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Abstract

The learning of concepts from visual input is a field that draws from the areas of both,
computer vision and artificial intelligence. The problems encountered in designing such a
system are, therefore, manifold. In the present work, some of those problems are addressed,
and a system that learns simple model descriptions from sequences of binary images is
proposed. The system consists of several independent modules that are grouped together.
As the aim is to develop a system that does not rely on any supervision, the input is
provided in the form of images, either acquired by a scanner or any other reading device.
Four major modules can be distinguished: they are labelling, description, interpretation,
and explanation.

Based on some visual input, ulhich has been restricted to binaryrimages, the 1abel]jng
stage attempts to extract s.alient» components of the input object Salient components are
assumed to be components that give a concise but meaningful description of some object
meaningful in an intuitive sense. Since human intuition cannot generally be captured by a
machine, the concept of maximal approximately convex subparts (MACS) is proposed and
it is shown that this not1on can represent some of the semantics of an object solely based on
its geometncal structure. The decomposmon into MACS is then used to denve a descnptlon
of the relations between MACS. This descnptlon is in the form of a directed graph called
relatlonal network whose links quahtatlvely describe relations. To obtain such quahtatlve
relatlons, it is proposed to generahze commonly used predlcate relatlons as, for instance,
used in semantlc networks, mto so-called generahzed pred1cates Generahzed predlcates
can be v1ewed as the "fuzzxﬁcatlon of usual predlcates and they quahtatwely descnbe
relatlons among MACS Each generahzed predlcate cons1sts of a sum of scaled Gauss1an
functions; through generahzaﬂon thrs sum of Gaussmns will be adjusted to mirror more
general relations and thus prov1de more general class descnptlons o

Once a description of an instance has been obtamed it can be matched with previ-
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ously acquired concepts or object class descriptions. Since the basic structure of an instance
or a concept is that of a graph, this matching corresponds to the subgraph isomorphism
problem, which is known to be NP-complete. The feasibility of the matching can be re-
stored, however, by employing a heuristically augmented» state-space search. Provided a
satisfactory match is found, the rrew instance and the concept are generalized to mirror the
enlarged class. Generalization is carried out in two steps: generalization of the structure
of the concept, and generalization of the links and the generalized predicates. Generalizing
the structure of the concept is straightforward; however, the relational network is now
transformed into a conceptual network. The difference between the relational network and
the conceptual network is that the latter has a third dimension along Which concept discrim-
ination is carried out. Generalization of the predicates, on the other hand, has to ensure that
the definition of the generalized predicates is closed under‘ the used generalization‘operator.
In the present system, an adopted version of MYCIN’s generalization operator has been
used. As the steps of matching and generalizing correspond to identifying an instance with
some recorded descriptions, an irlterpretation of the input image becomes possible.
Finally, the results obtained from generalization have to be explained. As this
explanation should be easily understood by a human operator, a description in near natural
language is extracted. Such a description is obtained by first transforming the conceptual
‘ network into a simple semantic uetwork. Based on the extracted semantic network, it is
then relatively easy to produce near natural language, based ona simple set of production
rules. | | | o
As stated above, the main task of the system is the acqulsrtlon of concepts or of model
structures. Usmg the same mechamsms however, it is as well possrble to recogmze new
instances based on some concept database Recogmtron isnot complete thou gh asitisonly
possible to recogmze or to descrrbe an instance in terms of the recorded concepts Hence,
the approach might be called recogn1t1on by expenence On the other hand, even if it is not
possible to completely recogmze anew instance, partlal recognition based on substructures

of the recorded concepts might be possrble Fmally, employing the hrerarchlcal abstractlon
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of concepts that becomes possible in conceptual networks, certain clusterings of instances
can be observed. Those clusterings tend to identify common substructures among several
instances. It is those substructures or partial concepts that might give valuable hints during

recognition.
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CHAPTER 1

Introduction

1.1 Context

Nowadays it is usually taken for granted that empirical knowledge is dependent on, or
derived from, perception. Although the role of perception as a basic ability for surviving
in our world has never been questioned, this was not always so in the case of learning or
acquiring knowledge, as for instance the Greek philosopher Pythagoras taught that thought
is superior to sense and intuition is superior to observation. The Pythagorean ideal was the
mathematician whose knowledge was supposed to be certain and exact; moreover, it was
obtained by mere thinking, without the need of observation. Socrates went even further
to say that the body, and thus the senses, is a hindrance in the acquisition of knowledge;
the logical consequence of which is that all knowledge is already existing within us, we
just have to recollect it [46]. In Greek mathematics as well, the reasoning was deductively
from what appeared self-evident, not inductively from what had been observed. Induction
did not play any prominent role until the middle ages; for instance, Copernicus based his
heliocentric system, which was subsequently refined by Kepler, on observations ofthe actual
movements of the planets. The first detailed description of mathematical induction can be
found in Pascal’s work [8]. Further successes of induction became apparent in the work by

Galileo and Newton later. A somewhat intermediate position was taken by Kant, who, in



his "The Critique of Pure Reason," attempted to prove that, although none of our knowledge
can transcend experience, it is, nevertheless in part a priori and not inferred inductively
from experience. However, Kant reasserted the importance of perception or induction by
saying that all human knowledge begins with perception, proceeds to understanding, and
ends with reason. More recently, the problem of scientific discovery has attracted more
attention. For instance, Coleridge wrote that scientific reasoning is the faculty of concluding
universal and necessary truths from particular and contingent appearances. On the other
hand, Russell and Popper maintained that there is no such thing as the scientific method,
and séientists do not make their discoveries by induction or ‘By any othér méfhod ’[34]. '
Whether or not we are using induction to acquire knowledge, doubtless, Kant’s
remark that all human knowledge starts with perception is a strong incentive for learning
from observation. Observation or perception is so prevalent in our daily lives that very
often we are not able to fully appreciate its implications. Learning from observation,
as, for instance, professed by Kepler or Newton, prbcee‘ds by collecting observations or
measurements and then trying to find laws that govern the observations or features that
are in common among the observations. Finding laws that could represent a certain set of
observations does not only require those observations, but as well a great deal of domain
specific knowledge, which we usually acquire during many years in school. The other
approach, namely, finding what is common-among the observed measurements can be
considered a sort of abstraction from data. It has been said that all'human knowledge is
empirical in nature, hence, knowledge acquisition might have proceeded as abstraction from
observation. If we attempt to equip a machine with the ability to learn then we face the same
two possibilities, namely, learning using a priori knowledge and learning as abstraction.
The former usually has been characterized as explanation based learning (EBL), whéreas
the latter one has been characterized as similarity based learning (SBL). Explanation based
learning heavily relies on the available domain knowledge and could even be criticized for
"answer begging," in that the formulation of the domain knowledge will heavily influence

the obtainable results. It appears, therefore, that similarity based learning is more suited to



the present state of fnachine learning, as long as there are no large and general knowledge
bases available. ;
Here I am proposing an approach to similarity based learning that should be more
general and much closer to human learning behaviour than previous approaches. The
approach is based on the idea of abstraction from visual examples, which are given in the
form of images. Hence, the proposed system is a model for the whole process starting from
perception and leading to the forming of concepts. However, I do not claim the system to
be a model for human knowledge acquisition. On the contrary, it is presumably quite far
from human performance, and should rather be considered as an approach closely adapted
to the requirements and constraints of machine learning. Any system covering the whole
range from perception to concept formation necessarily has to address problems in many
different areas. Those problems range from image processing problems, to problems in
knowledge representation and generalization. Due to the wide range of the encountered
problems, it was not possible to treat them all in the same depth. While some have been
solved quite satisfactorily, others were only touched upon, without the possibility of any
thorough treatment. In this respect, I hope that the present work might give some hints as

to where further research is most needed.

1.2 Historical Overview of Other Research

A mile stones of early research in machine learning is definitely Winston’s work [61]. T will
try to give a more detailed review of his work in Section 2.2. After Winston, who based
his work on visual input in the form of simple line drawings, the field began to separate
into symbolic approaches, that is, methods that work on a set of symbols, and numerical
approaches, directly working with raw data. Of the two, the former one, namely symbolic
learning or reasoning has been prevalent for a long time. In a different direction, a distinc-
tion between similarity based methods, attempting to derive a generalization from many
examples by analyzing their similarities and differences, and explanation based inethods, a

knowledge intensive method of examining single examples to derive generalizations based



on underlying causal models, becomes possible. It has sometimes been said that the expla-
nation based methods are theoretically better justified and that there is no need to look for
similarities across examples. However, as Lebowitz [32] pointed out, it may not always be
possible to find a causal explanation, and similarity often implies causality. The objective
of the present work is given in the context of similarity extraction from raw data or images,
respectively.

We can look briefly at some work done in the area of similarity extraction, after
Winston’s work, in a chronological order. Haar [19] addresses the problem of the conversion
of spatial information into symbolic descriptions. Haar’s work did have some influence on
the present work, and I will come back to this where appropriate. The actual problem tackled
by Haar is the so-called layout problem. That means, for instance, given a room, a set of
furniture, and a set of constraints guiding the relation among individual pieces of furniture,
the task is to find the best possible placement for the furniture. Haar’s main contribution is
to introduce some sort of fuzzy concept in order to obtain an adaptive conversion of spatial
information into a symbolic description.

Kodratoff and Lemerle-Loisel [31] propose to utilize an optimized recognition tree
for the generalization of childlike line drawings and chemical molecules. Kodratoff and
Lemerle-Loisel use quantified operators expressing spatial relationships among strokes
extracted from an example. A near-miss exists whenever two relations differ only slightly.
Each near-miss can be considered as introducing a partition into the set of all relations; near-
misses can therefore be represerited as the nodes of a tree, whose descendants correspond
to the induced pértition. Hence, the recognition tree becomes a decision-tree with which
new instances can be recognized. The weakest point of Kodratoff and Lemerle-Loisel’s
work is probably the highly artificial input domain they used. It is questionable whether the
approach would not fail in using real exampleé, due to problems in extracting unambiguous
strokes.

Somewhat closer to Winston’s work is the approach by Connell and Brady [11].

The input to this system is in the form of two-dimensional shapes, such as tools, planes,



or others. Based on Asada and Brady’s smoothed local symmetries, a semantic network
description of the shapes is initially built. By a clever transformation, the semantic network
representation is then transformed into Gray-code, in which semantic distance corresponds
to syntactic or Hamming distance. Generalization proceeds by an operation called ablation.
The idea behind ablation is that if two things belong to the same class then the differences
between them must be irrelevant, hence these differences can be removed. In case that
ablation would generate an over generalized concept, a disjunctive concept consisting of
the initial concept and the new instance is generated instead. Ablation works because the
syntax of the representation reflects its semantics in a very simple way. Stress is therefore
placed on an ingenious transformation of the semantic network into Gray-code. Connell
and Brady’s system stresses the concept of form. That is, anything having a flat surface and
a part that can be grasped will be considered semantically close to a hammer and could be
used for hammering tasks. The system as a whole is very well thought out and appears to
be sufficiently general to deal with rather complicated domains.

Segen [49] proposes an approach for the model learning and recognition of non
rigid objects. A two-dimensional shape in Segen’s approach is represented as a set of local
features, such as curvature maxima of the boundary. The local features are then grouped
together into a layered graph,. showing the interdependencies of the features. A group of
shapes whose layered graph representations are not identical can be described by means
of a probability model whose outcome is a probabilistic layered graph, where each vertex
has associated with it a probability distribution over a set of possible labels. To obtain
such a probabilistic graph, the first layered graph is converted into a probabilistic graph
by assigning probability values to each vertex. The remaining layered graphs are then
used to update the probability graph, leading to the generalized model graph representation.
Recognition of new instances can then be done by matching the new instance to the models.

A rather more conventional approach is taken by Dong et al. [12, 13, 14]. .Based
on the three-dimensional information obtained by trinocular vision, Dong et al. attempt to

build a system that learns the structure of objects by abstracting from examples. First, the



obtained three-dimensional information is processed so as to obtain a model that describes
the surfaces the object is composed of and the lines the surfaces are composed of. The actual
model is represented by using a relational description language (RDL), similar to a predicate
representation. The main difference between RDL and a predicate representation is that the
former allows to represent qualitative information by employing graded predicates, such
as small, medium, or large. Operator intervention is then needed to structure the obtained
relations; for instance, in the case of learning the concept of a house, the system is taught
which surfaces are forming the roof, the walls, and so on. The actual concept refinement
takes place by matching the initial concept with an example. Depending on the similarity
between the initial concept and the example, the resulting concept description is refined
until a prefixed similarity measure is satisfied. The main contributions of this work lie in
the fact that real images have been used and in the used relational description language,
which allows for a certain flexibility during concept refinement.

Arita et al. [3] propose another system for the acquisition of ‘models from two-
dimensional images. The basic idea behind their system is to first segment the image into
homogeneous regions. They then introduce a so-called segmentation tree that represents
levels of abstraction of the segmentation. The segmentation tree can be obtained by varying
the parameters of the segmentation procedure and observing which regions are merged at
a certain time. Each node of the segmentation tree carries information on the represented
region, such as shape or colour. Generalization of the model proceeds by first finding
a match between two segmentation trees. Nodes of the tree that cannot be matched are
discarded at that point and the two segmentation trees will have the maximal common
structure. Node information is:then generalized according to some simple rules. Arita’s
system is an example of a system that does not rely on a high-level model. Although it
appears that such model representations are of advantage in many cases, the problem of
how to bridge the gap between the employed model structure and human intuition has not
been solved satisfactorily in most cases.

As can be seen from the above descriptions, lately it has become more popular to



use model descriptions not based on predicate or semantic networks. I believe, however,
that semantic networks are important for the ease of understanding the acquired model. On
the other hand, hitherto used semantic network representations appear too rigid and other

possibilities of predicate representations should be explored.

1.3 Outline of the Thesis

This thesis is organized as follows. In Chapter 2, I will give a broad overview over the
purpose and architecture of the proposed system. To emphasize the background of the
present work further, I will also describe two other systems, the one by Winston, because of
its historical importance, and one by Ueda and Suzuki, which appears representative for the
recent development of vision based model acquisition and recognition schemes. In the next
four chapters I will explain in detail the four main components of the proposed system. In
Chapter 3, I am going to outline the approach used for finding meaningful decompositions
of binary shapes. The chapter is centered on the notions of approximate convexity, whose
thorough mathematical treatment is given in Appendix B, and maximal approximately
convex subset MACS. In Chapter 4, I will first explain how to obtain a description of
the decomposition into MACS by employing a so-called relational network, which is, by
itself, a part of the conceptual network, used to represent whole concepts or clusters of
concepts. The major point of relational networks is the usage of generalized predicates,
which are designed to represent "fuzzy" relations among segments of the decomposition.
In the same chapter, I will also touch the problem of how to match relational networks
efficiently. Next, in Chapter 5, the employed procedure for generalizing the model structure
is explained. I will show in that chapter that the used generalization scheme does not only
bear some resemblances to MYCIN’s generalization of certainty factors, but that it has
a simple probabilistic interpretation as well. The problem of finding easy to understand
explanations of obtained generalizations will be addressed in Chapter 6. That chapter is
devoted to the generation of near-natural language explanations based on the transformation

of the relational network into a simple kind of semantic network. The performance of the
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proposed system is illustrated in Chapter 7, where a series of examples is shown. The
examples have been chosen so as to give a comprehensive idea of the system. All aspects
of the system as outlined in the proceeding chapters are further outlined here by means of
some examples. Finally, in Chapter 8, I will summarize the proposed system and try to

emphasize the major contributions of this work.



CHAPTER 2

Overview

2.1 Purpose and Architecture of System

2.1.1 Introduction

It is possible to define a general architecture for a system that learns concepts or models from
visual examples. Such a general architecture is shown in Fig. 2.1. As can be seen from that
figure, a bottom-up and a top‘-down part can be identified; where they meet, generalization
takes part. Based on the generalization results, which actually constitute an interpretation
of the scene or image, the refinement of the bottom-up proécssing becomes possible, which
is shown by feedback links. The actual flow of the processing is as follows. First, we
have to identify salient components or features in an input image. This step is referred to
as labelling or component identification. Based on the found features, a description of the
input shape can be derived. Comparing the derived description with previously acquired
descriptions gives us an interpretation of the input shape, based on which a generalized
description can be obtained. This generalized description will then be stored in the concept
data-base for later use. Finally, the system should be able to explain the obtained results in
an intuitive and easily understandable way.

'The system to be described here is somewhat simpler than the one shown in Fig. 2.1.

It could therefore be considered a case-study of a system for learning of concepts. The
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Figure 2.1: A general non-model-based learning system

actual data flow of the system to be described hereafter is shown in Fig. 2.2. What is missing
in respect to the general learning system from Fig. 2.1 are the feedback links. That means,
at the moment no refinement of the bottom-up results are possible. Furthermore, as will be
described later, the input has been restricted to binary images.

Taking into account the above restrictions we can say that the proposed system
should be able to acquire and generalize models of simple objects that can be characterized
sufficiently by means of their silhouettes. Acquiring a model, as used in the present context,
refers to the task of building a model description from a single input image or instance.
Generalization of a model is achieved by appropriately adopting the model description so
as to fit other instances of the same class of objects. Generalizing an instance description
yields a concept description, or concept for short, which does not refer to a single instance,
but to a class of instances. The same system can be used for the recognition of unknown
instances. This is achieved by matching the instance against all available models; the model
that represents the instance best can be considered as defining the object class the instance
belongs to. Strictly speaking, such an approach does only allow for recognition in respect to
the acquired model base, that is, in respect to prior knowledge, and does not provide for any

exclusion of instances as not belonging to any previously acquired concept. This problem

10



Binary Image
Decomposition
Component Description
Description

Relational Network

Concept Data-Base

7
\

Conceptual Network

Generalization ¢

Figure 2.2: Outline of the present system

could be overcome by considering only those instances as recognizable whose similarity to
some concept is above a certain threshold. Furthermore, it would be possible to recognize
such instances at least partially, by investigating what parts of some concept can be matched
to the instance. Hence, a recognition of some constituents of the instance might become
possible. This, in turn, might lead to a partial characterization of the instance. Although
such an approach appears to be quite straightforward, not much work on the recognition of
instances has been done within the framework of the present system.

Let us assume that each concept to be learned or to be recognized can be expressed
as a set of primitive building blocks, which are related to each other by some predicates.
Conjecturing from human understanding and learning behaviour, it seems reasonable not
to duplicate parts of the memory structure that could be used in the recognition of more
than one concept. For instance, it is extremely wasteful and not very intuitive to duplicate
~ concepts corresponding to two-engine planes and four-engine planes, as the former can be
subsumed by the latter.

What I propose here is a unified framework for model acquisition, concept building

11



and object recognition, based on the same memory structure. The assumption is that the
mentioned three tasks are inherently related and intertwined, so they shouldn’t artificially be
separated and treated differently. The actually proposed memory structure does not claim
to be a model of human memory. Quite far from this, it simply appears to be suited for
solving the task in question, namely to acquire and recognize instances of simple visual

objects by computer.

