?()?%;){G(Ri’ R;)}

where C(R;, R;) stands for the length of the common boundary between R; and R;,
and N (R;) is the set of the regions adjacent to R;.

In the second step, the regions with area greater than Tj but less than T} are
merged to their neighboring regions, by considering their chromatic similarity and the
length of their common boundary. That is, a region R; such that T < a(R;) < T,

can be merged to a region R; adjacent to R;, if they satisfy the following conditions:

1. R; and R; have similar chromatic features, that is, the distance between the

average colors of R; and R; in the HSV space is less than a given threshold
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T.. The distance between color A and B in the H SV space is computed as:

De(A, B) = \/(Va ~ Va)? + 5% + 5% — 25, 55 cos( H, — Hy)  (3.1)

where Vi, S and Hy are the value of brightness, saturation and hue of color
C, respectively. See [71] about how Vg, S and Hy can be computed from the
RGB values of C.

2. The length of the common boundary between R; and R; is not shorter than one

third of the length of the perimeter of region R;.

All the pairs of adjacent regions which satisfy the above conditions are merged
sequentially in the order of the length of the common boundary normalized by the
length of the perimeter of the region to be merged. This is carried out by the followin g

steps:

1. For each region R;, let N'(R;) be the set of the regions which are adjacent to
R; and the pair of (R;, R;) satisfies the above two conditions. Find the region
;. from N'(R;) so that

ln(R;’a R‘lm) = max ln(Ri7 Rj)
J

where [, (A, B) stands for the length of the common boundary between A and
B.

2. From all the pairs {R;, R;,}, find the pair (R}, Ry,) which has the longest

im

length of the common boundary normalized by the length of the perimeter of
R;. That is,
L(RY, AL,) = max l,(B;, Bq,)/I(R;) (3.2)

where I( R;) stands for the length of the boundary of region R;.

3. Merge R} to R}
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The above procedure is repeated for all the regions which satisfy the region
merging conditions.

Figure 3.1 shows the results obtained in the region segmentation procedure.
Figure 3.1(a) shows an input image and the results of clustering in the 7/ SV space is
shown in Figure 3.1(b). Figure 3.1(c) shows the result after the regions smaller than
To pixels (where Ty = 100) are merged in the first step. Figure 3.1(d) shows the final
result of the segmentation of the image in Figure 3.1(a) after the region merging in

the second step finished (where 77 = 4000, 7. = 0.10).

a) Input images (bright values) b) Result of clustering

c¢) Result after the 1st merging step d) Result after hte 2nd merging step

Figure 3.1: Segmentation of color image
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3.3 Local Structure of Regions

For each region obtained above, some features of them, such as area, average color,
moments and center of gravity, are computed in advance for the use in matching
procedure.

As what the early region-matching methods did, we may be able to determine a
correspondence‘ of a given region in one image by finding the region in another image
which is most similar to the former in features. However, when the scene contains
some similar surfaces, the features of them may be merely different. Moreover, in the
images in presence of variation in illumination, photometric distortion or noise, for a
given region in one image, any one of its corresponding candidates may happen to be
most similar in features to the given region. Therefore, it is nonsensical to determine
the correct correspondence for a given region by choosing the one most similar in
features among the candidates which are merely different in features.

To reduce the ambiguity of region matching, we suggest that instead of match-
ing regions only by their features individually, a group of regions should be consid-
ered. That is, the matching for a given region in one image can be established more
stably and reliably if we require that the given region and its corresponding one in
the other image are not only similar in features, but also have similar neighboring
regions which surround them with similar configurations. The configuration of the
neighboring regions around the concerned region is represented by the local structure

of regions, which is described in the follows.

3.3.1 Ternary Relation of Regions

It is noticed by Lee[20] that as the local relation, the ternary relation among three
regions is more determinant than the binary relations between two regions, because
ternary relation also determine the relative position between each other. The ternary

relation of three regions is represented by a triangle, which is composed of the centers
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of the gravity of three regions as its vertices and the lines connecting the centers of
gravity of the regions as its edges. As shown in Figure 3.2, under the assumption that
the viewpoint changed not so greatly, if three regions in one image are corresponded
correctly by a triple of regions in the other image, then the triangle composed by the

centers of gravity of the triple regions in two images would remain similar.

d

A
Y

Figure 3.2: Ternary relations among regions

Itis shown that when the ternary relation is represented by the angles and edges
of the triangle, the ternary relation of regions is invariant under the transformation of
rotation and translation of the image[34].

The temary relation of region is used to represent the local relational structure
of regions in the images. Consider a region A which is concerned and three regions
Ay, Az and A3 which are neighboring with A. As shown in Figure 3.3, the relation
of A and each two regions from A;, A, and A3 can be represented by a triangle, and
the three triangles AAA; Ay, AAA,As and AAA; A; describe the configuration of
the four regions completely. This set of three triangles composed of the concerned
region A and its three neighboring regions is defined as the local structure of A. If A
is corresponded correctly to a region B in the other image, we can expect that B has
a similar local structure as that of A.

For a givenregion A in one image, the corresponding region in the other image

is found as the region which is similar to A in features as well as in local structure.
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Figure 3.3: Local relational structure of regions

3.3.2 Similarity of Local Structure

Let A; be the concerned region and (A}, A2, A?) be the three neighboring regions of
A; in image A. Let {B;,} be the candidates of correspondence of A in image B.
Let us consider that when A is supposed to be matched with B;, , how well the local
structure of A can also be matched with that of B;, in image B.

For each region A;, the local ternary relations formed by three triangles,
which are composed of A; and two of its three nearest neighbors A}, A? and A2,
are constructed. In order to compute the local structural similarity of region A; and
its corresponding candidate B;,, we map also A!, A? and A7 to their corresponding

candidates B} , B?, B?

2 TR Tkt

This can be thought as mapping the three triangles to other
three triangles in the other image. Figure 3.4 shows an example where (A}, A2, A3)
are matched to one triple of corresponding candidates of them.

For each pair of a triangle and the mapped one, we compute their similarity in
terms of edge similarity, angle similarity, and vertex (region) similarity. The sum of
similarities of three pairs of the triangles is regarded as the relational similarity be-
tween A; and B;, under the specified mapping P of (A}, A2, A?) 2 (B.,B:,B;).

It is computed as:
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Figure 3.4: Matching of the local structure.

S(Ai, By, P) = Si(AAALAL AB, P(ANP(AD) +

(2 1

S(AAALA], AB, P(ANP(AD) +
S(AAAZL, AB, P(AYYP(AY))

177 WU

Sy(AA;AIA} AB;, BL B2 ) +

kTR

Si(AA;AZAY, AB;, B2 B?)

[ [ Y

Here Si(Aabe, Adef) is the similarity between two triangles:

Sy(Aabe, Adef)= S8y (Aabe, Adef)S.(Labe, Adef)
Sa(Aabe, Adef)

In this formula, S,(Aabc, Adef) is the matching similarity between two
triangles, that is initially computed by the product of the chromatic similarities of

three pairs of vertices of the two triangles:

Sy(Aabe, Adef) = S.(a,d)S.(b,e)5:(c, f)
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Se(Dabe, Adef) is the similarity of edges of the two triangles and is computed by
S.(Aabe, Adef) = 5(ab, T&) (@, aF) Si B¢, <)

where .5; stands for similarity of length between two line segments and is computed
as Sl(h, 12) = 4[112/([1 -+ 12)2.

Sa(Aabe, Adef) is the angle similarity between two triangles and is computed

by

Sa(Aabe, Adef) =1 — (|Lbac — Ledf|+
|Labe — Ldef| + |Lach — Ldfe])/360

We map Aj, A7 and A to all of their possible candidates, and compute the
maximum of the relational similarity between A; and B;,, which is treated as the

structural similarity S (A;, B;,) between A; and B;,.
S(Az, B.;k) = mgx S(Ai, ng, 'P)

Figure 3.5 shows the local structures of two regions which corresponds to the

maximal local structural similarity between A and B.

Figure 3.5: Local structure matched with maximal similarity.
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3.3.3 Consideration for Region Occlusion

In the computation of the above, if one of the three regions A;, A, and As, which are
the nearest neighboring regions of A in image A, is occluded in the other image, the
local structure of A may not be matched well by that of the corresponding region B in-
image B, in spite of that the local structure of A and other three neighboring regions,
which do appear in image B, can be matched with that of B with high structural
similarity.

In order to compute local structural similarity more robust against occlusion
of regions, we select four neighboring regions of A for computing local structural
similarity. For A and each triples of the four neighboring regions, a local structural
similarity are computed by the method stated in the previous section. Among the
structural similarities computed with four triples of the neighboring regions, the

maximal one is selected as the local structural similarity of A and B.

3.4 Region Matching Using Local Structure Similarity

In this section, we will describe the procedure of matching regions by using both their
feature similarity and local structure similarity. The idea is to establish the initial
matching for each region using their features, and then improve the matchings using

similarity of local structure of regions.

3.4.1 Imitial Matching by Chromatic Similarity

For each region A; in one image .4, the corresponding candidate regions {B;, } in the
other image are first found out as the ones which have color and area similar to A;.

In other words, {B;, } satisfy the following conditions:
1. 1/T. < a(Ai)/a(B:,) < T, and
2. D.(A;, B;,) < T..
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where a() stands for area, and D,() is the chromatic distance in the modified HSV
space[72] between two regions, as defined by Equation (3.1). T, and 7, are certain
thresholds and set to 0.07 and 4.0, respectively, in the experiments.

For each region A; and its corresponding candidate B;,, compute their chro-
matic similarity by S.(A;, Bi,) = 1 — Dc(A;, B;,)/Te- The chromatic similarity
between a region and its matching candidate is regarded as the initial matching simi-

larity of them. That is,

S(O)(A'i7 Bik) = SC(Ai7 BZL)

where S(™)(A, B) denote the similarity between the regions A and B in the m-th
iteration to be described below.
For each region A; in image A, we determine the initial correspondence of it

by selecting the region which has the maximal matching similarity with A;.

$O(A;, BY) = max SO(A;, By,)

The same computation is also carried out for each region in image B.

3.4.2 Relaxation Based on Local Structure

The computed initial matching similarity between a region A; and its corresponding
candidate B;, is then improved iteratively, using the local structural similarity, by the

following steps:

1. For each region A; in image A and a corresponding candidate B;, in image 3,
compute the structural similarity of them by the method stated in the previous
section. Here the similarities of the vertices of the triangles are computed using
the the region matching similarity obtained in the last iteration. That is, the S,

which is involved in the computation of local structure similarity, is computed
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by
Sy(Labe, Adef) = S™N(a,d)S"=V(p, e) ST (¢, £) (3.3)

- After all structural similarities between a region A; and its corresponding
candidate B;,, which is denoted as 5 (A;, B;,), have been computed, a new
matching similarity S(A;, B;,) between A; and its corresponding candidate

Bi, is calculated by normalizing S(4;, B;, ) by i S( A B;)).

All the processes and computations above are also carried out for every region

Bj; in image B.
- Integrate the matching similarities computed for two images by

SU(A:, Bj) = (S(A:, Bj) + S(By, A:)) /2

- For each region A; in image A, we determine the correspondence of using
the newly obtained matching similarities. That is, select the corresponding
candidate which has the maximal new matching similarity with A; as the

correspondence of it.

SM(A;, Br) = min $™(4;, B;,)

Steps 1—4 are repeated until the results of matching obtained in step 4 do not

change.

