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Preface

Resource competition is common in nature. The difference of resource exploitation among
competitively interacting species often has a great impact on the population growth and
determines the fate of species. The competitive exclusion principle (CEP) predicts that
the number of species competing for the several available resources cannot exceed the
number of available resources in steady state. Several basic mathematical models de-
scribing the resource competition for the limiting resources have been proposed and the
consequences agree with the CEP. Of course, this prediction does not explain correctly
what is observed in nature. This paradox has fascinated to propose driving factors which
facilitate the coexistence of species in resource competition as opposed to the CEP. It is
important not only to show or explain how competing species can coexist, but also to
figure out the mathematical structure of resource competitioh systems. Notably, to figure
out the mathematical structure of the resource competition system often relates to un-
derstand the mechanisms underlying species coexistence. Thus, mathematical studies on
resource competition system are expected to bring knowledge and insight what is essential
for the coexistence of species in resource competition.

Another main interest in this thesis is to study delayed feedback mechanisms in biolog-
ical systems. The growth of individuals in terms of phyéiological traits such as the growth
in terms of body size, the maturation of cells, or interactions with the other species often
operates on the population growth as a delayed feedback. It has been revealed that os-
cillation or more complicated behaviors are typically observed in ecological communities,
and they are supposed to be induced by delayed negative feedback mechanisms. Feedback
systems are often the subject to study in the control theory. In biological systems, feed-
back mechanism often appears as a density dependent term in equations. The system is,
in general, described by differential equations and may exhibit rich dynamics even though
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the algebraic structure of equations is very simple.

In biological systems, the interaction among individuals is diversified. This diversified
interaction may fertilize phenomena observed at a population level. The relation between
the interaction among individuals and the population level phenomena is often the subject
to understand in ecology, epidemiology, cell biology or any fields treating “the dynamics in
terms of the population number”. Due to the fact that resource competition and delayed
feedback mechanism essentially work and are observed at population level, the study on
population dynamics governed by resource competition or delayed feedback mechanism
may be expected to reveal a relation between the interaction at individual level and
- phenomena observed at population level.

Mathematical modeling enables us to describe explicitly how model ingredients relate
to each other. The stability theory of dynamical systems helps us to understand what
will occur as a result of resource competition, delayed feedback effect or whatever in a
qua,litativé manner. The implementation of numerical simulations gives information in
terms of the dynamical properties in quantitative and visible sense. Numerical computa-
tions enables us to obtain approximate solutions to nonlinear equations, and to evaluate
quantities representing an important concept, such as the degree of competition among
interacting species and so on.

In this thesis, we study mathematical properties of resource competition and delayed
negative feedback mechanism on several population dynamics models. Methods devel-
6ped in the stability theory of differential equations and dynamical systems, numerical
simulations and numerical computations are collaborated to investigate the dynamics
of interacting species on which resource competition or delayed feedback mechanism is
operated. j

In the first part of this thesis, the effect of delayed feedback mechanism on several bi-
ological systems is studied. In Chapter 1, we study the stability, bifurcation and chaotic
behaviors in Lotka-Volterra prédator—prey.systejm with two delays. The stability of co-
existing steady state (a positive equilibrium) can change depending on the value of time
delays. This system exhibits rich dynamics; not only chaotic but also transient chaotic
behaviors are observed. In Chapter 2, we study chemostat equationé' which describe a
population dynamics of microorganisms or species living in an aquatic ecosystem. The
nutrient recycling via bacterial decomposition acts as a delayed feedback mechanism. The
coexistence of species as opposed to the CEP is observed.
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In the second part of the thesis, resource competition models are studied. In Chapter
3, we study a Lotka-Volterra competition system. Competition functions are defined to
measure the degree of the competition between competing two species. The competitively
balanced set is also defined in which competition of two species are equilibriated. We study
several properties of competitively balanced set and showed the global attractivity of the
positive equilibrium. Another important result in this chapter is seen in a point that
the stable manifold of the positive equilibrium is explicitly given for a special case. In
Chapter 4, we study a periodic chemostat model in which three species are competing for
one resource. The coexistent state of three species is investigated both analytically and
numerically. It is revealed that the coexistence of three species is likely possible if the
period is large. ‘

In appendix A, theories and mathematical methods to analyze delay equations are
summarized. In the first part, a geometric criteria for the roots of characteristic equation
for delay equations with one delay is summarized. '
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Chapter 1

Lotka-Volterra predator-prey system
with two delays | |

ABSTRACT

We consider the following Lotka-Volterra predator-prey system with two delays:

v ' (Eq1)
y'(t) = y(t) [-ra + cx(t) — dy(t — 72)] .

{ o'(t) = 2(2) [r1 — az(t — 1) — by(t)]

First, system (E1) is formulated as a model for ecological species with delayed self toxic inhibiting
effect, or for describing virus dynamics with the immune system. In the following, we show that
a positive equilibrium of system (E;) is globally attractive for small delays. Critical values of
time delay through which system (E;) undergoes a Hopf bifurcation are analytically determined.
Some numerical simulations suggest the existence of subcritical Hopf bifurcation near the critical
values of time delay. Further system (E;) exhibits some chaotic behavior when 75 becomes large.
On some particular set of parameters, chaotic transient dynamics is observed.

keywords: predator-prey, subcritical Hopf bifurcation, chaotic behavior, mathematical model,
nonlinear dynamics.* '

*This chapter is mainly attributed to the paper [44] published in Mathematical Biosciences and En-

gineering.
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1.1 Introduction

An extensive literature deals with various aspects of Lotka-Volterra delay systems. Many studies
concern permanence, persistence and the stability of a positive equilibrium. Permanence and
persistence for Lotka-Volterra delay systems are extensively studied, for example, by Burton
and Hutson [7], Cao and Gard [10], Hale and Waltman [19], Saito [54], Wang and Ma [70]. In
studying the stability of a positive equilibrium, one often classifies systems under consideration
in two typés. One type of systems contains undelayed (or instantaneous) intraspecific compe-
titions which dominate over both delayed intraspecific and interspecific interactions. Another
type of systems contains only delayed intraspecific competitions. For the former class, Lu and
Wang [38] obtained a necessary and sufficient condition under which a positive equilibrium of a
two-dimensional Lotka-Volterra system without any intraspecific time delay is globally asymp-
totically stable. Hofbauer and So [27] generalized the result in [38] to an arbitrary n-dimensional
system. In both cases, it was shown that delays incorporated in the system are harmless un-
der some appropriate condition, called a weakly diagonally dominant condition (see Hofbauer
and Sigmund [26] for the definition of WDD). The other generalization of [38] was given by
Saito [53], [55], in which a necessary and sufficient condition for a global asymptotic stability
of positive equilibrium for a Lotka-Volterra system with intraspecific time delay is also given.
It was pointed out by Kuang [31] that more realistic models should consist of delay differential
systems without instantaneous intraspecific competitions, since instantaneous responses are rare
or weak relative to delayed response in real-life interactions. Lotka-Volterra systems without
instantaneous intraspecific competitions are often called “pure-delay-type” systems. Pure-delay-
type systems have been extensively studied by He [20], [23], [24], Lu and Takeuchi [37], Ma and
Takeuchi [39], Zhen and Ma [74], etc. Gopalsamy and He [15], He [25] and Kuang [31] improved
existing results for the glo‘bal attractivity of various Lotka-Volterra systems by assuming that
an interaction matrix has the form of M-matrix. Recently 2/ 3-type criteria for the global at-
tract1v1ty of pure-delay-type systems were obtained by Tang et al. [66], [67], and similar types
of criteria for the asymptotic stability of linear delay systems are given by So et al [58], [59].
Each also assumes that an interaction matrix has the form of M-matrix.

On the other hand, it is known that time delays destabilize the system. Shibata and Saito
[57] considered a pure-delay-type Lotka-Volterra competitive model with two delays and showed
that complicated chaotic dynamics appear when time delays become large. Also, differential
equations with two delays have been well studied by Li et al. [36] and Ruan and Wei ([52], [51]
[71]), in which a Hopf bifurcation due to the effect of time delay is observed.

In this chapter, we consider the following Lotka-Volterra prey-predator system with dis-
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tributed delays:

56 = (t) [rs = [ 0 w2+ ) dua(s) = by(e).

. (1.1)

YO =v0 [rirew-a [ ye+o ()|

—T9

with the initial condition
z(8) = ¢(s) > 0 and y(s) = (s) >0 for —m axX T <s<0. (1.2)
=1,

Here, z(t) and y(t) denote the population densities of prey and predator, respectively; 7; is
nonnegative and the rest of parameters are positive. Further, we assume that y; : [-7,0) - R
is nondecreasing on [—7;, 0], continuous to the left on (—7;,0) and satisfies ffﬁ_ dui(s) =1, (i=
1,2).

Throughout the remainder of this chapter we assume that

ery —are > 0. (1.3)

Then system (1.1) has a unique positive equilibrium (z*,y*):

«_ dri+bra «_ Cr1—ars
 ad+be’ y ad+be

As a special case, system (1.1) contains the following predator-prey system with discrete delays:

{ 2'(t) = z(t)[r1 — azx(t — 1) — by(t)],

E
Y (1) = y(t)[—rz + ca(t) — dy(t — ™). (E1)

In the case 7 = 0, system (E;) was considered by May [40] and Song and Wei [60]. Some
existing results show that the positive equilibrium of (E;) is globally attractive for sufficiently
small delays (see [23] for example). On the other hand, in [60], the existence of a local Hopf
bifurcation for the positive equilibrium and the global existence of periodic solutions for (E;) are
shown. It is expected that the dynamics of sytem (E;) possesses various interesting properties.

In this chapter, we investigate the effect of time delays on the global dynamics of system (1.1)
and (E1). In the next section, we will show two biological phenomena which can be described by
system (E;). The global attractivity and local stability of (z*,y*) for system (1.1) are discussed
in sections 1.3 and 1.4, respectively. In section 1.5, some numerical simulations are given for
the global dynamics of system (E;). One of the simulations demonstrates that chaotic behavior
occurs. In section 1.6, we investigate an interesting dynamics called transient chaotic dyanmics

which exhibits a chaotic behavior for a while, but it finally settles down a sustained oscillation,
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1.2 Model formulations

In this section, we derive system (E;) under some biologically feasible conditions. It will be
revealed that system (E;) describes a population growth of ecological species with delayed self
toxic inhibitory effect. We will also show that system (E;) can be interpreted as a model for
virus dynamics against the immune system. .

First, we derive a logistic equation from a resource-consumer model. The key assumption
underlying the derivation is a high dilution rate, which in turn allows us to follow the quasi-
steady state approach. It is well known that the resource-consumer model with high dilution
rate is reduced to Beverton-Holt equation (see for example, [68]). Here we further reduce the
Beverton-Holt equation to the logistic equation under some additional assumptions.

The resource-consumer model is given by

{ F'(t) = D(1— F(t)) — vF(t)z(t),

(1.4)
#'(t) = BF () (t) - 6a(t),

where F(t) and z(t) denote the concentration of food (the only resource for the population) and
the population, respectively. The food is supplied and removed at a constant rate D. ~ is a
consumption rate per unit food per unit time. 3 is a growth rate of the population per capita
per unit time. 4 is a death rate of the population.i Assume that D is sufficiently large so that the
dilution rate of the environment is very high. Put 4 := v/D. It follows from the first equation

of (1.4) that

%F’(t) =1-F() - YE(t)=(t).

By the quasi-steady state approach, we may suppose that %F /(t) ~ 0. This yields

F(t) ~ 1_4735(‘5 ‘ (1.5)

Substituting (1.5) into the second equation of (1.4) gives Beverton-Holt equation:

2(t) = o(t) [TI%(H - 5] S (1.6)

The reciprocal number of 7 is often interpreted as a multiplication of the searching time and the
handling time. Since D is sufficiently large, 5 = /D might be sufficiently small. For sufficiently

small y, we have the following approximation:

1Ty=1—y+0(y), <1
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Let us set » and K by
r:ﬂ—éandK=%<l—-é).

; B
Then (1.6) is approximately reduced to the logistic equation
t
z'(t) = rz(t) [1 - ?—;—(—)] , (1.7)

provided that Jz(t) is sufficiently small. Hereafter we further assume that § < 8 but §/8 ~ 1
(we shall write /8 < 1). "Then 7K < 1. Since all solutions of (1.7) with the initial value
z(0) € (0, K) monotonically tend to K as t — oo, Jz(t) < 1 for all ¢ as long as z(0) € (0, K).
Note that r = -4 does not necessarily small even though §/8 ~ 1. Consequently, we obtain the
logistic equation if the food dynamics is fast (DD > 1) and the carrying capacity K is sufﬁmently
large, or equivalently, /8 ~ 1.

Next, we incorporate the effect of toxic substance which might be produced through the
metabolic process of the population. The toxic substance may contaminate the environment so
that the population growth is finally inhibited.

Let p(t) denote the concentration of toxic substance at time ¢. It is often the case that the
toxic feedback is delayed. p(t) is given by

/ ]—"t—s (s)ds,

where F(t — s) is called a delay kernel W}uch measures the weight of toxicity on the population
growth at time ¢ —s. It is assumed that the inhibition of the population growth follows the mass
actlon law. Then

‘m'(t>»’=§r¢(t)[‘—%(—?]'—aé(t)p@) -
— ra(t) [1- / f(t—s)m(s)ds] s

Practlca]ly, the exp11c1t form of delay kernel, such as Gamma-distribution is often explmted to
study the effect of toxlcant on the populatmn growth If the delay kernel is given by Gamma-
distribution: | u(t—s)
: YA i as
f(t—s):Gn“u(t—-s) = ,‘(Tl—l)! , t>s,
then (1.8) is reduced to the system of ordinary differential equations (see the linear chain trick

[41]): .
z(t)

2'(t) = r;c(t) 1-% —oml)|, (1.9)

z(t (iL'r,,._l(t) - m'b(t))? (Z = 1’ 2a T an)v
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where zo(t) = z(t) and
z;(t) =/_ Giput — 8)z(s)ds, (i=1,2,---,n).

It is quite natural that several metabolic processes are involved until the toxicant is finally
produced. Note that the second equation of (1.9) can represent the transition of the toxic
substance in several metabolic processes. Thus, if the toxic substance experiences n-metabolic
processes, Gamma-distribution is an appropriate way for the toxic substance to describe the
‘transition of several metabolic processes. If we further assume that the mean of the Gamma-
_distributioﬁ Gn,u(t — s) is the same for all n, letting p = nr yields

' / t F(t — 8)z(s)ds — z(t — 1) (1.10)

as n — oco. Assuming that (1.10), D> 1 and §/8 5 1, we have

z t ‘
z'(t) = ra(t) [1 - _I(_(Q - a/;oo F(t — s)z(s)ds

~ rz(t) [1 - am(t — 7)] (1.11)
= z(t)[r — az(t — 7). _ (1.12)

Consequently, the well known Hutchinson equation (1.12) is derived from the fast food dynamics
with the delayed toxic feedback to the environment. Assume that the self producing toxic
substance inhibits the population growth of prey and predator species with time delay. This
completes the formulation of system (E;).

We conclude this section by showing how system (E;) is interpreted as the model for virus
dynamics with the immune system. The immune system protects the body from infection.
The immune system creates and maintains a barrier that prevents bacteria and viruses from
entering the body; If a pathbgen gets into the body, the innate immune response equipped
with specialized cells detects, and often eliminates, the invader before it is able to reproduce
and cause potentially serious injury to the host. If a pathogen is able to successfully evade the
innate immune cells, the immune system activates a second, adaptive “immune response against
the pathogen. It is through the adaptive immune response that the immune system gains the
ability to recognize a pathogen. If a pathogen is recognized as “non-self” by the immune system,
the reproduction of the pathogen is inhibited through innate or adaptive immune responses.