2.1.2 Structure

I will refer to the structure used to represent all information as conceptual network. The
conceptual network is a three-dimensional structure, whose z-axis can be viewed as impos-
ing a hierarchy. Three main hierarchical levels can be distinguished. They are from bottom
to top: the relational network layer, the partial-concept layer, which can itself consist of
multiple layers, and the concept layer. A schematic representation of this structure is given

in Fig. 2.3. Depending on the intermediate levels of partial-concepts desired, additional

Concepts

Partial-Concepts

Partial-Concepts

Network Layer

Figure 2.3: Hierarchical structure of coriceptual network

layers can be inserted so as to more closely mirror possible multi-level interpretations.
As already mentioned, new instances are presented in the form of binary images,

acquired by a scanner. The restriction of using binary images only is rather strict. However,
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the system is exploratory in nature, and it should be possible to extend it to the domain of
gray-scale or range images. The input objects are first segmented into maximal approxi-
mately convex subparts (MACS) [24] and the relation between those MACS is extracted.
Due to the definition of MACS, the actual domain of images that can be processed with this
system is further restricted. For instance, only shapes that can be decomposed into a finite
union of MACS can be processed. This means, the system cannot deal with circular arcs or
the like. Furthermore, shapes that consist of elongated parts will be decomposed better, as
such shapes contain more structure to draw information from. The information that can be
obtained from the decomposition into MACS will be mirrored in the network layer of the
conceptlial network. I will refer to this network layer as a relational network, as it describes
the relation between elements of the decomposition, that is, the relation between MACS.
The important point about the relational network is, that its nodes represent MACS, and its
Jinks represent relations between elements of the decomposition. Actually, only the relation
between elements is mirrored in the relational network; the actual information about the
elements on the other hand does not enter explicitly. Furthermore, distinction of concepts
is not done at the network level. This means, the network level simply consists of chunks
of information, which are not necessarily connected to each other. Each node of the nét—
work could actually be viewed as a sensory neuron, although sensing a meaningful entity,
namely, a MACS. If a new instance corresponds to some part of the relational network,
then the nodes of that network part fire, triggering some nodes in the parental layer. This
firing continues to higher levels, until a final concept is chosen. Hence, it is the pattern of
matched nodes that allow for the recognition of a new instance. In this respect, the proposed
system borrows some ideas from neural networks. For instance, given the three input figures
from Fig. 2.4, the relational network as shown in Fig. 2.5 can be derived. In that figure,
each link connecting some nodes stands for some relation between elements. For instance,
link BC gives the relation between tail-wings and fuselage, link AB stands for the relation
between main-wings and fuselage, etc. Although the relational network actually represents

three different concepts, namely three different types of planes, only one common chunk
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Figure 2.5: Relational network using inputs from Fig. 2.4

of memory will be used. The distinctions of what nodes belong to what concepts are done
on a different level of the conceptual network. Again using the same example, there are
three partial concepts, which cérrespond to the three partial relational networks in Fig. 2.6.
Each of those three partial concepts has a node in the partial-concept layer of the conceptual
network. That means, nodes A, B, and C are connected to node PLANE1, nodes A, B, C, D,
and E are connected to node PLANE2, and nodes A, B, C, D, E, F, and G are connected to
node PLANE3. Therefore, the partial concept-layer consists of the three nodes PLANE1,
PLANE?2, and PLANE3, each of which stands for a valid partial concept. If nodes A, B,
and C of the network layer get matched, then all three nodes of the partial-concept layer will
receive stimuli. Hence, this conflict must be resolved by communication among the nodes
of the partial-concept layer. Finally, all three nodes of the partial-concept layer connect
to the node PLANE of the concept layer. The meaning of this is to show that all three
partial concepts PLANE1, PLANE2, and PLANE3 are subsumed by the concept PLANE

of the concept layer. Therefore, the hierarchical aspect of the conceptual network can be

14



PLANE!1 PLANE2 PLANE3

@ A A
® B &6 6 BE

© © ©

Figure 2.6: Partial concepts

used to implement concept relationships. Furthermore, it can as well be used for denoting
building blocks of which a certain concept is made of. The whole conceptual network for
the example of the planes in Fig. 2.4 is shown in Fig. 2.7.

As stated before, each matched network node triggers its parental nodes (there can
be more than one), sending the match value, that is the confidence in the matching, as a
trigger signal. The parental node, in turn sums up the triggering signals or their conﬁdencé
values respectively. If the summed up signals exceed the threshold of this node, then the
node itself fires, in turn triggering its parental nodes. Note that it is important that nodes
can inhibit each other. For instance, in our example of the plane, if we match the instance
of a plane with two engines against the network in Fig. 2.5, then the nodes PLANE1 and
PLANE?2 of the partial-concept layer will both be triggered. This can be avoided if the
node PLANE2 can inhibit PLANE1. That means, once PLANE?2 fires, PLANE1 cannot
fire as well, as it is subsumed by PLANE2. Similarly, a general inhibition relation can be
defined among the members of any level, except for the network level. The conceptual
network will finally respond with a hierarchical ladder of nodes that fired. The top node of
this hierarchy states the most general concept to which the instance belongs. Lower levels
of the hierarchy give increasingly detailed descriptions, until the lowest level, which shows

the generalized relations between elements of the instance.
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Figure 2.7: Overview of sample conceptual graph

2.1.3 Acquisition and Generalization of the Conceptual Network

If we attempt to generalize two relational networks, then we first have to decide which parts
of the two networks correspond to each other. Only if those parts have been identified, we
can proceed to generalizing those parts. Such an approach has commonly been described
as learning from examples. However, several people have claimed that such an approach
is not sufficient for learning a concept. For instance, Winston claims that so-called near-
misses, that is, examples that differ only in small but important points from the positive
examples, play a crucial role in learning. I believe, however, that negative examples, and
near-misses in particular, do not only place too much stress on choosing an appropriate
learning sequence, but are unnatural from the human point of view as well. Rather than

discriminating an object due to its negative features, it appears that humans search for the
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most appropriate concept to match the object to. Hence, we have what we might call a
complete world paradigm.

For instance, if we are faced with an object we have never seen before, then we
usually try to identify it in terms of something previously encountered, that is, something
within our experience. Hence, it appears that primarily positive concepts are used for
identification. Therefore, as long as our world, or our experience, is not complete, we are
apt to misclassify objects. In other words, we can only recognize objects in relation to
our world. Now, if we transpose this paradigm to machine learning, then it means that we
have to learn a multitude of different concepts at the same time. Therefore, learning in
this cohtext corresponds to the acquisition of new models or the generalization of already
acquired models. Furthermore, since every object presented to such a system is areal object,
it makes sense to acquire them all as separate, positive concepts and thus, each concept
has the set of all other concepts as negative examples. It appears that this is the logical

generalization of the idea of negative examples (see Fig. 2.8).

Concept A

Concept A
Concept B

Domain of not encountered Instances

Figure 2.8: Partial world vs. complete world paradigm

We start with an empty conceptual network. The first instance that is acquired will

be taken as is and used as the network layer of the conceptual network. The concept layer
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obtains one node, which is connected to all nodes of the network layer and which carries
the name of the concept or class to which the instance belongs. From the second instance
onwards, we have to match a new instance with the already existing network layer. Once
a valid matching between the relational network and the new instance has been found, the
two have to be generalized into a new relational network. This is done by merging those
nodes and links that can be merged, and by attaching all the other nodes of the instance
that could not be merged to the relational network. The generalization then propagates up
through the hierarchy. This propagation is achieved by identifying groups of nodes of the
network layer that constitute two or more concepts or partial concepts.

Nodes that cannot be matched are simply attached to the relational network of the
network layer, causing the network to grow gradually. If the newly acquired instance is an
instance of a previously acquired concept, then all the additional nodes that might appear
are connected to that previous concept.A If the new instance subsumes or is subsumed by
a previous concept, then additional layers have to be added to the conceptual network.
Hence, multiple possibilities do not have to be encoded in the network layer, but will be
dealt with according to the structure of the upper layers of the conceptual network. This"
helps to greatly simplify and disambiguate the network layer. If there is no match between
the instance and the relational network possible, then the new instance will simply be added
as a separate chunk to the relational network layer, without any connections to other nodes
of the same layer. In a later stage, this chunk might become conhected to the remaining
network. However, such a connection is not vital for the functioning of the system.

On the other hand, we might notice that the discriminative power of the relational
network is not sufficient to discriminate between two concepts. In that case, it is necessary
to split at least one node.v ‘To that aim, each node has to be checked whether it could be
subjected to splitting. Splitting proceeds by duplicating the node and separating at least one
relational predicate connecting to the node. Conflict resolution in the case of splitting is a
difficult problem which is not yet completely solved. Splitting might also be applicable in

the case where two concepts overlap and one of them gets overly generalized. In that case,
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the excessive generalization needed for one concept might not be justified for the other
concept, and the two concepts should be separated.

It should be noted at this point that the proposed scheme is applicable to both,
supervised and unsupervised learning. This means, learning can proceed by giving an
example together with the class the example belongs to, or by independent abstraction from

a given set of data.

2.1.4 Recognition

Similar to the acquisition of a new instance, recognition starts with matching the instance
against the network layer. As stated before, each matched node of the network layer triggers
its parental nodes. This is achieved by sending the parental nodes the value obtained as a
confidence value of the matching. This confidence value is given as the similarity between
two relation nodes, one from the instance and one from the relational network. Each node
in the upper layers of the conceptual network accumulates the trigger signals it receives.
Once this accumulated value exceeds a node-specific value, the node itself fires. When a
node fires, two things happen: first, its parental nodes receive a signal, which consists of
the accumulated trigger signéls from the lower layer. Second, if there are any inhibitory
links connecting the firing node to other nodes, then those other nodes will be inhibited.
This mechanism ensures that not two nodes that stand for similar concepts fire at the same
time. The triggering of nodes proceeds up the network, until a node without any parental
nodes is reached. At that point, the propagation stops and the hierarchy of fired nodes is
returned as the response of the system. Hence, a hierarchical recognition of the instance in
question becomes possible. If the instance to be recognized is too disjoint from any concept
seen before, then the nodes of the partial-concept layers will not be triggered enough to
fire themselves, hence the propagation dies out and an empty answer is returned. An
empty answer means that the instance cannot be recognized with the present structure of
the conceptual network. Even in such a case, it might be possible, however, to recognize at

least parts of the instance and thus to give some valuable hints on the structure of the new
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instance.

Although some examples of recognition are shown in Chapter 7, the scheme for
recognition is still in a conceptual stage. The details have not yet been worked out fully and
the experimentation is still insufficient to draw conclusions as to the practical usefulness

regarding recognition.

2.2 Review of some Learning Schemes

In order to further illustrate the background of the present work, I will briefly reviews two
seminal works on concept acquisition and learning, both within the context of computer
vision. The most important work in this field is without doubt the one by Winston [61],
which I will attempt to cover in the next section. Although Winston’s work is somewhat
outdated by now, it is still important eriough to warrant some closer studies. More recent
works in the same field can be found, here I will concentrate on a rather interesting approach
by Ueda and Suzuki [58]. Although Ueda and Suzuki’s work is related to the system I am
describing here in so far as they as well chose binary images as input, the actual approach
chosen for representation and generalization is quite different. It is, however, the difference
in approach that make Ueda and Suzuki’s work worthwhile as a comparison for the present

system.

2.2.1 Learning Structural Descriptions from Examples

Winston in his seminal paper [61] attempted to address the following four important points:

- How do we recognize examples of various concepts?

How do we learn to make such recognitions?

- How can machines do these things?

How important is careful teaching?
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In order to shed some light on those points, Winston developed a computer program that
became one of the most famous examples in the area of machine learning. Winston’s
program works in the domain of three-dimensional structures made of bricks, wedges, and
other simple objects. A description of a scene in terms of such simple objects is obtained
from a line drawing, employing an early form of Waltz filtering. Once a description of two
scenes is obtained, a matching program relates the two scenes together and thus differences
in the descriptions can be found and be described themselves.

To obtain a description of a scene, each object is thought of in terms of relationships
to other objects. All descriptions of relationships, together with the description of scenes
that use those relationships, can be stored in one homogeneous network. The starting point
for a description is a line drawing. By means of an early form of Waltz filtering, relations
like IN-FRONT-OF, ABOVE, SUPPORTED-BY, A-KIND-OF, and HAS-PROPERTY-OF
can be extracted, and a sort of semantic network can be built. When a scene has more than
a few objects it is sometimes useful to find a more appropriate description by grouping the
objects into individual objects that can be described and related to each other. Grouping
is implemented as a two-part process. First, an initial grouping is conjectured from three
or more objects that have some properties in common. This is followed by a criticism and
revision stage during which those objects are excluded whose relation to the group is weak
compared with the average.

Winston describes two different approaches to grouping. The first treats so-called se-
quences, that is, a chain of objects linked together by a SUPPORTED-BY or IN-FRONT-OF
relation. Criticism steps in where objects tied together by a chain of relations should not
be grouped together because of some other factors. This can be done by checking other
relations, like size or position. The second approach to grouping uses common relations and
properties. All candidates for group membership must be related to one or more particular
objects in the same way. For instance, the four legs of a table are all related to the board
by a SUPPORTED-BY relation. They are, therefore, candidates for grouping. Again,

the criticism stage attempts to exclude all those objects that are only weakly bound to the
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present group. Other possibilities for grouping would, for instance, involve checking which
objects fit together, as in the case of a jigsaw puzzle, or checking more global relationships.

Once a group has been found, all the parts are gathered under a node that has
specifically been created in order to represent the group as a conceptual unit. The meaning
of membership in this group is expressed by means of a typical-member node. This typical-
member node describes the properties and relations that most of the group members share.
Hence, each group again can be thought of as an individual concept and the initial hierarchy
of the description can be deepened.

Before similarities and differences between two descriptions can be found, it is
necessary to determine which parts of the descriptions correspond to each other. This is
achieved by matching pairs of nodes, one from each description, which have the same
function in their networks. Pairs of nodes that are found to correspond to each other are
linked together, and all those linked pairs form the so-called skeleton. Hence, the skeleton
is a copy of the structure that appears in both networks. Besides the skeleton, a complete
comparison description contains so-called comparison notes, or c-notes for short. A c-
note describes the kind of concept the two nodes from a linked pair are pointing to. For
instance, if a pair of corresponding objects from two scenes share some features, then an
intersection c-note is extended from the skeleton concept corresponding to the linked pair to
a new concept describing what the objects have in common. There are a number of defined
c-notes, each of them expressing some special relation between the two nodes.

According to Winston, near misses, that is, negative instances that differ only in
one but important aspect from positive instances, play an important role in learning. This is
so because small differences allow the machine to refine certain parts of its current concept.
In that respect near misses are used to convey particular properties and ideas rather directly.

The machine’s model building starts with a description of some example of the
concept to be learned. This description itself is the first model of the concept. Subsequent

samples are either examples of the concept to be learned, or near misses.
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The si.mplest case occurs if there is only one difference between the current model
and the new example or near miss. In the case of only one difference there are several
possibilities to account for this difference. The way chosen by Winston’s program is to
find a meta-class to which both of the differing entities belong. For instance, a brick and
a wedge both belong to the class of 6bjects or prisms. Hence, they could be replaced by a
pointer to object or prism. If the comparison is between a model and a near miss, then the
difference gives rise to a MUST or MUST-NOT pointer. Instead of only one difference, it
is more common that there will be a number of differences. If the comparison is between
a model and a near miss then any of the comparison notes might be the key to a proper
generalization of the model. Winston’s model builder, in such a case, produces a tree of
possible interpretations that are ranked so that the most promising hypothesis can be pursued
first. For this, ranking is done by level. This means, the comparison note that is nearest to
the origin is ranked first and is then transformed as if it were the only difference. The other
interpretations are only used in case that the initial choice of the significant comparison
note leads to a subsequent contradiction. In such a case the model builder closes the current
branch of the interpretation for further exploration and backtracks up the tree, attempting
to develop different interpretations.

As an example of a model building task, consider Figs. 2.9 and 2.10. Fig. 2.9 shows
the instance of a table in a) and three near misses in b), ¢), and d), respectively. The model
description of the table, as obtained by Winston’s system is shown in Fig. 2.10. All the

illustrations are taken from [61].

2.2.2 Learning Visual Models from Shape Contours Using Multiscale Con-

vex/Concave Structure Matching

Ueda and Suzuki [58] propose an approach for the learning of visual models from real
shape samples belonging to the same class. Their approach is based on the generalization of
multiscale convex/concave structures, their targets are therefore two-dimensional contour

shapes, and proceeds without any a priori knowledge of the class of images to be processed.
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Ueda and Suzuki claim that graph based learning methods have many disadvantages,
like high complexity, and problems arising from describing shapes as parts and relationships
among parts. They, therefore, propose a scheme that should overcome those problems, and
which allows for an easy comprehension of the derived models by humans. The major
idea behind the approach is that shape generalization corresponds to simplification of shape
structures, which is equivalent to the dropping condition rule commonly used in inductive
reasoning. By simplification they do not mean an approximation of shapes, but rather the
extraction of common convex/concave structures present within instances of the class.

The system consists of the following four procedures: multiscale representation,
multiscale convex/concave structure matching, integration of matching, and model genera-

tion. I will describe all of them briefly.

2.2.2.1 Multiscale Representation

A series of smoothed shape contours and their inflection points can be obtained by using a

curvature scale space filtering technique. All points on a shape contour can be expressed as
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a periodic function
C(t) = (=(t),y(1)), (2.1)

where the variable ¢ denotes contour length. X (¢, ) is defined as the convolution of z(?)
by a Gaussian kernel g(t, o)
+oo 1 2 52
X(t, o =/ (1) —e=e ™ 2 gy, 2.2
to)= ) = , 22

By computing Y (¢, o) in a similar manner, and noting that curvature can be calculated as

lAvel ns1!
K(t,0) = %{%—Y—‘i-)% , (2.3)
different levels of curvature of the smoothed curve can be expressed.