3.5 Experimental Results

Matching results of the above method for two pairs of images are shown in Figure 3.5

and Figure 3.6. Figure 3.5(a) shows two input color image of fruits, and the results

of region segmentation and correspondence of the input images are shown in Figure

3.5(b). The same number indicates the regions matched each other. Figure 3.6(b)
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shows the experimental result on another pair of color images of toys in Figure 3.6(a).
In the left image of the matching results, the regions numbered by a same number
which has distinct subscripts of lower case letters of alphabet, like 11, and 11;, shows
that more than one regions in the left image correspond to a same region in the right

image.

a)Input images (only bright values are shown)

b) Results of region segmentation and matching

Figure 3.6: Region matching results for the images of fruits

The parameters which are required by the matching algorithm are set to the
followings in the experiments. Ty, the threshold for the area of regions which can
be merged in the first step of region merging (see Section 3.2), is set to 100 for both
images in Figure 3.6 and 3.7. 71, another threshold of region area used in the second

step of region merging, is selected as 4000 and 800 for the images in Figure 3.6 and
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b) Results of region segmentation and matching

Figure 3.7: Region matching results for the images of toys
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3.7, respectively. T, the threshold of chromatic similarity for selection of matching
candidates (see Section 3.4.1), is selected 0.07 for both images in Figure 3.6 and 3.7.
The times required for matching process are 9.5 seconds 44.8 seconds (user time on
SUN SPARC-10) for the images in Figure 3.6 and 3.7, respectively.

Although the matching algorithm worked fairly well in these cases, due to
the robustness of our ternary relations compared with binary relations such as region
adjacency, there are still some mistakes. As shown in Figure 3.7, regions 11, and 11,
in the left image corresponded incorrectly to region 11 in the right image, due to the
inconsistency of region segmentations in two images. In the next chapter, we will
consider how to detect and correct these mistakes using the global consistency of the

whole obtained correspondences.

51



CHAPTER 4

The Global Consistency of Region
Matching

4.1 Introduction

In the region correspondences obtained by the region matching method described
in the previous chapter, although there may be some mistakes due to occlusion of
regions or inconsistency of region segmentation between two images, as shown in
Figures 3.6 and 3.7, but the majority of them can be expected to be correct. In this
chapter, We will describe a method of detecting and correcting the mistaken ones by
using the global consistency of the whole correspondences of regions.

Based on the assumption that the scene does not change while the camera
has moved, if the correspondences are correct, then the locational shifts between the
corresponding regions in two images can be regarded as the movements of the objects
in the image plane due to the camera movement. It means that these locational shifts
should follow the optical flow generated by the camera movement. The locational
shifts of the center of gravity of regions obtained from the region correspondences for

images in Figure 3.7 are shown in Figure 4.1. From the fi gure we can observe that the
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locational shifts of the correct correspondences are rather regular in the optical flow

while those of the incorrect correspondences violate the whole regularity apparently.

;T
[ ,
| SR

\\\ "
\\\\M

Figure 4.1: Locational shifts of regions

Under the hypothesis that most of the obtained correspondences are correct,
we can estimate the parameters of the camera movement using all the obtained
correspondences. Then we check each correspondence with the estimated parameters
of the camera movement and judge a correspondence to be a mistake if its locational

shift in two images is far from the one predicted from the estimated parameters.

4.2 Estimation of the Parameters of Camera Movement

In principle, the parameters of camera movement can be estimated from the correspon-
dences of several points in two perspective images, provided the correspondences are
known. There are many methods proposed for. this purpose, and they may be classified
into two categories: continuous approach[56-60] and discrete approach[5 1-55]. With
the continuous approach, small inter-frame motion and smooth optical flow fields are
required, and the motion parameters are analyzed in terms of velocity. With the

discrete approach, the motion parameters are analyzed in terms of the displacements
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of the corresponding points in two images, which are allowed to be relatively large.
In our application, it is supposed that the displacements of the corresponding regions
in two images may be large, so the discrete approach is more appropriate for our
objective.

Given the exact correspondences of eight points in two images, the motion
parameters can be computed uniquely from the point correspondences; that is known
as eight point algorithm[5 1-53]. However, in the practice such as our case, there are
usually more than eight correspondences of feature points in presence of noise, so the
computed motion parameters are different depending on which eight feature points
are used. There are many methods[51-55] proposed to deal with this general case
of motion parameter estimation and a general treatment can be found in the book by

Kanatani[50].

4.2.1 Model of Camera Movement

As shown in Figure 4.2, take an XY Z-coordinate system fixed to the camera in such
a way that the origin O corresponds to the center of the lens, which is called as the
viewpoint, and the Z-axis corresponds to therptical axis of the camera. Suppose
that the camera first rotated around the X, Y and Z axes by o, £ and v degrees,
respectively, and then translated along X, ¥ and Z by —AX, —AY, —AZ,
respectively.

Equivalently, we can think that the scene, which is assumed to be static, moves
rigidly in the opposite direction relative to the camera. It is know[54] that the three
dimensional rigid motion of the scene is equivalent to a rotation by an angle 6 around

an unit vector [ = (I, lp, l3), followed by a translation AX, AY, AZ. The rotation
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Figure 4.2: Model for camera moving -

can be represent by a rotation matrix & which is given by

cosf + (1 —cos)  Liy(1—cosf) — lysind lil3(1 — cos®) + I, sin @
RB=1 Lh(1-cosb) +1sind cosf+ B(1—cos0)  L(1—cosf) — 1 sind

I311(1 — cos ) — I, sind I3l(1 —cosf) + I;sinf  cosf + B(1 —cos )
(4.1)

Let (X,Y, Z) be the scene-space coordinates of a point P before the motion,

and (X', Y", Z') be the coordinates of P after the motion, then the motion can be

represented by

X' X
Y' |=R| v | +T (4.2)
Z! Z
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where T is called as the translation vector which is defined as following

AX
T'=| Ay
AZ

In our application, instead of the rotation an gles, the rotation matrix is em-
ployed to describe the rotation, because the rotation matrix is sufficient for the purpose
of estimating the optical flow generated by the camera movement. The rotation matrix

will be denoted as follows:
Ty T2 T3
R=1r, s Tg

r7 Trg T9

4.2.2 Estimating the Parameters of Camera Movement

Let (z;,y;) and (z},y!) be the image points projected from (X, Y, Z) and (XY, 2",
respectively. We can show that (z;, ;) and (2}, y}) must satisfy the following relation

(see Appendix 1), which is equivalent to the epipolar constraint.

xz
(m’ y' 1)TXR y | =0 (4.3)
1

where R and T are the rotation matrix and translation vector defined in the previous

section, respectively, and x stands for vector production. That is, T R is defined as

0 '—AZ AY L Ty T3
T)(R = AT 0 —AX T4 Ts Tg (44)
—AY AX 0 7 Tg To

If we treat T R as a matrix E as defined below:
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0 -0Z AX 1 Ty T3 e1 e e3

AZ 0 —AY rg Ts T6 | = | es es e | =L (4.5)
—AX AY 0 ™ Tg 7o €7 €3 €9

then Equation (4.3) can be rewritten as a linear equation of the elements of matrix £

as
z'zey + 2'ye, + ales + y'wes +y'yes +y'es + wer + yes + e =0 (4.6)

The matrix I is called the essential matrix.

- Itisobviousthat if the exact correspondence of eight points between the images
before and after camera movement are known, a nonzero solution of e;’s, 2 = 1, ...... ,9
can be determined up to a scale by solving the linear system of Equation (4.6).
Furthermore, if six points among the eight points in the scene are not coplanar, the
nonzero matrix £ can be decomposed uniquely to a rotation matrix and a translation
vector by singular value decomposition (SVD) of E[52,53].

However, in the case of region correspondence, the centers of gravity of the
pairs of matched regions are used as the correspondence points. The correspondence
of those centers of gravity of the matched regions may not be the exact one, because the
displacement of the center of gravity of a region between two images is determined
not only by the movement of the scene relative to camera, but also due to the
inconsistency of region segmentation in two images or a partial occlusion of the
region in one image. Moreover, some mistakes are also contained in the obtained
region correspondences. Therefore, a robust method to estimate camera movement
parameters from the correspondences in presence of noise is required.

In our application, we have usually much more than eight correspondences
of regions which can be used. For the majority of those correspondences, which are
guaranteed to be correct by the matching method described in the previous section,

~ although the correspondences of their centers of gravity may not satisfy Equation
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(4.6), they can be expected to deviate from it by errors with mean of zero. Thus
the least-square method can be used to compute the essential matrix £ using the
correspondences of centers of gravity of the pairs of matched regions. That is, letting
{(zi,y:)li = 1,....,n} and {(z}, y!)|¢ = 1, ....,n} be the centers of gravity of region in
two images, respectively, and supposing that (z;,y;) corresponds to (2%, /), compute

Eby

n
min Z(Cﬂﬁ-wm + ziyies + zies + yizies + yiyies + yies + zier + yieg + e9)”

i=1

Due to the noise in correspondences of points, there is no guaranty that the

obtained matrix E' is exactly an essential matrix, that is, it can be decomposed

completely into a rotation matrix and a translation vector. Therefore, the residual

decomposition of £ proposed by J. Weng[54] is used to compute the rotation matrix
I and the translation vector T' from the obtained E.

First, from the definition of the essential matrix, we can obtain:

- T
AX 0 —AZ AY AX
ET| Ay | = AZ 0 —-AX |R AY 4.7)
AZ —AY AX 0 AZ

0 AZ =AY AX

= RT| _AZ 0 AY AY
AY —AY 0 AZ
0
=10
0

That is, the translation vector must be orthogonal with the vectors which are
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composed of the elements in three columns of the essential matrix E.

er €4 €7 AX
€y €5 -€g AY =0 (48)
es €5 € AZ

The matrix E obtained by the least-square method was proved[54] to have
rank 2. Therefore, we can determine the direction of 7' by Equation (4.9) using the
matrix obtained.

Next, the rotation matrix R is computed by minimizing the error between
obtained matrix £ and the essential matrix defined in (4.4), which is represented
by the vector product of the translation vector with the rotation matrix, where R is

subjected to be rotation matrix.

0 —AZ7 AX Ty Tp T3 €1 €2 €3
men AZ 0 —-AY r4 s Te | T | es4 es eg (4-9)
—-AX AY 0 T7 T8 To e7 eg €9

Finally, the relative depths Z of the points of each correspondence can be

computed by minimizing the following.

T Zz
min Z, y' - ZR Y - T (410)
1 1

4.3 Detection of Mistaken Correspondences

In this section, we consider how to detect the mistaken correspondences after the
parameters of camera movement have been estimated. The idea is to validate the
displacement between the centers of gravity of each individual correspondences of

regions in two images with the camera movement parameters estimated from all
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the correspondences. If the displacement of a correspondence of two regions is not
coherent with the camera movement, then this correspondence is regarded as mistaken

matching. Two approaches to do this are described in the following.

4.3.1 Error in Image Plane

When the parameters of camera movement are known, for a given points in one
image, the range of the location where the corresponding point should be in the other
image can be predicated from the parameters of camera movement. As shown in
Figure 4.3, if a point (z,y) in one image has a correspondence (z',y’) in the other

image, then (2, y") should be on the line segment from (z}, y5) to (z,1}).

Y

Figure 4.3: Corresponding segment on Epipolar line

The points (xg, yg) and (zf,y;) are determined by the parameters of camera
movement as follows:
Tq (riz +roy + 73)/(r1z + rgy + 1)
Yo (raz + sy + r6)/(r7z 4 ray + 19)
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If AZ > 0,then

e\ [ @b+ AX)/(1+ A2)
v | \w+av)/+s2)
otherwise
z] B zp+ AX
vi g+ Ay

Let (z;,:) and (=, y}) are the centers of gravity of two corresponding regions,
(z!,y!) should lie near the line segment from (25, yh) to (z}, 1), which is determined
by the point (z;, y;), and the parameters of camera movement R and 7', as shown in
the above. So the error of the correspondence can be computed as the distance from
(mg,yf) to that line segment. The distribution of the errors of the correspondences
computed in the image plane can be expected to be bimodal, because the correct
correspondences should have small error but the mistaken ones will have large error
which appear as the outliers in the whole distribution.