During the adaptive immune response, Antigen presenting cells (APCs) and helper T-cells
are often involved. Helper T cells express T-cell receptor (TCR) that recognize a specific peptide
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antigen bound to Class II MHC molecules. APCs activate a naive helper T cell which mediates
several adaptive immune responses. B cells are the major cell type involved in humoral immunity.
Once a B cell encounters its specific antigen and receives additional signal from a helper T cell
(predominately Th2 type), it can further differentiate into an effector cell (plasma B cell). Plasma
B cells secrete antibodies that assist in the destruction of antigens. Consequently, the population
growth of a pathogen is inhibited. This is called humoral immunity. v

Another important immunity is known as cell-mediated immunity. Cytotozic T cells (CTLs)
are a sub-group of T cells which are capable of inducing the death of other cells. CTLs express
TCRs that recognize, and have tight affinity for, a specific peptide antigen bound to Class
MHC molecules. Naive cytotoxic T cells are activated when their TCR strongly interacts with
a peptide-bound MHC class I molecule. Once activated CTL undergoes a process called clonal
expansion, it becomes an effector cell which is able to kill cells that are infected with viruses.
Although CTL is activated by mteractmg with a peptide-bound MHC class I, CTL activation is
tightly controlled and generally requires add1t10nal activation signals provided by helper T cells
(Th1 type has predommantly contnbuted)

A third type of T lymphocyte, the regulatory T cells ( Tre_q) limits and suppresses the im-
mune system. Similar to other T cells, regulatory T cells develop in the thymus. The latest
research suggests that regulatory T cells are defined by expression of the forkhead family tran-
scrlptmn factor FOXP3 (forkhead box p3) Expressmn of FOXP3 is required for regulatory T
cell development and appears to control a genet1c program specifying this cell fate. The large
majority of FOXP3;presenting regglatory T cells ax,e»foﬁnd within the class II MHC restricted
CD4‘-expressing (CD4+) helper T cell population "an'd ‘express high levels of the interleukin-2
receptor alpha cham (CD25). In addition to the FOXP3-eXpressmg CD4+tCD25%, there also
appears to be a minor population of class I MHC restricted CD8* FOXP3-expressing regula-
tory T cells. Recent studies have also revealed that The progmmmed death-1 (PD-1) inhibitory
pathway is also expected to reg;u]ate T cell activations Whlch express ligands PD-L1 and PD-L2
for PD- ;

Note that the humoral immune response acts as a delayed negative feedback for the popula-
tion growth of virus partmles while the cell-mediated immune response is affected by regulatory
T cell activity as adelayed negative feedback. Let 'v(t) and z(t) denote the concentration of
virus particles per unit volume and infected cells at time ¢, respectively. Assume that virus
particles follow a logiétio eQﬁation.' If target c’,ellslf}or the virus is not limited, we can assume
that the iesdu'rce'(’iin this case, the target cell for viruses) is regarded as being provided with a
high dilution rate. The secretion of antibodies by plasma B cells inhibits the population growth
of virus particles. We shall take into account for a time delay during which B cells differentiate
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into plasma B cells and get an ability to secrete antibodies specific to virus particles. Here the
inhibition of the population growth of virus particles is given by the term —v(t)v(t — 1) as we
adapted the similar manner above. Then the dynamics of virus particles is described by

V() = v(t) [r — av(t — 7). (1.13)

Since virus particles are produced from infected cells, for the simplicity, we assume that v(t) =
kz(t). Then '
2/ (t) = z(t) [r1 — az(t — 1)]. (1.14)

CTLs can be regarded as a predatory species for infected cells. Let y(t) denote the concentration
of CTLs at time t. The CTLs is assumed to decrease at a constant rate —ry. Assume that the
attack of uninfected cells by CTLs follows mass action law and appears as —bz(t)y(t) in (1.14).
The clonal expansion of CTLs are assumed to be proportional with both infected cells and CTLs
(so it follows mass action law). The delayed negative feedback by the activity of regulatory T
cells inhibits the population growth of CTLs. Following the similar formulation for the dynamics
of virus particles yields the dynamics of the CTL population:

y'(t) = y(t) [-r2 + co(t) — dy(t — m)]. A (1.15)

Here m represents a time delay during which regulatory T-cells, the activation of the PD-1-PD-
L1 inhibitory pathway or any other effects may suppress the T-cell activation which in turn,
bring the degradation of the number of activated CTLs. This yields system (E;).

1.3 Global stability analysis

In this section, we discuss a global attractivity for the positive equilibrium of system (1.1). It is
shown that the positive equilibrium is globally attractive for sufficiently small delays.
By using the transformation

* = *

T=z—2,Y=Yy—Y, §$=;¢—$*,1/)=?,[)fy*,
system (1.1) is reduced to
} 0
20 = @) +2) |0 [ alt+5) dia(®) - bu(0)]

-1 .

. (1.16)
V(1) = W) + v) [em(t) —d [ ue+s) duz(S)]

1
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with the initial condition »

z(s) = ¢(s) > —z* and y(s) = ¥(s) > —y" for — maxr; < s <o. (1.17)

Here we used z(t), y(t), ¢(t) and 1(t) again, instead of Z(t), §(t), ¢(t) and 1(t), respectively.
Inequality (1.3) ensures that system (1.16) has the zero solution. For our main theorem, we
exploit a basic result for the upper-boundedness of solutions of system (1.16). Note that we can
apply a similar method developed in [20] and [70] to Lemma 1.1 so that we omit the proof.

Lemma 1.1. Suppose that (1.3) holds. Let (z(t),y(t)) be an arbitrary solution of system (1.16)
with (1.17). Then there exists a positive value T such that for (t > T)

— M-
2(t) +2* < My = 167‘171, y(t) +y* < My = —’fii;-c——le(-mch)Tz. (1.18)

Let us define ¢; and cg by

b , .
E(aMlhl + dMzh3) , ca = d2M2h2 -+ g(aMlhl + dMzhg3).

where M; and M, are defined in (1. 18) Also, h;s are defined by h; := fETi(—S)d/»‘i(S) (i=1,2),

respectively.

c1= a2M1h1‘ +

Theorem 1.1. Assume that (1.3) holds. Then the zero solution of (1.16) is globally attractive
ifa>c andd > cs.

P'rbof. Let us construct the following Liapunov functional:

Vit ur) — {z(t) — " 1og [@g—‘f—] } +b {y(t) y* log [y(—)yﬂ] } (1.19)

Then the derivative of Vi(zt,yt) through (z(t),y(t)) is given by

Vitouww) =eo(t) [0 [ a(t+9) dun(s) - buc)]

+by(t) [cm t)—d / (t 1 5) dun(s )] (1.20)

We can calculate the first and the fourth terms in (1 20) as f_ z(t + s)dpi(s) = z(t) —

f_ﬂ ft+sm(u dudp;i(s) and f—m y(t + 8)dua(s) = y(t f—m ft+s (u) duduz(s) Hence, we
have

Vilou ) == acs?() + a / " o()b(w) dudus(s)
t+s

—T1

o
= bdy*(t) + bd /_ /t | VE)i) dudpa(s)
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Let us denote I; and I by

0 gt 0 gt
I = ac‘[_‘r1 /t+sm(t)a'r:(u) dud,ul(s)', I, = bd[_m/ y(2)y(u) dudps(s).

) t-s
Taking the absolute value of I gives

0 t f0
ml<ae [ [ e](e) +5) |-a [ outo)duat) - bu(w

By Lemma 1.1, there exist M; > 0 and T > 0 such that z(¢) + z* < Mj for all t > 7. Then for
t> T :=T+ 2max{r, 2}, we have

0 gt
|[I1] <acM; / |z(2)| {a
t+s

—T1

dudp(s). (1.21) -

0 :
/—7- z(u+v) dpi(v)| + b|y(u)|} dudp;(s)

0
S%ach [(a +b)h1z?(t) + /

-7

¢
{aR1(u) + by?(u)} du d,ul(s)] ,
t+s

2 .
where Rj(u) = I fi),rl z(u +v) dyg (v)’ . We used the relation 2a3 < a? + 32 in evaluating the
first inequality.

In the same way, we can estimate the absolute value of I as follows:

1 ) 0 t
|| < FbdM; [(c + d)hay?(t) + / {dRa(u) + cz®(u)} du dpz(s)] ,
t+s

—T9

2
where Ra(u) = lfﬁ’rz y(u+v) dm(v)‘ .
Additional Liapunov functionals V5 and V3 are defined by:

. 0
Va(zg, yt) = —;-achf— /t:- [ahlmz(a) + /t{aRl(u) + byz(u)}du] dodys(s),

0

V(@) = 3bdMy /:r [dh2y2(0)+ / t{dRz(u)+cx2(u)}du] dodus(s).

7
Then the derivative of V3(z¢,y:) through the solution (z(t), y(t)) is given by

0 t

Va(zt,y:) = %“CMl [ah1w2 (t) + bhay®(t) — f " {aR1(u) + by?(u)} dudp (s)

—T1

tahy {Rl(t) -/ ’ :vz(t+8)dm(s)}] .
2

Note that Rj(t) — ffﬂ z2(t + 8) dpy(s) = [f_?ﬂ z(t+s) dul(s)] - ffﬂ 22(t + s)dps(s) < 0.
Hence, we have

. 1 0 t
Va(zs, ye) < -EacMI [ah1x2(t) + bh1y2(t) —[ {aRy(u) + by2(u)}dudp1(s) .
—71 Ji+s
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In the same way,

t

i |
Vi(ms,u) < %bdM2 [chzmz + dhog?(t) — f (dR(u) + cm2(u)}dudu2(s)} .

—79 Jt+8

Consequently, an estimate of the derivative of V :=11 + V3 + V3 is
d 1 . 1 9
Eiv(mt’yt) <-—cla- 5(1(2(1 + b)M]hl —_ é-bszhz X (t)
1
—b [d — %d(2d + ¢)Mahg — 5achhl] y2(t)

= —c(ia, — c1)7%(t) — b(d — c2)y2(t).

If a > ¢; and d > ¢3, the second method of Liapunov functional implies that the zero solution
of (1.16) is globally attractive for ¢ > T;. This completes the proof. |

Finally let us compare Theorem 1.1 with the result obtained by X.-Z. He [23] on system
(E1). We have the following corolla,ry from Theorem 1.1.

Corollary 1.1. Assume that (1.3) holds. Then the positive equilibrium point of (E1) is globally

attractive if a > ¢1 and d > ¢, where c1 and ¢y are
c1 = a2M1T1 -+ —(aerl + szTz), cy = d2M2T2 + —(aM17'1 + dM2T2).

X.-Z. He [23] showed a sufficient condition for the posmve equilibrium to be globally attrac-
tive as a corollary of his main theorem:

Corollary 1.2. /23, Coro'llary 2|. Assume that (1.3) holds. Then the positive equilibrium point
of (Eq1) 'is glo'bally=att7‘active ifa>d; andd > da, where d; and dy are
*

) = Mymy + o

dl-—a

(a.MlTl + szTz) .

It is easy to see that ¢y > di and ¢ < d if z* > y*. While ¢; < d; and ¢ > dg if
z* < y*. Conditions of global attractivity of system (E;) are improved as a > min{ec;,d;} and
d > min{cg, d2} by combining Corollary 1.1 and 1.2. |

1.4 Instability and Hopf bifurcation
The characteristic equation of the linearized system of (E;) is given by

P(\,T1,79) = X2 4 (pe™ ™ + qe_’\fz))\ +pge NmE™) 4 — (1.22)
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where p = az*, ¢ = dy* and r = bez™y*. Note that A = 0 is not a solution of (1.22).
Substituting A = iw (w > 0) into (1.22) gives

qwsin wry + pgcosw(m + 1) = w? —r — pwsinwn, | (1.23)
qw cos w — pgsinw(7y + Tp) = —pw COS WTY. (1.24)
Squaring and adding equations (1.23) and (1.24) gives
2pw(w? — r — @) sinwn = (W? — r)? 4+ p2w? — g2w? — pP¢P. (1.25)
In the same manner, we have
2qw(w? — r — p?) sinwmn = (w? —r)? + qzwé —p?w? — p?g2. (1.26)

" Note that p=gqif w? —r—¢q? = 0. In fact, the right hand side of (1.25) is calculated as
(w? = 1)2 + p?w? — ¢?w? — p?¢® = (p? — ¢®)r = 0. In the same way, p = q if w? —r — p?2 = 0. By
taking contraposition, we obtain that w? —r —p? # 0 and w? —r—¢2 # 0 if p # q. Note that the
- characteristic equation (1.22) does not change its form by exchanging (p, ;) and (g, 72). Hence,
throughout the remainder of this section, we can assume that p < g without loss of generality.
The particular case p = ¢ is out of consideration in this chapter. Then we have

WA+ (% — 2 — 2r)w? + 72 — PP

sinwr = 2P — 1 — ) , (1.27)
4 2 _ 2 2,2 .22
. w* + (¢ — p* — 2r)w’ +r° — p’q
= . 1.2
sinwmy g (o = — 59 (1.28)
Let us substitute (1.27) and (1.28) into (1.23). Direct calculation gives
: 2 4 2 ~ 2 22 .
cosw(m + 72) = e (" —a)r (1.29)

2pq  2pq(w?-r—-p?) (W2 —r—¢?)

Let us define f; : (0,7 + ¢®) U (r + ¢®,00) — R, fa : (0,7 + p?) U (r + p?,00) — R and
f3:[0,T+p2)U(r+p2,r+q2)U(r+q2,oo)—>Ras

3 u2+(p2—q2 4—2r)u+r2 _pzqz

Al i) (130
W2+ (a2 — p? — 2V 12 — p2g?

fa(u) = +(q2q\fﬂ(u irz, _-;2) P (1.31)

fatw) = AL (& — a*)°r (1.32)

2pg  2pq(u—r—-p?)(u—r1—¢%)’
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Intervals I7, I and I3 are defined by

={ue(0,r+¢)U(r+¢*00):-1< fi(u) <1},
L={ue0,r+p)U(r+p*oo):—1< fo(u) < 1},
I3={u€ 0,7 +p?) U (r+q¢% 00): —1 < f3(u) < 1}.

Note that it suffices to consider the interval I3 without (r+p?,7+4¢?2), since for u € (r4p?,r+4¢?),

faw) = PP+ ®* —*)?r
2pg  2pg(u—r—p?)(u—7— %)
o2 2\2
<-1+ " —q)r <-1

2pg(u —r —p?)(u —r —¢?)
On I := I NI;N I3, inverse functions of sin wr; and sinwm are well defined, and hence we obtain

the following relations:

01 + 2k w—61+2kn

T{c:z 3 ) (k=0,1,2,"'),
by +20n  — Oy 42l - (1.33)
=2 , 2 . (1=0,1,2,---).

Here, #; = sin™! fi(u) and 6 = sin~! fo(u).
Proposition 1.1. (1.23) and (1.24) are equivalent to (1.27)~(1.29).

Proof. In the procedure of deriving (1. 27) (L. 29) from (1.23) and (1.24), it is clear that (1.23)
and (1 24) imply (1.27)—(1.29). Conversely, suppose that (1.27)—(1.29) hold. Then it is easy to
see that (1.27)—(1.29) imply (1.23).-

Let us check (1.24) by evaluating (pw coswTy + qw coswz)? — {pgsinw(r + 72)}? as follows:

(pw cos wTy + qw cos wrp)? — {pgsin w(7'1‘+ )}
=p? w?(1 = sin® wry) + 2w?(1 — sin? wry) _
+ 2pgu*{cos w(T + T3) + sin wr sinwry} — p?¢*{1 — cos? w(r + 1)}
=—uw+ (P + ¢?)u? - p%q% + {pgcosw(r + 13) + w? + pwsin wr — quwsin wTa} X
{pq cos c&('rl +7) + w? — pwsinwr + qwsin w2}

=—w+(p? + q2)w2 - p?? +(2w? —r — 2w sinwTy) (2w? — r — 2pwsinwr ).

Here we used (1 23) in evaluating the last equahty By (1.27) and (1.28), 2pwsinwrn =

w2 —r 4 p?+ Lz_ql’; and 2quwsinwry = w? = r 4+ ¢ + S’Q’_—_:;B—%; Direct calculation gives
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(pwcoswT + qw cos wr9)? — {pgsinw(m + 72)}? = 0. Hence, either (1.24) or pwcoswr +
~qwcoswTy + pgsinw(ry + 72) = 0 holds. If pwcoswr + qw coswrs + pgsinw(r + 72) = 0, the
~same manner of deriving (1.25) and (1.26) gives sinw(m + 272) = sinwr; and sinw(2m + w) =

sin wry. Consequently, sinwm = sin w7 = 0. Then it follows from (1.27) and (1.28) that p = q.