The scale space image is a binary image whose 1-pixels represent inflection points
on a shape contour curve, corresponding to certain values of t and ¢. Every two inflection
points thus border a convex or concave segment of the curve. Using discrete values for the
scale variable ¢ results in the creation of incomplete scale space images that make tracking
rather difficult. Ueda and Suzuki propose to solve this problem by checking for a consistent

replacement of convex/concave segments as the scale factor increases. Let P(*+1) and P(¥)

represent two inflection point sets associated with consecutive discrete scale factors o(5+1)

and o®) (¢(k+1) > (k).

pl+D) = D =12, NGO
PR = p(k) j:l,Z,.-.,N(k) . (2.4)
J

Let d(i, ) denote the Euclidean distance between p§k+‘)

and pg-k). The goal is to find a
mapping J such that the total distance measure defined as
N(k+1)

D(PHHD, pk)y = min S d(i, J(5) (2.5)

=1
is minimized over J, under the condition J(1) < J(2) < ... < J(N®+1) | The above
minimization problem can be solved efficiently by means of a dynamic programming

approach.
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2.2.2.2 Multiscale Convex/Concave Structure Matching

The robust matching of multiscale convex/concave structures is a major point in Ueda and
Suzuki’s work. Their matching algorithm searches for the corresponding segment pairs
from the finest scale to coarser scales by replacing odd consecutive segments at the finest
scale with a segment at a coarser scale. Two convex/concave segment sequences at scales

o® and o(F) can be written as

) h
A®) = (af?,.... )
B(k) {b(k) b(’v (h)} (2.6)

N and M*) are the number of segments, and a(.h) stands for either the convex or concave

(h) (h) . The matching is

segment between the two consecutive inflection points p; * and Dit
formally performed between the finest scale segment sequences A© and B, However,
if consecutive segments at the finest scale can be replaced with one coarser scale segment,

then the replaced segment is used for the matching, as, for instance, shown in Fig. 2.11. The

\\,/ Sc:Ié

Matched
Pair

Figure 2.11: Matching strategy of multiscale segment matching (from [58])

best match is equivalent to the best segment correspondence such that the sum of multiscale

segment dissimilarities is minimized. The multiscale segment dissimilarity 7 is defined as

¥ (a(i —2n|14),b(j —2m | j)) =
508", 68) + pa (ali =201 3) = o) + o5 (b —2m | ) = ), @.7)
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where a(i — 2n | 1) denotes a sequence of (2n + 1) consecutive segments of A, — denotes

the replacement operator, and a(i — 2n | i) — ag,h ) stands for the replacement of the

sequence a(i — 2n | i) by the segment ag,h ). Furthermore, § is the one-to-one segment
dissimilarity, and p 4 and pp represent the costs of the respective replacements.

The one-to-one segment dissimilarity § is defined as

h k ok
5 8 = |6 =6 | [ i 08
A h k h DIk :
o o | L L)
where Hz(h) equals the total rotation angle of the tangent vector along agh) , z§"> is the segment

length of agh), and Lgh) corresponds to the total length of all agh). 0 is set to oo whenever
the polarities of agh) and bj(.k) are different. This means that a convex segment cannot be
matched to a concave segment.

The cost for replacing a sequence of segments with one segment at a coarser scale

is defined as

‘ . L Bt = O || L — L |
pala(i—2n]i) — az(-,h) =) E . (2.9)
( > s=i—(2n—1) Os—1 + 05 L

pp is defined similarly. The weighting factor A is usually setto 1.
The total segment dissimilarity is now given as
- w
U(A,B) =min Y ¥ (@(iw—-1 + 1| iw),bQw-1+ 1] jw)), (2.10)
w=1
where W corl;esponds to the number of matched pairs. Although the number of all possible
combinations of segment correspondences increases exponentially with increasing IV (R)
and M*) an effective solution of the minimization problem can again be obtained by

means of a dynamic programming approach.

2.2.2.3 Integration of Results

The segment correspondences found from the multiscale segment matching operation can
be integrated into one convex/concave structure for all samples. The integration consists of

three steps
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1. For every sample shape, construct a partially ordered set from the corresponding

segment results.

2. For every sample shape, find a maximal family of sets (MFS) that consists of maximal

elements in the partially ordered set.
3. For all the MSF’s, check the consistency among them.

The integration is not just a minimization of the number of convex/concave segments, but
rather the simplest convex/concave structures among the corresponding segment match
results are extracted.

The optimal correspondences from the multiscale segment match can be represented
by using the finest scale. In the case of IV samples, matching is performed N(N — 1)/2
times, hence each sample has N — 1 sets of correspondence results. Let A; be the set
whose elements are the finest scale segments of the ith sample shape S;. Assuming that n; ;
segment correspondences are obtained by matching the two shapes S; and S, then both A;
and A; are partitioned into n; ; correspondence units. Then, the partitioned segment family

of sets (PSES) of A; by A; is defined as

Pij={ I lw=1,...,ni;} (2.11)

@ w

Considering N different sample shapes, N — 1 PSFS are obtained for each sample. The
union of these PSFS is given as

Qi= U Pijs (2.12)

1SN j#

which can be shown to be a partially ordered set. Therefore, a maximal element in the
partially ordered set Q; is an element ¢ € @, such that ¢ C ¢’ forno ¢’ € Q;. As there can
exist multiple maximal elements in Q;, the maximal family of sets (MFS) in the partially
ordered set Q; can be obtained. The MSF of Q; will be denoted as Q7. If an MFS does
not consist of pairwise disjoint sets, there does not exist a structure common to the given

samples and generalization becomes impossible. Furthermore, only if there exists a one-to-
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one correspondence between any two MSF’s QF and @7, is it possible to define a common

structure between the samples.

2.2.2.4 Model Generation

Each element in the obtained MFS Q} corresponds to an optimal scale segment in the
multiscale representation of S;. As curvature scale space filtering results in a shrinking of
boundary size, position gaps are filled by a linear interpolation method, and N generalized
shapes G1, ..., G can be obtained by processing all the N' sample shapes.

Each generalized shape G; can be approximated as a polygon, which is represented

by an ordered list of vertices
Gi={($i‘t,yi,t)!tzl,-u,Ti}, i=1,..., N, (2.13)

where (z; 1, i) are the (z,y) coordinates of the tth segment, and T; is the number of
vertices of the ith generalized shape. All generalized shapes can be normalized such that
they have the same number of vertices T. This is achieved by setting the vertices at
distance L; /T, where L; is the contour length of the ith generalized shape. If we denote

the normalized generalized shapes as
G, = {(mé’t,yg’t) |t=1,...,T}, i=1,...,N, (2.14)
and the desired visual model M as
M={(X,Y)|t=1,...,T} (2.15)

then M can be obtained by using the following interpolation
N N
Xt = <Z aim§'t> / Z oy
=1 =1
N N
(Z a,-yg,t> /> o (2.16)
=1 i=1

The weight parameters o; are usually set constant.

Y;
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2.2.2.5 Conclusions

Ueda and Suzuki use some examples to further illustrate the performance of their algorithm.
They show how a modified dissimilarity measure could be used to recognize an unknown
sample given several model classes. The approach as proposed by Ueda and Suzuki is novel
and features many good ideas. The authors claim that their work is the first attempt to shape

generalization that uses the image domain directly, rather than the symbolic domain.

2.3 Context of this Research

In several respects the two systems outlined in Section 2.2 represent two extremes of one
problenﬁ. As Ueda and Suzuki point out, their approach is strictly restricted to the image
domain, whereas Winston’s approach, and indeed many others, is working in the symbolic
domain. Both approaches appear to have advantages and disadvantages.

Similar to Ueda and Suzuki’s work, the input to our system consists of binary
images only. Binary images are in so far a restricted domain as all their information is
concentrated on the contour. Ueda and Suzuki choose to employ this feature directly,
by using a contour-based approach. Their method, as explained in the previous section, is
based on a multiscale representation of the boundary of a shape. In contrast, the approach as
proposed here, attempts to first recover region information based on the contour. However,
such recovery is, in general, an ill-posed problem, and we cannot expect to obtain unique
results in any case. It appears, nevertheless, that such an interpretation in terms of regions,
rather than contours, is often more intuitive and captures more of the functionality of the
input shape. I will explain the recovery of region information in depth in Section 3.4. -

Most similarities can possibly be found with Haar’s work [19], who used parameter
intervals to obtain a fuzzy representation of relations. Our concept of generalized predicates
can be understood as a logical conclusion of Haar’s fuzzy interpretation. However, both
Haar’s work and the present work take their incentive from the work on semantic networks,

as for instance Winston’s work. Semantic networks appear to be easily understood by
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humans; whether they coincide with human memory structures is another question that
cannot be answered here. ‘However, semantic networks do have several shortcomings, as
outlined before. The present work can therefore be understood as an attempt to find a
structure for representation and generalization of visual objects that is more adaptable and

more stable than semantic networks.
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CHAPTER 3

Decomposition of Binary Shapes

3.1 Purpose and Overview

The task I am addressing in this chapter concerns the description of a shape by decomposing
it into meaningful parts. As image intensity is not trivially correlated with geometrical
structure, I restrict the task to binary images, that means, that all the available information is
assumed to be concentrated along the boundary or silhouette of the object in question. There
have been several approaches to obtaining a meaningful decomposition in this restricted
domain. Usually, the basic constituents are defined to be convex sets, or more restrictive,
simple geometrical figures like squares, rectangles, or circles. Some 6f the first work was
done by restating the problem in terms of polygonal decomposition into convex sets [29, 48].
Shapiro and Haralick [52] and Shapiro [51] recast the problem as a graph clustering problem
and, instead of looking for perfect convexity, were looking for intuitively pleasing parts.
Even more work has been done by using the skeleton as a starting point. For instance, Ito
et al. [27] or Ibaraki et al. [26] use both, contour and skeleton information explicitly to
guide their decomposition into strokes and loops. Arcelli and Serino [2] decompose a shape
using the information obtained by propagating distance labels into the interior of the shape.
Another interesting approach, based on mathematical morphology, was proposed by Pitas

and Venetsanopoulos [43, 44]. Although they claim that the choice of simple geometric
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objects as basic constituents is intuitively used by humans, the results they obtain are quite
far from intuition and seexﬁ rather to be applicable for coding tasks.

Here we are trying to overcome several shortcomings that shape decomposition
schemes suffered from. In terms of Pavlidis’ taxonomy [42], we propose an interior,
information losing, space domain transform, using the skeleton representation as a starting
point. Similar to Pitas and Venetsanopoulos’ work, our approach is based on concepts of
mathematical morphology; however, as basic constituents of the decomposition we accept
anything that is approximately convex, a term that will be defined by itself. We overcome
the restrictions of mathematical morphology concerning rotation invariance by proposing a
new operator, the so-called elongation operator.

The remainder of the chapter is organized as follows. First, I will give a simple
introduction to the methods of mathematical morphology, on which the proposed decompo-
sition approach is based upon. Next, I will introduce the concept of approximate convexity,
which plays an important role in the proposed decomposition scheme. Although only the
application of approximate convexity in two dimensions will be used here, the definition is
given in n-dimensional Euclidean space. Finally, I will outline the actual decomposition of
binary shapes, together with giving a series of examples for illustrating the performance of

the proposed approach.

3.2 Mathematical Morphology

3.2.1 Introduction

The word morphology refers to tﬁe study of form and structure (from the G;'eek words
morphe meaning form and logia to speak) and is in this sense used in areas as various as
biology, geography, and linguistics. In image processing, the term mathematical morphol-
ogy refers to a particular discipline concerned with the analysis of the structure of materials
as for instance in mineralogy, petrography, or cytology. The origin of mathematical mor-

phology is generally traced to the year 1964, when G. Matheron from the Ecole des Mines
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at Fontainebleau, Paris, was asked to investigate the relationships between the geometry of
porous media and their permeabilities. The original notions used in that studies, however,
date much further back and are due to integral geometry, especially to H. Minkowski and
H. Hadwiger. v

The morphological approach, as developed by Matheron [33] and Serra [50] at |
Fontainebleau, is generally based on the analysis of a two-valued image (binary image)
in terms of some predetermined geometric shape, known as the structuring element. This
two-dimensional approach was first generalized to gray-level images by applying the same
operations to cross-sections of the images. The real generalization of structuring elements
to structuring functions in 2% dimensions, together with the theoretical connection to fuzzy
models, is, however, mainly due to Sternberg [56].

Mathematical morphology is an approach for the analysis of structure, based on
set-theoretic concepts. It has three aspects: an algebraic one, dealing with image transfor-
mations derived from set-theoretical operations; a probabilistic one, dealing with models
of random sets applicable to the“selection of small samples of materials; and an integral
geometrical one, dealing with image functionals. This section mainly addresses the first
aspect: the algebraic study of a body of image transformations based on operations similar
to those of set theory, which are in general nonlinear.

- Why then do we need set theoretical concepts for the analysis of images? It is
generally agreed that humans can identify a scene from a two-tone drawing of it, where
only simple elements like contours, bars, shadows, etc. can be seen. As such images are
Boolean in nature, any further processing of them cannot be linear, but must be related to
Boolean algebra. For example, if object X is behind object Y, then in the drawing one can
see the contour of X minus Y (in the set-theoretical sense). Or the shadow of a union of
objects will be the union of their shadows. These thoughts illustrate certain properties of
images and set-theoretic concepts and explain why image transformations can be based on

the Boolean algebra of set operations.
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3.2.2 Binary Morphology

Binary mathematical morphology is expressed using the language of set theory. Sets in
morphology represent the shape of an object given by all black and white pixels in the
image. Sets in two dimensions denote foreground regions; in three dimensions a set may
denote time-varying binary images or binary solids.

The primary morphological operations are dilation and erosion. From dilation
and erosion, the morphological filter operations opening and closing can be composed.
Especially the latter two filter operations are widely used in shape representation or decom-

position.

3.2.3 Binary Dilation

Dilation is the transformation that combines two sets by vector addition of set elements.
In the mathematical literature this operation is often called Minkowski addition, after the
German mathematician Minkowski who first proposed it [37]. If A and B are two sets with
elements a = (ay,a3,...,a,) and b = (b1, ba, ..., by, ) respectively, then the dilation of A
by B is the set of all possible vector sums of pairs of elements, one coming from A and one

coming from B. Formally, the dilation of A by B is denoted by A @ B and is defined as
A®B={c=a+b|lac Abec B} (3.1)

Although dilation is commutative, i.e., A ® B = B & A, in practice, the two sets A and B
are not thought of symmetrically. The first set A of the dilation A & B is usually associated
with the image undergoing morphological processing, and the second set B is referred to
as the structuring element, that is, the shape that acts on A to produce A @ B.

To characterize dilation more properly, a notation for the translation A4; of a set A

by a vector ¢ is needed:
Ai={c=a+t|ac€ A} (3.2)
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Thus, the dilation can be represented as the union of translates of the image, namely
AoB= ] 4 (3.3)
beB
An example of the dilation of a set by a square structuring element is shown in Fig. 3.1,

where -+ denotes the origin of the structuring element.

)
@ e 6 e
K ® e e @ ®
el e ® |eo|&le® = el e e o
@ ® 1K IK )
®
Figure 3.1: Dilation by a diamond structuring element
Because dilation is commutative,
A®B=|JB. (3.4)
a€A
As addition is associative, so is dilation, namely
(AGE)B)EBC=A€B(BEBC’) (3.5)

This property of the dilation is called chain rule or iterative rule and is of significant practical
importance. By using a straightforward implementation, the dilation of an N x N image
by a K x K square structuring element can be accomplished in K2 operations. However,
a structuring element of that form is highly decomposable, that is, the structuring element
itself can be expressed as a dilation of two or more simpler structuring elements. Hence,
if we decompose the K x I square structuring element into B; @ B, where B; and B3
are K x 1 and 1 x K structuring elements, respectively, then according to Eq. 3.5, the
complexity of the dilation is of order 2K, which is an immense improvement from the
initial value of K2. Fig. 3.2 illustrates the decomposition of a 5 X 5 structuring element.

Of course, each of the resulting column and row structuring elements could be decomposed
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Figure 3.2: Decomposition of a square structuring element

further, yielding an even better performance.

Other important properties of the dilation include:

e Translation invariance:

A®B;=(A® B); (3.6)
e Distribution over union:

(AUB)®C=(A®C)U(Ba&C) (3.7)

e Extensivity:

A@®B DA ifandonlyif O € B, where O stands for the origin (3.8)

e Increasing:

If ACB then A@KCB@K (3.9)

3.2.4 Binary Erosion

Erosion is the morphological dual to dilation. Sometimes, erosion expressed in a slightly
different form is referred to as Minkowski subtraction, and as such was first proposed
by Hadwiger [20]. If A and B are two sets with elements a = (ay,az, ...,an‘) and
b= (b1, by,-..,bm) respectively, then the erosion of A by B is the set of all elements ¢ for
which ¢ + b € A for every b € B. The erosion of A by B is denoted by A © B and is
defined as

Ao B={c|c+be AVbe B} (3.10)
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An example of the erosion is shown in Fig. 3.3.
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Figure 3.3: Erosion by a diamond structuring element

Again employing the notion of a translated set, erosion can be expressed as follows
AeB= ()4 (3.11)
: beB
In other words, erosion is the intersection of all negative translates of the image.
As stated before, erosion is the dual of dilation. Therefore, every erosion can be

expressed as a dilation or vice versa:
(AeB) =4A°aB (3.12)

where A€ is the complement of 4, i.e., A® = {z ¢ A}, and B is the reflection of B, i.e.,
B = {z = —b|b € B}. With respect to structuring element decomposition, a chain-rule for
erosion holds

Ao(BaC)=(AeB)acC ' (3.13)

That means, a large erosion can be computed more efficiently by a number of smaller
erosions.

Again, some of the basic properties of the erosion include:

e Translation invariance:

Ae By = (A& B); ' (3.14)
e Distribution over intersection:
(AnB)eC=(A6C)Nn(B&C) (3.15)
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o Anti-extensivity:

AoBCA ifandonlyif O€ B (3.16)

e Increasing:

If ACB then A6KCBoK (3.17)
However, erosion is not commutative, i.e.,
ASB#BoA (3.18)

Although erosion and dilation are dual, this does not mean that they undo each other. In

general the following inequality holds
(A®@B)e B # A, (3.19)

but
(A® B)o B C A. (3.20)

3.2.5 Opening and Closing

Very often, dilations and erosions are employed in pairs, either dilation of an image followed
by an erosion, or vice versa. In either case, the aim of successively applied dilations and
erosions is the elimination of specific image details smaller than the structuring element, an
operation that is especially useful for removing noise in an input image.
The opening of an image B by a structuring element K is denoted by B o K and
defined as
BoK=(BoK)aK. (3.21)

The closing, on the other hand, is denoted by B e K and defined as
BeK=(B®dK)oK. (3.22)

If Bo K = B, then B is open with respect to K. On the other hand, if Be K = B, then B is
closed with respect to K. However, morphological openings and closings have no relation

with topologically open or closed sets!
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The functionality of opening and closing is closely related to the specification of
a filter by its bandwidth. Morphologically filtering an image by an opening or closing
operation corresponds to the ideal, non realizable bandpass filters of conventional linear
filtering. Once an image is filtered by an ideal bandpass filter, clearly, further application
of the same filter does not alter the result. This characteristic of a transformation is called

idempotence. That is

(BoK)oK = Bok
(BeK)oK = BeK. (3.23)

The opening of a set B is the domain swept out by all translates of the structuring
element K that are included in the set B, namely
BoK={z|zteBoecKadK CB= ] K& (3.24)
K:CB
Hence, the opening of a set by a disk structuring element, that is, a circular structuring
element, smoothes the contour, breaks narrow isthmuses and eliminates small islands and
sharp peaks or capes.
There is a duality between opening and closing. What opening does to the object,

closing does to the background. The following relation holds

(BoK)° =B%e K. , (3.25)
Therefore, the closing can be characterized as follows
BeK={z|zeki=KnB#0= (] K. (3.26)
{t| K:nB#0}

Fig. 3.4 shows examples of the opening and closing of a shape. As can be seen from Figs. a)
and c), the opening removes narrow promontories, and the closing fills narrow bays and
" small holes. The used octagonal structuring element can be obtained as the dilation of a

square structuring element by a diamond structuring element.
As already mentioned before, both opening and closing are idempotent transforma-

tions. Besides idempotence, the following properties are of interest:
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a) Input figure b) Opening ¢) Closing
Figure 3.4: Opening and closing with an octagonal structuring element of size 2
e Translation invariance:

It follows directly from Eq. 3.6 and 3.14 that openings and closings are translation

invariant. In addition, they are invariant to the translation of the structuring element

AoB;=AoB
Ae B, =AeB. 3.27)
e Anti-extensivity of opening:
Ao B CA. (3.28)
e Extensivity of closing:
AeB DA _ (3.29)

e Increasing:

Follows from Eq. 3.9 and 3.17.