Table 4.1 shows the error in the image plane for each correspondence of
regions in the region corresponding results shown in Figure 3.7. We separate the
outliers from the valid correspondences using the thresholding method proposed by
Kittler and Illingworth[61]. The threshold value computed is also shown in the table.
It can be seen that the mistaken correspondences for region 11, and 15 can be detected
as mistaken correspondences, because the errors in the image plane of them are larger

than the threshold computed. However, the mistaken correspondence for 11, could
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not be detected by this method.

Table 4.1: Error of each correspondence in the image

planes under the estimated parameters

Corresp. | Error || Corresp. | Error Corrsp. Error
1 0.0207 11, 0.0030 | 20 0.0044
2 0.0028 11, 0.0338 | 21 0.0199
3 0.0000 12 00156 | 22 0.0007
4 0.0000 13 0.0003 | 23 0.0162
5 0.0221 14 0.0006 | 24 0.0095
6 0.0122 15, 0.0029 | 25 0.0133
7 0.0254 15, | 0.0804 | 26 0.0179
8 0.0003 16 0.0011 | 27 0.0132
9 0.0007 18 0.0092 | 28 0.0123

10 0.0016 19 0.0016 | Threshold : T=0.030

4.3.2 Error in Parameter Estimation

Another way to detect mistaken correspondences is based on an analysis of the error
in the estimation of camera movement parameters. It is obvious that there will be
some error in the estimation of the camera movement parameters from their true
values of them. The error may arise for two reasons. The first reason is that even if
a given region in one image is corresponded correctly to a region in the other image,
there will be some error in the displacement of centers of gravity of the corresponded
regions, due to the inconsistency of region segmentation in the two images or lj ghtly
partial occlusion of the region in one image. These correspondences cause error in

the epipolar constrain Equation (4.6) which is used to estimate the essential matrix,
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but the error of this type can be expected to be smaller than the errors from the second
reason below.

The second reason is that there may be some mistakes in the obtained region
correspondences. These mistaken correspondences are not consistent with the camera
movement, so they will contribute a lot to the error in the parameter estimation.
Therefore discarding a mistaken correspondence will let the estimated parameters
draw nearer to the true values than discarding a correct one. This leads to the method
of detecting mistaken correspondences described in the following.

For each correspondence of regions, the parameters of camera movement are
reestimated by discarding it from the whole correspondences, and the perturbation of
the reestimated parameters from the old ones is computed. Let F; be the value of the
perturbation of the parameters estimated by discarding the sth correspondence, then
the set { P;} will be bimodal, one consisting of smaller values related to discarding a
valid correspondence and the other consisting of larger values related to discarding
an outlier. Table 4.2 shows the perturbation of the reestimated parameters for each
correspondence of regions in the region correspondence results shown in Figure 3.7.

Similar to what was done in the first method, the outliers in the perturbations
of estimated parameters by discarding a single correspondence can be separated by
thresholding. The threshold computed by the method of Kittler and Illingworth is also
shown in Table 4.2. In this table, we can see that all the mistaken correspondences

are detected, but at the same time the correct correspondence of region 1 and 5 is also
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overdetected.

Table 4.2: Perturbations of estimated parameters by discarding each

correspondence in Fig. 4(a).

Discarded Perturbation Discarded Perturbation
Correspondence | in parameters Correspondence | in parameters

1 0.0576 15, 0.0024

2 0.0133 15, 0.3040

3 0.0134 16 0.0025

4 0.0015 18 0.0003

5 0.0382 19 0.0031

6 0.0069 20 0.0027

7 0.0002 21 0.0007

8 0.0049 22 0.0097

9 0.0130 23 0.0019

10 0.0009 24 0.0035

11, 1.7139 25 0.0066

11, 0.1016 26 0.0058

12 0.0026 27 0.0077

13 0.0001 28 0.0241

14 0.0053 Threshold: T =0.030

It seems that the second method yields overdetection while the first one does
underdetection. We prefer the second method because the overdetected correspon-

dences can be reverified in the correction stage.
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4.4 Correcting Mistaken Correspondences

For each outlier of the correspondences detected as above, correction is carried out

as follows.

First, the estimated optical flow of each correspondence is computed using
the estimated parameters of camera movement and the estimated relative depths. For
the outliers detected, the depths are substituted by the average depth. The estimated

optical flow for Figure 3.7 is shown in Figure 4.4.

//
//{///:f\
NIy

Figure 4.4: Estimated optical flow

Foraregion A; whose correspondence is judged as an outlier, if there are some
other corresponding candidate B;, are consistent with the estimated optical flow of
A;, then we select the one which has the highest matching similarity with A; as the
new correspondence of A;. We say that B;; is consistent with the estimated optical
flow of A, if the vector from the center of gravity of A; to that of B;, lies in an area
from —10° to 10° relative to the direction of the estimated optical flow, and the length
of the vector is within 2 to 3 of the length the estimated optical flow.

If an outlier of correspondences could not be corrected in the step above,
we try to use the ternary relation of regions to correct it. For a region A; whose

correspondence is judged as an outlier, from its neighbors select two nearest regions
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Al, A? whose correspondences are validated in the validating step. By mapping Al
and A? to their correspondences and the triangle, which consists of the centers of
gravity of A;, A} and A?, simultaneously onto the other image, we can estimate the
approximate location (&;, i) where the center of gravity of the corresponding region
of A; should be. We find regions which are similar to A; in color, within a disk with
the center locating at (#;, ;) and the radius equal to half the length of the longer of
the two edges from (;, 7;) of the mapped triangle. Among these regions, the one has
the biggest area in the disk is assigned as the correspondence of A;.

A region A; whose correspondence is an outlier which could not be corrected
in the above steps is judged to have no correspondence. |

The corrected correspondences of Figure 3.7 are shown in Figure 4.5, where the
outliers are checked out with the second method. A ‘0’ means that no corresponding
region exists in the other image. The overdetected correspondence are reverified in

the first step.

Figure 4.5: Corrected correspondences(for the left image)
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4.5 Summary

we propose arobust region matching method which utilizes both local region structure
similarity and global consistency of the region matchings. Our approach adopted a
two-stage matching strategy, that is, a matching stage followed by a validating and
correcting stage. Region correspondences are first established using both feature
similarity and local structure similarity of regions. The local structure are represented
by ternary relations among regions, which was shown to be stable and discriminant
in local region configurations.

Also using local structure similarity will improve the region correspondence
results so that the majority of them are guaranteed to be correct, but there may be some
mistaken correspondences still. In the second stage, the optical flow generated by
the camera movement is estimated from all the obtained correspondences and is used
to detect and correct some apparent mistakes in the matching results. Experimental

results show the effectiveness of our method.
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CHAPTER 5

Region Correspondence by Inexact

Attributed Planar Graph Matching

5.1 Introduction

In this chapter, we will attempt a syntactic representation of regions and their relations
in the images and try to match regions in two images based on the syntactic repre-
sentations of them. The syntactic approach to region matching should be encouraged
because a syntactic representation of the regions in images carries both the local
features of each region and the global relations of the regions. Region matching on a
syntactic representation can achieve the global stability of matchings. Furthermore,
a syntactic representation of regions in image fs more similar to the representation
of models, such as aspect representation. Therefore, the syntactic approach has the
potentiality of the extension for object location, identification and recognition.

Chen and Nakatani[33] tried an approach of region matching using region
structure similarity. The region structure is represented by region tables, in which
the header (0-th) item contains a region which is concerned and the ¢th item contains

a list of regions which are away from the concerned region in distance ¢ (that is, they
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are separated from the concerned region by ¢ — 1 regions in between). Obviously, the
region table is not an inherent way to describe the relations of regions.

Another more natural way is to describe the relational structure of regions
with an attributed graph, and then find the optimal inexact matching of two attributed
graphs[62-65]. Many approaches such as state space search[62-65] are proposed
to deal with the the problem of inexact matching of general attributed graphs, but
they are generally computationally expensive. Chen[74] simplified the state space
searching method of Fu[65] by finding the optimal spanning tree matching between
two graphs, but there the relations between the son nodes descendant from the same
parent node are ignored.

In this chapter, we propose an efficient graph matching approach for finding
region correspondence of images. In this approach, we consider the topological
relation of region adjacency, and represent the regions and their relations in an image
with a Region Adjacency Graph(RAG). In the images which are taken from a same
scene from different viewpoints, although the region and their relations in the images
are not completely consistent with each other due to the change of viewpoint and the
inconsistency of the region segmentation results in the images, but we can expect that
the relations of the regions are still similar. Thus the optimal region correspondences
between two images can be considered to be the correspondences of regions with
maximal region similarity and region adjacency similarity. This is equivalent to
finding the optimal inexact matching of two RAGs.

Although the computationally expensive approaches proposed for the general
graph matching can be applied to inexact matching of RAGs, but we noticed that a
RAG is a special kind of graph — an attributed planar graph, and that the relation of
region adjacency assigns some specific properties. Utilizing these properties specific
- toRAGs, we can construct an efficient algorithm to find the optimal matching between
two RAGs. |

In the next section, we give an operational definition of inexact matching of
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RAGs that takes region merging into account, and formulate region correspondence
into inexact matching of attributed planar graphs. In Section 5.3, we mention some
properties which are specific to planar graphs and topological adjaéency relation of
regions. In Sections 5.4 — 5.6, an efficient algorithm to search for the optimal inexact
matching of two RAGs is constructed based on these properties. Some experimental

results of our method are shown in Section 5.7.

5.2 Description of the Problem

The regions and their adjacency relations in an image can be described as an attributed

graph denoted as
G= {N JIEH }

where N = {N;} is the set of nodes which correspond to regions in the image,
F = {(fi(N:), ey fm(Ni))} denotes the set of feature vectors which characterize
the regions, £ = {E;} is the set of edges between nodes which represents the region
adjacency, and H = {(h1(Ej), .-y ha(E;)} denote the set of feature vectors which
characterize the edges. Hereafter we denote the edge connecting nodes N; and N in
terms of node pair (IV;, Nj).

We refer to the graph which represents the regions and their adjacency relations
in an image as the region adjacency graph, or as the RAG simply. A RAG is a planar
graph because we can embed it in a plane without edge crossing, by drawing each
node in its corresponding region and edges passing through the boundary between the
corresponding (adjacent) regions in the image plane. An example is shown in Figure

5.1

In genéral, a complete consistent matching(or isomorphism) of two RAGs
is impossible, because change of viewpoint and inconsistent segmentations in two
images may cause occlusion of regions, discrepancy of region features and incon-

sistency of adjacency relations of regions. So an inexact matching between two
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(a) Regions in an image (b) Its RAG

Figure 5.1 A planar graph describing regions and their adjacent
relations(0 stands for the frame of the image).

attributed planar graphs must be considered.

Definition 1 An inexact matching of two attributed planar graphs GG and G’ is
an isomorphism of two attributed planar graphs which are obtained from G and by
performing a sequence of graph transforming operations such as node substitutions,
node deletions, node mergings, edge substitutions and edge deletions.