This is a contradiction and hence the proof is completed. O

Proposition 1.2. Assume that r # pq. Then I, Iz, I3 are not empty and I, = Iy = I3.
Moereover, there exists a set of critical values (w,F,7L) such that (w,7F,75) satisfies (1.27)-
(1.29). ‘

Proof. First, let us show I3 is not an empty set. Direct calculation gives

~(p — ¢)*(r — pq)?
" 2p(r + P2)(r + ) <0

f3(0) +1

‘;:;I:‘Ivence f3(0) < —1. The derivative of f3(u) on [0,7 + p2) U (r + ¢2, 00) is

P =-PPr{lu-r-p)+@u-r-g)}
2pg(u —r — p?)2(u — r — ¢2)2 '

ThlS implies that f3(u) is positive on [0, 7+p?) and negative on (r+g2, c0). Hence, f3(u) is strictly
_monotonically increasing on [0,7 +p?), and strictly monotonically decreasing on (r+ g2, 00). It

: rls easy to see that f3(u) — +oco asu — r+p?—0and f3(u) — +oc as u — r+¢2+0. Moreover,

f3(u) _p__q_ < —1 as u — 4o00. Therefore, I3 = [G—r,G4+L]) U [t—g, G+R], where 4_; and
U4, are roots of equations f3(u) = —1 and f3(u) = 1 on [0,7 + p?), respectively, while 4_g and
U4R are respective roots of equations fs(u) = 1 and f3(u) = —1 on (r + g%, o) (see Fig. 1.3).
It follows that ’

fs(w) =1e=u’— (" +¢* +2r)u+ (r+pg)® =0, (1.34)
fs(u) = -1 <= v? — (P* + @ +2r)u+ (r —pg)% = 0. (1.35)

Hence, explicit values of 4_yg, 4z, U-Rg and T4+R can be obtamed by solvmg (1.34) and (1.35).
Second, let us show the following statement: -

filu)=-lorl<= fo(u)=—-lorl < fz(u)=—-lorl. (1.36)

Suppose that fi(u) = 1. By (1.27), sinwr; = fy(u) = 1. Hence, coswr; = 0. Then in (1.24),
g(w — p) coswry = 0. Assume that w = p. Then r = 0 in (1.23). This is a contradiction. Hence,
coswry = 0 and fa(u) = —1 or 1. In the same manner, we can show that fi(u) = —1 <=
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fa(u) = —1 or 1. Next, suppose that f3(u) = 1. By (1.29), cosw(ri +72) = f3(u) = 1. Hence,
sinw(ry +72) = 0, or equivalently, sinwm coswTy + coswr sinwry = 0. It follows from (1.24)
that p cos wr + ¢ coswry = 0. Hence coswrz(psinwr —gsinwry) = 0. If psinwr —gsinwr = 0,
it follows that ‘

Cos wT; + ¢ CoS wTy 2 4 psinwm — gsinwmy 2
p .

=p? 4 ¢® + 2pgcosw(t + 1) = (p+¢)? = 0.

This is a contradiction, and hence coswm, = coswt; = 0. The other cases can be proved similarly.

Third, let us show I; and Iz are not an empty set and I; = I = I3. Here, g1(u) denotes the
numerator of fi(u). ,Thén 91(0) = r? — p?¢? and g1(r + ¢*) = —(¢?® — p*)r. If r > pq, g1(0) > 0
and g1(r + ¢%) < 0, because p < g. Hence, for u € (0,7 + ¢*), we have fi(u) —» —cc as u — 0+,
and fi(u) — +oo asu => r+¢> — 0. For u € (r»-l-q2,‘oo), filu) = —ccasu —r+g>+0
and fi(u) — +oo as u — +oo. By (1.36), I exists. Moreover, fi(a-r) = —1, fi(i4+r) = 1,
fi(@-g) = —1 and fi(uyg) = 1. Hence, I; = I3 (see Fig. 1.1). Now, ga(u) denotes the
numerator of f(u). Then g2(0) = r% —p?q? and g2(r +p*) = (¢ —p*)r. Since r > pg and p < g,
g2(0) > 0 and ga(r + p?) > 0. Hence, for u € (0,7 + p?), we have fao(u) — —oco as u — 0+,
and fa(u) — —o0 as u N r+p2——0. For u € (r + p?,00), fa(u) — +oc as u — r +p? +0
and fa(u) — 400 as u — 4o0. Since fa(u) is continuous on (O,r +p?) U (r + p?,00), I exists.
Moreover, fa(i-r) = —1, fo(i4r) = —1, fo(a_r) = 1, and fo(iger) = 1. Hence, I = I3 (see
Fig. 1.2). If r < pq, thé same approach can be used, and hence it is shown that I, I are not
empty and [; = I =1I3. ‘ v

3

By substituting (1.33) into (1.29), we obtain the following equatibﬁs with respect to u :

{ cos sin™ f1(u) + sin~ o(u)] = fo(u), (137

| cos [sin™ f1(u) — sin™" fo(u)] = —fa(u),

Note that f3(u) is a monotone function on I and f3(I) = [—1,1]. Hence, the intermediate
theorem implies that there exists at least one root of (1.37) on I. This completes the proof. [l

Hereafter, let us suppose that there exists at least one positive root.w of (1.23) and (1.24).

Let 5 be arbitrary fixed. Derivatives of P(\, 71, 73) with respect to A and 7 at A = iw, 7 = 7']’_c

and 75 = 74 are
P (iw, Tk, 7} ’
————————( B\ 1:72) =2\ + pe_)‘T1 + qe"’\” — (p’rle_)‘T1 + qrze_’\”))\

— pg(my + mo)e M|\
=7k =1}
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. k ..l
PP - peom(rd e ™M
T1 ¥ ;

TI=7f ,70=T}

respectively. If A + pe™*™ = 0, then it follows from (1.22) that r = 0, since (1.22) is written as
(A+pe~>™)(A+ge~?") +r = 0. Consequently, A+pe~>™ # 0. In the same way, A+ge™>™ # 0.
Hence, the implicit function theorem gives

O mt+m | A—r—pge N1+ 4 py(pemdn — gemA2))\2

F) ) pe AT\ + ge=AT2)\2

n+7n, A(\mmn)
A G]()\,Tl,Tz)'

Define 61 as
81 == (W? — ){w? +r + pgeosw(rf + 74)} — qu{(w? + r) sinwr — pgsinwrF}
tuwir [pqwsmw( ™ —7l) 4+ W? - r)(pcosun‘l - qcoswrzl,)]

Let us show

AP(A\71,m2)

sgnRe | — = sgndi. (1.38)

T1 =T]’.“ ,T2 =Té

In fact, sgnRe {%|A=w l = sgn[F1rG1gr + F11G1j1|, where Figp = Re[Fl(iw,T{c,Té)],,
) T1=T1,T2=Ty :

Fir = Im[Fl(z'w,T{c,Té)], Gigr = Re[Gl(iw,T{‘,Té)] and Gy = Im[Gl(z'w,T{“,Té)]. By (1.23),

we have

Gip = —wi(w? —r —qu sinwv'é),
G11 = quw® cos amj.
Direct calculation gives
(FirRG1R + Fi1Gu1) W’ =
(W? — 7 — qwsinwt) {w2 + 7 + pg cos w(d'{“ +7h) + Téw2(p coswTf — gcos uﬂé)}
— qw cos W {—pq sinw(7F + 74) + rhw? (~psinwrf + gsin w'rz)} = 01.

Hence, (1.38) holds. By (1.38), 8P (iw, 7¥,74)/8X # 0 if and only if §; # 0. If 6; # 0, again
using the implicit function theorem gives

-1 .
8P\, 7k L)
sgnRe 23 =sgnRe | | -——%2—~ o = sgnd;
67'1 )\:*iwk . 6P()\,-r]’“ ,1'21) ’
T1==Ty ,T2=Ty oty
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Define 43 as

82 == (W% — r){w? + 7+ pgcos w(tF + )} — pw{(w? + r) sinwrf — pgsinwri}
+ w2k [pqw sin w(’ré - T{“) + (w? = r)(gcoswTl — pcos w'r;{“)] .

In the same way, we can show that sgnRe

a
12

} = sgndz. Hence, we obtain the

A=iw
=k ry=r}
following result:

Theorem 1.2. Assume that w* is a positive real root of (1.23) and (1.24). Then a pair of simple
conjugate pure imaginary roots Ay = iw* and A_ = —iw* of (1.22) exists at 7 = T{“ and T = Té,
which crosses the imaginary azis as 71 (12) increases for fixed 7o (1) from left to right if 51 > 0
(62 > 0) and right to left if 5 < 0 (d2 < 0). ‘

Finally let us show the existence of Hopf bifurcation. By Proposition 1.2, there exists at
least one set of critical values (w, 7§, 74) which satisfies (1.27)—(1.29) if  # pq. Since a number
of w which satisfies (1.27)—(1.29) is finite, there exists a set of minimum values (ry,73). Since
all roots of the characteristic equation (1.22) have negative real parts when 71 = 72 = 0, The
Hopf bifurcation theorem [18, p. 332, Theorem 1.1.] is applicable to system (Ej).

Corollary 1.3. Assume that az* # dy* and ad —bc # 0. Let w* be a positive real root of (1.23)
and (1.24). If either 61 > 0 or §2 > 0, a family of periodic solutions of (E1) bifurcates from the
positive equilibrium for T mear 7§ or T9 near 5. Furthermore, the period of periodic solution is

approzimately 27/ w*.

1.5 Chaotic behavior

In this section, let us apply the results obtained in section 1.4 and give some numerical simulation

results. Hereafter, parameters are fixed at the following values:
r1=24,r19=21,a=14,b6=22,¢c=5.5,d=3.3. (P)

Then p = 1.05, ¢ = 2.025 and » = 5.56875. Note that if 5, = 0, Corollary 1.4-(i) holds.
Hence the positive equilibrium is locally asymptotically stable for all 7, > 0 with 2 = 0. Since
r # pq, Prdposition 1.2 implies that I3, I, I3 are not empty and I = I; = Iy = I3. The interval I
becomes [0.760643, 5.42423] U[10.9164, 15.58]. By (1.33) and (1.37), (w*, 7§, 75) is approximately
calculated as w* = 3.63978, 77 = 0.706884 and 73 = 0.365617.
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In the remainder of this section, some numerical simulation results of (E;) are given. The
positive equilibrium is numerically calculated as (z*,y*) = (0.75,0.6136). First, let us fix 7
and 7 as 7 = 0.7 and » = 0.35. Hence all roots of (1.22) have negative real parts. Figures
1.4 and 1.5 illustrate the time series and the projection into zy plane of the trajectory of the
solution of (E;) with initial functions ¢ = 0.75 and 1 = 0.1, respectively. It is observed that the
solution tends to the positive equilibrium (see Figs. 1.4 and 1.5). Next, let us show figures on
which only the initial function 1) is changed from 0:1 to 0.05. Then it is observed in Figures 1.6
and 1.7 that the solution evolves to some periodic solution; §; and d; are numerically calculated .
as 61(r5) = —0.673553 < 0 and d2(7f) = 20.2818 > 0. Corollary 1.3 implies that a family of '
periodic solution bifurcates from the positive equilibrium for 75 near 73. Figures 1.8 and 1.9
illustrate the trajectory of the solution with (P), 71 = 0.71 and 72 = 0.37. The initial functions
are taken near the equilibrium point, (¢,4) = (0.75,0.6). Then it is observed that the solution
evolves to some periodic solution (see Figs. 1.8 and 1.9). In Figures 1.4-1.9, it seems that an
unstable closed curve appears around the positive equilibrium. Further, the solution starting at
the inside of the closed curve tends to the positive equlllbrlum (Flgs 1.4 and 1.5), while the
solution starting at the outside of the curve ‘evolves to some robust periodic solution (Figures
1.6 and 1. 7) Since the positive equ111b1rum is locally asymptotically stable and system (E;)
undergoes a Hopf bifurcation by Corollary 1.3, the exsitence of a subcntlcal Hopf bifurcation is
suggested from these figures. Finally, let us change the values of 7 from\ 0.37 to 1.73. Then,
a complicated dynamics is observed in Figure 1.10. The trajectory of the solution of (E;) with
¢ = 0.75 and 'l/) = 0.6 is attracted in a shark-head shaped region. In other Words shark-head
chaos occurs on system (El) as the time delay i in an intraspecific competition of predator becomes
large. We observe that shark-head chaos is formed by repeating the following three steps:

Step 1. The low density of the predator makes the density of the prey increase.

Step 2. The growth of the predator follows the growth of the prey with delay.

Step 3. The exhaustion of the prey results in the decrease of the ptedator.

Chaotic behavior occurs markably in Step 2 : it seems that the trajectory forms the upper lip
of the shark with the hlgh growth of predator y, while the trajectory forms the lower lip of the
shark with the relatlvely low growth of predator y. The predator repeats such high and low

growth alternatively. The solution never moyes on the same path and finally the shark-head
region is filled densely. - ‘
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Figure 1.10: 7y = 0.71, 75 = 1.73, ¢ = 0.75, ¢ = 0.6 : shark-head chaos

1.6 Chaotic transient

System (E;1) also exhibits an interesting beha.viior called transient chaos. The transient behavior
of the dynamics is chaotic, but asymptotically the solution of system (E1) converges to some
regular dynamics for some particular set of parameters. It is possible to reduce parameters by
scaling time and variables. Introducing new time variable s = 73t and variables u(t) = a2 (t)
and v(t) = dmy(t), system (E;)-is reduced to the following system of equations:

{ Z'(t) = vm(t) [r1 — az(t — 1) — y(8)]

(1.39)
¥ (@) = y(t) [-r2 + cz(t) —y(t —1)],

where we exploit old variables and parameters instead of s, u(t) and v(t). We put r; = 4.6800,
re = 2.1450, b = 0.2791, ¢ = 1.6176 and 7 = 0.3590. Figures 1.11 shows the time series of the
solution of (1.39) with initial functions ¢(s) = 0.7 for the first variable z and 9(s) = 0.1 for the
second variable y. It is observed that the behavior of the solution is chaotically, but finally it
settles to sustained periodic solution. Fig.ﬁres (1.12) give phase portrait of (z(t),y(t)).

1.7 Discussion

In section 1.2, system (E;) was derived as a model for two species as predator and prey, both
- of whose population growth are inhibited by their self produced toxic substrates, respectively.
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Figure 1.11: r = 4.6800, ry = 2.1450, b = 0.2791, ¢ = 1.6176, 7, = 0.3590
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Figure 1.12: r; = 4.6800, r, = 2.1450, b = 0.2791, ¢ = 1.6176, 7, = 0.3590
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Another interpretation for system (E;) is a model which describes the virus dynamics with
the immune system. In section 1.3, we obtained Theorem 1.1 for global attractivity of the
positive equilibrium of (1.1). The theorem for global attractivity of system (E;) is improved
by combining with the result obtained by He [23]. It was also shown that Liapunov functionals
used in the proof of global attractivity are also applicable to prove the uniform stability for the
zero solution of linea.rized..system. In section 1.4, critical values of time delay through which
system (E;) undergoes a Hopf bifurcation were analytically determined. Furthermore, for the
existence of local Hopf bifurcation, the result by Song and Wei [60] is obtained as a special case.
If 7 = 0, the same result obtained by Song and Wei [60] is obtained.

Corbllary 1.4. [60, Theorem 2.1.] Assume that 7 = 0. Let

(H1) either r > pg and g> —p®> —2r >0 or (® —p? —2r)2 — 4(r? — p*¢?) < 0,
(vH2) either r < pq or ¢® —p? —2r < 0 and (¢* — p? — 27")2 —4(rt - p*’¢?) =0,
(H3) r > pg, ¢* — p? - ér <0 and (¢* — p? - 2r)2 —4(r? —‘p2q‘2) > 0. |

1. If (H1) holds, then the positive equilibrium of (E1) is ( locally) asymptotically stable for all
1 > 0. k ‘

2. If (H2) holds, then the positive equilibrium of (E1) is (locally) asymptotically stable for
n € [0, Tf(')) and unstable for 7 > 1‘1"6. System (E1) undergoes a Hopf bifurcation at the

positive equilibrium for 1 = 1.