3.2.6 Boundary extraction

The boundary B of a binary object A can easily be obtained by an erosion followed by a
subtraction. This means, we have to subtract from the object an eroded version of itself.

The remainder should then be the boundary. Writing this down formally, gives
B(A)= A\ (A6 K;), (3.30)
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where \ stands for the set subtraction, i.e., A\ B = AN B, and K; is the diamond

structuring element of size 1, i.e.,

®
o$ e
®

a) Object b) Extracted boundary
Figure 3.5: Extracted boundary of a binary object

Note that eroding by a diamond structuring element of size 1 peels off an 8-connected
layer from the object, hence the resulting boundary is 8-connected as well, as shown in
Fig. 3.5. If the 4-connected boundary should be needed, then a squére structuring element

of size 1 has to be used instead, e.g.,

e e e
o @
00

3.2.7 Convex hull

The following proposition concerning the convex hull C(A4) of an object A is due to

Serra [50]:
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Proposition 1 If K is a compact convex set with non-empty interior and if K
admits finite curvature at each point of its boundary, then for every closed set A,
C(A) = lim Ae K.
A—00

This means, by closing an object by a structuring element of infinite size, the convex hull

of the object can be obtained.

Object Convex hull

Figure 3.6: Convex hull as obtained by a hexadecagonal structuring element

As Proposition 1 is using the Euclidean space as its domain, there appear two .
problems when trying to transpose it to the discrete plane, i.e., Z2. Namely, how to
implement a discrete structuring element having finite curvature everywhere, and how to
realize A — oo. Hence, nsing Matheron’s proposition we will only be able to obtain a pseudo
convex hull, rather than the perfect convex hull. The question that remains to be solved is
how accurate the pseudo convex hull will be. In order to approximately achieve the criterion
of finite curvature, we need a structuring element that is a close approximation to the disk. A
hexadecagon, that is, a regular polygon with 16 vertices, is the best approximation to the disk
that can be implemented iteratively by 2 x 3 and 3 x 2 templates, where the origin is placed
in one of the comers of the template. An example of using a hexadecagonal structuring
element is given in Fig. 3.6. For determining the necessary size r of the structuring element

we can analyze the worst-case behaviour of the pseudo convex hull. Using the general
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results from Appendix A for the case of the hexadecagon (with number of vertices n = 16),
we obtain for the size r of the hexadecagon and the depth d ., of the maximal nondetectable

concavity the following values

Dmaa:

> P hia
"= 077
Dma:z

< mar

deav < 10.05°

where D,,,, denotes the maximal diameter of the set X in question.
However, a much smaller structuring element will do in most practical cases. Values

ranging

- have been tested and found to yield useful results in many cases.

3.2.8 Elongation

Elongation can be understood as a dilation using a vector as structuring element. In other
words, elongation is a dilation where the direction of the propagation has been fixed.
Elongation of a set X by a structuring element S, which is defined to be a unit vector

parallel to the main axis of X, is defined as
X =Xa\ (A>0) (3.31)

The elongation operation is in this form due to Hadwiger [20] and it has been employed
in integral geometry. However, as an operation of mathematical morphology, elongation
has not been used so far. I will show a possible implementation of elongation within the

framework of mathematical morphology in Section 3.4.1.3.

3.3 Approximate Convexity

3.3.1 Introduction

The concept of convexity plays an important role in various fields like computational

geometry, computer graphics, image processing, etc. Convexity and its implications are
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well understood, thanks to its sound definitions from mathematics and geometry. Despite the
mathematical and geometrical importance of convexity, convex sets are rarely encountered
in nature. For many applications, particularly in image decomposition or recognition, it
seems appropriate to relax the notion of convexity and to deal with sets that are almost
convex or approximately convex. Such a notion of approximate convexity does not only
allow to actively disregard effects of distortion and noise, but it also captures some perceptual
notions about fuzziness of the appearance of shapes. Both of those points are important if
we attempt to build a truly versatile vision system.

What we need for capturing this idea of approximate convexity is a measure that
expresses how much a given shape differs from or resembles its convex hull. Ideally but
not necessarily, such a measure should be obtained as a scalar in the range [0, 1]. In the
literature not much work along those lines can be found. In the next section, I will mention
three different approaches together with one new approach. Next, I will attempt to give a
complete theoretical treatment of approximate convexity in n-dimensional Euclidean space.
I will show that it is possible to find a solution that is valid in Euclidean space of arbitrary
dimensionality. Finally, I will mention some practical considerations on how to actually

measure approximate convexity in discrete 2 or 3-dimensional spaces.

3.3.2 Convexity Measures

Scanning the literature, it is possible to find some papers that deal explicitly or implicitly
with the problem of measuring approximate convexity. The first such approach is due to
Sklansky [54] and is centered on the idea of convex deficiency. Sklansky actually defines
two different measures: an area measure S, and a depth measure Sy. The area measure Sa
simply corresponds to the ratio of the area of the concavity to the area of the convex hull.
The depth measure Sy is given as the sum of weighted ratios of the depths of concavities
to the width of the convex hull. Further work includes Stern’s polygonal entropy [55] and
Boxer’s Deviation from Convexity [7], which, however, is subsumed by Sklansky’s measure

S, which can be viewed as a normalized version of Boxer’s deviation measure.
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A slightly different approach to the measurement of nonconvexity was first proposed
in [23]. This work, which is the foundation for the present work, takes its ideas from
geometrical probability. Unlike the other approaches that are defined over the family of
polygons, this approach is defined using the language of set theory. Although this is not of
practical importance, it allows us to obtain mathematically simple but strong results, which
can be easily generalized.

In order to define approximate convexity, it is of advantage to start with a proper
definition of convexity. There are several definitions possible, here we choose the following

one:

Definition 1 A set of points K is called convex if for each pair of points A € K,
B € K itis true that AB C K, where AB is the line segment connecting A with
B. |

It can easily be seen that this definition is as such valid in Euclidean space of any dimen-
sionality. Taking the above definition as a starting point, in the case of two dimensions,

- approximate convexity can be defined as follows:

Definition 2 The degree of approximate convexity of a set X is defined to be the
probability that an arbitrary line segment that intersects X is convex, i.e., produces

only one intersection.

Again, this definition can be transposed to Euclidean spaces of arbitrary dimensionality
without any changes. As I will show in the next section, based on the above definition, it
is possible to derive an equation that keeps its generality for n-dimensions, and that yields

computationally simple results for the important cases of two and three-dimensional spaces.

46



3.3.3 Derivation
3.3.3.1 Definitions

In what follows, let us denote the set in question by X, and its convex hull as C(X ). Further
we define the residue of C(X) minus X

R(X)=C(X)\ X, (3.32)

that is, the set of concavities. Hence, X U R(X) = C (X). Similarly we need the residue
that can be defined using the boundaries of C(X) and R(X)

Q(X) = B(C(X)) N B(R(X)), (3.33)

where B(X') denotes the boundary of the set X. In what follows, Q(X) will sometimes
be called the cover of R(X), as it can be visualized as covering the hole created by the
concavity. Note that if X has a certain dimension 7, then Q(X) will have dimensionality
n—1.

In the next subsection I will try to obtain the most general result possible, based on
the derivations in Appendix B. We can start by redefining approximate convexity in the

more general setting:

Definition 3 The degree of approximate convexity of a set X™ is defined to be the

probability that the intersection of an arbitrary set L (r < n)with X™ is convex.

where the superscript denotes the dimensionality of the set. It was shown in [23] that
the consideration of interactions between concavities introduces complications that make
the problem almost intractable, although doing so does not change the result too much.
Therefore, here as well, I will neglect any interactions between concavities and consider
only the simple case. k
According to the law of large numbers, we can obtain probabilities by observing
and counting outcomes of experiments. In the case of Definition 3, this means, that we

can count how many of the intersections of the probing set L” with the probed set X™ are
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Figure 3.7: Random lines intersecting a set X : lines 11, lp, and I3 are convex, whereas lines
l4 and ls are nonconvex :

convex. However, as for instance the number of lines that intersect a given curve is infinite,
we have to employ concepts from integral geometry, in particular the concept of a measure
of a line or a hyper-plane. Therefore, instead of actually counting hyper-planes, we can
work with the measures of those planes.

Instead of using the measure of the sets that give a convex intersection, it is actually
easier to use the measure of all those sets L™ whose intersection with X is not convex
(see Fig. 3.7). Let us denote the measure of all the sets L" that intersect X by m(L" |
L™ N C(X) # 0). The measure of the sets L” that intersect R(X) can then be written as
m(L" | L™ N R(X) # 0); clearly, all the nonconvex intersections must be included in this
measure. Among all the sets L7 intersecting R(X), only those sets whose members are
intersecting the associated cover of R(X), namely Q(X) are convex, hence the measure of
the nonconvex set is given by m(L" | L N R(X) # 0) — m(L" | L' N Q(X) # ). The
degree of approximate convexity can now easily be obtained by putting together all those

fragments, namely

_m(L7 | LN R(X) £0) - m(L" | L7 mQ(X) £0)

n[r] .
vX) =1 m(L" | I’ NC(X) # 0)

(3.34)

1As stated before, here we are neglecting the fact that all those sets L™ which intersect more than one
concavity are counted multiply. For an example of such a L7 see line l4 in Fig. 3.7
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where cv™"] denotes the approximate convexity of an n-dimensional set X when using an
r-dimensional set L" for probing. If we rephrase the above equation, then we have that the
‘value for approximate convexity is one minus the probability that a set that intersects X is

nonconvex.

3.3.3.2 Approximate Convexity in N-Dimensions

As we have seen in Section 3.3.3.1, we need to calculate the measure for three different
sets, which can actually be divided into two groups. To the first group belong the convex
hull of X, namely C(X), and the concavities R(X ). Both sets are proper n-dimensional
sets in E™. The case is somewhat different for the third set Q(X'), which is a boundary set,
that is, a (n — 1) dimensional set in E".

As already stated, we want to calculate the degree of approximate convexity for the
set X as given in Eq. 3.34. Some of the steps that lead to those results can be found in
Appendix B. The two measures m(L" | L" N R(X) # 0) and m(L" | L" N C(X) # 0)
can readily be calculated from Eq. B.17. For the calculation of m(L" | L" N Q(X) # 0),
however, we have to employ Eq. B.19, in connection with Eq. B.17. Therefore, we can

calculate cv™"](X) as follows

n—1

W (R(X)) = %3~ 52 Wem1(Q(X)

(X)) =1- W;( SCORE , (3.35)

which is the most general solution possible. The notation of thé above equation is according
to Appendix B.

Intuitively, it appears best to use lines as the probing set L”, that is, r = 1.
Furthermore, in that case Eq. 3.35 can be given a particularly simple and concise form. We

obtain
F(R(X)) —2V(Q(X))

e ORI

(3.36)

where F' = nW] is the area of the hyper-surface, and V = W, is the volume of the set in

question.
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3.3.4 Practical Considerations

The main problem that remains to be solved for an application of Eq. 3.36 in practice is how
to estimate hyper-surface and volume of sets, particularly in 2D and 3D. For a digitized
two-dimensional shape we orient ourselves at the thorough work done By Dorst [15]. If we
assume that the contour of a shape consists only of straight lines and circular arcs then Dorst
gives several estimators of different complexity and accuracy. I will here briefly describe
one such estimator, which is simple to calculate and still yields remarkably accurate results.

The estimator we use here employs different weights for horizontal or vertical and
for diagonal links, which for instance can be obtained from the chain-coded boundary. If
we call the number of horizontal or vertical links as n. and the number of diagonal links as

N, then the length estimator L i (ne, n,) that minimizes the expected error is given as [15]:

L (ne,no) = 0.948n, + 1.343n, (3.37)

As can be seen from Eq. 3.36, we need to estimate three different entities: the
perimeter of the convex hull of X, the perimeter of the concavities, and the length of the-
cover. The perimeter of the convéx hull can readily be estimated from the boundary of
the convex hull. For the perimeter of the concavities, however, we cannot simply use
the perimeter of the set R(X) \ X, but we have to obtain the length of the boundary of
pixels adjoining R(X) in X, in order to get a coherent estimate even for small concavities.
Therefore we are using the set (R(X) @ D;) N C(X), where D; is the diamond structuring
element of size 1. The cover length is then obtained from the set B{(R(X)® D;)NC(X))N
B(C(X)). In practice, it is advisable to disregard small concavities of one pixel size. This
can easily be done by a filtering of R(X).

To see why it is necessary to dilate the concavities for obtaining a coherent bound-
ary length estimate, consider the example in Fig. 3.8. Clearly, for small concavities no
meaningful boundary can be extracted. We can circumvent the problem by considering that
the original shape X is closed and, therefore, the concavities are open (closed and open in

the topological sense). Therefore, the boundary of the concavities is equal to the boundary
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X R(X) (R(X)® D)nC(X)

Figure 3.8: Finding the boundary of a concavity

of the original shape X adjacent to the concavities.
Approximate convexity is a rather vague concept and thus is not easily analyzed
analytically. If we employ psycho-physical experiments for verifying concepts like ap-
- proximate convexity then there remains always a doubt as to how far the subjects were
influenced by the phrasing of the question and how strong individual differences of the sub-
Jects are. Notwithstanding such problems, I attempted to find some comparative evaluation
among a set of measures, as outlined below, and with qualitative impressions as obtained

from sixteen human subjects. Fig. 3.9 shows some shapes that were used for a comparative

) b) 0
d e) H

Figure 3.9: Shapes used for evaluation

characterization. The values for Sklansky’s two measures S, and S;, Boxer’s measure od,
Stern’s polygonal entropy pe, and the proposed degree of approximate convexity cv are

given in Table 3.1. For purposes of reference, the commonly used measure of compactness
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P?/A, where P is the perimeter and A is the area, is also included. In the case of the

Figure | S, Sg | pd | pe cv | P?/A
a) 0.88 | 0.8 851109409 |21.89
b) 0.88 | 0.41 | 255 | 0.67 | 0.7 | 3047
c) 085107 |13 097 | 0.96 | 2047
d) 0.78 1 0.7 |13 097 1094 | 22.8
e) |0.84]06 |17 |0.81|08 |272
f) 0.86 | 0.3 | 30 0.68 | 0.74 | 29.64

Table 3.1: Values for shapes in Fig. 3.9

human subjects, as the question for a quantitative degree of approximate convexity is too
“demanding, only an ordering of the six shapes from Fig. 3.9 according to their “convexity”
was obtained, averaged over the sixteen subjects. The so obtained ranking is shown in

Table 3.2, together with the rankings as obtained from Table 3.1.
The correlation between the human ordering and the orderings for each measure

can then be expressed in terms of a distance function d, which is defined as

n

d =" | ordmeasure(i) — 0rdyyman (i) |, (3.38)
=0 :

where ord(¢) is the ordinal number of the ith shape, either in respect to the human results
or the measure in question. The distance d for the set of used measures is also shown
in Table 3.2. The results ask for some explanations. As stated earlier, Boxer’s deviation
Jrom convexity is subsumed by Sklansky’s measure Sy, this fact is mirrored nicely in the
equivalent ordering for the two measures. Although the measures Sq4, pd, pe, cv, and the
measure of compactness havé comparable scores, it is important to keep in mind the several
shortcomings they all suffer from. As there exist no objective evaluation criteria to decide
which of the measures to use, it is finally left to each prospective applier of such a measure
to select the one that suits his or her needs best.

The case in 3D is more complicated than the above calculation, because estimating
the area of three-dimensional digitized surfaces is more complicated. However, if we follow

the thorough work by Mullikin and Verbeek [38], then it is as well possible to find a simple
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Figure | S, | Sy | pd | pe | cv | P?/A | Human

a) 1111433 2 1

b) 115|566 6 6

c) 4 121211 1 2

) 6 2212 3 3

e) 514|444 4 4

) 31616 |S5]|5 5 5
[Distanced [13] 3 [3[5]4] 2 | — |

Table 3.2: Obtained rankings and evaluation (see text)

and sufficiently accurate estimate. Unlike the 2D case, in 3D three different situations have
to be distinguished. This distinction is done according to the number of adjacent sides of
a voxel that are exposed to the background. Neglecting the cases of lines or planes, only
configurations of voxels with one, two, or three adjacent sides exposed to the background
are possible. This corresponds roughly to voxels in planar areas, voxels in edges, and corner
voxels. If we denote the number of those three types by ni, n2, and n3, respectively, then

the optimal estimator according to [38] is given as
F(ni,na,m3) = 0.894n; + 1.3409n, + 1.5879n;3 (3.39)

The actual derivation of the three entities used in Eq. 3.36 proceeds in an analogous way
to the 2D case. An example of the kind of results obtainable in three-dimensional space is

given in Fig. 3.10.

3.3.5 Conclusions

In this section I proposed a new degree of approximate convexity and showed that this
degree has a natural extension into Euclidean spaces of arbitrary dimensionality. I showed
that the initial definition of approximate convexity, if some simplifying facts are assumed,
resolves to simple measurements of hyper-surface and volume. Furthermore, I outlined how
such measurements could be carried out in discrete spaces of dimensionality two and three,

that is, in spaces that are generally of interest. Due to its generality and its simplicity, the
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Figure 3.10: Approximate convexity in 3D; cv = 0.946

proposed degree of approximate convexity could be a useful tool in many shape description

tasks.