In contrast to the existing definitions[62-66], our definition does not include
the operations of node insertion and edge insertion, but we. perform the operations
of node deletion and edge deletion on both graphs, instead of performing all the
operations on only one graph. It is clear that our definition is equivalent to the former
ones because inserting a ‘null’ node or ‘null’ edge in one graph is equivalent to
deleting it from the other. One more difference of our definition from the others is
that the merging of regions is taken into account, as a single region in one image may
be segmented into two or more regions in the other image.

For attributed RAGs, the graph transforming operations can be described as

follows:

1. Node substitution. Substituting a node N; in graph G by a node N/ in G' (or

the reverse) means matching region N; with region [Vj.
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2. Node deletion. Deleting a node N; (or N;) from graph G (or G") means NV;
(or NJ) does not appear in the other image due to an occlusion or some other

reason.

3. Node merging. Only two nodes N; and N; having an edge between them
(i.e., adjacent) can be merged into one region. Merging N; and NV; also means

substituting them by a node Ny in G at the same time.

4. Edge substitution. When two node pairs (IV;, V ) and (N}, Ny) are matched,
the edge between NN; and N; should be substituted by the edge between /Vy, and

N (or the reverse) if both edges exist.

5. Edge deletion. When two node pairs (Ni, NV ;) and (INg, N/) are matched, but

there exists an edge only in one graph, it should be deleted.

As the edges in the RAGs represent region adjacency, deleting an edge will

cause an insertion of another edge in the graph, as shown in Figure 5.2.

_,_.>
s

Figure 5.2 Effect of edge deletion

Generally, deletion and substitution of edges also happen in node merging and

node deletion.

72



1. When two nodes /V; and NN; are merged (say that V; is merged into IV;), the edge
between them should be deleted, and all the edges (N}, *) should be substituted
by (Nia *)

2. Whenanode N; is deleted, the edges connected with it should also be processed.
In our method, we assume that node deletion happens when a region is occluded

by another region IN;, so all the edges (IV;, *) should be replaced with (N, *).

Figure 5.3(a) shows the cases of region deletion. Suppose that the small region
X vanishes in the other image, then the relations of the regions will change, that is
also shown in Figure 5.3(a). The corresponding graph transforming operations on the
graphs are shown in Figure 5.3(b).

"Two cases of node merging as well as their corresponding graph transforming
operations on the graphs are shown in Figure 5.4 and Figure 5.5. The two cases of node
merging seem different with respect to A. However, they are just equivalent when
we take nodes D in Figure 5.4 and A in Figure 5.5 as concerned nodes, respectively.

For each operation performed on the graphs, a cost can be associated with it.
For an inexact matching of two attributed planar graphs, its cost can be computed by
summing up the cost of all the graph transforming operations which are performed
on both graphs to convert them into two isomorphic graphs.

Definition 2 The optimal inexact matching of two attributed planar graphs is

the inexact matching which has the minimal matching cost.

5.3 Properties of RAG

For convenience of illustration, we first mention necessary termin.ologies from graph
theory and some properties of planar graphs[67]. Some special features of region

adjacency relations are also stated.
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b) The graph transforming operations
Figure 5.3 Two cases of deleting a region
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Figure 5.5 Region merging: case 2.
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Articulation node If there is a triple of distinct nodes Ny, Nz, N3 in graph G
such that V3 lies on every path which connects N; and N,, then N; is an articulation
node of G.

Biconnected graph A graph G is biconnected if for each triple of distinct
nodes Ny, N; and Ns in G, there exists a path between NV; and N, such that Vs is not
on this path.

Biconnected component A biconnected component in a graph is a maximal
subgraph which is biconnected.

When the regions and their adjacent relations are considered, a region NN;
appears as an articulation node if and only if /V; is a region which encircles one or
more connected sets of regions. For instance, in Figure 5.1 region B encloses two
sets of regions {C, D, E} and {H, I'}. In this situation, any region in these sets can
be connected only through /V; to the regions in the other sets or the regions which lie
outside of IV; (e.g. A, F, G in Figure 5.1).

An attributed planar graph can be partitioned into the biconnected components
and a tree; the latter consists of the articulation node and the virtual nodes which
represent the biconnected components. In this partition, an articulation node (e.g.,
B in Figure 5.6) éppears not only in the tree, but also as a node in the biconnected
components (e.g., V2 and V3) which are encircled by the articulation region, and in
the biconnected component (e.g., V;) which contains the articulation nodes. In a
biconnpcted component, only the articulation node have edges connecting with the
nodes outside the component. The root of the tree is assumed as the node which
corresponds to the frame of the image (node 0). The partition of the graph in Figure
5.1 is shown in Figure 5.6.

A biconnected component can further be partitioned into triply connected
components biconnected by biarticulation nodes, which are defined as follows.

Biarticulation node If there is a quadruple of distinct nodes Ny, N,, N5 and

Ny in a graph (7 such that every path between /Ny and N, passes through either N or
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Figure 5.6: The partition of the graph in Figure 5.1

Ny, then N3 and N, are biarticulation node pair of G.

Triply connected graph A graph G is triply connected if for each quadruple
of distinct nodes Ny, Np, N3 and N, in G, there is a path between N; and N, such
that neither N3 nor N, is on this path.

Triply connected component A triply connected component in a graph is a
maximal subgraph which is triply connected.

A planar graph can be drawn in a plane without edge crossing. Drawing a
planar graph in a plane without edge crossing is called its embedding in a plane.

| Property 1 A triply connected planar graph has exactly two embeddings in a
plane. One of the embeddings is obtained from the other by reversing the order of all
edges around each vertex[67], that is, they. are mirror images each other.

In region matching, if we exclude the special case that one image is a mirror
image of the other, then each triply connected planar component has only one em-
bedding in a plane. This fact implies that if a node in a triply connected component
in a RAG is matched to a node in a triply connected component of the other RAG,

then their edges (and the nodes attached in the other end of the edges) arranged in the
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image planes can only be matched in the same order. That is, suppose that a node N
in a triply connected component of G is matched to a node N’ in a triply connected
component of G, and let {(V, N;)} and {(N’, N})} are the sets of edges emanating
from N and N’ in the triply connected components, subscripted clockwise on the

image planes, respectively, then the following rule must be satisfied.

Nz’ — N]’ :>Ni+1 A N;+k

where « denotes amatch and & > 0. N, stands for the edge next to IV; in clockwise
order. N;,, means an edge in the frontward of Nj in clockwise order. We will call
this rule order reserving.

For the biarticulation nodes in RAGs, it can also be shown that if two biartic-
ulation nodes are matched in the graph isomorphism, then the edges emanating from
them can only be matched with order reserving.

Property 2 Let (IV, Ny) and (N, V,) be two neighboring edges of node V in
a biconnected component of a RAG, then there must exist an edge between N; and
Ny.

This prbperty is self-evident from the notion of region adjacency. From
property 2, we can obtain:

Property 3 1f only one embedding of a triply connected component in RAG is
considered, that is, the mirror version of the embedding is ignored, then a biconnected
components in RAG has only one embedding. (The proof is given in Appendix 1)

Basic RAG Let N; be a node in a biconnected component B in &, and let
S(N;) = {Ni,, Ny, ..., N; ., } be the sets of nodes subscripted clockwise around NN;
in B. The subgraph which consists of nodes {/V;} U S(1V;) and the edges between
those nodes is called as a basic RAG(or simply, BRAG) at N; (Figure 5.7).

From Property 3, we can obtain:

Property 4 1f two biconnected components in RAGs have been made isomor-

phic, then the edges of matched nodes in their BRAGs must be matched in the same
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Figure 5.7: A basic RAG

order.

5.4 Framework of the algorithm

From the discussion in the previous section, we can obtain that: an attributed RAG
can be partitioned into biconnected components connected by articulation nodes.
Regarding a biconnected component as a virtual node, a RAG can be treated as a tree,
in which the virtual nodes are connected by the articulation nodes. Matching two
RAGs is to build two isomorphic trees in which each biconnected component in one
tree is isomorphic to its corresponding one in the other tree. Thus the matching of
two RAGs can be considered at two levels: (1) the matching at the tree level where
biconnected components are regarded as virtual nodes, and (2) the matching within a
biconnected component where the order reserving constraint can be used.

In overview, our algorithm searches for the optimal matching in the following
way. First, all the pairs of nodes from two graphs that are similar in feature are
identified as the pairs of nodes that may possibly be matched. Then, from each pair,
we try to change original graphs into two isomorphic attributed planar graphs by

performing the graph transformation operations with the minimal cost. Finally, after
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every node pair is tried, the isomorphism with the minimal cost among all is selected
as the optimal matching between two attributed planar graphs.

The algorithm consists mainly of two levels, the lower level is to match the
nodes in two biconnected components and the upper is to match two biconnected
components at articulation nodes which they are connected with. When a pair
of nodes from two graphs is selected to be the starting pair, the two isomorphic
graphs are first built within the biconnected components which contain the two start
nodes. As shown in Figure 5.6, an articulation node also appears in the biconnected
components which it connected with, so building two isomorphic subgraph within
two biconnected components will results in matching of some articulation nodes
involved. These matched pairs of articulation nodes then trigger matching of the
remaining biconnected components connected with them. This is done at two levels:
a tree matching where a biconnected component are regarded as a virtual node, and
the node matching within two biconnected components that is activated by the tree
matching. Because a biconnected component in one image may be separated into
more than one biconnected components in the other image, the splitting or merging
of the virtual nodes must be taken into account.

To match fhe nodes in two biconnected components, we first build two basic
isomorphic planar graphs, each of which is a subgraph consists of the concerned
node, the nodes connected to it and all the edges between them, by performing graph
transformation operations of the minimal cost on both of the two attributed planar
graphs. The two basic isomorphic graphs make some other nodes matched. From
these matched nodes, we can build in turn other basic isomorphic planar graphs
with the minimal cost. If there is no conflict of node matchings obtained from the
basic isomorphic planar graphs, their combination provides two isomorphic planar
graphs with the minimal cost. If a conflict occurs, the newly obtained matching is
adjusted according to the previous match, as to be explained in section 3.4, and the

pair of the concerned nodes of the basic isomorphic planar graphs which generated
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the conflicting match is set to a starting pair so that the superseded match can appear
earlier in the searching starting from the new starting pair.

Once the matching of the nodes of two biconnected components are completed,
we try to match the remaining biconnected components connected with the pairs of
articulation nodes which has been matched in the biconnected components. For every
such pair, if there is a pair of biconnected components which are the parent nodes
of articulation nodes in the tree, then the two biconnected components are tried to
be matched. For the other biconnected components, which appear as the child nodes
of the articulation nodes in the tree, a tree matching, which recursively invokes the
matching of nodes in two biconnected components, is performed.

‘The matching procedures at the tree level and biconnected component level

are described in the following sections.

3.5 Matching at the Tree Level

LetT = {{A;},{Vi},€} and T" = {45}, {V/'}, €'} denote the tree structure of the
two RAGs, where {A;}, {V;} and £ denote the sets of articulation nodes, biconnected
components, and the edges in one RAG, respectively, and {A}}, {V/} and & are
the correspondings of those in the other RAG. Matching T" and 7" is to build two
isomorphic trees T = {{A4;}, {V;},€} and T" = {{A7}, {V/}, &} from T and T" by
performing graph transforming operations described in the previous chapter. In the

obtained isomorphic trees T' and 77, it is self-evident that:

1. Avirtual node V; in T can only match to a virtual node 77 in 77, and the same

for articulation nodes. -

2. If two biconnected components V;, and V7' are matched, then their parent artic-

ulation nodes, say A; and A7 must also be matched.
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3. If two articulation nodes A; and ;1_; are matched, then the biconnected compo-
nents {V;, } which connect with A; can only match to {VI} connecting with

.