3. If (H3) holds, a finite number of stability switches occurs. Finally system (E1) becomes

unstable.
Here w = wy are real roots of the polynomial equation
w4 (g2 - f)2 —2r)w? 4+ r? - 'p2'q‘2 =0 ‘(1'./40)
satz’sfying w_; < W4 Tf‘f, 18 ‘deﬁned by ;;1; cos™1 [p w;q:q ] .

Proof. Note that (1.40) is derived from (1.28). If (H1) holds, (1.40) has no real roots. Since all
roots of the characteristic equation (1.22) have negative real parts when 71 = 7 = 0, (i) holds.
It follows that (1.40) has at least one positive root if and only if either (H2) or (H3) holds. Then,
07 is calculated as follows:

= (w2 - 7-)(2w2 — pwsinwn) + pg*wsinwry
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=uwt - (r2 - p?¢?). (1.41)

Here we used (1.23) with 72 = 0 and (1.27). If (H2) holds, then it immediately follows from
(1.41) that &; > 0. If (H3) holds, then w? < —(¢* — p® — 2r)/2 < w2 . Moreover, §; > 0 for
w= w_zi_ and 87 < 0 for w = w?. The remainder of the proof proceeds as the same manner used
by Cooke and van den Driessche [11]. This completes the proof. O

We show another corrollary in which we assume that 72 = 27y and r < pg. We do not write

the subscript of 71 for the convenience.

Corbllary 1.5. Assume that Ty = 27, = 27 and r < pq. Then a pair of simple conjugate pure
imaginary roots Ay = iw* and A\_ = —iw* of (1.22) exists at some T = 7k, which crosses the
imaginary axis as T increases from left to right if § > 0 and right to left if § <O0.

Proof. In this case, (1.27), (1.28) and (1.29) are equivalent to

sinwr = f1(u),
sin 2wt = fz(u), (1.42)

cos 3w = f3(u).

Note that

fo(u) = sin 2wt = 2sinwT coswr
= 2f1(u) cos wr,
f3(u) = cos 3wt |
= co0s 2wT cos wT — 2 cos ’(.4)7' sin? wr
= (1 — 4f%(u)) coswr.
We claim that fi(u) = sinwr # 0. In fact, if fi(u) = sinwr =0, it follows from (1.42) that
(i) f2(u) =0 and f3(u) = 1 or (ii) fa(u) =0 and f3(u) = —1. Both cases contradict to (1.36).
Thus we obtain

Fa(u)(1 — 4£7(u)) — 2f1(u)f3(w) = 0.
Define g1(u), g2(u) and g3(u) as
q1(uw) =u? + (p* — ¢® - 2r)u+r? - p’¢%,
g2(u) =u? + (& —p* — 2r)u+1* — P’
g3(u) = —(0* + ) (u—-r—p)u—-r—g)+ (@ - )’
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Immediately, we have

2p2quy/u(u — r — p?)(u — 1 — ¢*){ fa(u) (1 — 4£F(w)) — 2f1(u) f5(u)}
= ga(u)[pu(u — r — ¢%)% — g} (u)] — ug1(w)gs(w).

Hence (1.42) is equivalent to the following polynomial equation h(u) = 0, where

h(u) = go(w)[PPu(u — 7 ~ ¢*)* — g (w)] — ug1(u)gs(u)
= —ub + clu5 + czu4 + C3u3 + c2u4 + c5U + G-

We do not show explict values of ¢1,- -+ ,cs. Since r < pg, g1(0) = g2(0) = 72 — p?q® and hence
cs = h(0) = —g2(0)g3(0) = —(r* —p’¢*)* > 0.

Hence the intermediate theorem implies that there exists at least one positive root of the poly-
nomial equation h(u) = 0 on [0,00). Substituting a positive root of the polynomial equation
h(w?) = 0 into (1.42), the critical value of time delay 7k can be obtained. Thus we can calculate
s(tF). If 6(7‘"’) > 0, a pair of simple conjugate pure imagihary roots crosses the imaginary axes
from left to right. vThis completes the proof.' |

t

In section 1.5, some numerical simulations were carried out and it was suggested that sub-
critical Hopf bifurcation occurs on system (E1). Moreover chaotic behavior was observed when
the time delay in an intraspecific competition of predator 72 becomes large. The chaotic behav-
jor was not discussed in He [23]. We believe this is the first time such chaotic behavior has been
observed. Compared to results of May [40] and Song and Wei [60], our model brings new aspects
of the effect of time delay, since 7 =0 in their model. Other values of ©» may generate other
type of chaotic behavior, which is an interesting problem. We also observed a chaotic transient
dynamics on some 'p:articular set of parameters, but the investigation for such kind of dynamics
is not sufficient. Further analyses and considerations for the global dynamics of (E;) are left for

future works.



Chapter 2

Resource cormpetition and delayed

nutrient recycling

ABSTRACT

Competition on a model with nutrient recycling is considered. The model is based on a
chemostat-type equation which is used to study population dynamics of microorganisms. The
model consists of four organisms competing for a limiting nutrient. Nutrient is supplied both
from the in-flow of medium and a recycling with delay, the latter is generated from dead or-
ganisms by bacterial decomposition. This chapter shows that the model undergoes a Hopf
bifurcation through a critical value of time delay when the in-flow is small. The coexistence of
four organisms competing for one limiting nutrient is indicated by numerical simulation results.
keywords: Chemostat; Competition in two habitats; Nutrient diffusion; Competitive exclusion;

Bacterial decomposition with delay; Periodic coexistence™

2.1 Introduction :

Chemostat equations have been used to study population dynamics of microorganisms in ex-
perimental apparatuses or aquatic ecosystems such as lakes. An important difference between
» chemostat” situation and "lake” situation appears in the fact that lakes generally have residence
time of nutrient and sediments measured in years (Powell and Richerson [47]). This implies that

*This chapter is mainly attributed to the paper [45] published in Mathematical Biosciences.
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in the model of natural systems, a smaller wash-out rate constant and the regeneration of nu-
trient due to bacterial decomposition of the dead biomass must be considered (Svirezhev and
Logofet [64]). Moreover a delay due to bacterial decomposition is always present and increases
as temperature decreases in natural systems (Whittaker [72]). Chemostat-type equations with
delayed nutrient recycling have extensively studied by many authors. Beretta et al. [2] proposed
an open system with a single species feeding on a limiting nutrient. Global asymptotic stability
of the positive equilibrium is studied by Beretta & Takeuchi ([3], [4]) and He & Ruan [21].
Freedman & Yuantong [13] extended the model in [2] and obtained persistence and extinction
criteria for the competing populations. Ruan & He [22] generalized the model of [13] to arbitrary
n-competing organisms and showed a global asymptotic stability of the positive equilibrium.

It is important to consider models incorporating predator-prey response if a true lake com-
munity is to be modeled. Butler et al. [8] considered a chemostat model with three trophic levels
where two predators compete for one prey. Predator-prey response also appears in zooplankton-
phytoplankton-nutrient models, which are extensively studied by Ruan ([49], [50]) and the other
authors. The spatial distribution of nutrient is also thought as an important factor which makes
difference between ”chemostat” situation and ”lake” situation. In an environment with a small
dilution, dead organisms usually settle and accumulate on the bottom of ”lake”. This makes
bacterial decomposition take place on the bottom of the environment and the recycled nutrient
appears from there. Moreover nutrient is not stirred instantaneously. The mixing of nutrient is
mainly achieved through diffusion.

To incorporate the spatial distribution of nutrient, let us consider

,

2 .
S'(t) =(8° = S@®)D = > biUi(S(®)i(t) + d(R(t) — S(2)),

i=1

{ R(t) _’YZ{zz(t—T )+ it —7)} - vR(t) - ZCM ()yi(t) +d(S() - R(2),  (E,)

=1 i=1
zi(t) =i(t) (b'Ui(S(t ) =),
| Yi(t) =5 (t) (@Vi(R() — ), (i=1,2)
with the initial function
S(0) > 0, R(0) > 0,z;(s) = ¢s(s) > 0 for (-7 < s < 0),
{yi(s) =1;(s) > 0 for (-7 <s<0),(i=1,2).

@

Here S denotes the concentration of dissolved nutrient in the environment, while R denotes the
concentration of dissolved nutnent which is settled on the bottom of the environment. Each z;
and y; (i =1,2) are measures for populations of some organisms. We suppose that y;s belong
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to a group of so-called benthos; organisms of which habitats are the bottoms of lakes, rivers,
and creeks. As we see in (E3), z;s compete only for the limiting resource S, while y;s compete
only for the limiting resource R. It is assumed that z; (or yi) never feeds the nutrient R (or
S). By this assumption, system (E;) models a lake community with two segregated habitats
in terms of nutrient. S is the constant input concentration of dissolved nutrient, and D is the
dilution rate. d is the diffusion rate due to the mixing (stirring) effect of the environment. v is
the rate of self-purification of the environment. Self-purification is typically brought by aquatic
plants which exploit nutrients accumulated on the bottom of the environment. Each xz; has
the maximum specific growth rate b;, while each y; has the maximum specific growth rate ¢;.
Note that respective maximum uptake rate of z; and y; correspond to the maximum specific
growth rate. All organisms are assumed to have the same removal rate 1. Removal rate means
the addition of the death and the dilution rate. 7 is the recycle rate of dead organisms which
satisfies 0 < < p. 7 is the constant decomposition duration. All parameters except for v and
T are positive, v and 7 are nonnegative.

The diffusion between S and R is described by d(R(t) — S(t)) for S and d(S(t) = R(t)) for R.
Functions U; and V; (i = 1 2) descrlbe the nutrient uptake of organisms z; and y;, respectively.
Assume that

1. U,(g) is continubusly differentiable, bounded.

2. Ui(0) = O Uj(¢€) >0for £ >0, Uy(€) = 1 as £ — oo.

A typical example of Uj is the Mmhaehs—Menten function of the form:

Ui(6) = 1,2),

A + ¢ ( v
where A > 0is called a half-saturatlon constant or Michaelis-Menten constant. The hypotheses
for V; are given in the same manner, '

Finally the process of nutrient recycling is formulated as follows: Q(t) denotes the concen-
tration of accumulated dead organisms. The input to Q(t) is assumed to be proportional with
the amount of 11V1ng organisms at time ¢, § Zz_l{mz( ) + yi(t)}. Here § denotes the death rate
of organisms. Let P;(t) be the probability that organisms become dead organisms at time 0 and
still remain as the form of dead organisms (or are not decomposed yet) at time ¢. Then

- / Pyt - 5)8 [Z{W) + .m(s)}} ds.

i=1
A measure for the population of bacteria is assumed to be constant By. If the decomposition
follows the simple mass action law, then the total amount of recycled nutrient N(¢) from the
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dead organisms is ' .
N =5 [ Pat-9BoQ() ds.

Here Pa(t) is the probability that dead organisms at time 0 are still stored in bacteria (or do not
still become recycled nutrient yet) at time t. 3 is the conversion rate at which dead organisms
become nutrient.

For more simplification, we continue to add some assumptions. Assume that P;(t) = 6(¢)
where 0(t) is the Dirac’s delta function. Then

2
Q) =8 {mi(t) + (1)} 2.1)
7=1 .

If the decomposition period is assumed to have a constant duration, that is, Py(t) = 1 for
0<t<7and Py(t) =0 for t > 7, then

t

2
Byd, Z{mi(s) + yi(s)} ds. (2.2)

-7 =1

N(t)=p8
¢
Differentiating (2.2) with respect to t gives

2 2
N'(t) = BBod Y {i(t) +ui(t)} — BBod 3_{z:(t —7) + wi(t — 7).
=1 i=1
Finally 8Bod 322 {zi(t — 7) + vi(t — 7)} enters the bottom nutrient at time ¢. By setting
BBod = v, we have (Ejp).

Note that (2.1) considers a situation where there is no accumulation of dead organisms,
whereas this is opposite to [47]. It would be more realistic to consider accumulated dead organ-
isms. If the bacterial decomposition is assumed to be carried out at the constant rate dp, then
Py(t) = e~98% and hence ‘

, t \
Qt) = f e~d8(t=9)§ [Z{xi(s) + % (s)}] ds. (2.3)
0 i=1
Differentiating (2.3) with respect to t gives
) ,
Q'(t) = —dpQ(t) + 6 > {=i(t) +ui(t)}. (2.4)
¢ =1

A model with (2.4) rather than (2.1) is studied in Section 2.4 by numerical simulations. It will
be shown that the qualitative outcome of the model with (2.4) is the same as the outcome of
system (Eg) (model with (2.1)).



2.2. CLASSIFICATION OF EQUILIBRIA 39

In Section 2.2, the existence of nonnegative equilibria of system (Eg) is derived. In Section
2.3, the stability of nonnegative equilibria is studied in which it is shown that all equilibria
become unstable as time delay increases and system (E2) undergoes a Hopf bifurcation under
some suitable assumptions. In Section 2.4, it is shown by means of numerical simulations that
the coexistence of all organisms is possible in the form of periodic oscillation if all equilibria are
unstable. Finally we discuss our results in Section 2.5.

2.2 Classiﬁéation of equilibria

Equilibria of system (E3) are nonnegative roots of the following system of equations:

2
(8° = 8)D =" bUi(S)zi + d(R — 8) =0,
=1
2 2 : _ ‘
7Y (@i+9i) —vR-Y aVi(R)yi+d(S— R) =0,
i=1 =1

(b:Us(8S) — w)zi = 0, |
(¢jVi(R)—np)y; =0 (4,5 =1,2).

Let us set
(d+ I/)SOD dsS°D
Sw = —_——— Rw = —_——
- Dd+dv+Dv’ Dd+dv+ Dv

and Ey, = (Sy, Ry, 0,0,0,0). E, denotes the washout equilibrium which always exists. If b; > u
and ¢; > pu, there exist positive numbers S} and R such that .

_-1( B -1 H P
si=v (£) =7 (L), a1
Throughout the reminder of this chapter, assume that
St+#S; and R} # R (2.5)
The case ST = S5 or R’f =iR§ r.epresents: a degenerate case, which is less expected in nature so
that we exclude it. :
By (2.5), all equilibria of system (E;) are E,, and
Ezl = (Sik) Rl’ I, O) 0: 0), . EIBQ - (S;a R?a O, Z2, 07 0)7
Ey1 = (‘S_Il’R,{?O,07g1>O)’ Eyz = (§2aR;)0,0,03g2)’
Eq1 = (87, ’{,a}’{l, 0,911,0), Ei2= (ST,R;,Z‘E,0,0,ZIE),
Exn = (S;) Iv 0,56‘;1,7:/’51, O)a Eg = (S;) R; 0, m;za O’y;2)7
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where

-~ SD+dRf _ (d+v)S°D - (Dd+dv+ Dv)S}

T = y Ly = 3

d+D d(p — ) + pv

_ yS°D+(d(p—v)—-yD)S;  dS°D - (Dd+dv+ Dv)R}

a d(p— ) + v A @+D)u-7

. (8°—=S)D+d(R;-S}) . (8°—=8)D+d(u—~)(S; - R;) — pvR}
IU = and i = — .

i e =)

Each equilibrium of system (E2) must be nonnégative, that is, E. € RS where
RE = {z = (21,22, 23, 24, 25, 26) € Relzi >0(i=12,---,6)}.
Proposition 2.1. Suppose that b; > p, ¢; > p and (2.5).
1. E; € Rﬁ_ iff Sw > 8F. Moreover z; > 0 iff Sy, > SF.
2. Ey, € RS iff Ry > R3. Moreover §; > 0 iff Ry > R;f.

3. Ej € Rﬁ_ iff S’j > SF and R, > R;f. . Moreover x;“j > 0 and y;“j > 0 iff S'j > SF and
R; > R}.

Proof. Obviously S} > 0. Since u > v, Z; > 0 if and only if (d+v)S°D — (Dd+dv+ Dv)S; > 0.