3.4 Decomposition

3.4.1 Fundamental Notions
3.4.1.1 Maximal Approximately Convex Subparts (MACS’s)

The simple and intuitive mathematical notion of the convex ring ¢ is due to Hadwiger [20].
It is obtained by constructing the class stable under finite unions of convex sets. Therefore
by definition
N
Xeb9eX= U Y Y, is convex, ' (3.40)
i=1
that is, a set belongs to the convex ring if and only if it can be decomposed into a finite
union of convex sets. Obviously, the convex ring is closed under set union and intersection,

ie.,

A Be9=AUB,ANBeY.
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This makes the convex ring the smallest possible ring over the class of convex shapes. The
convex ring further has the advantage that it allows to extend concepts of integral geometry
to nonconvex sets. However, here the convex ring is only used as a basic idea for defining
the new concept of a Maximal Approximately Convex Subpart (MACS). Namely, reversing
the above definition of the convex ring, we can say that a shape can be decomposed into a
finite union of convex sets if and only if it is a member of the convex ring. The convex ring,
therefore nicely summarizes the domain of the proposed approach. Now, we can actually

define the notion of MACS as:

Definition 4 Let X be a bounded subset of Z2, i.e., of the plane of integers. A
MACS M of the set X at a given location © € X is the maximally expanded,

approximately convex subset, such that M C X andx € M.

The idea behind approximate convexity, as mentioned in the above definition, is that human
beings can actively disregard certain concavities, as long as doing so aids the general
understanding of the shape. Therefore, approximate convexity is a necessary concept in
shape decomposition, although, so far it has mainly been used in an empirical sense [2, 51].
In Section 3.3 T showed how approximate convexity could be defined and implemented,

one important step in the present approach.

3.4.1.2 Skeleton

In many decomposition schemes, the skeleton representation of a shape has been used as a
starting point [27, 41]. This choice appears reasonable, as the skeleton already went through
a certain kind of smoothing, that is, fine details of the contour are usually not preserved on
the skeleton. The question of what skeleton should be used for a certain application has, as
yet, not been solved satisfactory and hence any choice has a certain randomness attributed
to it. In our case, two different approaches are used. Previous work [27] suggested that the
skeleton approach by Fischler and Barrett [17] is probably the best suited one. Reasons for
this choice include, among others, the generality of that approach, for instance, any digital

distance can be used, and adjustable sensitivity through the detection of so-called critical
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points on the boundary. For the detection of those critical points the method described
in [25] is used. This method has been shown to be rather stable under rotation and scaling,
thus making the skeleton rather stable as well.

The second approach, the one by Jang and Chin [28], is more closely related to
mathematical morphology. In comparison with Fischler and Barrett’s approach, Jang and
Chin’s method seems to yield somewhat better results for big input shapes. On the other
hand, for small shapes Fischler and Barrett’s approach achieves a better centering of the
medial line. For the examples in Section 3.4.3, if not otherwise stated, Fischler and Barrett’s

approach has been used.

3.4.1.3 Elongation and Fattening

Elongation, or the expansion of a given set along a predefined axis, is a very intuitive idea
and there have been several implementations proposed so far. For instance, Azumatani
and Abe [4] use an elongation procedure to connect broken contour lines in maps. More
recently, Yamada et al. [63] proposed a method called Multi Angled Parallelism (MAP),
where twisting operations are used to propagate edges along a given direction. However,
both approaches suffer from certain shortcomings. For instance, it is not clear how to extend
Azumatani’s approach to a more general setting. In the case of MAP, a newly defined picture
plane that a priori specifies the possible resolution of directions is necessary.

In contrast to other approaches, the method proposed here is based directly on
Hadwiger’s definition, as given in Section 3.2. As the definition implies, a candidate for
elongation has to have a distinct main axis, which, in our case, can a priori be obtained by
extracting approximately straight parts of the skeleton. Hence, the object to be elongated is
obtained by dilating the just mentioned skeleton segments according to some width label.

Given an approximately straight skeleton segment seg; we extracf its starting point
(z4,v.) and its end point (z.,y.). Then, we extract all the pixels on seg;, and apply a

least-square fit to obtain the equation of the straight chord that fits the segment best, i.e.,

Yy=mzec-+c
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The case where m — oo, that is, a vertical line, can easily be accommodated by rotating
the coordinate system. Using the above equation, we can extrapolate the initial skeleton
segment beyond its original dimensions. This can be done as follows. If | m |< 1, we have

to ensure that , < x.. Then the coordinates on the chord at integer intervals are given as

T = Zo+k
k ¢ k=0,1,2,... (3.41)
yr = |mzp+c+0.5]
At each position k on the chord, we can calculate an z and a y vector iz, i, Tespectively,
such that 4;,4, € {—1,0,1} and ¢ is the nearest discrete approximation to the chord at

position k, hence
i, ® = 1
E=1,2,... (3.42)
iy ¥ = |mzgp+c—yp1 +0.5]

For the case where | m |> 1,14, (k) becomes 1 and i,,(¥) can be calculated accordingly. Now,

given the minimum width label wy,;, on seg;, we derive the following sets

B, = {Za,Ya} ®Wmin B
Be = {ZeyYe} ® wmin B
S, = seg; D wmin B (3.43)
Using these initial definitions, the actual elongation proceeds according to the NS chart in
Fig. 3.11, where £ stands for the area.
For the break condition it is necessary to know by how much the segment S; would

ideally grow with each step. For the case of an octagonal structuring element B the growth

AS can be calculated as
AS = 2Wmin+1 if iz®) =0o0r i,® =0
= 2 Wmin + 1+ 2|wmin/2| otherwise. (3.44)

Clearly, the achievable resolution for elongation is not a priori fixed, as, for instance, in
the case of MAP where the number of possible directions is directly encoded in the data

structure, but depends solely on the size of the object.
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Forward pass Backward pass

X, = B, Xo = B,
X; = (Xi—l i(k)) NnF X; = (Xi—l _i(k)) nF
S =8_1UX; S;i=8_1UX;
until (ﬁ(Si \ Si—l) < AS) until (,C(Si \ Si—l) < AS)

and (L£(S;—; \ Si—2) < AS) and (L£(S;—1 \ Si—2) < AS)
§=5 S=25i—2

Figure 3.11: Algorithm for directional dilation

A concept that is very closely related to elongation is fattening. The term fattening
simply refers to the dilation of a set by two anti—pérallel vectors normal to the main axis of
the set. Although the definitions of elongation and fattening are almost identical, the same
is not true for the implementation. Obviously, in the case of fattening it is not possible to
define a disk, having the length of the set as its diameter, and which is completely contained
in the set. Therefore, instead of propagating a disk, we simply propagate the whole set

along the two anti-parallel vectors, which can easily be obtained from Eq. 3.41.

3.4.2 Algorithm

The general overview of the algorithm for decomposing a given binary shape into MACS’s
is given in the flowchart in Fig. 3.12. In this section, I will explain each step separately, as
they can be implemented as modules that receive some input and hand on some output.

To further illustrate the algorithm, we can look at an actual example, which allows to
directly see the results of each step separately. The chosen input, together with its skeleton

representation is shown in Fig. 3.13.

3.4.2.1 Skeleton Decomposition

Starting from a binary object, hereafter referred to as F', we select a set of conveniently

located seeds S = {So, S1,...} C F, whose members S; are assumed to be convex. Using
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Figure 3.12: Flowchart of the decomposition

the skeleton representation of F, as explained in Section 3.4.1.2, we first prune the skeleton
by removing branches that are shorter than a given threshold ¢, and then cut the pruned
skeleton at its branching points. How to select the mentioned threshold ¢, is a general
problem of skeleton pruning; here we empirically set it to 4, that means we only want to
remove rather short branches of the skeleton. Next, we further investigate each branch,
using a dominant point detection scheme [25] adopted for open curves, and decompose
the branches into straight parts by cutting them at detected dominant points. Finally, we
examine all the width labels in one straight part of the skeleton; if the standard deviation

of the labels is above a certain threshold then we determine a cut point, using a method by




Figure 3.13: Sample input shape with its skeleton

Otsu [40] for the thresholding of bimodal histograms. Left and right of the cut point, we
have two smaller segments, each having a minimum width label. Instead of simply cutting
the skeleton segment at the found cut point, we retain the whole segment, relabelled with

~the smaller width label, as well as reproducing the part having the bigger width label, which
then will overlap the segment with the smaller width label. This procedure allows for a
more accurate elongation, as explained in the next section.

For each of the so obtained skeleton segments seg; we extract the minimum width
label wp;n and dilate the segment by an octagonal structuring element B of size Wmin, that
is

S ={S; | S; = seg; ® wminB}. (3.45)
Therefore, the set S is a priori contained in F and a priori fulfills our convexity constraint.
The resulting set of expanded skeleton segments for the input shape from Fig. 3.13

is shown in Fig. 3.14.

3.4.2.2 Elongation

In the next step, we apply the elongation procedure, as outlined in Section 3.4.1.3, to all
those subparts S; that meet the elongation constraint. The elongation constraint simply
states that the segment has to consist of a distinct line segment, in practice, we adopted
the convention that it has to be longer than three pixels. Only then can we guarantee that
the directional information is meaningful and can be used for elongation. Thus we are
obtaining the maximally elongated parts L; with respect to the initial seeds S;., i.e.,

Li=5;. (3.46)
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Figure 3.14: Expanded skeleton segments

The choice for the parameter A, that is, the length of the vector with which to elongate,
will in general depend on the application. Although an a priori choice is imaginable, more
likely, as in our case, A will be determined adaptively. That means, when the elongation
propagates beyond the original object, the procedure stops.

In order to avoid unnecessary computation during the following steps, it is checked
whether there are any redundant segments present, that is, segments, whether they were
elongated or not, which are fully contained in any other segment. If yes, they are deleted,

thus leaving the final set L of elongated subparts
L={Li|Li=35; orL;i=58;, Li ¢ L;foranyi # j}. (3.47)

Elongation in the case of the pair of tongs produces the result as shown in Fig. 3.15.
Especially noteworthy is how the two handle segments have been propagated across the

whole length.

3.4.2.3 Fattening and Isotropical Expansion

To all the segments that did not meet the initial elongation constraint as outlined in the
previous subsection, we apply an isotropical expansion. This is done by dilating those
segments L, with an octagon of monotonously increasing size 7, i.e., 7B, and intersect

the dilate with the original object F' (conditional dilation). After intersecting, we test
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Figure 3.15: Elongated segments

whether the result is still approximately convex, as outlined in Section 3.3. The threshold
for approximate convexity was obtained empirically by comparing the resulting expansions
with human intuition. In most of the éxperiments shown in Section 3.4.3, the value is set
to 0.99, however, depending on the domain of application, this threshold might have to be
adjusted. If the measure of approximate convexity of the expanded segment is below that
threshold, the last expansion step is discarded and the expansion of that segment stops. If it
is equal or bigger, expansion continues with the next bigger octagon. This can be formalized

as

C;=(L;®rB)NF.

All the segments that passed through at least one elongation step, are candidates
for fattening, rather than isotropical expansion. The idea behind this distinction is that
segments that have been elongated have exhausted their expansibility along the main-axis.
Further isotropical expansion, however, would disregard this and lead to a new expansion
along that axis, a fact that can often lead to the appearance of undesirable concavities. As
outlined in Section 3.4.1.3, we dilate the segment by two anti-parallel vectors of length
one at the same time, hence the segment will be expanded symmetrically to the main axis.
After one fattening step, we check for the approximate convexity of the resulting segment

in the same way as outlined above. If the check fails, the last fattening step is discarded,
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otherwise we continue. Fattening will be denoted by E‘L'\ where L ) stands for the unit
vector normal to the main axis of the set L;.

After carrying out either fattening or isotropical expansion on all segments, again
redundant segments are discarded, using the same method as after the elongation step. The

whole expansion can thus be summarized as

{C’i | C; ZZ;'_L/\HFOTCZ'Z (L;®7TB)NF,
C(C;y) = C;, C; ¢ Cjforanyi#j}. (3.48)

The example in Fig. 3.16 nicely outlines the effects of expansion and fattening. If

we again concentrate on the handles, we can see that they now occupy their whole width.

Figure 3.16: Expanded and fattened segrhcnts

3.4.2.4 Merging

In the next step the geometrical relations between the members of C are investigated. This
is done by first constructing a relation graph r, which specifies which segments overlap at

least partially:

rij =1 if C;NC;#0  (including i = j)
ri; =0 otherwise. (3.49)



According to this relétion graph 7, we try to merge segments according to a best-fit principle.
For each segment C;, we find all segments C; such that r;; = 1. We tentatively merge all
those pairs C;, C; and check for approximate convexity. As at that stage the conditions
should be a little bit looser, the threshold for approximate convexity is set to 0.98. Again,
this threshold was obtained empirically and could be adjusted for different domains of
application. Among all pairs C;, C; the one with the highest value of approximate convexity
is found. If this value is equal to or above threshold, the two segments are merged, segment
C; is discarded, and segment C; is replaced by the merge result. This procedure is repeated
as long as there are any pairs C;, C; whose value of approximate convexity permits a

merging. The result of the merging can be summarized as follows
M= {Mz | M; = C(C, U Cj) NF, C(C,; UCj) ~ C; U Cj, Tij = 1}. (3.50)

Merging is usually the step that allows to remove most redundant segments. This

fact is shown in Fig. 3.17, which defines the major parts of the pair of tongs.

RATRNNAN
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Figure 3.17: Merged segments

3.4.2.5 Interpretation

The set M of MACS’s that are obtained at this stage still contains, in general, some
redundancies. The decomposition can now be cleaned by assuming that the information

content is constant for all MACS’s defined over the same image plane. Hence,
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Definition 5 Among all possible combinations of MACS’s covering the initial
object completely, the best decomposition is the one with the least number of

MACS’s.

In practice, however, we have to relax one aspect of the above definition, namely, that
the initial object F' should be covered completely. Actually it might happen that such a
covering will not be possible for any combination of MACS’s. This is for instance the case
when small details on the contour already have been missed by the skeleton. To avoid a

breakdown in such a case, we introduce a reference set F”, given as
F'=|J{M;| M; € M} (3.51)

and then substitute F’ for F in the above definition, ensuring thus thgt there will always
be a solution for the interpretation. In addition, all the pixels lying on the boundary of F,
ie., B(F), are disregarded. This allows to compensate for inaccuracies of the skeleton
representation in parts of the shape with even width.

The interpreted decomposition of F' in terms of MACS’s, optimized with respect to

the above definition, is therefore given by
D ={M;| M; € M, L((F e By)n(F'\UM;)) =0, N(UM;) = minimum}. (3.52)

where AV () stands for the number of MACS’s used for the covering, £ denotes the area, and
By stands for the unit disk, or for the diamond structuring element, as shown on page 42, in
the digital case.

hlterprefatioh, in the case of our example of the pair of tongs, is able to remove all

redundant segments, leaving the decomposition as shown in Fig. 3.18.

3.4.2.6 Post Processing

It is possible to reduce the number of produced segments further by introducing a significance
factor for each segment. The significance factor of a segment is a quantitative measure of

the importance of a segment in respect to the union of all other segments. Namely,
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Figure 3.18: Segments after interpretation

Definition 6 The significance factor of a segment is the ratio of the area covered
by this segment only, divided by the area of the segment.

Hence, the significance factor sf;, for a certain segment k£ can be calculated as

_ L(M \ (M 0 (UM)))
LM,

The post processing procedure is as follows. First the significance factors for

sf, Vi # k. (3.53)

all segments are calculated and the segments are ordered according to their significance
factors. If the value of the minimal significance factor is below a certain threshold, then the
corresponding segment is removed and the whole procedure is repeated. If the minimum
significance factor is not below the threshold, then the post processing procedure stops,
returning the remaining segments, together with their updated significance factors. For all
examples shown, a preset threshold of 0.05 has been used. The meaning of this threshold is
that a segment should at least contribute with 5 % of its area to the present decomposition,
otherwise it is not considered significant. Although no exhaustive experiments with this
threshold have been carried out, it appears conservative enough to be acceptable.

In the case of our example, post processing does not have any effect, leaving the
decomposition from Fig. 3.18 as the final result. The decomposition results are intuitive
and capture the idea of the used tool well. To further underline the performance of the

algorithm, in the next section I will show some more extensive experiments.

3.4.3 Examples

The decomposition of a shape into convex subparts is, in general, not unique (see [20] for

a proof). Therefore, there is no tool for the analytical evaluation of such decompositions
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and we have to resort to intuitive evaluation. To aid such an intuitive evaluation, I have
chosen examples that a human observer would usually decompose in a unique way, called
ideal decomposition, against which the results of the algorithm can then be evaluated. The
examples shown in Figs. 3.19 - 3.24 have been digitized on a 128 x 128 pixel picture plane.
The occlusion scene from Fig. 3.25 has a size of 200 x 200 pixels. Each figure shows
the input (top left), the skeleton representation (top right), and the final decomposition
(bottom). The results of the decomposition are shown in Table 3.3. The last row of this
table indicates the processing time in seconds. The algorithm was coded in C, compiled

with the optimization flag, and executed on a SUN S-4/EC.

. Skeleton| After After After Inter- Final Ideal Proc

Figure . . . . time

segments| elongation| expansion | merging | pretation | decomp.|decomp. [sec]
Cross 13 11 9 3 2 2 2 27.32
Screwdriver| 4 4 2 2 2 2 2 6.57
Tongs 15 14 14 8 5 5 5 41.35
Plane I 14 14 13 4 4 4 4 42.48
Plane I 14 11 10 5 5 5 5 23.03
OcclusionI| 25 23 21 10 7 7 7 70.48
Occlusion H| 52 52 51 28 16 13 13 839.73

Table 3.3: Decomposition results

The first example in Fig. 3.19 shows the synthetic example of a cross, whose skeleton
has been decomposed into 13 initial segments. This example especially highlights the merge
stage, during which 6 segments can be removed. The final decomposition nicely shows the
two bars that are the basic constituents of the cross. Next are some real examples of tools,
starting with the driver in Fig. 3.20. In the case of the dri.\'cr, the skeleton decomposition
is rather simple and yields only 4 segments, two of which can be removed subsequently,
yielding the final decomposition into blade and handle. Fig. 3.21 shows a pair of tongs, with
an initial decomposition into 15 segments. The final decomposition very nicely captures
the general structure of the tool, with the two handles, the two front parts, and the spring

used to open the pair of tongs. The next two examples in Fig. 3.22 and Fig. 3.23, show the
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Figure 3.19: Rotated cross
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Figure 3.20: Screwdriver

decomposition of the silhouettes of planes. The numbers of the final segments correspond
in both cases to the ideal decomposition, and the shape of the segments in Fig. 3.22 are
close to ideal. In Fig. 3.23, which shows a two-engine plane, all the meaningful parts are
extracted and can be identified as wings, fuselage, tail-wings, and the two engines. In
Fig. 3.24 we applied the algorithm to an occlusion scene of a driver and a pair of tongs,
starting with a skeleton decomposition into 25 segments. The final decomposition into 7
segments again corresponds nicely to the ideal decomposition, as all the elements of the
driver and the pair of tongs are identified. However, the shape of the third segment is

not captured perfectly. This problem can be traced to the used approximation to the circle
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Figure 3.21: Pair of tongs
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Figure 3.22: Plane I

while calculating the convex hull, and could be remedied by using the exact convex hull.
Finally, in Fig. 3.25 we show an example of a more complicated occlusion scene. Initially,
the skeleton has been segmented into 52 parts. If the number of segments is getting rather
large, then the need for the interpretation stage and the post processing becomes clear.
In this example 12 unnecessary segments were removed only during interpretation, while
post processing allowed to remove three more segments. The obtained segments do not
completely correspond to the ideal decomposition, although the number of segments vi's
equivalent. This is because the head of the uppermost hammer has been segmented into two

parts, and the upper screwdriver has been over merged. It is arguable whether the constraint
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Figure 3.23: Plane II

of approximate convexity is too strong in the first case. Alternatively, a further stage for the
extraction of “convex arcs”, which could be defined as a convex shape with a bent skeleton,
could be implemented. The over merging of the screwdriver could again be remedied by
employing the exact convex hull.