Notice that although the isomorphic trees should have one-to-one match of
virtual nodes, in the original RAGs two or more biconnected components in one tree
may be merged into one biconnected components in the other tree. Therefore the
many-to-one or one-to-many matching of virtual nodes in the tree matching must be
taken into account. As an example, Figure 5.8(a) shows an image of the same scene
in Figure 5.1, but taken from a different viewpoint. Figure 5.8(b) shows its RAG.
Because region I' touches to region £’ and region C' sticks out from region B’, there
is only one biconnected components in this RAG. Hereafter we will consider the

matching of two RAGs in Figure 5.1 and 5.8 as a running example of the matching

algorithm.
Al
c’ ,
B
7
G L4
(a) Regions in an image (b) Its RAG

Figure 5.8 Another example of image and its corresponding RAG

An exhaustive strategy is applied to search for the optimal matéhing of two
RAGs at the tree level. First, any two biconnected components V; and V are assumed
possible to be matched if there are two nodes Ny, € V, and IV ; € Vi which are similar
in features. From this start point, we search all the ways in which the two RAGs

can be transferred into isomorphic trees, satisfying the three conditions mentioned
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above. Among all the pairs of isomorphic trees built from a starting pair, the one with
minimal graph transforming cost is regarded as the optimval matching of two RAGs
with respect to the specific starting point. When the search is carried out for every
starting point, the isomorphic trees obtained with minimal graph transforming cost is
regarded as the optimal matching of two RAGs.

Building isomorphic trees from a specific starting pair of biconnected compo-

nents V; and V] is carried out in the following steps.

5.5.1 Building two Isomorphic Biconnected Components

If Vi and V)’ are to be matched as one-to-one, we need only to find out the optimal
matching between the nodes in V}, and V}/, because the matching of V;, and V/ are
independent with the matching of the other parts of the trees. However, in general Vj,
or V' could match to a part of the other, so any local maximal subgraph isomorphism
of one biconnected component in the other can be thought as their matching.

Definition 4 A local maximal subgraph isomorphism between V, and V/'is
two maximal isomorphic biconnected components which can be built from V;, and a
part of V' by performing graph transforming operations, or vise versa.

Figure 5.9 shows a case of local maximal subgraph isomorphism of V, in Vi,
which are shown in Figure 5.6 and Figure 5.8, respectivély.

For Vj; and 1/, all local maximal isomorphic subgraphs V; and V] are built (the
details will be described in Section 5.5). Starting from each local maximal isomorphic
subgraphs V; and V}/, we search for the isomorphic trees which can be built from the

original RAGs. This is done in the following steps.

5.5.2 Reorganize the Trees

Building two isomorphic biconnected components V% and 7/ from Vj and V/ may

cause V}, or V/ to be split into two or more biconnected components. Note that
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Figure 5.9: A maximal subgraph isomorphism of V; and Vi

in Figure 5.10 the edge (7, E') was deleted in building a local maximal isomorphic
biconnected components between V; and V4. This causes V; to be split into two
biconnected components. The RAG containing the biconnected component should

be reorganized, as shown in Figure 5.10.

Figure 5.10: Splitting of biconnected component
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5.5.3 Matching the remaining nodes of matched articulation nodes

When two isomorphic biconnected components V, and V] are build, some articulation
nodes {A;} and {4} involved in them are also matched. For each pair of matched
articulation nodes, if there are some nodes which are connected with them and are

not matched yet, then we try to match them.

1. Match the parent articulation nodes.

If both of the parent nodes of {A;} and {A}} are articulation node, then the

parent articulation nodes A, and Aj are to be matched also.

2. Match biconnected components of A4; and A,

If there are some biconnected components not yet matched S, = {V,, | m =
1,....,M} and 5, = {V; | n = 1,...., N} connected with A; and A, respec-

tively, then the biconnected components in .5, must match to those in S".

As noticed in Section 5.2, a biconnected components V,, descendant from an
articulation node A; is a set of adjacent regions enclosed by region A;. As
shown in Figure 5.6, V,,, may be merged not only to a biconnected component
within A;, but also to those out of A; in the other RAGs. Thus a child bicon-
nected component of A; may be matched not only with the child biconnected
component but also with the parent biconnected component of A% in the as

other image.

ForanyV,, € S, andV,, € S!,because they contain A; and Zgwhich are already
matched, we can build the local maximal isomorphic biconnected components

between V,, and V! by starting from A; and ?1—5, that is described in Section 6.3.

Let Cy(Vim, V) stands for the cost of the local maximal isomorphic biconnected
components built from V,, and V;, C,,(S,, S,) stands for the minimal cost for

matching all the biconnected components in S, and S/. We can compute -
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Cu(Sy, S,) recursively as following.

Cuw(Sy, Sy) = (min){cb(vm) Vi) + (5.1)
Co(S\ Vi } U S, S\ {V/IU SY)

where \ stands for the set difference and Sm and S, are the sets of remaining

parts of the biconnected components after the partial matching of V,,, and V.

In the example, there are two not-yet-matched virtual nodes connected with
B and one connected with B’ which are matched in the previous steps. Two cases
should be considered here: either V; or V3 would be matched V/ first. Let us consider
the case that V5 and V{ be matched first. The matching of V5 and V{ is shown in
Figure 5.11.

Figure 5.11 Matching in biconnected components
starting from matched articulation nodes

Note that the edge (C”, A’) will be deleted during building the local maximal
isomorphic subgraphs between V3 and V{. This will cause again V{ to be split into
two biconnected components, as shown in Figure 5.12.

In the figure, only one biconnected component adjacent to B or B’ remained
to be matched. Matching V; and V4 results in complete matching of the biconnected

components adjacent to B and B’.
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Figure 5.12: Remaining biconnected component

If we start from the second alternative, that is, matching of V; and VY, a similar

splitting of V// occurs and essentially the same result is obtained.

5.5.4 Extending the Matching of Trees.

Matching of S, and S}, may cause some other articulation nodes to be matched newly.
Then the step 4 is repeated for the newly matched articulation nodes to proceed the
matching of the trees.

~ Inthe example, in both cases of matching the remaining biconnected com-
ponents Vi and V5 with VJ, the articulation nodes A and A’ will get matched next.

Repeating the processing in step 4 will results in two completely isomorphic RAGs.

5.6 Matching within Biconnected Compohents

Now consider matching nodes and edges within two biconnected components to find

a local maximal subgraph isomorphism of V; in V}. Because V; may match to any
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part of ¥/, all the local maximal subgraph isomorphism should be searched for.

Any two nodes N; € V; and N ; € V which have similar features are thought
to be possibly matched and regarded as the initial matched node pair of a local
maximal isomorphic subgraphs of V;, and V' to be built. The process of building
a local maximal subgraph isomorphism within Vi and V' from each initial matched

pair of nodes /V; and N; is in the following.

1. For any starting pair /V; and N}, build two maximal isomorphic BRAGs of
them by performing graph transforming operations with the minimal cost (to

be described in the next section).

The pairs of nodes {(N;, Ni) |k =1,...,n} matched by isomorphism of the
two BRAGs at V; and N are put into a queue (.

2. Fetch an unprocessed pair (Niy, N ) from Q. If N;, or N/ is an articulation

node, go to step 6.

3. Build two isomorphic BRAGs at N;, and N;, independently of the matching
obtained so far. If the pairs of nodes matched by the isomorphism of the BRAGs
atV;, and N . do not conflict with the previous ones, the isomorphic subgraphs
of the two biconnected components, which are the unions of isomorphic BRAGs
obtained until now, can be extended to include the two isomorphic BRAGs at

N;, and N .- The newly obtained matchings of nodes are put into ().

4. If a newly obtained matched node pair conflicts with any previously matched
pair, a conflict processing (to be.described in Section 5.6.3) is performed to

handle the newly obtained matching.
5. mark (V;,, N/ ) as processed.

6. Steps 2 through 5 are iterated unti] all the pairs in () are processed.
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5.6.1 Matching of BRAGs

Let NN; and N i be nodes in two biconnected components of G and G’, and let
S(N;) = {N. iy Nigy oevoy Ni } and S(N;) = {N/,....,N! } be the nodes of the
BRAGs at V; and N, subscnpted clockwise around N; and N, respectively. As
stated above, nodes in S(/V;) and S(N}) should be matched with order reserving
while the two BRAGs are changed into isomorphic graphs. Thus the minimal cost
of the graph transforming operations that make the two BRAGs isomorphic can be
computed with an algorithm similar to the one for circular string matching[68-70].
Suppose that the two isomorphic BRAGs are to be built starting from N;, and

Nj,, and let C(k, ) be the minimal cost of the graph transforming operations per-

formed in order to make the two subgraphs {N;, N;,, ....., Ny, } and {N}, N , ..., N} }
isomorphic, then C(k,[) can be computed recursxvely as follows:
C(k,l) = min{ C(k—1,1—-1)+ Cpi(N;,, N}),
Clk —1,1) + Cue(N;, N,),
Ok,1—1) + Cun(NL, ),
Ck = 1,1) + Cyn(Ny,),
C(k,1—1) 4 Cun(Nj),
Ok =1,1=1) + Cum(Ny,),
Clk = 1,1-1) 4 Cym (),
C(k —1,1) + Crg(Ny,),
Clk, 1 =1) + Crg(N;) } (5.2)

where C(0, 0) is set to 0 in advance.

Cont(Ny,,, N}, ) is the cost of substituting (or matching) N by (or with) N,
defined as: '
D(N;,,N})/ Do if D(N;,,N}) < Dq

(le’N,) -
D(Ny,, N} )*/ D} otherwise (5.3)
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where we used as D(A, B) a chromatic distance computed in HSV space using the
average color of region A and B in the color image matching experiments to be
described in Section 6.4. Dy is a threshold.
Cae(IN;, IV}, ) is the cost of deleting the edge (NV;, ] ), which is defined as
1
1+ exp(—T(1 — pl))

where [ is the length of the common boundary between N; and N;,, [ is the average

Cie(Ni, N ) =

(5.4)

length of the common boundaries between N; and the tegions adjacent to IV;, pis a
factor which takes a value between 0 and 1, and 7 is a factor to control the gradient
of the function.

Can(N;, ) is the cost of deleting IV;, in the following two cases:
1. All the other regions adjacent to V;, except IV; are also adjacent to /V;.

2. N, isregarded as occluded by NV;, _, or IV;, . In this case, deleting IV;, causes

N;,_, to be adjacent with V;

k41°

In both cases, Cy, (NN, ) is defined as
Can(Ni,) = AN,/ 4 (53)

where A(N) stands for the area of region NV and Ay is a constant to be determined
depending on the coarseness of the regions in the given images.

Cam(IVy,) is the cost of deleting V;, in case that IV;, is regarded as occluded by
a node N, that is adjacent to N;, but different from IV;, N;, _, and IV;, . In this case,
deleting IV;, causes [V, to be adjacent to IV;, and so N, may match to IV} . Therefore,

the cost Cy,, (V;, ) is computed as follows.
Cam(N;) = Can(Ni,) + Cone(Np, N},) (5.6)

Crmg(IVy,) is the cost of merging the node NV;, into a node V; , where p < k

and /V;, is the last node matched in the optimal matching between {NV;,, ....., N;, _, }
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and {N;

we assume that N} is the node matched with N;,. Then the cost Cpy(N;,) can be

..... , N}, }. Without loss of generality (the proof is given in Appendix 2),

1?

computed by

0 if Ny, = N, (5.7)

Cg(N:,) =
e {Cmt(N,-k,Nj’-l)JrC'a(N,-k,N;[) otherwise

where C,() is the cost calculated for the case when the total area of merged nodes is

more than that of their corresponding node N; . It is defined as:

0 if A(Niy) + ZA(N;,) < A(NG)
Ca(Nik’NJ{z) = ((A(le)—"ZA('N’q)“‘A(NJ/z))
JA(N}))? otherwise (5.8)

where the summation is taken over the nodes V;,’s which are matched to NVj,.