Then S} < (d+ v)8°D/(Dd + dv + Dv) = S,,. Moreover we see that R; > 0 if S° > S} since

5% > S, > 8. Hence the assertion (1) holds true. The proof of assertions (2) and (3) are

similar. This completes the proof. O

Proposition 2.2. Sy, > S; if Ry > R;. On the other hand, there exists ¥ satisfying 0 <5 < p
such that Ry, = R; for v =% if Sy > S. Moreover Ry > R; if v <% and Ry < R; if v > 7.

Proof. Direct calculation gives Sy — §; = d(Rw — R})/(d + D) > 0. Hence the first assertion
holds true. Let us calculate the derivative of R; with respect to . Since Sy, > S},
OR;(y) n {(d+v)S°D - (Dd + dv + Dv)S;}
oy (d(n—7) + uv)? >0
This ifnplies that R; is monotone increasing with respect to 4. Hence R;(0) < R;(y) < Ri(n).
For 0 < v < p, we have » ‘

d{(d+v)S°D — (Dd + dv + Dv)S;}
(d+v)(Dd+ dv + Dv)
D{(d+v)S°D — (Dd +dv + Dv)S;}
v(Dd + dv + Dv)

Ry — Ri(p) = — <0.
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By the intermediate theorem, there exists ¥ > 0 such that R,, = R;(¥). This completes the
proof. O

By summarizing Proposition 2.1 and 2.2, we have the following theorem:

Theorem 2.1. If Sf < 5’» and R* < min{R;, Ry}, then E,, € Rﬁ_, E, € Rﬁ_ and E;; € Rﬁ_
where Z; > 0, §; > 0, z; >0andyw>0(,j—1 2).

2.3 Local stability of boundary equilibria

Let us consider the local stability of system (E») around nonnegative equilibria. We expect that
E; € R+, Ey € R+ and E;; € R+ Suppose that

Sf < S; and R* < mln{Rz,Rw} (4, =1,2). (2.6)

Then by Theorem 2.1, By, € RS, Ey, € Rf and E;; € R} where z; > 0, §; > 0, z}; > 0 and
Y;; > 0. By (2.5), we can assume that ST < 53 and R} < R without loss of generality.
The characteristic equation for the linearized system of (Es) around E,, is

(A 41 = BT ()3 + 1 — BaUa(Sw)) (A + 1 = 1Vi(Ru))

(2.7)
X (A + p —~ c2Va(Ru))(A? + (2d + D+ »)A + Dd + dv + Dv) = 0.
Proposition 2.3. E,, is unstable if (2.6) holds.

Proof. By’(‘2.6), Ry > RS > RI. Si‘nyc‘éer is monotone increasing, —p + ¢1Vi(Ryw) > —u +
c1Vi(R}) = 0. Note that —u + c1Vi(Ruw) is a root of (2.7). This implies that F,, is unstable
since there exists at least one root of (2.7) whose real part is positive (see Elsgol et.al. [12]).
This completes the proof. AR S : v a
The éhafacterﬁtic equation for Ey; and E, is
A+ 1= BT (ST) A+ 1 = Vi (Ra) A+ 11 = caVal(R) (P (V) + Qe (Ne™) =0, (2.8)
A+p- b1U1(SJ)>(A+u baU2(85)) (A + 1 = iy Viy (D)) (Pyy (A) + Qs (Ve )e X =0 (29)

where k; =2 if i = 1 and ki =1if i = 2. Here we omit to give explicit forms of P, (}\), Qz, ()),
Py;(A) and Qy,()) because Eg; and E, y; are unstable if (2.6) holds.

Proposition 2.4. E,, and Ey; are unstable if (2.6) holds.
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Proof. By (2.6), Ri > Ry > R}. Then —u + ca1Vi(R;) > —p + eiVi(R}) = 0. Note that
-+ clVl(Rz-) is a root of (2.8). Hence E, is unstable. In the same manner, we can show that
E,, is unstable. § O

Finally, let us consider the local stability of E;j. The characteristic equation for E;; is
O 1= b Uiy (S7) A + 11— e Viey (B)) (P (V) + Qig(Ve™>T) = 0. (2.10)
P;;(A) and Q;5(\) are given as follows:

Pi(A) =X+ (2d + D+ v + 0 + pj) A\ |
+{dD+dv+ Dv + (d+ p+v)o; + (d+ D+ p)p; + 0ip;}\?
+ p{(d + v + pj)ai + (d+ D + 0;) p; }A + p2oip;,

Qi () = = p1>? = 7{doi + (d+ D + 0i)p; }X — wyoip;,

(2.11)

where o; = bz-Ui’ (S7)zy; and p; = cj'Vj'(R;-‘)y;‘j. It suffices to consider the local stabi]ity only
for Ej; since (2.10) and (2.11) preserves its symmetricity by replacing the subscripts i and j.

Hereafter we omit to write subscripts of o; and p; for the notational convenience.
Proposition 2.5. E12, E31 and Fag are unstable if (2.6) holds.

Proof. Since 87 < S3 and U; is monotone increasing, —p+byU1(S3) > —p+bU3(S7) = p—p =
0. Moreover since —p +b1U1(S3) is a root of (2.10), Ey; is unstable (j = 1,2). In the same way,
we can show that E75 is unstable. This completes the proqf. O

By proposition 2.3, 2.4-and 2.5, all equilibria except for E11 is unstable whether time delay
is incorporated or not. Note that these properties hold under the assumptions ST < 53 and
R} < R3. For Eq1, two eigenvalues given by the first two factors in (2.10), —p + baU2(ST) and
—p -+ c2Va(RY) are negative. Hence the stability of Eq; depends‘ on the solution given by the
last factor in (2.10). Now we look for the possibility that E7; becomes unstable as time delay
increases. Hereafter let us denote Pj1(\) = P(X) and @11(A\) = Q(A) (see (2.11)). Consider

PN +QMWe™ =0. (2.12)

Let us apply the geometric stability switch criteria (see Appendix A) for (2.12). Clearly (B1)-
(B3) hold for (2.12). (B4) is also true since P(0) + Q(0) = p(u — v)op > 0. Define F(u) =
|P(iw)|? — |Q(iw)|* where u = w?. Direct calculation gives

F(u) = ut + agu® + agu? + aju + p? (u® — ¥?)o?p?, (2.13)
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where
a1 =27’ pp?c — 2u°po(p + o) — 4*(do + p(d + D + 0))* + p*((d + v)?0”
+2p0(d” + (d+v)o) + p*(([d + D+ 0)* + 0?)),
ag =2p(d+ D + o)(Dv +d(D + v) + (d + v)o) + (Dv + d(D + v) + (d + v)o)?
+p2((d+ D +0)* = 7%) + 42(p? + 4po + 0%
—2pu(o(d+v+p)* + p(d+ D+ )’ + d*(o + p)),
az =(d+v+p)*+ (d+ D+ 0)2+2d> — 2u(p+ o).
Since F(u) = 0 is a quaternary equation, F'(u) = 0 has exactly four zeroes and hence (B5) holds.
Note that (2.13) has exactly two or four positive roots whenever they exist because F(0) > 0
and F(u) — 0o as u — oo.
It seems hard to find positive roots of (2.13). Here we shall decompose (2.13) into simpler
forms. F(u) can be divided into three polynomials as F'(u) = G1(u)Ga(u) + duH (u), where
Gi(v) =u? + {(D + 0)* - 2pc}u + p?0?, |
Ga(u) =u® + {(v + p)* = 2up} u + (u? — v*)p?,
H(u) =22d+ D +v+o+p)u + [-4{(d+v)o + (d+ D + 20)p}
+d(D+v+o+p?+2(D+o)v+p)(D+v+o+p)|u
| +[(1® = ¥*) {d(o +£)* + 20 (0 + p(D + 0)) } + 24*vo® — 2Dop ).
Obviously F(u) = 0 if and only if G1(u)G2(u) = —duH (u). Hence we can obtain the existence
of positive roots of (2.13) by finding intersections of the graphs G (u)Ga(u) and —duH (u).
Let us derive a sufficient condition which ensures the existence of positive roots of F(u) = 0

under some suitable assumptions. First suppose that

Eél—m andﬁ—zl—/-c'z, (2.14)
b.,; Cj ‘

where k1 and kg are positive constants. Let us fix x; and k. By adjusting b; and c;, S} and
Rj are kept constants if the value of 1 changes. Moreover suppose that
E:=1—%; d=¢ed,D=¢D and v = eb.

According to the definition of o; and p;,
U - m)

2

[(8°—8})D + d(R} — S7)] € x e,

[(1—)(S° = $5)D — 5B — d(R; — S})e] -

¢
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Hence we can see that o; is proportional to ¢, while p; is not. By collecting these observations,
we suppose that
5:=1—1; d=¢ed,D=¢D ,v=c¢vand o =¢G. L)
"

In (L), all of d, D, v, o are the same order in terms of . If ¢ < 1, (L) represents the
chemostat model with small in-flow, small self-purification, small diffusion and high recycle rate
of bacterial decomposition. These assumptions would be reasonable to consider the dynamics
such as in lakes. ,

Since G1(u) = (u— po)?+ (D +0)?u, G1(u) = 0 cannot have a positive root. G2(u) = 0 has
two positive roots if and only if

(v +p)? = 2up < 0 and D(G2) () = [(v + p)? — 2up]* — 4(4* — ¥*)p? > 0. (2.15)

It is easy to see that D(Ga)(p) = 4p*(1 —€)?pu? —4p(v+ p)2u+ (v + p)* > 0 for sufficiently large
4. Hence (2.15) holds true for sufficiently large u and small &.
Let us rewrite H(u) as H(u) = apu? + aju+as. H(u) = 0 has two positive real roots if and
only if .
a1 <0 and D(H) = of — 4apaz > 0. (2.16)
1 < 0 if and only if |

S d(D+u+a+p)2+2(D+a)’(v+p)(D+u+a+p)
4{(d+v)o+ (d+ D +20)p}

To check the signature of D(H), let us arrange the coefficient oy according to the order of ¢.

Then each ag, o and as is represented by ag = (oo + (o1&, @1 = (11 + (1262 + (3¢ and
g = (a08% + (o363 + §24€4. Here (3¢ denotes the coefficient of el in ag. Note that (g9 = 2p,
(11 = —4(d+D+25)pu+2(D+5)p? and (ap = (d+2(D+5))p?u? —2DGpp?. Direct calculation
gives D(H) = o2 — 4apas = (¢ — 4¢o0Ca2)e?® + O(e?). Moreover

C2 — 4¢ooCon =8 {2(d+ D +25)* — (d+2(D +3))p+ 2Dz} p*u?
—16(D +6)(d+ D +25)p°u + 4(D + 5)*p".
Hence it is' easy to see that D(H) > 0 for sufficiently large p and small ¢ if 2(d + D + 25)? —
(d+2(D+3d))p+ 2D > 0, or equivalently,
| 2(d+ D + 20)? + 2Do
d+2(D+ o)

(2.17) holds true for sufficiently small . Consequently (2.16) holds true for sufficiently large p
and small €. Let u; and u;z" denote positive roots of the quadratic equation H(u) = 0 satisfying

i

(2.17)
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Figure 2.1: Graphs of G1(u)G2(u) and —duH (u)

uj, <uj. Then the graphs G1(u)Ga(u) and H(u) have at least two intersections on [0, c0) if a
positive root of the quadratic equation Go(u) = 0 satisfies u;': € (uy,u;) (see, Fig. 2.1).

Lemma 2.1. Assume that (L) and sufficiently large p and small € to ensure that (2.15) and
(2.16) hold. Then E11 becomes eventually unstable as T increases if uy <wuy oruf <uj.

In the end of this section, let us check whether system (Ez) undergoes a Hopf bifurcation.
It is necessary to check the following three hypotheses (see [18, pp. 332, Theorem 1.1.]):

(H1) For t € [0,7*), all eigenvalues of characteristic equation (2.12) have negative real parts. -

(H2) For 7 near f*, there exists a pair of simple and complex conjugate eigenvalues A(7) and
(1) of (2.12) such that Re (A(7)) = 0, Im ()\('r)) > 0 and Re (OA(7)/871) > 0 at 7= 7*.

(H3) All the other eigenvalues of (2.12) at 7 = 7* have negative real parts.

il

(H2) holds if the a.ésumptions of L_einma 2.1 are satisfied. To confirm (H1) and (H3), consider
the case 7 = 0. Then (2.12) becomes a fourth order polynomial equation of the form:

Mir@d+D+v+o+p)A3
+[dD+dv+Dv+(d+p+v)o+(d+D+0)p+ (u—7)plA2 (2.18)
 + v+ ppo+ (p—1){do + (d+ D+ 0)p}A+ pu(p — v)op = 0.

Let us rewrite (2.18) as A + B3 + BoA2 + (B3 + B4 = 0. By the well known Routh-Hurwitz
criterion, all roots of (2.18) have negative real parts if and only if R = 31 8283—B2—264 > 0. Let
us arrange the coefficient 3 according to the order of &. Then 81 = mo+mn116, B2 = N91€ +7M22€2,
B3 = m31€ + M32e + N33e> and By = mye?
particular 10 = p, N21 = & + (d+D+a)p+ up, n31 = pop and nge = p25p. Direct calculation
gives R = (morp1ms1 — 131 — Mionaz)e? + O(e?). Moreover we have n1o721m31 — n3; — mig7u2 =
,u&pg(cf+ D+45)>0. Hence R >0ife < 1.

. Here miy denotes the coefficient of et in Br. In
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Lemma 2.2. Assume that (L) holds for sufficiently small €. Then E1; is locally asymptotically

stable for sufficiently small 7.

Corollary 2.1. If the assumptions of Lemma 2.1 and 2.2 are satisfied, a family of periodic
solutions bifurcates from E11 for T near 7* > 0. After system (Eg) undergoes a Hopf bifurcation,

species 1 and y1 survive in the form of periodic oscillation on z1y1-plane.

Finally let us show an example of Corollary 2.1. Suppose that the nutrient uptake functions
Ui(€) and V;(§) are Michaelis-Menten type, that is,

Parameters are given by

{SO =3,D=0.1,v=0.05,d = 0.5,b; = 1.155, B; = 0.05,¢; = 1.15, ®)

C1 = 0.048,by = 2.8, By = 0.6,c3 = 3,C2 = 0.72, . = 1and v = 0.8.

Then ST = 0.322581 < S5 = 0.333333, R} = 0.32 < R; = 0.36, 0 = 0.110848, p = 0.404453.
We can confirm that (2.13) and (2.16) hold. Approximately, we have u; = 0.0730887 < uy =
0.122793. Since the assumptions of Lemma 2.1 are satisfied, F'; becomes unstable as 7 increases.
Moreover R = 0.0838494 > 0. Hence a family of periodic solution bifurcates from FEi; as 7
increases. Note that by Remark A.1, the explicit value of 7 which may cause a Hopf bifurcation

is numerically calculated as 7* = 8.45155.

2.4 Numerical simulations

In this section, let us show some numerical simulation results. In Section 2.3, it was shown that
a family of periodic solutions bifurcates from Ej; for 7 near 7* for the set of parameter (P).
Note that 7* ~~ 8.45155. Figs 2.2 and 2.3 illustrate the trajectories of the solution of (Ez) for
(P) and 7 = 10. The initial functions are given by (0.7,0.4,0.3 —0.05 cos 3¢,0.5 — 0.2 cos 4¢,0.3 —
0.1cos2t,0.4 — 0.2sint). It is observed that all organisms survive periodically. These figures
suggest that periodic coexistence of organisms occurs.