Considering processing time, we can see from Table 3.3, that processing gets rather
slow for complicated scenes. One reason for this is the work spent on calculating convex
hulls. For instance in the case of Fig. 3.25, 356 convex hulls have to be computed. In
general, some speedup should be possible by an optimized coding of the algorithm, a
point that has mainly been neglected so far. Particularly, by using dedicated hardware for
morphological operations, it should be possible to bring down the processing time to more
favourable values. To gain further increases in speed, the possibility of pruning candidate
segments during the first stages of the decomposition, e.g., after skeletonization, should be
investigated. However, there is a trade-off between such a pruning and the stability of the

decomposition, which might result in the loss of some meaningful segments.

3.4.4 Conclusions

I proposed the concept of MACS’s into which a binary shape can be decomposed, and

showed how this concept can be related to integral geometry. I used the theoretical notion
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Figure 3.24: Occlusion scene |

of MACS’s as a centerpiece for a novel shape decomposition and description scheme, using
concepts of mathematical morphology to obtain an algorithm that is open to evaluation
and to implementation in hardware. To overcome the problem of rotation invariance,
I proposed a new elongation operator, which allowed to implement the Law of Good
Continuation of Gestalt psychology directly. Comparing the present work with results from
other recent shape decomposition approaches, for instance, Pitas and Venetsanopoulos [44],
shows clearly that our results are much closer to human intuition. Keeping in mind that
our approach is purely bottom-up, the used examples show clearly that all the available
information has been used in an intuitive and coherent way. Therefore, given no prior
knowledge about the expected input, the notion of MACS’s seems to be usable as a major
element in shape decomposition.

In order to obtain a more generally useful algorithm, it would be necessary to
employ parallel or dedicated hardware, as already mentioned. This could quite easily be

done if we consider that the work on each segment, as initially obtained from the skeleton
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Figure 3.25: Occlusion scene IT

decomposition, could be carried out in isolation. Only in the case of the merging stage, a
slightly more elaborate scheme would be needed. The removing of redundancies as done
between two consecutive processing stages could then be used as a synchronization step.
In this manner a significant speedup should be achievable.

As the present algorithm is mainly based on ideas of mathematical morphology,
it should also be possible to extend it to the three-dimensional case. Work on three-
dimensional skeletons can be found in the literature and the extension of elongation, expan-
sion, etc., to three dimensions is straightforward. However, in this case it is of special im-
portance to use parallel or dedicated hardware, as the implementation of three-dimensional

morphological algorithms on a normal workstation is at best very ineffective.
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For a general shape decomposition scheme, however, the notion of MACS’s alone
does not seem to be sufficient. Additional elements, as for instance loops or loop segments,
corresponding to the above mentioned “convex arcs”, have to be added to the process so as

to yield a more general and versatile approach.
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CHAPTER 4

Matching

4.1 Purpose and Overview

As already explained in Chapter 2, the basic structure used for acquisition and generaliza-
tion of concepts is that of a hierarchical graph. The actual relations among parts of the
decomposition are stored in the network layer. The way these relations interact so as to
form multiple concepts is mirrored in several layers that connect the relations hierarchically.
Hence, we can speak of the conceptual network as a three-dimensional graph structure.

In this Chapter I will address two main points. The first is how to build the
conceptual network from the result of the decomposition. In other words, in Sections 4.2
and 4.3, I will first address how an instance can be translated into a conceptual network.
Once the conceptual network of an instance has been obtained, generalization proceéds
by matching the conceptual networks of two or more instances. Hence, I will address the
problem of graph matching or subgraph isomorphisms. First, in Section 4.4, I will briefly
review some approaches towards weighted graph matching, giving the connection to the
present application. Finally, in Section 4.5, I will outline the matching approach that has

actually been used in the present system.

74



4.2 Relational Network

The description of binary shapes into Maximal Approximately Convex Subparts (MACS)
has been described in detail in Section 3.4. As result of the decomposition we obtain a
set of strokes or blobs that is the starting point for obtaining the relational network layer
of the conceptual network. In the first step, for each of those blobs or MACS’s, a table is
created which contains all the important information about the structure and the geometry
of the segment. In the second step, the actual relational network is built by using the above

mentioned MACS information tables.

4.2.1 Describing MACS’s

In order to exhaustively describe a MACS and its relations to other MACS’s, the following

information is extracted for each MACS:

e MACS number

Numbers of MACS’s with which intersection is nonempty

e Area

Centre of gravity

Length

e Width

Direction of main axis

Significance factor

Let us assume that each MACS is given as a binary image. Then most of the used relations
can be extracted by using moments, e.g. [S]. Generally speaking, the moment of order

(p + q) is defined as
Mpq = ZZmpyqf(:v,y), (4.1)
z y
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where f(z,y) is the image intensity at a point (z,y). For instance, in the case of binary
images f = 1 or f = 0. Therefore, the area of a binary image is given by moo- The centre

of gravity (Z,%) can then be calculated as

—_ mio

T = —
moo

. mo1

7 = —. (4.2)
moo

Based on the calculation of the centre of gravity, so-called central-moments are defined as

tpg = 3 (@ = TPy —P)*f (z,v)- (4.3)
Yy
Using these central moments, the direction of the main axis of the segment can be calculated
as follows
1 2
¢ = =tan~! (——-—-“” ) (4.4)
2 120 — o2

The length of the MACS can now easily be obtained by drawing a line with direction ¢
through (%, 7) and intersecting it with the MACS. The width can then be approximately
obtained by dividing the area of the MACS by its length. The set ¢ of all MACS that have

a nonempty intersection with the MACS k is given as
cr = {i | MACS, N MACS; # 0, k # i} (4.5)

Finally, the meaning and calculation of the significance factor have been explained in
Section 3.4. To avoid extreme mismatches, however, the significance factor is not used
as is, but is transformed into the range 0.5...0.8, as otherwise the fluctuations of the

significance factors would distort the resulting matching too much.
For instance, in the case of the driver from Fig. 3.20, which was decomposed into

handle and blade, the following information for the two segments can be extracted.

Segment 1 ####HF#FFEEEFFFRAFRIS Segment 2 ####FEHEFEHEEFFEFHES

intersect : 2; intersect : 1;
area : 802 area : 708
gravity-x : 88 gravity-x : 66
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gravity-y : 59 gravity-y : 64

length : 58 length : 106
width : 13 width : 6

direc 12 direc 12
signif : 665 signif : 643

FHEFEEF FHEF B AR SHEHAEARRS

For the sake of simplicity, all entries have been rounded to integers. The direction
is given in degrees, within +90°, and the confidence factor is in parts of thousand. The
segments are ordered according to area; segment 1 corresponds to the handle and segment
2 corresponds to the blade of the screw driver.

Based on this description, each MACS can be approximated by a rectangle with
direction ¢ and centre at (Z,7). For the case of the screwdriver, the approximation as

shown in Fig. 4.1 can be obtained. Whenever a reference to the decomposition results will

driverinfo

N1

==

N2

Figure 4.1: Approximated decomposition of a screw driver

be necessary, hereafter, I will be using the above approximative representation.

4.3 Describing Relations between MACS’s

As its name already implies, the relational network mainly represents relations between
segments of the decomposition, that is, between MACS’s. Structurally, nodes of the

relational network correspond to MACS’s, while links correspond to relation between
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MACS’s. All of the information in a relational network, except structural information,
is concentrated in its links. Links are connecting those MACS’s, which intersect each
other. Therefore, only the relations between intersecting MACS pairs will be used for
constraining the concept structure, while relations between non intersecting MACS will not
be used. The main purpose of using relations instead of the actual segment information is
that relations can easily be modified to be rotational and translational invariant. This means,
we do not want to distinguish between an object and its rotated or translated version. The
choice of appropriate relations or relational predicates has to be guided by those invariances.
Furthermore, relational predicates should be sufficiently adequate and relevant to the object
domain. Beyond those constraints, the choice of relational predicates is up to a certain
degree arbitrary. For the present study four different predicates are used. They are a length
predicate, a width predicate, a direction predicate, and an eccentricity predicate. The length
predicates describe the ratios of the lengths of two segments. Similarly, the width predicates
describe the ratios of the widths. Further, the direction predicates give the difference in
angles of the main axes, and the eccenfricity predicates give a normalized measure for the
distance of the centers of gravity. Formally, we have the following relations between two
MACS’s ny and np |

Length ty =log(la/lh)

Width t, = log(wy/wy)

Direction  t3 =|¢1— ¢2|

(\/(;3—1‘1)2 +(y3—y)* + \ﬁxs —z2)? + (ys—?/z)z) cos (%3-)

max(ll, lg)

Eccentricity t4 =
where [y, I are the lengths, wi, wy are the widths, ¢1, ¢, are the directions of the main
axes, measured from the x-axis, and (z1,91), (%2,%2) are the centers of gravity of any
two intersecting MACS, and (23, y3) is the point where the two main axes intersect. The
definition of eccentricity corresponds to the distance of two parallel lines through the centers
of gravity, in direction of half the angle between the two segments. If we invert directionality,
that is, exchange n; and ny, then the length and the width relation will change their signs,

while the direction and the eccentricity relations remain unchanged. The logarithms in
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the case of length and width relations are employed in order to restrict the domain of #;
and t,; the domain of ¢, i.e., the direction relation is restricted to —90°...90°. Each
relation between two MACS’s is expressed by the above four relational predicates, each of
which, in turn, is a simple number. Furthermore, due to the definition of the length and the
width predicate, a relation between two MACS, and thus a link of the relational network, is
directed. We must account for this directionality when matching two relational networks.
The system I am describing here should finally be able to learn and to recognize
objects solely based on information as obtained from instances of the object. Hence, we
do not want to have any assumptions of ideality concerning instances used for learning.
This means that the relational predicates as defined above might be rather inaccurate for
certain, probably distorted instances. Therefore, I propose to fuzzify the relational predicates
into generalized predicates. Each generalized predicate does not consist of a number, but
rather of a function that can be considered a scaled version of a probability distribution.
A generalized predicate is obtained by applying a point-spread function of the form of a

Gaussian to the relational predicates. Doing this, the generalized predicates can be written

as
1 (z=t;)
a; T2 2 .
i(z) = ex 7 1€1,...4. 4.6
fi(2) g, P (4.6)
In other words, the relational predicates t1, ..., t4 become the expectations of the Gaussian

distributions. It is important to note that the above equation does not represent a Gaussian
normal distribution, but rather a scaled version of Gaussian or normal distribution. We can
interpret the scale factor a; as mirroring some sort of confidence we have in the expectations
t1, ..., ts. Therefore, we can use the significance factor as obtained from the decomposition
as scaling factor of the Gaussian normal distribution. Finally, the standard deviation o; is
retained as a system variable. The proper selection of o; involves a tradeoff between
accuracy and speed. The smaller o; is, the more the search-space for possible matchings
can be reduced, thus probably eliminating valuable candidates for matching.

Although initially each generalized predicate contains only one Gaussian normal

distribution, this might not be true anymore during generalization of several instances.
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Depending on the used generalization rules, as for instance the rules to be shown in
Chapter 5, Gaussians might get added. Therefore we need to further generalize the notion
of generalized predicates so as to accommodate generalization as well. Doing so leads to

the following structure of the generalized predicates

l(z—tiz«)z
ajj T2 ol .
i 1e€1,...4, 4.7
Z \/27rcrzJ “.7)

where the summation is over all Gaussians that belong to the generalized predicate in
question. Now, the case where j = 1 corresponds to Eq. 4.6, such that a;; = a;, 051 = 0;
, and t;; = t;. The calculations for the case where j # 1 will be shown in Chapter 5.

Once the generalized predicates have been obtained, we can proceed to the building
of the relational network. Each link of the relational network contains the above mentioned
generalized predicates. In addition each link has a so-called confidence value, or cval for
short. The confidence value will be used during generalization, initially, it is set to one.
Nodes in the relational network correspond to segments of the decomposition, however,
without carrying any information.

Finally, the conceptual network consists of the derived relational network layer and
one entry in the concept layer. The entry in the concept layer stands for the name of the

concept the instance belongs to, and it is connected to all nodes of the relational network.

4.3.1 Example

To illustrate the above ideas somewhat more in detail, let us look at how a real example
will be described in a conceptual network. Let us aésume that the instance from Fig. 4.2 is
a new instance for the concept of a plane. The decomposition of the input object is given
in Fig. 4.3. The structure of the resulting conceptual network is then shown in Fig. 4.4 and
the generalized predicates showing the relation of N2 (fuselage) with respect to N1 (main

wings) are shown in Fig. 4.5.
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plapelb.mnfo
N2
N4 | | N5
L _J
N1
CLTIN3
Figure 4.2: Input object Figure 4.3: Decomposition

Figure 4.4: Resulting conceptual network

4.4 Review of some Graph Matching Methods

Finding subgraph isomorphisms or matching graphs is a computationally expensive task.
According to Garey and Johnson [18], finding subgraphs of G isomorphic to H (subgraph
isomorphism) is an NP-complete problem. However, the problem can be solved in polyno-
mial time if G is a forest and H is a tree. The problem of graph isomorphisms, on the other
hand, has still neither been proved to be NP-complete nor to have polynomial complexity.
An ordinary graph in graph theory can be considered a weighted graph with binary weights.
Therefore, the weighted graph matching problem includes the graph isomorphism problem.

In what follows, I will review some approaches to graph matching, starting with

81



Link name : 2 From : 1 To: 2

N
/N

Width

Direction

VAN

Eccentricitg

AN

Figure 4.5: Generalized predicates of link 1 - 2 from Fig. 4.4

graph isomorphisms and then moving on to subgraph isomorphisms. Of those two it is only
the latter that has direct implications to our case. However, the former could be used as a
theoretical starting point for the latter, and extensions to the former might still make it a

viable option at a later stage of this project.

4.4.1 Graph Isomorphisms

A weighted graph is a tuple of the form G = (V, g), where V = vy,..., v, are the vertices
of the graph and g is a weighting function that gives a non-negative value to each arc (v;, v;)
of the graph. If the weighting function is symmetric, i.e., g(v;,v;) = g(v;, v;) then the
graph G is called undirected. A weighted graph can be represented by its adjacency matrix.
The adjacency matrix A of the graph G is defined as

aij = w(vi,vj) 1#J

Ag = [as] (4.8)

a;; =0 otherwise.
When G is undirected A becomes a symmetric matrix.
The problem of matching two weighted graphs G = (V, z) and H = (W, y) of the
same number of vertices n consists of finding a one-to-one correspondence between V' and
W which makes G and H as similar as possible, similar in the following sense. Employing

an n X n permutation matrix P, the weighted graph matching problem can be formulated
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as finding a P which minimizes
J(P) = || Ag — PAxPT | (4.9)

There are several approaches for finding P. Umeyama [60] proposed to use the
eigendecompositions of the adjacency matrices in order to find a nearly optimal matching.
In general, it is difficult to find the permutation matrix P directly. Therefore, Umeyama
proposed to extend the domain of J to the set of orthogonal matrices. The set of orthogonal
matrices (Q) that minimize J(Q) can be obtained in closed form by using eigendecompo-
sitions of the adjacency matrices Ag and Ay. A nearly optimal permutation matrix can
then be determined by using those orthogonal matrices as clue. In the case where G and H
are really isomorphic, the problem reduces to a bipartite maximum weighted matching that
can be solved in O(n3). Evenif G | and H are not isomorphic, it can be expected that the
solution will be very close to the optimal permutation matrix. The solution can be improved
by using hill-climbing or relaxation methods.

Another approach to the same problem is taken by Almohamad and Duffuaa [1],
who propose to find the permutation matrix by means of linear programming. In order to
apply a linear programming approach, the problem has first to be transformed into a Hnéar
one. This is done by noting that the minimization problem from Eq. 4.9 is equivalent to
minimizing

R = AgP — PAjg. : (4.10)

The matrices R = {r;;} and P = {p;;} can be partitioned by columns such that

VEC(R) = (7‘11,...,T’n1, 712y 3Tn2y «o-y

Tiny sy Trn) ’ (4.11)
VEC(P) = (pu,...,pnl, P12+ 3DPn2y +o+y
Dlnse-erPrn)’s (4.12)

then, Eq. 4.10 can be written in the form
VEC(R) = Agy VEC(P), (4.13)

83



where Agy is an n? x n? constant matrix obtained from the weights of graphs G and H.

Therefore, the weighted graph matching problem can be written as
min || VEC(R) | = min || Az VEC(P) I, (4.14)

which is a linear problem. Ina first step, the problem consists of finding a real basic solution

P! = VEC(P) that minimizes
| AggP'|> under P' > 0. (4.15)

Since Agy P’ = O might not have a feasible solution, two sets of real positive goal variables

S = {8;} and T = {T;} are introduced such that
AggP' +S5-T=0. (4.16)
Then, the linear optimization problem becomes

minp g1 TS+ )
such that AggP'+S5-T=0

P >05>0T2>0. 4.17)

Adding further constraints on the solution P’ allows for an efficient treatment by using the
simplex method. Almohamad and Duffuaa point out that their approach has complexity
O(nf), which is, though still polynomial, worse than Umeyama’s approach. Empirical
tests, however, showed that the approach based on linear programming produces superior

matching results and is more general than the approach based on eigendecompositions.

4.4.2 Subgraph Isomorphisms

The problem that is closer to us is the problem of finding subgraph isomorphisms. Subgraph
isomorphisms can be determined by brute-force enumeration. Here, I will first outline such
an enumeration technique, which actually is a depth-first tree search algorithm. This
algorithm was given by Ullmann [59], together with further improvements that lead to

finding subgraph isomorphisms based on relaxation techniques.
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We consider two non weighted graphs G = (V) and H = (W). The problem is to
find all isomorphisms between G and subgraphs of H. Again, the two adjacency matrices
are given by Ag = [a;j] of size n X n, and Ay = [by] of size m x m, respectively.

Introducing a permutation matrix P of size n X m, we have
2
J(P) = || A - P(PAR)T|". (4.18)

At the start of the enumeration algorithm we constructa n x m element matrix P? = {p?j}
where we set p;; = O if there is any a priori reason that the jth vertex of H could
not correspond to the ith vertex of G. The algorithm works by generating all possible
permutation matrices P such that for every element p;; of P, (p;; = 1) = (p%- = 1).
Matrices P are generated by systematically changing to O all but one of the 1’s in each row
of PY. In the search tree, the terminal nodes correspond to distinct matrices P.