Note that no cost is imposed for the edge deletion and substitution caused by
node merging or node deletion.

While C(k,1) is calculated by Eq.(5.2), the operation which produces the
optimal partial matching is also recorded. When C(m,n), the final minimal cost, is
computed, we can trace back from C(m,n) to get the optimal matching starting at
the specified node pair.

Because S(N;) and S(NV)) are circular sequences, we have to shift one of
the starting nodes against the other and repeat the computation above, and find the
minimal cost among the ones obtained by starting from different starting node pair in

the sequence.

5.6.2 Matching at Articulation Nodes

As described in Section 5.6.1, the optimal matching of the remaining biconnected
components connected with a pair of matched articulation nodes (A, A’) can be com-

puted by Eq.(5.2), which calls the node matching within two biconnected components.
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For two biconnected components B; and B;, which are connected with A and A’ re-
spectively, a procedure similar to the one described in Section 6.3.1 can be applied,
except that the matching starts from a matched pair of articulation nodes (A, A").
Because the edges of an articulation node in a biconnected component represents
the boundary of the biconnected component, they will be split when the biconnected
component are separated into more than one biconnected components in the other
image. Thus the initial isomorphic basic planar graphs at A and A’ should be built by
a partial matching of the nodes surrounding A and Al

Similar to the procedure in Section 5.6.1, we regard the two BRAGs at A and
A’ as two attributed circular strings. Let S(A) = {4; |1 = 1,....,m} and S(4') =
{A; 17 =1,...,n} be the sets of nodes surrounding A and A’ in the biconnected
components B; and Bj, respectively. Assume that the nodes are subscripted in
clockwise order. Without loss of generality, suppose . < n. Then we make two
non-circular strings, one is the non-circular string of S(A), and the second is the non-
circular string 25(A’), that is, S(A’) repeated twice. The partial matching between
circular strings S(A) and S(A’) becomes the problem of finding the optimal substring
matching[68] of S(A) in 25(A").

The procedure for computing the minimal matching cost described in Section

6.3.1 can be applied to this case with the following changes.
1. C(0,7) is set to 0 for 7 < n and to co otherwise.
2. The minimal cost is computed by

min{C(m,j) |7 =0, ....,2n}.

5.6.3 Processing of Conflicts

Since the two isomorphic graphs of two biconnected components are built by yielding

iteratively two isomorphic BRAGs at the matched nodes independently, the matchings
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of nodes in a BRAGs pair may conflict to the matching obtained previously. Our
algorithm introduced a simple strategy to deal with the conflicts, in order to avoid
processing the two possibilities in parallel.

Let (N;, N}) be the pair of matched nodes and suppose that two isomorphic
BRAGs at IV; and V] have just been yielded. Assume that a newly obtained matching
(i, N},) in the isomorphism of the two BRAGs at N; and N/ conflicts to a matching,
say (N, N} ) where N, # N;, , which is obtained previously. In this case, we keep the
matching (N,, N}, ) and adjust (V;,, N}, ) in the newly yielded isomorphic BRAGs by
deleting the edges (/Vi, Ny, ) and (N}, N},). The cost C(IV;, N}) of the isomorphism
of the two of basic planar graphs at V; and N} is also adjusted as

C(N;, Nj) — C(Niy Nj) + Cue(N;, N,)
+Ode(NJ'~,N]'-I) - Cmt(Nik,NJ/',) (5.9

At the same time, the pair (V;, N7) is put into the starting point list for search,
50 that the abandoned matching (N, , N ) can be established earlier in the later search

starting from (NV;, NV}).

5.7 Experiments

We applied our algorithm to various kinds of color images, which are shown in
Figure 5.13(a), Figure 5.14(a), Figure 5.15(a) and Figure 5.16(a). The images were
first segmented into regions which consist of connected pixels of similar color, and a
unique label is assigned to each region in either of the two images. For each region,
several features, such as the average color, area, center of gravity, are computed. Then
all the boundaries of every region are followed to establish the region adjacency lists.
In general, only one adjacency list is needed for one region, but for the regions which
encircle n sets of adjacent regions in it, n + 1 lists is needed. The first one is used to

record its adjacency relations of the regions surrounding it, and the other n, lists are for
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describing the boundary regions of the n “holes” in it. With this structure, it is easy
to identify articulation nodes as the regions which have more than one boundaries.

Our algorithm runs on the graph representation converted from the adjacency
lists. The results of matching for the test images are shown in Figure 5.13(b), Figure
5.14(b), Figure 5.15(b) and Figure 5.16(b), respectively. The regions in two images
with the same number are regions matched each other. A region corresponds to ‘-1’
means that the region has been deleted in the searching, and a region corresponds to
‘-2’ means that the region remains unmatched in the search and is deleted at the end
of search.

The values of parameters in the cost computations of graph transforming op-
erations are selected as: Dy = 0.1, T = 20, p = 0.2 and So = 200. The computation
time (user time on SUN SPARC-10) are 85 sec. and 110 sec., respectively. |
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S :

(:;) Input images (only bright values are shown) |

(b) Results of region correspondence
Figure 5.13: Results of region correspondence of images of toys

(a) Input images (ony rlgt values are shown)

(b) Results of region correspondence
Figure 5.14: Results of region correspondence of images of shoes
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5.8 Summary

We formulated region correspondence problem between two images into inexact
matching of two attributed planar graphs, and gave an operational definition of it.
Some properties of the planar graph and of the topological relations of regions are no-
ticed, in order to construct an efficient algorithm to find the optimal inexact matching
of two attributed planar graphs.

Because our algorithm searches for the optimai matching only from the starting
pairs of nodes which are similar in features, we expect that the final matching would
be only approximately optimal in some cases. However, the experimental results
show that the aigorithm yields sufficiently good region matching in most cases.

There is a limit of our methods: for an object close to the camera, because it
will move so much in the two images that adjacency relations between the regions for
this object in two images will be wholly different, causing the deletion of the re gion to
make the cost less. Therefore, these regions in images may not be matched correctly
by our algorithm. Comparing the features of the deleted regions in two images may

solve the problem.
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(a) Input images (only bright values are shown)

(b) Results of region correspondence
Figure 5.15: Results of region correspondence of images of fruits

(a) Input images (only rlght values are show

(b) Results of region correspondence
Figure 5.16: Results of region correspondence of images of clothes
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CHAPTER 6

Conclusion and Future Works

In this thesis, I indicated out that a flexible and robust matching technique for matching
two temporarily and/or spatially shifted images in presence of noise, deformation,
occlusion and inconsistency in feature extraction, is essential for real applications of
computer vision. I showed that the region-based approach is more promising than
other feature-based approaches to this problem, because (1) there are always much
fewer regions in an image than other primitives such as edges, (2) regions possess
more information which supplies higher discriminating capability of regions, and (3)
they are also more stable against noise, deformation and occlusion than, for instance,
edges.

Three algorithms of region-based matching approach have been proposed for
different problems of image matching. The first one was proposed for stereo matching
where epipolar line constraint is available and the other two algorithms are proposed
for image correspondence in general case where the relative positions of viewpoints
are not known. The third one is possibly applicable also to image matching for object
identification, location or recognition, with some extensions.

In Chapter 2, I have described a region-based part-to-whole approach for
stereo matching. In this approach, the regions projected from continuous surfaces in

the scene were regarded as matching primitives, and we notice that those regions are
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equivalent to the patches Which can be matched continuously between two images.
The stereo matching problem was then represented as a problem of finding consistent
matchings of such patches in all the scene. A part-to-whole approach was adopted to
do this. First, we divided the range of disparity into some small intervals, and used
dynamic programming, with the continuity of matching being considered, to find con-
tinuous matchings of segments on an epipolar line in each interval of disparity. Then
the matched segments were integrated into matched patches by considering vertical
continuity between adjacent epipolar lines. Finally, we integrated the matchings of
patches obtained in individual intervals to generate a consistent set of matching of
patches of the whole scene, by selecting the best-matched one from the overlapped
or conflicting matchings of patches.

The patches used in our approach is equivalent to regions, that implies that
patches are more stable and discriminating than other primitives such as pixels or
edges. Therefore, it can be expected to obtain more stable and reliable matching
result by our method than by the methods using other primitives. On the other hand,
the patches are established by continuous matching of connected pixels, so dense
disparities are obtained simultaneously when the patches are matched. Thus the
disadvantage that the feature-based approaches can only obtain sparse disparities was
overcome by our approach.

Another characteristics of the proposed approach is that we need not to segment
the images into homogeneous regions beforehand, that is always a too hard task for
the existing segmentation techniques to do in the case of natural images which are
always complicated and over-textured. This characteristics allowed our approach to
be applicable to some complicated scenes. The results on some experimental images
showed the effectiveness of our method, but it need to be compéred with the other
methods under the ground truth data.

For image correspondence in general case where the epipolar conétraint is not

available, the region-based approach is regarded to be a robust and efficient approach
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to image matching problém. It also plays an important role in a hierarchal multi-
primitives system of image matching, where the region matching results are used as
guidance information for the matching of more detailed primitives such as edges and
edgels. The reliability of the region matching results s critical in such a hierarchal
multi-primitives image matching system, because the error occurred in the region
matching stage will be brought to the next stages of matching of other primitives.

In Chapter 3 and Chapter 4, we proposed a reliable region-based image match-
ing approach which consists of two stages. In the first stage, a local ternary relation
among regions was used together with chromatic features of regions to suppress the
matching ambiguity occurred when only the features of regions are used. By this
method, more reliable region correspondences could be established. In the second
stage, the optical flow generated by the camera movement, which can be estimated
using all the obtained correspondences, was used as a global consistency constraint
to validate individual correspondences, and the ones which do not obey the optical
flow were detected as mistakes and then corrected using the estimated optical flow.

In fact, in the applications of object identification, location and recognition,
the scene can be thought consist of some objects which have some structure. For
the image matching problem in such applications, we suggested that a syntactic
representation of the images should first be attempted to describe the structure of the
objects in the images, and then carry out a structural matching on those syntactic
descriptions of images. Essentially, the regions in such images corresponding to the
faces of objects in the scene, and they possess much more semantic information than
other primitives, such as edges. So the regions are more appropriate for semantic
representation of objects in the images.

In Chapter 5, we attempted a region-based syntactic approach for the region
matching problem in the general case. We represented the regions and their relations
in an image with a Region Adjacency Graph(RAG), and then formulated the problem

of region matching into a problem of finding the optimal inexact graph matching
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between two RAGs. We showed that a RAG is an attributed planar graph, and
noticed that they have some specific properties. Utilizing these properties, we could
construct an efficient algorithm to find the optimal inexact matching between two
RAGs.

Some future works can be enumerated as follows:

1. Stereo matching: In the proposed stereo matching approach, we adopted a
strategy of merging the continuous segments matched on each epipolar lines to
obtain the patch matchings. The horizontal continuity in the patch matching
is achieved by extending the dynamic programming to consider the matching
continuity. However, the vertical continuity in the patch matchings is only
improved by utilizing the complementarity of the segment matchings obtained
in different matching orders, that is, the matching obtained in the order from left
to right and that obtained in reverse order. A more sophisticated way to obtain
the optimal matching of patches with both horizontal and vertical continuity

should be considered in the future work.

Another problem is that the effectiveness of the algorithm should be evaluated
explicitly. Although the results on some experimental images showed the
effectiveness of our method, it need to be compared with the other methods

under the ground truth data.