Finally, let us study the model with (2.4) rather than (2.1) by numerical simulations. As

we can see in (E3), accumulation of dead organisms is ignored. This seems unrealistic since it is
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Xi(t)

Fm 0 |

Figure 2.2: z1(t) and z(t) of (Es)

opposite to [47]. Let us consider

1

0
2580 7 |

Figure 2.3: y;(t) and ya(t) of (Es)

| S'(t) =(8° - S(1)D - f‘?bivi(sa)')xi(t) +d(R(t) - 5(2)),
R/(t) =BBoQ(t — ) — vz_w) - ﬁ;@W(R(t))yi(t) +d(S(t) - R(®)),
4 Q(t) =~ dpQ(t) +6 ﬁ;{mt) + w()},
o (t) ==4(2) (bz-Ui(S(t;; _ 1),
| %) =(t) (GVi(R() — ). (1=1,2)

47

(2.19)

Let us set the same parameters and initial functions for Figs 2.2 and 2.3. Moreover let us
set dp = 2.2, By = 2.1, § = 0.8 and Q() = 0.3 — 0.1sinf (@ € [T, 0]) Figs 2.4 and 2.5
show the trajectories of the solution of (2.19) and 7 = 25. It is observed that all organisms
survive periodically. By comparing Figs 2.2 and 2.3 to Figs 2.4 and 2.5, we can see that the

7 X1(t)

0
6100 7m0 [

Figure 2.4: z,(t) and z5(t) of (2.19) Figure 2.5: y;(t) and ya(t) of (2.19)

. ; )

Ya(t)

:mn 7 [

qualitative outcome is the same: periodic coexistence occurs. These simulation results suggest
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that instability comes from the delay due to bacterial decomposition rather than accumulation

of dead organisms.

2.5 Discussion

In Section 2.1, we modeled chemostat-type equations for lake community by introducing spatial
distribution and recycle of nutrient. The spatial distribution of nutrient is expressed by two
distinct nutrients: disselved nutrient in the lake S and accumulated nutrient on the bottom of
the lake R. Delayed nutrient recycling is derived by describing the process of bacterial decom-
position. In real lake community, the segregation of nutrient uptake between aquatic organisms
(in system (E32), z;) and benthos (in system (Ez), y;) is not always expected. Cross nutrient
uptake of aquatic organisms and benthoses would be an interesting problem. In Section 2.3, it
was shown that all equilibria become unstable and system (Ep) undergoes a Hoﬁf bifurcation
as time delay increases through a critical value of time delay. By mathematical analysis, we
obtained that Hopf bifurcation occurs on the system with small dilution rate D, small self-
purification rate v, small diffusion rate d and high recycle rate v. In particular, small dilution
rate would well describe "lake” situation. In Section 2.4, it is observed that all organisms coex-
ist in the form of periodic oscillation if all equilibria are unstable. Known results dealing with
competition in chemostat-type equations with delayed nutrient recycling show that direct (or
intra/inter-specific) competitioh terms among competing species realize coexistence (see, Freed-
man & Yuantong [13] and Ruan & He [22])." This type of coexistence cannot be expected on
system (Eg) where direct competition terms never appear. Only exploitative competition ap-
pears in system (Eg). If there is no diffusion, or d = 0, system (Ez) is closed with three variables
S(t), z1(t) and z2(t). Subsystem (S(t),z1(t),z2(t)) forms a standard chemostat model and
competitive exclusion principle hold true (see Armstrong and McGehee [1], Smith and Walt-
man [62]). Our study suggests that the diffusion of nutrient and the delay due to bacterial
decomposition create the coexistence of species. For system (Ez), periodic coexistence is a key
of further analysis. The periodic coexistence of competing organisms is extensively observed in
chemostat equations both for nonautonomous system (see Butler et al., Hsu [28], Smith [61])
and for autonomous system (see Butler et al. [8], Li and Smith [34], [35]). Further study leaves
for future consideration.
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Competition in population dynamics
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Chapter 3

Relative competition

3.1 Introduction

In this chapter, let us consider the simplest expression of competing two species, which is called
a Lotka-Volterra competition system:*

{ #1(t) = 21 (t)[r1 — az1 (2) — baza(1)],

\ (3.1)
z3(t) = 22(t)[rs — cz1(t) — day(t)).

Here z;(t) denotes the i-th population densities of competing two species (i = 1,2). All param-
eters are assumed to be positive. Let Ey, E; and E3 denote equilibria of system (3.1) which
always exist:

Bo=(0,0), E1=(2,0), = (o 2).

Suppose that
b T a

d T < _C— v (32)

Then system (3.1) has a unique positive equilibrium which is a stable node:

o (oK Ey drl-brg arq —cry
E '“(‘”1’“’2)_(ad—bc’ ad—be )

It is well known that the positive equilibrium of system (3.1) is globally asymptotically stable if
(3.2) holds. Various approaches are known to show the global attractivity result of the positive
equilibrium: The second method of Liapunov can give a global stability result when a suitable

*This chapter is mainly attributed to the papei‘ [42] published in Sarikaisekikenkyisho K okyiroku.

51
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Liapunov function is found (see for example, [26] and [65]). On planar systems, Poincaré-
Bendixon Theorem is a powerful tool to figure out the behavior of system dynamics. Monotone
theory is also a powerful and conceptual tool if one considers competitive (cooperative) system
(see [63] and references therein).

Here we take a different approach to show the global attractivity result for the positive
equilibrium of system (3.1): By introducing a function with respect to the ratio between densities
of two species P;; = a:i/mj, we will show the global attractivity of the positive equilibrium if
(3.2) holds. Moreover we will give the explicit form of separatrix if system (3.1) is bistable. In
the next section, basic properties for the function P;; are shown. In Section 3.3, we show that
the positive equilibrium is globally attractive if it exists. On the other hand, if we consider a
bistable case, applying the same proof which will be developed in Section 3.3 shows the explicit
form of the separatrix curve for 7y = ry. In Section 3.4, the graph of the trajectory of the
solution of (3.1) are shown. Finally we discuss our results in Section 3.5.

3.2 Preliminaries

Cbnsider the folloWing general autonomous planar system:

{ ) = z1f1(z1, 32), @
3 = z2fa(21, 72),
with the initial condition ‘

z1(0) > 0 and z2(0) > 0, - (3.3)

where f; and f; are continuously differentiable. The function 7 is said to be a continuous
dynamical system if 7 is continuous and has the following properties:

1. 7(z,0) = z;
2. n(z,t+s) = w(w(z,t),s).

Then (G) generates a continuous dynamical systém by defining 7(z,t) = z(t), where z(t) =
(z1(t), 22(t)) is a solution of (G) satisfying (3.3). Given a point z, the set {m(z,t)|t > 0} is
called the positive trajectory. A set S is said to be positively invariant if all trajectories that
begin in S remain in S for all positive time. Let {t,}32; be a sequence of real numbers which
tends to infinity as n tends to infinity. If P, = m(x,t,) converges to a point P, then P is said
to be an omega limit point of z. The set of all such omega limit points is called the omega,

limit set of z, denoted as w(z). An equilibrium point of (G) (if exists) is said to be repeller if
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it cannot be in the omega limit set of any trajectory other than itself. The dynamical system
is said to be dissipative if all positive trajectories eventually lie in a bounded set. If the system
is dissipative, the omega li@it set is a non-empty, compact, connected, invariant set (see also a
standard textbook of dynamical systems, e.g. Bhatia and Szeg6 [5]).
Let P;; : [0,00) x (0, 00) — [0, 00) be a continuously differentiable function (i, j = 1,2, i # j).
P;; is defined by ,
| Pij(zi, 5) = 23/ ;. (3.4)
By the definition, it follows that
P-(i): Pij -Pji = 1,
P-(ii): Py =0iff z; =0.
The derivative of P;; along the solution of (G) is denoted by P,j(z(t)). Direct calculation gives

PBy(z(t))
———= = fi(z(t)) — fi(z(t)).
| PLe) = ) ~ e ).
Note that this property is stated as the quotiént rule on repliéator dynamics (Excersise 7.1.1 in
[26]). Hereafter we simply write P;;j(z(t)) as P;;(t) for the convenience.

Competitively Advantage Set, or simply Advantage Set A; and Ajg are defined by

A = {(z1,82) € Ry|fa(21,22) > fa(21,22)},
Az = {(21,22) € RY|fi(21,22) < falor,22)} -

Competitively Balance Set, or simply Balance Set B is defined by
B = {(z1,22) € R} |fi(21,22) = fa(a1,22)} -
Note that for any z(t) € B, Pw(t) = 0. Moreover Pz-j(t) > 0 if z(t) € A;, while Pij(t) <0if
z(t) € A;. '
Strongly Advantage Set S = S; ® Ss is defined by -
- 81 = {(®1,72) € Au|fi(z1,32) > 0 and fo(w1,29) < 0},
- 82:={(z1,72) € A2|f1(z1,%2) <0 and fa(z1,22) > 0}.
The null clines of fi(z1,22) and fa(z1,z2) are denoted by N; and N3, respectively. That is,
M = {(&1,22) € R|fi(1,32) = 0},
Nz = {(z1,22) € R} | fa(m1,72) = O}
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Let .’DJ{ and :v; denote roots of fi(z1,0) = f2(21,0) and f1(0,22) = f2(0,z2) (if they exist),
respectively. In general, B is a curve on Rﬁ_ which is formed by connecting two points (mJ{, 0)eB
and (0, a:;) € B. Note that B is a line for system (3.1). intR% denotes the interior of R%. intR%
is divided by B, that is, intR2 = A; ® B® Aj. (see Figs 3.1 and 3.2 in Section 3.4). Finally the
solution ratio line L; is defined by '

Et’:= {(.’I}1,.’L‘2) € R_2*_|.'17.,; = Hj(t):nj} . (3.5)

Then z(t) € L.

3.3 Global attractivity

Let us set fi(z1,z22) = m1 — az; — bzy and fa(z1,22) = ro — cz1 — dzy. First we state some
basic properties of system (3.1) without the proof. Throughout the reminder of this section, we
assume that (3.2) holds. ,

Proposition 3.1. System (3.1) is dissipative. Ey is a repeller. Moreover Ey and Ey are also
repellers if (3.2) holds. '

Proposition 3.2. Assume that (3.2) holds. Then E* € B. Ep € B if and only if 11 = ro.
E1¢BandE2¢B,

Proof. The first and the second assertions are clear. By (3.2), ad —be > 0. Then a # cor b # d.
Suppose that a # ¢. Then a:J{ = (r1 —r2)/(a — c) exists. Since (3.2) holds, direct calculation
shows that xJ{ — & = (cr; —ar)/a(a — c) # 0. Consequently E; ¢ B if a # c. In the same way,
we can show that Fz ¢ B if b # d. This completes the proof. a

Let E denote a set of equilibria of system (3.1)
E = {Eqo, E1, Eo, E*}.
Proposition 3.3. Assume that 71 =13 and (3.2) holds. Then B is positively invariant.

Proof. We claim that z3 fa(z1,22) # 0 for any z = (z1,22) € B\ E. In fact, zofa(z1,22) = 0 if
and only if z2 = 0 or fa(z1,72) = 0. Note that zo = 0 iff z € Eg on B. Moreover BN Nz = E*.
Hence the implicit function theorem implies that for any z € B \E,

01 _ mfi(zn,m2) _ =

dry  mafa(w1,m2) Zy
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It follows from (3.2) that a > ¢ and d'> b if r; = 3. Hence z € B\ E satisfies z1/z2 = g_g =

z%/z5. Consequently we obtain that z1(t) = z7/z3z2(t) for any z(t) € B. That is, £; = B. This
completes the proof. O

Proposition 3.4. Assume that r1 # r2 and (3.2) holds. Then B\ E is not positively invariant.

Proof. Assume that there exists 7' > 0 such that z(t) € B\ E for any ¢ > T. Hereafter let
us fix ¢ arbitrary for ¢ > 7. Then Pip(t) = 0. Hence Plz(i), or equivalently, z1(t)z5(t) is a
positive constant, which is denoted by C. Moreover L; is fixed, which is denoted by £. Then
z(t) € BNL. It is clear that BN L # . Since.both of B and £ aré lines on R ) either (i) B=L
or (ii) BN L is a point set. Note that B = L if and only if r; =79 and C = d=b — 4% /x%. Since
we assume 11 # 73, only the case (ii) is possible. Then z(t) must be an equlhbnum point. More
specifically, Proposition 3.2 implies that z(t) = E*. This is a contradiction since z(t) € B\ E.
This completes the proof. O

Proposition 3.5. Assume that (3.2) holds. Then Pi;(t) / 0 if t — oco.

Proof. Assume that P;;(t) — 0 as t — co. Then there exists a monotone increasing sequence
{tn}32, such that Py;(tn) — 0 as n — co. Note that for any z(t) € B, P;;(t) = 0. Hence for any
initial point z° € intRZ, w(z%) C BU E. Since system (3.1) is dissipative, w(z?) is positively
invariant. Note that by Proposition 3.1, Fy, E; and Es are repellers. Moreover Propositions 3.3
and 3.4 imply that w(z®) C B\ Ej if 71 = r5 and w(z°) € E* if r; # r5. This is a contradiction
and hence completes the proof. _ _ ‘ ‘ O

In the same way as the proof of Proposition 3.5, we can show the following:

Proposition 3.6. Assume that (3.2) holds. If there erists a positive constant P* such that

Py(t )—)PZJ ast — oo, then:c(t)—eE* ast — oo.

Proposition 3.7. Assume that (3.2) holds. If:c(t) eventually remains either in Ay or A, then
z(t) — E* ast — oo.

Proof. Note that if z(I') € A; for some T' > O,‘Plz(t) > 0 as long as z(t) € A; for t > T.
Similarly if z(T) € Az for some T > 0, Pi2(t) < 0 as long as z(t) € A for ¢t > T'. Hereafter we
only consider the case where z(t) € A; for t > T. Then we claim that there exists a positive
constant Pj, such that Pia(t) — P}, as t — oco. Assume that Pi3(t) — oo as t — oco. Since
system (3.1) is dissipative, xz(t) — 0 as t — co. Then by P-(ii), Py (t) — 0 as t — co. However
this contradicts to Proposition 3.5. Therefore Proposition 3.6 implies that z(t) — E* as t — co.
This completes the proof.. £ ’ a
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Proposition 3.8. Assume that (3.2) holds. S UN1UN2 is positively invariant.

Proof. 1t is sufficient to notice for the solutions on the boundary of S. Note that the boundary
of S consists of null clines N} and N;. If there exists T > 0 such that z(T) € A; N ANy, then
z1(T) = 0 and z3(7) < 0. By the continuity of the solution, there exists ¢ > 0 such that
z(t) € 81 for T <t < T +¢. The same procedure proves the assertion (see Figure 3.2). a

Theorem 3.1. Assume that (3.2) holds. Then all solutions tend to the positive equilibrium as
t tends to infinity.

Proof. First let us consider the case r1 # r2. If there exists 7' > 0 such that z(T) € SUN1UN3,
Proposition 3.7 together with 3.1 implies that z(f) — E* as t — co and hence the assertion
is true. Otherwise, all solutions remain in int]Ri \ § for any positive . We claim that such
solutions also eventually remain either in A; or As. The following two cases are possible: (i)
There is no solution which crosses B or (ii) There is a solution which crosses B. The claim is
true for the case (i) by Proposition 3.7. So let us consider the case (ii). If there exists Ty > 0
such that z(Tp) € B, Proposition 3.4 implies that there exists 71 > Ty such that z(T1) ¢ B.
More specifically, if £1(Tp) > 0, then 2(T}) € Ap. Conversely if £1(7p) < 0, then z(T}) € A;. In
both cases, we can see that z(t) € A; or z(t) € Az for any ¢ > Ty. Hence the claim holds true
by Proposition 3.7.

Next suppose that r1 = r2. Since B is positively invariant, it is sufficient to consider either
(iii) z(t) ¢ B for all t > 0 or (iv) z(t) € B for all £ > 0. In the case (iii), z(t) € A; or z(t) € Az
for all £ > 0. Hence Proposition 3.7 implies that z(t) — E* as t — oo and the assertion holds
true. This completes the proof. O

We can obtain further interesting property for the solution of (3.1) starting on the balance
set B if ri =ro. ‘
Remark 3.1.
Note that fi(z1,22) = fa(z1,22) = f(z1,22) on B. Let £ = z; + z3. Then
' =z} + 1}
, =mlfl(xl,fQ)_+v$2f2(371,$2)

=z f(z1,22).

Observe that  is expressed by z; and x5 explicitly if and only if the following system of equations
has a unique root:

I+ 12 =,
ari +brs = cx1 + dmg.
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Since a — ¢ # b — d, direct calculation gives

(d—b)z (e —c)z
= (- T = b-d)
Then z(t) is a solution of following differential equation
= _Zz
z —r:r:‘(l K)’ z€B (3.6)

where 7 = 71 and K = %r = 27 + 3. Then (3.6) becomes the Logistic equation and

hence z(t) — z} + 23 as t — co on B.