To reduce the amount of computation needed, Ullmann proposed a procedure which
he called refinement procedure [59], but which actually corresponds to relaxation labelling
as pointed out by Kitchen and Rosenfeld [30]. First, let us consider a matrix P’ that is
associated with some non-terminal node in the search tree. Any subgraph isomorphism
corresponds to a particular matrix P. An isomorphism is said to be an isomorphism under
P’ if its terminal node in the search tree is a successor of the node with which P’ is
associated. As seen above, the 0’s in P’ forbid correspondences between vertices of G and
H. From the definition of subgraph isomorphism it is necessary that if v; corresponds to
w;, then for each v, adjacent to v;, there must exist a wy that is adjacent to wj, such that

w, corresponds to v, in the isomorphism. In other words, if v; corresponds to w); then
Ve((aiz = 1) = Fy(payby: = 1)). (4.19)

The refinement procedure checks each 1 in P’ to find whether the above condition is
satisfied. For any p;; = 1 such that the condition is not satisfied, p;; = 1 is changed to
p;j = 0. The refinement procedure applies the above condition in turn to each 1 in P’,
until during one iteration no occurrences of 1’s can be changed. Therefore, a necessary and

sufficient condition for subgraph isomorphisms is that the refinement procedure leaves P’
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unchanged. Empirical tests carried out by Ullmann using random graphs showed a time
complexity of roughly O(n?). However, Ullmann points out that even a poor algorithm for
isomorphisms may work well with random graphs.

The first attempt to characterize weighted subgraph isomorphisms as a state-space
search was given by Tsai and Fu [57]. The idea turned out to be a fruitful one and
subsequently several papers dealing with the state-space matching of graphs appeared [9,
16], all of which are rather similar in their approach. Tsai and Fu noted that if we are trying
to match deformed graphs, then it is possible to use the a priori deformation probabilities
for guiding the matching. According to Tsai and Fu, a state is described by a collection
M of 2-tuples, each of which denotes a pair of matched nodes v; € V and w; € W.
Hence, a state in the search space gives that part of the matching that has been found until
a certain moment. The initial state is defined as M = (. By expanding of a certain state
M, a new state M' is generated. Expansion of the state M = {(vy,w1),..., (Vn,wn)}
is defined by adding a new pair (v;, w;) € V x W, such that v; € V' \ {v1,...,v,} and
w; € \{wi,...wn}, and (v;, w;) must be valid in respect to state M. Valid refers to the
fact that embedding (v;, w;) into M does not contradict any previously matched pairs. By
expanding M, the partial matching has been augmented by one element. A state M thét
exhausts all vertices w € W is a goal state and thus a valid subgraph isomorphism. In the
case of weighted or attributed graphs, it is possible to define a cost for the expansion of a
state, which will be the cost associated with the matching of (v;, wj). Tsai and Fu propose
to use ordered search or an A* algorithm [6]. The successor of a state is obtained by finding
all possible expansions of the state. Then the search algorithm uses an evaluation function

to order states for expansion. For a state M;, an evaluation function of the form
g(M;) = g1(M;) + g2(M;), (4.20)

can be used. Here, g1 (M;) represents the minimum total path cost from the start state Mo
to M;, and g2(M;) is a lower bound estimate for the cost of the optimal path from M; to
the goal state M,,. As has been proved, if g, is a consistent lower bound estimate for the

remaining path cost, this approach is guaranteed to give the optimal solution, with fewer
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states expanded than without using look-ahead information.

4.5 Matching of Relational Networks

The matching approach used in the present system is largely based on the approach by
Eshera and Fu [16). Eshera and Fu’s method is a state-space method and is very cldsely
related to the method discussed in the previous section. As we have seen before, the
efficiency of the state-space approach comes from the fact that we can use heuristics for the
ordering of the search space. An essential point is therefore the derivation of an appropriate
cost function for matching parts of the graph. As only links of the relational network do
carry information, the cost function has to be derived for matching links or relations. In
what follows, I will first describe how to derive this cost function in the case of the present

system. Subsequently, I will outline the used matching scheme in some detail.

4.5.1 Cost Functions and Link Similarities

As has been seen in Section 4.2, the information contained in a relational network is
concentrated in its links. Therefore, the matching of relational networks proceeds via the
matching of its links. Qualitatively, the cost for matching two links should be smaller the
more similar the two links are. Therefore, the cost should be O for matching a link with
itself, and it should be maximal for matching two absolutely dissimilar links. Hence, the
cost for matching two links is inversely proportional to the similarity of the two links. Ina
first step, I will therefore proceed to the explanation of link similarity.

As shown in Section 4.2, a link of the relational network represents the relation
between two segments of the initial description. As such, each link carries a confidence

value and a set of four generalized predicates in the form

(z=t;;)*
Z %t iel,...4. (4.21)
\/27rorzJ ’ ‘

Clearly, two links are most sumlar if and only if they are the same. This means, all their

generalized predicates have to be identical. Therefore, link similarity has to be defined
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over the set of the generalized predicates. We start with the definition of similarity between
generalized predicates. Again, generalized predicates are most similar if and only if they
are identical. A simple and intuitive solution for the problem of similarities of generalized
‘predicates can be obtained if we remember that a generalized predicate can be considered a
probability distribution (up to a certain scaling factor) of a random variable. Now, we can
assume that the two generalized predicates to be compared are statistically independent.
Actually, this is quite a reasonable assumption, as the two generalized predicates, in general,
will come from two separate instances. Obviously, the joint distribution of two random
variables can be calculated as the pointwise multiplication of their respective distributions.
Hence, we caﬁ use the joiﬁt distribution as a measure for the similarity of the two generalized
predicates (again up to some scaling factor). Furthermore, as we would like to obtain a
scalar value for the similarity, we could use the value of the probability of the expectation of
the joint distribution. If the joint distribution has a mirror symmetry around the expectation,
which is given in the case of a Gaussian distribution and the multiplication of two Gaussians,
we can use the maximum value of the joint distribution instead. Note that in the case of
summed Gaussians, using the maximum value might not be correct anymore, however, we

retain it as a simplification. Therefore

Definition 7 The similarity s between two generalized predicates f; and f; is

defined as

s(fi, f5) = domgll'?l)((f,wfj) fi- fi (4.22)

where - denotes the pointwise multiplication.

Given the similarity between generalized predicates, we can define the similarity
between sets of generalized predicates, that is, links. Again we use the statistical interpre-
tation of generalized predicates and of their similarities. We saw that the similarity s of
two generalized predicates is given as the maximum of their joint distributions. Hence s
is a probability as well. Again assuming statistical independence between the generalized

predicates of a link, we can again use the joint probability as a measure for the link similarity
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7. Namely,

Definition 8 The link similarity v of two links b,, and b, is defined as
T(bu,bv) = His(fui,fvi) 1= 1,...,4. (4‘23)

Actually, as can be seen from the definition of the generalized predicates in Section 4.2,
the assumption of statistical independence between generalized predicates of a node is
not really fulfilled; for instance, the eccentricity and the angle predicate are somewhat
related. However the assumption of statistical independence was considered a justifiable
simplification.

Finally, given the link similarity r we have to calculate the cost for matching two
links. Per definition, the initial values for the generalized predicates, and therefore for the
link similarities, are in the range 0...1. As should become clear from the generalization

“of generalized predicates in Section 5.2, this range is preserved through generalization.

Therefore, link similarity as well will be in the range 0...1, and we have
Definition 9 The cost for the matching of two links b, and b, is defined as
cost(by, by) =1 — 7(by, by). (4.24)

In other words, the cost for the matching of two links is the complement of their similarity.

4.5.2 Matching

The actual matching of relational networks closely follows the approach by Eshera and
Fu[16]. Since the two relational networks to be matched are not of same size, the approaches
for graph isomorphisms, as described in Section 4.4 are not applicable. In addition, since we
cannot be sure that the smaller of the two relational networks can be matched completely,
the task is even more formidable than subgraph isomorphism, maybe we could speak of
subgraph sub-isomorphisms. It appears that for such tasks the method by Eshera and Fu

does rather well.
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Eshera and Fu explicitly address the problem of matching attributed relational
graphs or ARG’s for short, that is, a class of graphs that are especially adequate for image

representation tasks. Formally, an ARG is defined as
G = (N, B) (4.25)

where N = {n4,..., n|n|} is a finite set of nodes, and B = {b1,...,bp|} is a set of node
pairs or branches, i.e., b = (n;,n;) for some 1 < 4, j <|N| denotes the branch connecting
node n; with node n;. Both, nodes and branches on an ARG carry attributes. Note that
no restrictions at all are placed on the nature of the attributes, they could be symbolic,
numerical, or, as in our case, a set of functions. Based on the definition of an ARG, it is

possible to define a Basic Attributed Relational Graph or BARG as follows

Definition 10 A BARG is defined as a graph in the form of a one-level tree, i.e.,
it consists of a root node, the branches emanating from the root, and the nodes on

which these branches terminate.

A BARG G, is given as a tuple of the form
Gi = (i, Bi, L;) (4.26)

where 7; is the root node of the BARG G, B; is the set of branches emanating from r;,
and L; is the set of leaf nodes where the branches terminate. To make this definition more
transparent we can use the example decomposition of a plane in Fig. 4.6, together with its
relational network in Fig. 4.7. To transform a relational network into an ARG it is sufficient
to extract connected parts of the relational network, which might actually consist of multiple,
disconnected subgraphs. In the example shown in Fig. 4.7, the ARG corresponds to the
relational network. Transferring the ARG into a set of BARG’s gives the structures as
shown in Fig. 4.8. Actually, Eshera and Fu propose an approach for calculating the distance
between two graphs. However, matching and distance calculation are the same in that the
minimum distance between two graphs defines the optimal matching between them.
Matching an ARG U with another ARG V' means we have to find a sequence

of transformations for converting V into U, with minimal cost. Hence it is essential to
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Figure 4.6: Decomposition of a Figure 4.7: Relational network for
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Figure 4.8: Set of BARG's obtained from Fig. 4.7

optimize over all valid sequences of transformations. Without loss of generality we assume
that | U |>| V' |. We start by defining the empty graph A = (&, ®) as the graph of no
nodes and no branches. Further we decompose two ARG’s U and V into their sets of
BARG’s U = {Ui,...,Un} and V= {W,...,Vp}, respectively, where m and n are the
numbers of nodes in U and V. The matching itself employs a state-space representation as
described in Section 4.4. The state-space representation used is in the form of a directed
acyclic labelled lattice, which consists of a set of states S = {sg, s1,...,55}, where L + 1
is the total number of states, and a set of directed branches, R(sy, s) which connect two
states s; and sy. For two ARG’s U and V, each state in the lattice corresponds to a partial
reconstruction of the two graphs U and V, as well as to the matching of their BARG'’s.
The initial state sq corresponds to the empty graph A, starting from which possible states,
corresponding to partial matchings, are expanded. The transition from one state to the
other represents the embedding of a new pair of matched BARG’s into the reconstructed
subgraphs; the weights on the branches stand for the incremental cost due to the matching

of the new pair of BARG’s. At each state sy, we have to determine the best successor 5741
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of s7. First, only those states are expanded that yield possible reconstructions of the ARG’s
U and V. Possible reconstructions means that the new state should not contradict any
previous matchings, in respect to the structures of both, U and V. Furthermore, we discard
all those expansions whose cost is above a certain threshold, which is set so as to exclude all
those matches whose similarity implies that the corresponding Gaussian distributions are
further apart than 40, assuming an amplitude of 0.65 for the Gaussians. This step allows
to exclude some completely unfeasible matches and therefore to speed up the matching.
Finally, among the remaining possible expansions, we choose the one that is heuristicaily
most promising. The used criterion transforms the search problem to a heuristic search [6]

where that state s74; match that minimizes the cost function

9(s141) = g1(s141) + 92(8141), (4.27)

1s chosen as the successor of state s;. In the above equation, g; (sy.1) are the summed costs

of all the matchings on this path, namely

=141
g1(s74+1) = Z cost(s;—1 — 8;), (4.28)

i=1
where cost(s;—; — s;) denotes the cost associated with the state transition from state s;_;
to state s;. Further, g2(s741) is an estimate of the cost for completing the matching, starting

from state s 7+1. Assuming |U |>| V|, the look-ahead cost can be calculated as

92(s141) = (| V| =I), (4.29)

where « is an empirically determined weight, presently set to 1.1, and I denotes the
number of matches obtained so far. The expansion of the path stops if no more states can
be expanded, either because V' has been reconstructed completely, or because no further
reconstructions are possible. In the former case the algorithm stops, returning the path from
A to the final state. In the latter case, the path is stored as one possible solution, and we go
on to continue expansion for a fixed number of times. Doing so will possibly give a number
of feasible matches, ordered according to their cost function. If this is the case, the best

matching is retained, however, the remaining matchings are used to detect unstable matches.
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An unstable match means that one node v; € V could be matched to two different nodes
uj,ur € U, without altering the resulting cost too much. Since such unstable matchings
can be interpreted as not having sufficient information for being matched, we opt to remove
them from the resulting matching.

In order to give a clearer illustration of the used matching scheme, we can study its
performance by using a simple example. Let us try to match the plane from Fig. 4.6, which
we will call PLANE], with the one from Fig. 4.9, which will be denoted by PLANE2.
The ARG and the set of resulting BARG’s for PLANE2 are given in Figs. 4.11 and 4.12,

planeld.anto
N7

N9 N11
Nilp N6

A 2
W10
[ 1N&

Figure 4.9: Input object Figure 4.10: Decomposition

respectively. Expanding so = A proceeds as follows. As there is cost O associated with
so the cost function does not use any look ahead information and is reduced to best-first
at this stage. This means among the possible matches bU x bV, where bU and b" denote

the branches in ARG’s U and V/, respectively, we select the one with minimal cost. This

N8
Figure 4.11: Relational network for Fig. 4.9
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N6 : N7 N8 NS N10 N1l
AN AT WA
N7 N9 N10 N11 N6 N8 N7 N6 N6 NI N6 NI10

Figure 4.12: Set of BARG’s obtained from Fig. 4.11

is illustrated in Fig. 4.13, where the paths are ordered so that the one with least cost is
on the left. For purposes of illustration, beneath each expanded node sy ..., the matched

nodes of the partially reconstructed ARG are listed. Expanding the path with minimum

2

S1 S3 82 84 S5 S6 57
N2, N7 N1, N6 N1,N7 N1,Né6 N1, N6 N1, N6 N1, N6
N3, N8 N2, N7 N2, N6 N4, N9 NS5, N9 N4, N11 N5, N11

So

Figure 4.13: Expanding the first level of the state-space

cost, that is, the leftmost path, terminating at state s;, and again ordering the result yields
the state-space as shown in Fig. 4.14. Again, we can expand, obtaining the results as
shown in Fig. 4.15. The final expansion, as shown in Fig. 4.16, cannot be expanded any
further, it is a final state. State s;3 is a terminal state, that is, it cannot be expanded any
further. Hence, the algorithm stops and returns the solution, namely s;3, which is repre-
senting a possible path from sg to a terminal state. As can be seen from Fig. 4.16, sj3 =
{(N2,N7),(N3,N8),(N1,N6),(N4,N9), (N5,N10)}. Hence, the resulting matching
will be of the form M = {(N2,N7),(N3,N8),(N1,N6),(N4,N9), (N5, N10)}, cor-
responding to matching the fuselages, the main-wings, the tail-wings, and the two engines,
as can be seen from Figs 4.6 and 4.10.

Given the segment matching M, sometimes it might be possible to update the

matched links. To see why this could be possible, let us have a look at the two ARG’s in
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S0

A N

S2 §3 .84 5 S6
N2, N7 N1, N6 N1, N7 N1, N6 N1,N6 N1, N6 N1, N6
N3,N8 N2,N7 N2,N6 - N4,N9 N5, N9 N4, N11 N5, N11

58
N1, N6

Figure 4.14: Expanding the second level of the state-space

Fig. 4.17. Furthermore, let us assume that the matching algorithm returned the following

maximal matching
M = {(N1,NS5),(N2,N6),(N3,N7),(N4,N8)},
which was obtained by matching the following links
M, ={(1,6),(2,7),(4,9)(5,10)}.

Based on M, we can augment the set of matched links M; by all those matches that are

possible according to M, namely
M = {(1, 6),(2,7), (37 8)(4a 9), (5’ 10)}

This means, one additional link match can be found.
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50

Z

S1 kD) 83 S4 S5 86 87
N2, N7 N1, N6 N1, N7 N1, N6 N1, N6 N1, N6 N1, N6
N3, N8 N2, N7 N2, N6 N4, N9 N5, N9 N4, N11 N5, Ni1

N1{N6

89 510 511 812
N4, N9 N5,N9 N4, N11 N5, N11

Figure 4.15: Expanding the third level of the state-space
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S0

X

31 82 S3 S84 S5 S6
N2, N7 N1, N6 N1, N7 N1, N6 N1, N6 N1, N6
N3, N8 N2, N7 N2,N6 N4, N9 N5,N9  N4,NIl1

N1, N6

S 810 S11 S12
N4, N9 N5,N9  N4,Nl11 N5, N11

513
N5, N11

Figure 4.16: Expanding the fourth level of the state-space

1 ' 6
N1 ———N2 N5 ————— N6
2 3 4 7 8 9
N3 ——————— N4 N7 ——————— N8
5 10

Figure 4.17: Two ARG’s
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CHAPTER 5

Generalization and Specialization

5.1 Purpose and Overview

Once a new instance has been matched with an existing concept, the instance and the
concept have to be generalized, so as to yield a new concept, which can represent the new
instance as well. The simplest case of generalization is given if there is no concept present
yet. In such a case, no mafching can be obtained either. As the instance is the only one
of its'kind that was seen by the system, it makes sense to directly promote the instance to
the level of concept. This is particularly easy, as there is no structural difference between a
concept and an instance. As soon as we attempt to generalize an instance with a nonempty
concept, however, things look different. Such a generalization takes part on three levels,
roughly corresponding to level of detail or abstraction. The lowest level is the level of single
relations or links of the relational network. In the next level, the structure of the relational
network has to be adjusted. Finally, the higher levels of the conceptual network have to be
generalized as well. It is here that concept abstraction and grouping takes part. In the next
section, I will treat the generalization of links of the relational network, leaving structural
questions to Section 5.3. Finally, in Section 5.4, I will treat the opposite of generalization,

namely specialization.
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5.2 Generalization of Network Links

All the nodes and links of the relational network that appeared in the matching M, as
explained in Section 4.5, have to be generalized. This means, each matched pair of nodes
and links will be replaced by one new node or link, respectively. As the nodes of the
relational network do not carry any information, their generalization is straightforward; the
more difficult generalization will take part among the links of the relational network. In
what follows, I will denote any generalization by the symbol I; for instance, the relation
that link 4 and link 9 are generalized into link 15 will be denoted as (4,9) F 15. As
seen in Section 4.2, a link of the relational network has a confidence value cval and a set
of four generalized predicates, which numerically define the relation the link stands for.
While generalizing, we have to treat the different constituents of a link differently. To make
things easier to understand, I will denote the link from the concept by the subscript C,
the corresponding link from the instance will be denoted by the subscript I, and the link
containing the generalized information will be denoted by the subscript new. This leads to
the following approach for generalizing links:

Step 1: Add the confidence values:

cValpew = cvalo + cvaly. (5.1)

Step 2: For each pair of corresponding generalized predicates f;c and f;r:

fi new = fic +efir(1— fic) if cvalgc > cvaly

(5.2)
finew = fir +efic(l— fir) otherwise.
where the weight ¢ is defined as
_ 1 (cvaly — cva.lc)2
e=e’ 7€ ) (53)

following the arguments to be given shortly.