2. Image matching in general case: The region matching in the general case
is carried out on the output results of region segmentation. Although our
algorithm allow inconsistency in region segmentation, but it can not work well
with so bad results of image segmentation. Other primitives such as edge may

be used jointly with the region primitives.

Another reason of necessity for using other primitives jointly is that we can
only obtain sparse and rough correspondences between two images from the

results of region matching. In general, we can only obtain the correspondence
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of the centers of gravity of the corresponding regions, which may be too
spare and too inaccurate for some applications. Therefore, matching of more
detailed features, such as edges, corners or the interior points in the regions, is
required. Iﬁ such a top-down hierarchal matching approach, interactive use of

the hierarchal primitives must be considered.

3. Extending the region-based image matching approach to model matching: The
region-bésed structural matching approach was applied to the general image
matching by now, however, it is possible to be extended for object location,
identification and recognition, because a lot of objects can be described by the
their surfaces and the structural relations between the surfaces, such as aspect
representation, which is very similar to the structural repfesentation of regions
in the images. However, for such further applications, some problems such as
matchings between the models of objects and an input image, which may be

represented as inexact subgraph isomorphic, should be investigated.

The structural relations of surfaces contains not only the topologic relations (
that is, the adjacency relations) of the object, but also the geometric relations,
such as the paralleling relation or orthogonal relation of two surfaces. Up
to now, most of the matching techniques used either topologic relations or
geometric relations in the images. However, while the topologic relations
in an object are relatively stable with perspective transformation, but they
are neither discriminant for the configuration of the regions involved, nor
stable to inconsistency of region segmentation. On the other hand, geometric
relations. are discriminant for configuration of regions and relatively stable
against the inconsistency of region segmentation, but they are not invariant
under perspective transformation. We suggest that both the geometric and
topologic relations should be used jointly in describin g the model of the objects

and be utilized in the matching process.
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APPENDIX A

The Relation of Corresponding Points

in Two Images

The relation of the scene-space coordinates (X, Y, Z) of a point P before motion,

and coordinates (X', Y, Z’) of P after motion can be represented by

X' X
vy |=R| Y |+T (A.1)
Z' VA

where T is called as translation vector which is defined as following

and
r T2 T3

R=1|r4 75 76
r7 T8 T9

Transform these equations so that it can be represented by the image points
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(z,y) and (2, y) and thsir depthes as

z! rL T2 T3 T X
A ’y’ =27 T4 Ts5 T6 Yy + Y
1 ry Tg To 1 VA

Eliminate Z' from the above equtions, we can obtain:

o (rlz+r2y+r3)Z+ X , (rdz4rSy+r6)Z+ Y
T T A8y 12+ Z 0 (@Ta+ 8y +19)Z + Z

Elimination of Z from the above equtions results in the Epipolar constraint.

0 -7 X L Ty T3 x
(:v’ Yy’ 1) Z 0 -Y T4 TS Tg y | =0
- X Y 0 T Tg To 1

For a given point (z,y) in a image, let

A 0 — 7 X Ty T2 T3 T
B = Z 0 -Y Ty Ts Tg Yy ) (AZ)
C -X Y 0 T T To 1

then the corresponding point (2, ') in the other image must sutisfy Az’+By'+C = 0,
that is, (z’,y’) is on the line of Az + By + C = 0. |
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APPENDIX B

Proof of Property 3 of RAG

Let IV be a node in a biconnected component and let £ = {(NV, Ni)|i=1,..,n}be
the edges emanating from NV in the biconnected component, subscripted clockwise

on the image planes. The following cases can be considered:

1. n=2.
In this case, there is only one way to arrange the edges as a circlar sequence in

a plane.

2. n > 2 and all the nodes in S(NV) = {N; | i = 1,....,n} are distinct.
In this case, because there is an edge between any two neighboring nodes NV,
and Vi1 (Property 2), the subgraph composed of nodes of {N}US(N)and the
edges between the nodes is a triply connected sub graph. Accordingly, Property
3 is held. o

3. n> 2 and a node appears twice in S(V).
Suppose that N; = N;, ¢ < j and we can partitions the edges into two
disjoint groups as E1 = {(N,Ny),..., (N, Ni), (N, Njt1), ..., (N, N,)} and
E2 = {(N,Niy1),...,(N,N;_1),(N, N;)}. We can obtain:
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Lemma Al In any embedding of the edges in a plane, any edge in F1 (except
(N, N;)) can not be neighboring an edge in E2 (except (IV, N;)).
Proof: If anode Ny in E1 is neighboring a node N; in 2, then due to the
Property 2 of RAGs, there must exists an edge (N, V7). So the subgraph
composed of nodes of { N} U .S(NV) and the edges between the nodes must
be a triply connected subgraph, and NV is not a biarticulation node.
Lemma A1 means that if there are more than one embeddings of the edges
of £1 and E2 in a plane as RAGs, then the order of the edges E'1 or £E2

can changed only within £'1 or E2, respectively.

Lemma A2 For the edges in £1 (or £2) and the subgraph composed of the
nodes {N, Ni, ..., Ni, Njy1, N} (or {N, Niyy, ..., N;_1}), either case 1 or
case 2 will be hold. That is, only the oclockwise embedding of the edges

should be considered if the mirror version is ignored.

From Lemma A1l and A2, we obtain that only the clockwise of the embedding

of the edges of N should be considered.

4. The other case that n > 2 and a node appears more than twice in S(/N) can be

proved inductively using the reasoning above.
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APPENDIX C

About Node Merging

Suppose that Nj,, ¢ < lis the last matched node in matching of { Niyy.oy N;,_ } and
{N!,..,N 1)

PR

1. The cost of the matching by merging /V;, in this case is computed as:

C'k,D) = Ck~1,0) + Cos(Ni, NI ) + Cy(NVy, N;)
= Ck=1,9)+ Cae(N; )+ -+ Cac(N}) +
Comt(Nyy, N; ) + C(V;,, N )
= Ok =1,9) + Coue Nip, N} ) + Co(N;,, NL) +
Cae(Nj )+ -+ Cae(NY)
Ok, @) + Cae(N, ) + -+ + Cae (V)
Ok, g+ 1) + Cae(NVj ) + -+ + Cae(V})

v

v

7+2

v

Clk,1—1)+ Cae(N;)

So the merging of V;, in this case need not to be considered.
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2. N isregarded as the last matched node while it is not so. In this case the cost

is:

C'(k, 1) C(k = 1,1) + Cos(Ni, N}) + Co(Ni,, N},
C(k = 1,1 — 1) + Cae(N},) + Cons(Ni,, N},) + Co( Ny, N,)

> C(k—1,1=1)+ Cpne(Ni,, N},)

I

That is, the cost computed for this case will not influence the matching cost

C(5,7)-

108



Bibliography

[1]

(2]

(3]

[4]

[5]
(6]

7]

8]

R. Dhond and J. K. Aggarwal: Structure from stereo — A review, IEEE Trans.
on SMC, Vol. 19, No. 6, pp. 1489-1510, 1989

T. Kanade and M. Okutomi: A stereo matching algorithm with an adaptive
window: Theory and experiment, IEEE Trans. on PAMI, Vol. 16, pp. 920-932,
1994

R.C. Bolles, H.H. Baker, and M.J. Hannah: The JISCT stereo evaluation, Proc.
of Image Understanding Workshop, pp. 263-274, 1993

H. H. Baker and T. O. Binford: Depth from edges and intensity based stereo,
Proc. of IICAI, pp. 631-636, 1981

M. J. Hannah: SRI’s baseline stereo system, Proc. of IUW, pp. 201-208, 1980

K. Mori, M. Kidode and H. Asada: An Iterative Prediction and Correction
Method form Automatic Stereopsis, Journal of CVIP, Vol. 2, pp. 393-401, 1973

T. Kanade and M. Okutomi: A stereo matching algorithm with an adaptive
window: Theory and experiment, IEEE Trans. on PAMI, Vol. 16, pp. 920-932,
1994

J. R. Jordan and A. C. Bovik: Using Chromatic Information in Dense Stereo

Correspondence, Pattern Recognition, Vol. 25, No. 4, pp. 367-383, 1992

109



[9] D.Marr: Vision, San Francisco, CA: Freeman, 1982

[10] W. E. Grimson: Computational Experiments with a Feature Based Stereo Al-
gorithm, JEEE Trans. on PAMI, Vol. 7, No. 1, pp. 17-34, 1985

[11] A.Bensrhair P. Miche and R. Debrie: Fast and automatic stereo vision matching
algorithm based on dynamic programming method, Pattern Recognition Letters,

Vol. 17, pp. 457-466, 1996

[12] Y. Ohta and T. Kanade: Stereo by intra- and inter- scan-line search using

dynamic programming, IEEE Trans. on PAMI, Vol.7, No. 2, pp. 139-154, 1985

[13] R. Mohan and G. Medioni: Stereo Error Detection, Correction and Evaluation,

IEEE Trans. on PAMI, Vol. 11. No. 2, pp. 113-120, 1989

[14] U. R. Dhond and J. K. Aggarwal: Stereo matching in the presence of narrow
occluding objects using dynamic disparity search, IEEE Trans. on PAMI, Vol.
17, No. 7, pp. 719-734, 1995

[15] D. Brockelbank and Y. H. Yang: An Experimental Investigation in the Use of
Color in Computational Stereopsis, IEEE Trans. on SMC, Vol. 19, No. 6, pp.
1365-1383, 1989

[16] S.B. Marapane and M.M. Trivedi: Multi-primitive hierarchical (MPH) stereo
analysis, IEEE Trans. on PAMI, Vol. 16, pp. 227-240, 1994

[17] M.S.Lew and T. S. Huang: Learning and Feature Selection in Stereo Matching,
IEEE Trans. on PAMI, Vol. 16, No. 9, pp. 869-881, 1994

[18] Z. N. Li: Stereo correspondence based on line matching in Hough space using

dynamic programming, IEEE Trans. on SMC, Vol. 24, pp. 144-152, 1994

[19] R.Horaud and T. Skordas: Structural matching for stereo vision, Proc. 9th Int’l.
Conf. on Pattern Recognition, pp. 439-445, 1988

110



[20]

[21]

[22]

[25]

[26]

[27]

H. J. Lee and W. L. Lei: Region matching and depth finding for 3D objects
in stereo aerial photographs, Pattern Recognition, Vol. 23, No. 1/2, pp. 81-94,
1990

C.V. Stewart and J.K. MacCrone: Experimental analysis of a number of stereo
matching components using LMA, Proc. of 10th ICPR, Vol. A, pp. 254-258,
1990

S. B. Marapane and M. M. Trivedi, “Region-Based Stereo Analysis for Robotic
Applications”, IEEE Trans. on Syst Man Cybern, Vol. 19, No. 6, pp. 1447-1464,
1989

X.HuandN. Ahuja: Matching Point Features with Ordered Geometric, Rigidity,
and Disparity Constraints, IEEE Trans. on PAMI, Vol. 16, No. 10, pp. 1041-
1049, 1994

R. Mohan, G. Medioni and R. Nevatia, Stereo Error Detection, Correction and

Evaluation, IEEE Trans. on PAMI, Vol. 11, No. 2, pp. 113-120, 1989

W. Hoff and N. Ahuja: Surfaces from Stereo: Integrating Feature Matching,
Disparity Estimation, and Contour Detection, IEEE Trans. on PAMI, Vol. 11,
No. 2, pp. 121-236,1989