In the end of this section, we suppose that

a T1

! Cc T2

(3.7)

&.Icr"

Then system (3.1) has a unique positive equilibrium which is a saddle:

dri —brg arg —cry
* o (p* ) — .
= m) ( ad —be ' ad —be )
System (3.1) is called bistable if (3.7) holds. The theory of dynamical systems implies that there
is a separatrix by which the extinction of species is determined depending on the initial value.
For system (3.1) with (3.7), the separatrix corresponds to a set of (global) stable manifold of
the positive equilibrium. Applying the previous proof, we obtain the following result;

Corollary 3.1. Assume that r; = ro and (3.2) hold. Then B corrsponds to the separatriz.

Finally we consider the variant of system (3.1) which is no longer a competitive system. The
system is given by
{ 1 (t) = z1(t)[r1 — ama(t) — baa(t)], (3.9)
z(t) = wa(t)[r2 — cr(#) ~ doa(t) + g(21(8))], ’
where
g(@1) = —ew1(z1 7).

System (3.8) corresponds to system (3.1) if ¢ = 0. System (3.8) can be interpreted as a model for
microbial competition in which species 1 products “byproduct” during the metabolic process.
We assume that byproduct is an another resource for species 2, but the excessive amount of
~ byproduct may inhibit the population growth of species 2. It is often the case that the excessive
amount of resource can inhibit the population growth of microorganisms (see Chapter 4 of the
book for chemostats, [62]). Thus, for species 2, byproduct is benetifical if the amount is not too
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much, but harmful if the amount is too much. The parameter v is a threshold value by which
byproduct owes to activate or inhibit the population growth of species 2. In fact, g(y) = 0,
g(z1) > 0for 0 < z; < -y and g(z1) <0 for z1 > .

Note that
Ofz(z1,23)

39:1 = (E’Y - C) - 25"1:1' (39)

If ey — ¢ > 0, then (3.9) is positive if 0 < z1 < 2—15(&:')' — ¢). Thus we see that system (3.8) is not
a competitive system although a—fga%lz’ﬂl < 0 for all zg > 0.

Note thathe equilibrium points Ey, E7 and: E; for system (3.1) are also equilibrium points for
system (3.8). More precisely, Ep = (0,0), E1 = (2,0) and Ep = (0, %) are equilibrium points
not only for (3.1) but also for (3.8). The positive equilibrium E* of system (3.1) is different from
that of (3.8). If ¢ is sufficiently small, then it is possible to show that the positive equilibrium
E* of system (3.8) uniquely exists and locally stable if ad — bc > 0. In this case, we have to take
the value of v sufficiently large to ensure that ey — ¢ > 0.

Note that the method developed in this chapter can be exploited to show the global attrac-
tivity for the positive equilibrium of system (3.8). Since the competitively balance set B is not
a line but a curve, we do not necessarily devide the proof into two case whether r; = r5 or not.
Thus, we only have to show that Propositions 3.1, 3.2, 3.4, 3.5, 3.6, 3.7 and 3.8 hold for system
(3.8). In the same way, we can show that the positive equilibrium of system (3.8) is globally
attractive if ad — bc > 0. '

Corollary 3.2. Assume that ¢ < 1, ey > ¢ and (3.7) holds. Then a positive equilibrium of
(8.8) uniquely exists and it is globally asymptotically stable.

3.4 Trajectories

In this section, let us show some projections onto z1z2-phase plane of trajectories for different
sets of parameters. Due to the symmetry of system (3.1), we can assume that r1 > 7. Figs
3.1 and 3.2 illustrate the null-clines and the balance line, each of which corresponds to dashed
lines and the thick line. Figs 3.3-3.4 illustrate the trajectories of the solution of (3.1). On these
figures, the balance line is drawn by thin line, while the trajectory is drawn by thick line. On
Fig.3.3, the parametei”_s' satisfy that r{ > ra, %:—g < 0 and (3.2) holds. The initial point 20 is
taken on B. The trajectory is immediately away from B and eventually lies in &7. On Fig.3.4,
the parameters satisfy that r; > ry, Z%Z > 0 and (3.2) holds. The initjal point is also taken on B.
The trajectory is also away from B and finally converges to the positive equilibrium. On Fig.3.5,
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the parameters satisfy that r; = ro. The initial point is taken on B. Note that by Proposition
3.3, B is positively invariant. The solution converges to the positive equilibrium along the line
z9 = z3/xjz. Finally Fig. 3.6 illustrates the trajectory for r; = rp. The initial point is taken
on Ay. The solution eventually lies on S and converges to the positive equilibrium.

x;) xz

\
1
1
B \
\
\

\
\

\
\

M,

Ny

o Z1 1)

Figure 3.1: r; > 1y, 42 < 0 (a # ¢ Figure 3.2: m1 > 72, 22 > 0 (a # ¢)

a—c a—c

3.5 Conclusions

We proved the global attractivity of solutions of system (3.1) by introducing the function in
terms of the ratio between z; and 3. It was shown that the balance set B separates the positive
cone. One of separated regions .A; gives a competitive advantage for z1, while another region
A3 gives a competitive advantage for z3. For almost sets of parameters under the situation
where the positive equilibrium exists, the balance line B except for the positive equilibrium is
not positively invariant. On the region A; N {(z1,22) € RZ|fi(z1,72) < 0, fa(z1,22) < 0}, it
can happen that the ratio z;/z; increases although z; decreases (see Figs 3.3 and 3.4). This
situation is likely to occur when z; has the low density while z, has the high density.The
density dependence effect highly decreases the density of z2 even if z; is decreasing. If 1 = ry
and z° € B, as we have shown in Proposition 3.3 and Theorem 3.1, the solution converges to
the positive equilibrium along the line. Moreover the total density x; + x5 follows the logistic
equation (see also Fig.3.5). This implies that two species are regarded as the same species on B if
71 = 7o. Geritz et. al considered the dynamics of a population of residents that is being invaded
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L1 €1

Figure 3.3: 7, > 1y, 22 < 0,2°€ B.  Figure 3.4: r; > my, =2 >0, 2% € B.

a—c

Figure 3.5: r; = 7o, 2° € B. Figure 3.6: 7y = 7, 20 € A,.
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by an initially rare mutant [14]. They showed in [14] that under relatively mild conditions the
sum of the mutant and resident population sizes stays arbitrarily close the initial attractor of the
monomorphic resident population whenever the mutant has a strategy sufficiently similar to that
of the resident (This is called a Tube Theorem). This result implies that the orbit will stay in
a narrow tube in the resident-mutant population state space. Schreiber [56] considered a model
for apparent competition where two prey share one predator. In [56], it was shown that a model
without the positive equilibrium is almost surely permanence. The similar idea of Tube Theorem
is exploited in the proof. It would be interesting to study the relationship between the tube set
and the balance set. Since system (3.1) satisfying (3.2) is dissipative and permanent, there must
exist an accumulation set of the ratio function P;j; on some compact subset of the positive cone.
In this chapter, it was shown that the accumulation set corresponds to the positive equilibrium
point. If the accumulation set consists of two points, then the solution will be periodic. It is
expected that chaotic behaviors will appear in such a way that the ratio function has infinitely
multiple accumulation points. In this chapter, we only considered the case where the stable
positive equilibrium exists. It is well known that there is a separatrix curve if system (3.1) is
bistable. Simple consideration shows that the balance set B correspondé to the separatrix curve
if 1 = r2 and system (3.1) is bistable. It is interesting to give explicit form of the separatrix
curve for r; # ra. This leaves for our future consideration. On the systems where more than
three species are interacting with, the chaotic behavior can occur. The method exploited in this
chapter should be also exploited to higher dimensional systems. This also leaves for our future

consideration.



Chapter 4
Three species competition

ABSTRACT

A competition model of three species for one resource in a chemostat with a
periodic washout rate is considered. Coexistence is indicated in [33] by numerical
bifurcation analysis and in [73] by mathematical analysis. By introducing average
competition functions, we obtain a necessary condition for the coexistence of a
positive periodic solution and show that the condition restricts possible parameter
value set to be relatively small. Further we show that the coexistence is enhanced

. when the period of the washout rate becomes large.

Key word: Chemostat equations, periodic washout rate, coexistence, Michaelis-Menten func-

tional response, Conservation principle, Average competition function. *

%

4.1 Introduction

Chemostat equations have been used to study population dynamics of microorganisms in exper-
imental apparatuses or aquatic ecosystems such as lakes. The Competitive Exclusion Principle
states that among several species competing for common resources, the number of coexistent
species does not exceed the number of available resources (see Grover [16] for example). The

mathematical results on the standard chemostat equations of competition for a single limiting

*This chapter is mainly attributed to the paper [43] published in Difference equations and discrete
dynamical systems.

63
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resource show that only the species with the lowest break even concentration survives (see Arm-
strong and McGehee [1], Smith and Waltman [62, Chapter 1, Chapter 2]). On the other hand,
the competitive exclusion principle is not valid for chemostat equations if a fluctuating environ-
ment is under consideration. In fact, many studies have revealed that the coexistence of two
species competing for one resource is possible if a nutrient input varies periodically (see Hsu [28]
and Smith [61], for example). Butler et al. [9] showed that the coexistence of two species is also
possible in the case where the washout rate varies periodically. In [9], coexistence is expected if
the washout rate varies in such a way that each competitor has its own competitive advantage
depending on the concentration of the resource (see also Lenas & Pavlou [32] and Pilyugin &
Waltman [48]). ’

It is a fundamental interest and problem on chemostat equations whether fluctuating envi-
ronments can support the coexistence of more than three species under only one resource. Lenas
and Pavlou [33] showed by numerical bifurcation analysis that the coexistence of three species is
possible. Wolkowicz and Zhou [73| gave sufficient conditions for the uniform persistence of com-
peting arbitrary N-species on a periodic chemostat. In [73], for the three species competition

case, they considered the following system of equations:

| 3
%ﬂ = (S°(t) - S(t))Do(t) — Y _ Pi(t, S(2))mi(2),
=1 (4.1)
dx(;it) = .’I:i(t)(Pi(t,S(t)) - DO(t)), (Z — 1,2’3).

Here S(t) denotes the concentration of the limiting nutrient, z;(t) (¢ = 1,2,3) denotes the
measure of i-th species at time ¢. F;(t,5) (i = 1,2, 3) represents the specific per capita nutrient
uptake function of i-th species, S°(¢) and Dg(t) are the input nutrient concentration and the
washout rate, respectively. S°(t) and Dg(t) are continuous, w-periodic and positive functions,
and each P;(t, S) satisfies

1. P;(t,S) is locally Lipschitz in S,
2. P;(t,0) =0 for t > 0 and for any ¢ > 0,:P;(t, S) is strictly increasing for S € R.

They showed the existence condition for a positive w-periodic solution
(S@),z1(t), z2(t), z3(t)) of (4.1) with S(0) > 0 and z;(0) > 0 (z = 1,2,3). The detail is as
follows:

Let Vi (t) be the uhique, globally attracting, positive w-periodic solution of

av

W () - VDol
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For each 1 < i < 3, there is a corresponding single-species periodic equation

d:L‘z

— = zi(Bi(t, Vi (t) — i) — Do(t))- (E7)

There is also, for each 1 < i < 3, a corresponding two-species periodic competition system

dz.; N 3 ‘ ) . =
_Jiﬂ__—_mj Pi(t,Vg(t)— Y. =x)—Do(t) |, 1<j<3,j#i. (Eq)
k=1,k#i

Theorem 4.1. [73, Theorem 4.2.] Assume that

i = [2(Pi(t, V() — Do(t))dt > 0,1 < < 3;

2. MJz—fo(P»tVo() z(t)) — Do(t))dt > 0, 1 < 4,5 < 3,4 # j, j # 2, and pg1 =
Jo (P8, Vg (t) — z5(8) — Do(t))dt > 0;

5. = [ (P V() - Thayu 2(8) = Do®)) dt > 0,2 < i <3,

where z}(t) is the unique positive w-periodic solution of (E;") (1 < i < 3) and (23(2),73(2))
and (Z3(t), Z3(t)) are the unique positive, w-periodic solution of (E3) and (E3). Then system
(4.1) admits a positive w-periodic solution (S(t), z1(t), z2(t), z3(t)) with S(0) > 0 and z;(0) > 0
(i=1,2,3). ‘

An interesting example of Theorem 4.1 is given in [73], which is also adopted to show
the coexistence of three species in [33]: Let S°(t) = 11 and Do(t) = ug + acos 27 /wt where

= 0.4675, a = 0.3 and w = 31.4. Nutrient uptake functions are Michaelis-Menten type
functional responses P;(t, S(t)) = m;S(t)/(a;+ S(t)), wherem; =1, a; =1, my = 0.7, a3 = 0.3,
m3 = 0.64 and a3 = 0.2. Each integral in Theorem 4.1 is evaluated numerically as p; =
14.1111, py = 6.7205, p3 = 5.0603, p1z = 0.6780, p13 = 1.87861, uo1 = 0.7909, s, = 0.2990,
ps2 = 0.8122, i2 = 0.0012 and i3 = 0.009. This example suggests that competition mediates
coexistence in the folldwing sense: If 1 is absent and 72 & z3 compete, then 5 drives I3 to
extinction. However, this extinction of z3 is avoided simply by introducing z;. Once z; is
introduced, all three species persist in sustained oscillation (see [73, pp. 486-487]).

The purpose of our study is to investigate how three species can coexist in a periodic chemo-
stat. There are still unknown aspects on periodic chemostat models. First, as in [33], the region
of parameters Whlch ensures the coexistence of three species actually exlsts, but it is narrow.
An adequate interpretation why the coexistence region is narrow should be proposed. Second,
it is unknown and therefore should be figured out what factors realize the coexistence of three
species.
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In this chapter, let us consider periodic chemostat equations of the form
3
S'=(8°-8)D(t) - £i(S)z;,
=1 (E)
z; =i (fi(S§) = D(t)), (i=1,2,3).
Here SO is a positive constant and D : [0,00) — [0,00) is a positive, w-periodic function. We

assume that D(t) is not constant, since the coexistence of three competitors is impossible under

constant environment. The mean value of the periodic function D(t) is denoted by (D) :

1 w
iy =1 / D(s) ds.
wJo
We assume the following for the functional response f; of i-th species.
F-(i) fi: Ry —>VR+ is continuously differentiable,
F-(ii) £i(0) = 0, £(S) > 0.

A typical example of f; is Michaelis-Menten functional response of the form :

m;S .
fi(8) = praray (1=1,2,3). (4.2)

Here a; and m; (¢ = 1,2,3) are positive constants.

In the next section, system (E) is reduced to the limiting system. In Section 4.3, an average
competition function is introduced which is exploited to measure the degree of competition
and to give sufficient conditions for the competitive exclusion and a necessary condition for the
periodic coexistence. Section 4.4 gives some numerical simulation results which demonstrate
how the coexistence of three species is realized as the period of the washout rate increases.

Section 4.5 gives conclusions of our study.

4.2 Reduction to the limiting system

By measuring all variables in unit of $° and time in unit of (D)™, that is,
S x;

—HS’SO

50 r z; and (D)t — ¢,

system (E) takes the form:

~
(1 - i(S)z;,
S = (1- S)D(t) glfg( ); (4.3)

z; = z; (fi($) — D(t)), (1=1,2,3).
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Here we relabeled £;(S) and D(t) in the equations (4.3), each of which is actually (D)~1f;(5°S)
and (D)~1D(t/(D)) in (E), respectively. Note that this scaling affects both the period and the
mean value of D. The former becomes (D)w, which we relabel w and the latter becomes the
unity: (D) = 1.