K. L. Boyer and A. C. Kak: Structural Stereopsis for 3-D Vision, IEEE Trans.
on PAMI, Vol. 10, No. 2, pp. 144-166, 1988

D. D. Vleeschauwer: An intensity-based, Coarse-to-fine Approach to Reliable
Measure Binocular Disparity, CVGIP: Image Understanding, Vol. 57, No. 2,
pp. 204-218, 1993

R. S.Mitra and N. N. Murthy: Elastic, Maximal Matching, Pattern Recognition,
Vol. 24, No. 8, pp. 747-753, 1991

111



[28] D.J. Kahl, A. Rosenfeld and A. Danker: Some Experiments in Point Pattern
Matching, IEEE Trans. on SMC, Vol.10, No. 2, pp.105-116, 1980

[29] D. Skea, I Barrodale, R. Kuwahara and R. Poeckert, A Control Point Matching
Algorithm, Pattern Recognition, Vol. 26, No. 2, pp.269-276, 1993

[30] R. N. Strickland and Z. Mao: Computing Correspondence in a sequence of
non-rigid shapes, Pattern Recognition, Vol. 77, No. 7, pp.901-912, 1992

[31] S. B. Marapane and M. M. Trivedi: Region-Based Stereo Analysis for Robotic
Applications, IEEE Trans. on SMC, Vol. 19, No. 6, pp. 1447-1464, 1989

[32] C.S.Fuh,P.Maragosand L. Vinlent: Visual Motion Correspondence by Region-
Based Approaches, Proc. Asian Conf. on Computer Vision, pp. 784-789, 1993

[33] Y. Chenand H. Nakatani: Image Region Correspondence by color and Structural
Similarity, IEICE Trans. on Information and Systems, Vol. E76-d, No. 4, pp.
429-436, 1993

[34] S. Z. Li: Matching: Invariant to Translation, Rotation and Scale Changes,
Pattern Recognition, Vol. 25, No. 6, pp. 583-594, 1992

[35] J. Weng, N. Ahuja, and T.S. Huang: Matching two perspective views, IEEE
Trans. on PAMI, Vol. 14, pp. 806-825, 1992

[36] A.K.Jain, Y. Zhong and S. Lakshmanan, “Object Matching Using Deformable
Template”, IEEE Trans. on PAMI, Vol. 18, No. 3, pp. 267-277, 1994

[37] V. A. Anisimov and N. D. Gorsky: Fast Hierarchical Matching of an Arbitrarily
Oriented Template, Pattern Recognition Letters, Vol. 14, No. 2, pp- 95-101,
1993

112



[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

D. W. Paglieroni, G. E. Ford and W. M. Tsujimoto: The Position-Orientation
Masking Approach to Parametric Search for Template Matching, IEEE Trans.
on PAMI, Vol. 16, No. 7, pp. 740-747, 1994

M. Bhanu and O. D. Faugeras: Shape Matching of Two-dimensional Objects,
IEEE Trans. on PAMI, Vol. 6, No. 2, pp. 137-156, 1984

N. Ueda a'nd S. Suzuki: Learning Visual Models from Shape Contours Using
Multiscale Convex/Concave Structure Matching, IEEE Trans. on PAMI, Vol.
15, No. 4, pp. 337-352, 1993

C. A. Rothwell and A. Zisserman: Planar Object Recognition using Projective
Shape Representation, International Journal of Computer Vision, Vol. 16, pp.

57-99, 1995

S. Sclarroff and A. P. Pentland: Modal Matching for Correspondence and
Recognition, IEEE Trans. on PAMI, Vol. 17, No. 6, pp. 545-561, 1995

Y. Lamdan and H. Wolfson: Geometric Hashing: A General and Efficient
Model-Based Recognition Scheme, Proc. of Image Understanding Workshop,
pp. 238-249, 1988

R. Hummel and H. Wolfson: Affine Invariant Matching, Proc. of IUW, pp.
351-364, 1988

D. M. Gavrila and F. C. A. Groen: 3D Object Recognition from 2D Images
using Geometric Hashing, Pattern Recognition Letters, Vol. 13, pp. 263-278,
1992

M. C. K. Yangand J. S. Lee: Object Identification from Multiple Images Based
on Point Matching Under a General Transformation, I[EEE Trans. on PAMI,
Vol. 16, No. 7, pp. 751-576, 1994

113



[47] O.Munkel: Aspect-trees: Generation and Interpretation, Computer Vision and
Image Understanding, Vol. 61. No. 3, pp. 365-386, 1995

[48] S. Zhang, G. D. Sullivan and K. D. Baker: The Automatic Construction of a
View-Independent Relational Model for 3D Object Recognition, JEEE Trans.
on PAMI, Vol. 15, No. 6. pp. 531-544, 1993

[49] H. Murase: Visual Learning and Recognition of 3-D Objects from Appearance,
International Journal of Computer Vision, Vol. 14, pp. 5-24, 1995

[50] K. Kanatani: Geometric Computation for Machine Vision, Oxford Science

Publications, 1993

[51] H. C. Longuet-Higgins: A Computer Algorithm for Motion Reconstruction a
Scene from Two Projections, Nature, Vol. 293, No. 10, pp. 133-135, 1981

[52] R. Y. Tsai and T. S. Huang: Uniqueness and Estimation of Three-Dimensional
Motion Parameters of Rigid Objects with Curved Surfaces, JEEE Trans. on
PAMI, Vol. PAMI-6, No. 1, pp.13-27, 1984

[53] X. Zhuang: A Simplification to Linéar Two-view Motion Algorithm, Computer
Vision, Graphics, and Image Processing, Vol. 46, No. 1, pp. 175-178, 1989

[54] J. Weng and T. S. Huang: Motion and Structure from Two Perspective Views:
Algorithms, Error Analyéis, and Error Estimation, IEEE Trans on PAMI, vol.
11, No. 5, pp. 451-476, 1989

[55] J. Philip: Estimation of Three-dimensional Motion of Rigid Objects from Noisy
Observations, IEEE Trans. on PAMI, Vol. 13, No. 1, pp. 61-66, 1991

[56] A.R.Bruss and B. K. P. Horn: Passive Navigation, Computer Vision, Graphics
and Image Processing, Vol. 21, pp. 3-20, 1983

114



[57] K. Prazdny: Determining the Instantaneous Direction of Motion from Optical
Flow Generated by a Curvilinearly Moving, Computer Vision, Graphics and

Image Processing, Vol. 17, pp. 238-248, 1981

[58] E.D. Micheli, V. Toree and S. Uras: The Accuract of the Computation of Optical
Flow and of the Recovery of Motion Parameters, IEEE Trans. on PAMI, Vol.
15, No. 5, pp. 343-447, 1993

[59] R. Hummel and V. Sundareswaran: Motion Parameter Estimation from Global

Flow Field Data, IEEE trans. on PAMI, Vol. 15, No. 5, pp. 459-476, 1993

[60] G.J. Young and R. Chellappa: Statistical Analysis of Inherent Ambiguities in
Recovering 3-D Motion from a Noisy Flow Field, IEEE trans. on PAMI, Vol.
14, No. 10, pp. 995-1013, 1992

[61] J.Kittler and J. Illingworth: Minimum Error Thresholding, Pattern Recognition,
Vol. 19, pp. 41-47, 1986

[62] H. Bunke: Inexact graph matching for structural pattern recognition”, Pattern

Recognition Letters, Vol. 1, No. 4, pp. 245-253, 1983

[63] M. A. Eshera and K. S. Fu: A Graph Distance Measure for Image Analysis,
IEEE Trans. on Syst Man Cybern, Vol. 14, No. 3, pp. 398-408, 1984

[64] L.G.Shapiroand R. M. Haralick: Structural Descriptions and Inexact Matching,
IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 3, No. 5, pp.
504-519, 1981

[65] A. Sanfeliu and K. S. Fu: A Distance Measure Between Attributed Relational
Graphs for Pattern Recognition, IEEE Trans. on Syst Man Cybern, Vol. 13, No.
3, pp- 353-362, 1983

115



[66] E.K.Wong: Model Matching in Robot Vision by Subgraph Isomorphic, Pattern
Recognition, Vol. 25, No. 3, pp. 287-303, 1992

[67] J. E. Hopcroft and R. E. Tarjan: Isomorphism of Planar Graphs, Complexity
of Computer computation, R. E. Miller and J. ' W. Thather Eds., Plenum, New
York, pp. 131-152, 1972

[68] H. Bunke and U. Buhler: Recent Advances in String Matching, Advances in
Structural and Syntactic Pattern Recognition, H. Bunke Ed., World Scientific
Publishing, pp. 3-21, 1992

[69] M. Maes: On a Cyclic String-To-String Correction Problem, Info. Process.
Letters, No. 35, pp. 73-78, 1990

[70] W. H. Tsai and S. S. Yu: Attributed String Matching with Merging for Shape
'Recognition, IEEE Trans. on. PAMI, Vol. 7, No. 4, pp.453-462, 1985

[71] D. Yagi, K. Abe and H. Nakatani: Segmentation of Color Aerial Photographs
Using HSV Color Models, Proc. of MVA, pp. 367-370, 1992

[72] R. A. Wagnerand M.J. Fischer: The .string-to-string correction problem, Journal
of ACM, Vol. 21, pp. 168-173, 1974

[73] K. Takahashi, H. Nakatani and K. Abe: Color Image Segmentation Using
ISODATA Clustering Method, Proc. of 2th ACCV, Vol. 1, pp. 523-527, 1995

[74] Y. L. Chen: Image Region Correspondence Based on Structural Similarity and

Color Information, Doctor Thesis, Shizuoka University, 1993

116



A. BEEFRSL

Al. C. Wang and K. Abe, Region Correspondence for Color Scene Images
Taken from Different Viewpoints, Proc. of Machine Vision Applica-
tion’94, pp. 26-29, 1994

A2, E, FIES : ZODOHEKNLIE LR — RO IE T, HiR
B LSS, Vol. 36, No. 10, pp. 2253-2262, 1995

A3. C. Wang and K. Abe: Region Correspondence by Inexact Attributed
Planar Graph Matchirig, Proc. 5th ICCV, pp. 440-447, 1995

A4, E, FTHS . BATEERECB I ABRBNRYY FUIHROBEIZL D A
TVA TvFUT, H I R R BB TR AT SRR &, Vol. 17,
pp.77-87, 1996 '

A5. C. Wang and K. Abe: Stereo Matching by Integrating Piecewise Sur-
faces Matched in Subranges of Depth, To appear in Proc. of 13th
ICPR, 1996

B. Db DEwX

B1. K.Abe, F. Mizutani and C. Wang: Thinning of Grey-scale Imageé
with Combined Sequential and Parallel Conditions for Pixel Removal,
IEEE Trans. Systems, Man, and Cybernetics, Vol. 24, No. 2, pp.
294-299, 1994

B2. C. Wang and K. Abe: A Method for Gray-Scale Image Thinning: The
Case Without Region Specification for Thinning, Proc. of 11th ICPR,
pp. 404-407 1992



C1.

C2.

C3.

C4.

Cs5.

C. OWmHER

. F: WOV FUT, EKD £ BV ST A R AR R SCER,
pp. S-67-5-68, 1993

F.OME: A TF4 RN T O & BEEERY Y F VI RROELE,
1004 EEB T HEF LSBT AEFHEME, p. D-565, 1994

F. RS : —o0B AN LK U ER—EROSIREN A S, HE&O
s - IRV RY Y AR SCE 1T, pp. 89-96, 1994

F. M B ST LSS T OBRKEMT Y F VIR A2 ISR
SOV, 2254k, PRU-127, No. 2, pp. 71-78, 1995

.M BT EEREEIC B BB v F U UREROMEICL S A
FLA wwF Y, MIRU96 (FRERPE)