Set X =5+ E:;=1 x; — 1. Adding the equations (4.3) gives the periodic linear system

>/(t) = —=D(t)S(t). (4.4)
Then (4.3) corresponds to

¥ = —D()3,

3 :
T =z, (fi (E—-ij—l-l) —D(t)) , (1=1,2,3).
=1

Since (D) = 1, solving (4.4) gives

(4.5)

t
(t) = 3(0) exp [— / (D(s) - 1)ds] et
, 0
Hence we have
tl_l{& @) =0.
Hereafter let us consider the system (4.5) restricted to the invariant hyperplane ¥ = 0, to which

~ all solutions are attracted at an exponential rate. Therefore setting = = 0, or equivalently,

§=1- ng:l z; yields the limiting system:

' 3 .
.’L‘: =T; <f1, (1 - Z.’L‘]) = D(t)) ) i = 1,2,3. (L)
7=1

Biologically relevant initial data for (L) belong to

3
Q= {(:El,m‘z,$3)T € R:i : Z.’L‘j < 1} )

j=1
where
' Ri = {(11:1,:1:2,1‘3)11' cR3: x; >0, (i = 1’2’3)} .

It is shown that 2 is positively invariant for (L).. Convergence theorem obtained by Thieme
[68] motivates us to consider the limiting system. Throughout the remainder of this chapter, we
consider system (L). k
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4.3 Average competition

In this section, let us introduce an average chpetition function. The definition of this function
is motivated by Hutson [29].

Let Py : [0,00) x (0,00) — [0,00) be continuously differentiable function (k,1 = 1,2,38,
k #1). Average competition functions Py; are defined by

Pu(zr, z1) = ozt (4.6)
By the definition, it follows that

P-(i): Pu- Py =1,
P-(ii): Pkl =0 iff T = 0.

The derivative of Py along the solution of (L) is denoted by Py(zx(t), zi(t)). Direct calculation

Py (zx(t), ivzv(t)) 3 3 ‘
eavparnweenakal Ll IRl IUE TR el I e e 7
P (zx(t), z1(2)) b ; i | —f ,z:;z] @.7)
Proposition 4.1. Let (Z1(t), Z2(t), Z3(t)) be a positive w-periodic solution of (L). Then

Pry(&1,%2) _ Pr3(71,%3) _ Pp3(Z2, Z3) B
<P12(2_71,502)> a <P13(5a1,:23)> B <P23(532,5;3)> =0. (BC)

Proof. Since Z1(t) is a positive w-periodic solution of (L),

gives

£1(0) = 71(w) = 71(0) exp [ /0 " (11 = 31(s) — F2(s) — 5(s)) — D(s)) ds] .

Since (D) =1, (fi(1 — 51 — I3 — Z3)) = 1. In the same way, (fo(1 — Z; — %2 — Z3)) = 1 and
(fs(1 =21 — T3 — 23)) = 1 Hence (BC) holds. This completes the proof. O

Suppose that there exist positive constants S§; (k,! = 1,2,3, k£ < [) such that fx(S5;) =
fi(S3;). Without loss of generality, we can assume that §fy < S73 < S33. Further we assume
£5(8) < fa(S) < fu(S) for S € [0,55), f3(S) < Hi(S) < falS) for S € (S5, STy), Fi(S) <
f3(8) < fa(S) for S € (S35, 5%5) and f1(S) < f2(S) < f3(S) for S € (S35,00) (see, for example,
Fig.4.2). , ‘

" Let us denote the nutrient S (t) by

3

S(t):=1-_ zi(%). (4.8)

j=1
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In particular, S(¢) denotes the periodic nutrient when the solution of (L) is periodic. In addition,
let us set g1 (S) = fi(S) — f1(S). The graph of gi; is illustrated on Fig.4.1 in the case where f;
takes the form of Michaelis-Menten functional response. Note that gy corresponds to the right
hand side of (4.7). Further, g (S) > 0 for § < S}, and gr(S) < 0 for S > S5,

Remark 4.1. (BC) represents that average competition among all species is balanced if the
solution of (L) is periodic. (Pkl(jk,il) /Pu(Zx, T1)) represents the integral of gri(S) on the range
of the periodic nutrient (gray region on Fig. 4.1). Hence minima S~ and mazima S* of the
periodic nutrient are determined in order that the integral equals to zero (that is, (gx(S)) = 0).

Figure 4.1: The graph of gy (S) ,‘ (k<)

Note that since the integrand of (Py (Zk, Z1)/ Pri(Zx, £1)) is a composition function of g (S)
and S(t), it is possible that :

Cha w
clu / gra(r)dr >0 but é /0 g (S())dt = 0. (4.9)

Proposition 4.2. (competitive ea:clusibn) Let (z1(t), z2(t), z3(t)) be a positive solution of (L).

C-(i) If there exists Ty > 0 such that S(t) < STy for allt > T, then z2(t) — 0 and z3(t) — 0
at some exponential rate as t — oo. '

’C'—(z'i) If there exists Tp > O such that STy < S(t) < 5'5‘3 for all t > Ty, then z1(t) — 0 and

z3(t) — 0 at some exponential rate as t — oo.
C-(iii) If there exists T5 > 0 such that 35 < S(t) for all t > Ty, then z1(t) — 0 and z2(t) — 0
at some exponential rate as t — co.
Proof. Tt is sufficient to show case (i). The other cases are proved in the same manner. The
derivative of P»; along the solution of (L) with a positive initial value z(0) €  is

Pzi(mz(t),mi(t)) = f2(S@)) — f1(S®)) = g21 (S(2)).-
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Hereafter simply we write Py (zx(t),z1(t)) as Py (t). Since we assume S(t) < S7, for all ¢ > T,
F2(S()) < f1(S()) and hence Py;(t)/Py;(t) < 0 for all t > Ty. Recall that Py (t) > 0. Then
there exists Py} > 0 such that Py (t) — Py ast — oo. In the same way, there exists Pg; > 0 such
that P3;(t) — P3; as t — oo. To complete the proof, it is sufficient to show that P} = P§; =0
since Py = 0 iff z; = 0 by P-(ii). We claim that S(t) — S}, as ¢ — co when Pj; > 0. In
fact, if not, there exist monotone increasing sequences {¢,}%°; > T; and a sufficiently small
positive constant ¢ such that g21(S(tn)) < 921(Si — &) < 0 for n € N. Then immediately we
have le(tn)/Pm(tn) = 921(8(tn)) < 921(S7, — 9) for each n € N. Since g91(S7; — 0) is a strictly
negative constant, Pp;(t,) — 0 as n — co. This implies that Py; — P3; = 0 as ¢t — oo, but
~ which is a contradiction. Hence S(t) — ST, as t — co when PJ; > 0. Now we suppose P3; > 0
or P;"l > 0. Since z1(t) is bounded, z3(t) — Pyz1(t) and z3(t) — P§z1(t) as t — oco. Then
z1(t) — 27 = (1 - 8%,)/(1+ P3; + P§;) > 0 as t — oo. This implies that (2}, Py 2%, P3z}) is an
equilibrium point of (L). Then the solution with a nonnegative initial value (z%, Py, 2%, P3; z7%)
must satisfy

st =siom | [ (a(5) - D)ds

for any positive t, or equivalently, f1(S7,) = D(t). This is a contradiction since D(t) is not
constant. Hence Py; = P3; = 0. This completes the proof. O

Note on Proposition 4.2
Assume that S(t) < S35 for all sufficiently large ¢. Here we do not necessarily assume that
T < S(t). By the assumption, we can show that there exists P3; > 0 such that Psa(t) — P3,
as t — oco. Moreover we can show that S(t) — S3; and z3(t) — PgHhza(t) as t — oo when
Pé“z > 0. Although x3(t) — 0 as ¢ — oo both in C-(i) and C-(ii), in this situation, there might
be a positive solution (z1(t), za(t), 23(t)) of (L) such that z1(t) + z3(t) + z3(t) — 1 — S35 and
z3(t) — Pgpra(t) as t — co. It is clear that species z3 never enjoys competitive advantage as
long(as S(t) < S33. However species 3 still has the possibility to persist. The problem would be
more difficult to figure out whether z3 persists or not in this situation. It leaves for our future
consideration.

4.4 Numerical simulations

Let us show some numerical simulation results which are carried out by using Mathematica.
Assume that nutrient uptake functions of competing three species take the form of Michaelis-
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Menten functional response (4.2). The washout rate D(t) is given by
D(t) =1+ dcos(2nt/w), : (4.10)

where d is a positive constant satisfying 0 < d < 1. Throughout the remainder of this section,

parameters and initial values are fixed at the following respective values:

a1 = 0.018181 , ay = 0.272727 , ag = 0.090909,
mi1 = 1.36898 , my = 1.49733 , ms = 2.13904 , d = 0.64171, (P)
z1(0) = 0.5, 22(0) = 0.2, z3(0) = 0.3.

Note that these values are taken almost equal to the parameters adopted in [33, p.122] and
[73, pp. 486-487]. The graph of respective functional response of competing three species with
(P) is illustrated on Fig.4.2. Note that every species can take competitive advantage since the

f1(8) ‘)
1.5 o,
. 833 e e {ci
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Figure 4.2: Functional responses of three species for (P)

washout rate varies between the range in which every competitor has the chance to be superior
to the other competitors in terms of nutrient uptake (note that d = 0.64171). The intersection
points S75, 873 and S35 are numerically calculated as ST, = 0.078788, Sj; = 0.111111 and
S33 = 0.121212. 4 o _ :

Let us show some figures which illustrate trajectories of the solution of (L) with (P) for
different values of period w. Figs 4.3-4.8 illustrate the time series and the projections into
z1 — T2 — T3 phase space of trajectories for w = 4, 6, 8, 12.5, 20 and 50, respectively. Let us
denote the end time of numerical simulation by tmez. Here tp.: = 6000. The time series of
trajectories are shown for 2900 < ¢t < 3000 < %4z In the case w = 4, only z3 can survive
(see Fig.4.3). We can confirm that 1(tmaz) ~ 1.6 X 1072 and z3(tmaz) ~ 3.7 X 1076, In the
case w = 6, that is, on Fig.4.4, it is observed that z, and z3 survive, while z; goes extinct
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Figure 4.3: w = 4. Figure 4.4: w = 6.

Only zs survives. S x9 and x3 coexist.
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Figure 4.5: w =8. Figure 4.6: w = 12.5.

Three species coexist. Three species coexist.



4.4. NUMERICAL SIMULATIONS 73
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Figure 4.7: w = 20. Figure 4.8: w = 50.

Amplitude grows large. Three species still coexist.

(71(tmaz) ~ 5.8 x 107%). In the case w = 8, three species coexist (see Fig.4.5). On Figs 4.6-4.8,
three species still coexist. '

The mechanism of coexistence is intuitively interpreted as follows: Assume that f3(1) >
Dpaz = 1+ d. First consider the situation that the nutrient S(t) satisfies S33 < S(¢1) and
f3(S(t1)) < D(t1) at some ¢1. Then all of z1, 22 and 3 decrease at their respective exponential
rates as long as t satisfies the relation f3(S33) < f3(S(t)) < D(t). If this relation holds true for
all t > t3, S(t) — 1 as t — oo, but which contradicts with the assumption f3(1) > Dyap. Hence
within a finite time t3 > ¢, we have f3(S%3) < D(t2) < f3(S(t2)). Then according to the proof
of Proposition 4.2 — (iii), z1(t2) and z2(t2) still decreases at their respective exponential rates,
while z3(t3) increases at some exponential rate. Note that S(¢) decreases as z3(t) increases. If
the increase of z3(t) leads the inequality ST, < S(t3) < Si3 for some t3 > t2, Proposition 4.2 —
(ii) implies that z1(t3) and z3(t3) decreases, while z3(t3) increases. Further if there exists t; > t3
such that S(t4) < 575, then z2(t4) and z3(t4) decreases, while z1(t4) increases. Consequently, if
S(t) moves in such a way that all species can grow in each dominant interval, the coexistence
of three species is possible. '

We can see on Figs 4.3—4.8, the amplitude of the nutrient (4.8) becomes large as w increases.
In fact, minima of § (t) for different values of w are approximately equal to 0.01 (see Fig.4.9),
while maxima of S(t) increases as w increases (see Fig. 4.10). Hence S}y, 573 and S; belong to
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the range of S(t) and the assumptions of Proposition 4.2 don’t hold.

Minima Maxima
0.012
0.01 /"
0.008
0.006
0.004
0.002
10 20 30 40 50’ To zo 30 40 50"
Figure 4.9: w vs minima of S(t) Figure 4.10: w vs maxima of S(t)

Finally let us propose an intuitive interpretation why maxima of S(t) increase as w increases.
Since the presence of species inhibits the increase of the nutrient, the timing when S(t) attains its
maxima (minima) almost corresponds to that of D(z). Note that when D(t) changes slowly, that
is, when w is large, every species can enjoy competitive advantage for a long term. In particular,
the long term dominance of z3 makes the nutrient decrease intensively since z3 consumes the
nutrient with a high rate. Then z; takes competitive advantage before D(t) attains its minima
and begins to grow as D(t) decreases. Since z; dominates the other competitors, z3 and z3
cannot grow rather decrease by Proposition 4.2. Soon D(t) becomes large and then z; decreases.
As all of nutrient, z3 and z3 are still low density, the nutrient can increase intensively. The slow

change of D(t) also promotes the increase of the nutrient (see Fig.4.11).
X ,S ,D D
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Figure 4.11: The time series of z1, =2, 23, S(t) and D(t) for (P) with w = 50.

Let us summarize numerical simulation results:

Remark 4.2. Three species coeristence occurs as w increases if S(t) has small minima and
large mazima. Mazima of S(t) are likely to become large as w increases. This suggests that a
long term period of periodic washout rate promotes the coexistence of three species competing for

a single resource. .
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4.5 Discussion

In this chapter, we considered chemostat equations with a periodic washout rate in which three
épecies compete for one limiting nutrient. We introduced an average competition function Py
by which it was shown that positive w-periodic solutions of system (L) must satisfy the condition
(BC). As we remarked in Remark 4.1, (BC) highly restricts the range of amplitude of S(t) since
(Pu/Py) =0 (1 < k,1 <3,k <1). Hence (BC) would restrict the parameter sets of the equations
to be narrow to ensure three species coexistence. In Section 4.4, it was demonstrated that the
number of survivors increases as the period of the washout rate becomes large. In other words,
a long term period enhances the coexistence of three species. Since the result obtained in this
chapter is just analyzed by mathematics partially, further mathematical analysis is necessary.
This leaves for our future consideration.
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Appendix A

Appendices

A.1 Characteristic equation

Consider the equation
. PQA)+Q(Ne™> =0. (A1)

For the analysis of the characteristic equation (A.1), we will refer ” Geometric étability switch
criteria’ obtained by Cooke and van den Driessche [11]. The correction of [11] is proposed by
Boese [6]. The result is as follows:

Theorem A.1. [11], [6] Suppose that
(B1) (A.1) has no common imaginary root,
(B2) P(—iw) = P(iw), Q(—iw) ='Q(iw) for w € R,

(B3) limsup |Q(N/P(V)| <1,
|A|—00,ReA>0

(B4) P(0)+Q(0) #0,
(B5) F(w) = |P(iw)|*> — |Q(iw)[? for w € R has at most a finite number of zeroes.
Then the following statements hold true:

(C1) If F(w) =0 has no positive roots, then no stability switch may occur.

(C2) If F(w) = 0 has at least one positive root and each of them is simple, then there exists
7 > 0 such that the equation (A.1) is unstable for all T > v*. As T varies from 0 to ¥,
at most a finite number of stability switches may occur.
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Remark A.l. For 6 € (0,27), cosf = @fw_)lf and sinf = —W%)IT where ¢ = PRQR + P1Q;
and 9 = PrRQ1 — PiQg. Pg (or Qg) denotes the real part of P(iw) (or Q(iw)), while Py (or
Q1) denotes the imaginary part of P(iw) (or Q(iw)). Then following statements are true:

o 0 = arctan (—¥/yp) if sind > 0 and cosf > 0,

o 0=m/2 ifsind =1, ‘

e 0 = 7 + arctan (—9/¢) if cosf < 0,

o §=23m/2 ifsinf = —1,

® 0=2m + arctan (—9/y) if sinf < 0 and cosd > 0.

Let @ be a positive root of F(w) = 0. Then stability switch may occur for T = 1, where

6+2 |
Tn = +{Dm, n=01,2.