The second step of the above procedure introduces the product of two Gaussians. Strictly

speaking, the definition of generalized predicates as the sum of Gaussian distributions
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(see Section 4.2) is therefore not valid anymore. However, I will show in Appendix C,
that the product of two Gaussian distributions can itself be sufficiently approximated by
another Gaussian distribution. Therefore, the definition for generalized predicates retains
its validity.

Looking at the case where cvalc = cvaly and replacing f;;r by max(f;;) and f;c by
max( f;c), the above generalization rule (step 2) corresponds to the generalization rule for
certainty factors as used in MYCIN. It is possible to find a probabilistic interpretation for
this generalization rule, in doing so we rely on work by Heckerman [22]. Let us first consider

Bayes’ theorem for updating the probability of a hypothesis H, given some evidence E:

p(E | Hyp(H)

H|E)= 5.4
The equation for the negation of the hypothesis, = H, is:
p(E | ~H)p(~H)
-H|F)= . 5.5
p(~H | E) T (55)
If we divide those two equations, we get:
p(E | H)
O(H | E) = ————=0(H), 5.6
(H| B) = FErg0() (56)

where O(X) are the odds of some event X. The ratio p(E | H)/p(E | —H) in the above
equation is called a likelihood ratio and we can write it as A\(H, E).
Now, if there are two items of evidence, E; and E,, which are assumed to be

statistically independent under the hypotheses H and —H, Bayes’ theorem can be written

as:
p(H | EEp) _ p(E\Ey | H) p(H) _ p(E | H) p(E,|H) p(H) . (57) '
p(—~H | E\Ez) p(E1By | -H)p(-=H) p(Ei|-H)p(E,|~H)p(-H)
From the definition of ), it is evident that
MH, E\Ey) = MH,E|)\H, Ey). (5.8)

Therangeof Ais 0. .. 0o, however, the range of a generalized predicate is 0. . . 1. Therefore,

we have to apply a mapping for adjusting the range of \. For instance, we can consider the
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following mapping function:

F(z) = ! however, z > 1. (5.9)

Therefore, we have

NH, E;) — 1

A> 1 (5.10)

The relation A > 1 is always true, since we are only considering evidence that is in favour

of the new hypothesis H. Using Eq. 5.8, we obtain
’\(Ha EC)’\(H) EI) -1

J— A1
f e ’\(Hv EC)’\(Ha EI) (5 ' )
After a series of transformations, we finally get

_MH,Eg) -1 + AMH Er)-1 MH,Ec)—1 . ANH, Er) — 1' (5.12)

Finew = =X(H, Bo) A(H, Er) X(H, Ec) A(H, Er)
This is clearly equivalent to our generalization rule, using the transformation function F(z).
Therefore, we can say that our generalized predicates, together with their generalizations do
have a probabilistic interpretation. Namely, a generalized predicate is a pointwise mapping
of the likelihood ratio of a hypothesis H, and the generalization of generalized predicates
corresponds to the pointwise multiplication of their likelihood ratios, or likelihood functions
in our case. '

Now, for understanding the role of cvalc and cvaly, we can‘look at human learning
behaviour. In human learning, the ordering of instances representing the concept to be
learned is usually important. In other words, instances presented early leave a more
persistent impression, whereas instances presented later will not affect our ideas about
the concept too much. This is particularly visible in the way we form preconceptions or
prejudices, based on some isolated incidents. This means that at a later stage of learning more
instances are needed to give a similar impression as a single instance in the beginning of the
learning sequence. In other words, the importance of an instance is inversely proportional
to its location in the learning sequence. However, this is rather a poor model of human

learning behaviour, as it does not take into account factors like forgetting or changing of
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Figure 5.1: The weight ¢ as a function of | cval; — cvalc | (0. = 5)

opinions. To come back to our application, the confidence value cval can be considered as
giving us the location of the instance in the learning sequence. We have seen above that
during generalization, confidence values are being added. Hence the confidence value of
a particular link of the relational network tells us how many times it has been generalized,
or in other words, with how many instances it has been generalized. To achieve the
aforementioned effect, the weight ¢, which grades the instance according to its importance
in respect to the concept, is introduced. The graph of ¢ as a function of | cval; — cvalc | is
shown in Fig. 5.1. The symmetry in Eq. 5.2 is only necessary if we attempt to generalize
two concepts. Only in such a case we have cval; # 1. In Fig. 5.2, the generalization of
two generalized predicates, with changing confidence values is shown. As becomes clear
from that figure, as learning proceeds, the influence of new instances gradually decreases.
As can be seen from Eq. 5.2, during generalization a Gaussian will be replaced by
the sum of three Gaussians. This means, after a few generalization steps, each generalized
predicate can consist of a rather large number of Gaussians, which will slow down matching
and generalization considerably. To avoid such a break down in performance, each gener-
alized predicate that consists of more than 20 terms will be approximated by a new sum of
Gaussians containing at most 12 terms. The actual approximation is explained in detail in

Appendix D.
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a)cvale =1, cvalf =1 b) cvale =3, cvalr =1

¢) cvalg =6, cvaly =1 d) cvalg = 10, cvaly =1

Figure 5.2: Generalization of generalized predicates (generalization result shown as dashed
line), o, = 5

In Section 4.2 we were speaking about interpreting the generalized predicates as
probability distributions. As we have seen in that section, generalized predicates have
function values in the range 0...1. In order to keep the probabilistic interpretation of
the matching of generalized predicates, it is essential that this range be preserved during
generalization. From the definition of ¢, we have ¢ < 1. Now, per definition, we have that

fic, fir < 1,thus efir < 1. Therefore, fic +efir(1 — fic) < 1.
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5.3 Structural Generalization

Let us assume that we obtained a matching M between an instance and a concept. The
structural generalization of the concept and the instance, denoted by U,V = W, can then
be obtained as follows. First, we replace all nodes and links of the concept U that are
covered by the matciling M by new nodes and links in W. Then, for each node v; € V
such that ug,v; F wg, we extract all nodes {v;} that connect to v; but are not covered
by the matching M. The nodes {v;} are then connected to the node wy € W. This is
repeated for all nodes v; € M. If there are any nodes and links in U that are not covered
by this treatment, then they must be disconnected from the generalized part and they can
be included in W as is. The example in Fig. 5.3 illustrates the approach. Given the
matching set M = {(N2,N10),(N4,N11),(N5,N12)}, node N13 from the instance V
is not covered. Therefore, by extracting the nodes that are connected to node N12 and
that are not covered by M, that is, node N13, and attaching this node to N5 in W, since
NS5, N12+ NS5, the structure can be fully recovered.
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M = {(N2, N10),(N4, N11),(N5, N12)}

Figure 5.3: Structural generalization

If the conceptual network and the new instance represent the same concept, then
the whole of W will be connected to this concept. This will add a third dimension to the

conceptual network, this dimension will cover hierarchical abstractions. An example of the
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: Cl 1 C2 ) Concepts

Partial Concepts

Relational Network

Figure 5.4: Resulting conceptual network

simplest form of conceptual network is given in Fig. 4.4. The case is different, however,
if the conceptual network and the new instance stand for different concepts. As outlined
in Section 2.1, the two concepts might still share some parts of the relational network.
Therefore, it becomes possible to derive intermediate abstractions, which correspond to
partial concepts, that are shared by two or more concepts. For instance, assume that
there are two different concepts, say C; and C,, which were partially matched, yielding a
matching set M. Based on that matching set, the part of the relational network shared by
the two concepts can be generalized as shown above, let us call this part W'. Now, instead
of connecting all the generalized nodes to both concepts, we can create an intermediate
concept C’, whose descendants are the nodes in W' and which connects to C; and C3 up
the hierarchy. An example of such an intermediate concept is given in Fig. 5.4. Continuing
the generalization with another instance might reveal that C’ can be divided into two partial
concepts Cj and Cj, and so on. Carrying the idea further, something like conceptual
clustering [35] becomes possible. This means, concepts can be clustered according to the
partial concepts they share. An example of such conceptual clustering will be given in

Chapter 7.
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5.4 Specialization

Assume that we learned the description of a concept, say TOOL1, and now we want to
learn another concept, say TOOL2. The scenari6 described here most naturally arises from
supervised learning, that is, we are teaching the system what concept a new instance belongs
to. It is imaginable that the matching of TOOL2 with the conceptual network representing
TOOL]1 reveals a complete match between the two. This means, that the discriminative
power of the conceptual network does not suffice, it has been over-generalized. It is
important in such a case that some generalizations can be reverted, so as to obtain two
disjoint concepts. Two concepts are disjoint if they differ in at least one node of the
relational network. Since we do not have sufficient information to actually revert some
steps in the generalization process, a different approach has to be taken. We opt to duplicate
one node of the relational network by actively splitting one link that connects to that node.
The way of doing this is as follows. First, concept U and instance V' have been generalized
to the new concept W, such that |U |=|V |=|W |=| M |= N. That means, all nodes of the
concept and the instance have been matched. Now, each generalized predicate f;; of each
link w; € W is searched for an optimal threshold #;;, at which to split f;;. The threshold
is obtained by assuming that a generalized predicaé has a bimodal characteristic. For this
task, Otsu’s method [40] for the thresholding of bimodal histograms recommends itself.
Otsu’s method will be explained briefly in Appendix E. For splitting a link, it is sufficient
to split one generalized predicate. For each generalized predicate f;; € w;,w; € W, we
define a cut point ¢;;, according to Otsu’s method. Based on the cut point ¢;;, the generalized
predicate f;; can be split into two generalized predicates f;; and f/’. The choice of which
generalized predicate to split corresponds to finding the best dichotomy for any f;;. This
can, for instance, be done by the following optimizations

J(fij) = rggxdom%?’ﬁfﬁ) | 955 - fij — 955 - fi51, 935 € wju5 €T, (5.13)
The f;; that maximizes J will then be the candidate for splitting. To achieve a proper
specialization, the node that is pointed at by w; is duplicated, and so are all the links
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connecting to that node, except for w;. The splitting of w; into w} and wY is done by first
duplicating all its generalized predicates, except for f;;, i.e., the one that has to be split.
Now, f;; is discarded and replaced by f;; in w; and f;} in w.

To illustrate the ideas developed here, we can look at an example to see how splitting

is carried out in practice. To this aim, consider the two input shapes as given in Fig. 5.5.

kan6 infa: kan?9 infa
__ N1 __ N6
N2
[ ] { ] N8
| z ] N3 L z ] N7
N4 N5 N9 N10

Figure 5.5: Two input shapes

The generalization of the two shapes proceeds according to Fig. 5.6, and reveals
a complete match between them. Since the two shapes from Fig. 5.5 are acquired as two
disjoint concepts, the complete matching makes it necessary to find some specialization that
allows for a successful discrimination of the two concepts. The differences necessary for
specialization are found acco_rdin g to the splitting scheme outlined above and in Appendix E.
An evaluation of the links reveals that the length predicate of link 4 is best suited for splitting.
As a result, node N2 is split into nodes N2 and N11, and link 4 is split into links 4 and 15.
The effect of this split on the resulting links is shown in Fig. 5.7. According to the splitting
of link 4 and node N2, the resuiting conceptual network can be updated. This is shown in

Fig. 5.8.
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' Node 1 and 6 - Node 1
Node 2 and 8 - Node 2
Node 3 and 7+ Node 3
Node 4 and 9 - Node 4
Node 5 and 10 - Node 5
Link 1 and 8 F Link 1
Link 2 and 9 + Link 2
Link3and 10+ Link 3
Link 4 and 12 - Link 4
Link5and 11 +Link 5
Link 6 and 13} Link 6
Link 7 and 14 |- Link 7

v N3—L— N4
N\
~- N5

Figure 5.6: Generalization of the two shapes from Fig. 5.5
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Figure 5.7: Specialization of a link: a) link before splitting, b) and c) resulting links after

splitting length predicate
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Figure 5.8: Resulting conceptual network after specialization
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CHAPTER 6

Description

6.1 Purpose and Overview

In general, results of systems that can learn are not easily visualized by the human operator.
Ueda and Suzuki [58] claim that graph models do not allow for a visualization at all,
therefore, they propose that a completely different structure of the learning scheme be used.
Although their criticism of graph models is warranted, graphs appear powerful enough to
justify some further inquiries into how they could be visualized best.

The main purpose of this chapter is to derive and explain an approach for the
visualization of relational networks. By visualization I do not mean to obtain any sort of
image of the generalization results, rather anything that is easily understood by humans is
appropriate. What is understood well by most people are explanations in natural language.
Therefore, I will dwell on an approach that transfers relational networks into simple natural
language. There are many problems associated with deriving explanations from some
structure. For instance, what level of detail should be chosen for an optimal explanation?
Furthermore, what aspects of the structure appear most interesting and important? It appears
that such problems cannot easily be solved in a general way, and I do not claim to have
them solved here. Ideally, any explanation should be interactive, first only providing the

general structure. Parts of the structure that appear interesting to the human operator should
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then be explored in greater detail, always interactively checking back with the operator the
direction in which to proceed.

The approach presented here is still on arelatively modest level. Only one, relatively
coarse, description using natural language can be obtained at present, and no possibilities for
interactive exploration of concepts have been added. Still, in most cases reasonable results
can be obtained, as will further be shown in Chapter 7. The approach is loosely based on the
work by Simmons and Slocum [53], who propose to generate English sentences from a form
of semantic network. In the next section, I will first describe how to construct a semantic
network_ from a relational network, by extracting various predicates. In Section 6.3 I will
then outline how the extracted semantic network can be transformed into natural language,

that is, English.

6.2 Creating Semantic Networks

The creation of semantic networks from relational networks starts by extracting a certain
set of predicates that describe the most salient relations in the relational network. First,
we assume that the relational network to be explained is connected. If this is not the case,
then the method is applied separately to each connected part of the network. At present,
six different predicates are extracted, three describing size relations and three describing

relative orientation:

EQL-SIZ Similar size, i.e., similar length and similar width
EQL-LEN Similar length
EQL-WID Similar width

DIR-PAR Relative orientation approx. parallel
DIR-RIG Relative orientation approx. at a right angle
DIR-VAR Relative orientation variable
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The first predicate, namely EQL-SIZ, can easily be extracted once the other two size
predicates are given. I will describe this part later. The remaining five predicates are found
by correlating links of the relational network that are connected to each other.

The approach for extracting the predicates EQL-LEN, EQL-WID, and DIR-PAR
is the same, they only differ in the generalized predicate used. The extraction of those
three predicates is based on the idea that equality should show up in generalized predicates,
this means, two MACS m; and m; have the same characteristic, if there is another MACS
my, such that rel(m;, my) = rel(m;, my), where rel(mq, mp) denotes the relation between
MACS m, and my. We again employ the interpretation of a generalized predicate as
a probability distribution. As we have seen in Section 4.2, the multiplication of two
generalized predicates f; and f; can be viewed as the joint probability distribution of their
respective random variables. If we denote the maximum values of f; and f; by f; and fj
respectively, then the maximum value of the joint probability distribution is given by fj - fi
if and only if f} and fi occur at the same location. In practice, however, it is very unlikely
to find two maxima in exactly the same position. In addition, we would like to extract
relations that are similar, not exactly equal. Therefore, two generalized predicates f; and

f; are judged equal if
max(f; - f;) > @ fi- i, (6.1)

where the factor « is treated as a system parameter. In all applications o = 0.6 has been
fixed. Therefore, by using Eq. 6.1 together with the appropriate generalized predicates,
predicates of type EQL-LEN, EQL-WID, and DIR-PAR can be extracted.

The approach for extracting predicates of type DIR-RIG, i.e., showing pairs of
MACS that are approximately at a right angle to each other, is only slightly different. Instead
of finding pairs of generalized predicates that are similar to each other, similar means in
respect to Eq. 6.1, we find generalized predicates that are similar to an ideal generalized
predicate representing a right angle relation. Such an ideal generalized predicate can easily
be constructed by placing a Gaussian of amplitude & and standard deviation o, where o is

the same as used in setting the initial Gaussian distributions as shown in Section 4.2, at 90°
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or /2. Again, if we take this ideal generalized predicate as f; and 4 as f;, then, by using
Eq. 6.1 we can extract those relations that represent directional changes of approximately
90°.

The case is somewhat more complicated if we attempt to find MACS that appear
to have variable direction in respect with each other. In general, generalized predicates
representing variable directions will be spread over relatively a wide range, in comparison
with a pure Gaussian distribution. This suggests to employ the ratio of the standard deviation
of an approximate Gaussian, which could have been obtained through generalization of
Gaussians with approximately the same location, to the width of the generalized predicate
in question. The first question arising here is how to find the standard deviation of the
control Gaussian. We saw in Section 5.2 that the result of the generalization f;, f; - g; can

be approximated by

gi = aiN(pij,0%), (6.2)
and the confidence value cval; tells us how often generalization took place. Therefore, the
average amplitude @ of a Gaussian is given by @ = @/ cval. In the case of a true Gaussian
distribution g, the width of g at Ee‘% is 2. In general, ko is the width of g at a‘e‘% . Now,

let us assume that g;, that is, the result of the generalization, can approximately be obtained

by a scaling of g, that is,

g; =mg, wherem = a;/a = cval. (6.3)

[¥]

5 . . K
Therefore, putting the width of g; at G;e~ 3 equivalent to the width of g atze™ 5, we have

li =2¢/-2In [%e-%] - 2\/—21n F——e**sz]. (6.4)

cval
Hence, I; gives us an estimate on how the width, and thus the standard deviation, should
change in the ideal case. By measuring the actual width of a generalized predicate f; ata
certain height &ie‘%, let us call that width h;o, and comparing it with [;o, we can get an

idea on how far the generalized predicate was spread out during generalization. Whenever

}ZL—: > (6.5)
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is fulfilled, we judge the direction between the two MACS’s as variable. Again, 3 is a
system parameter that has been set to 2 for all the examples shown hereafter.

Finally, the predicate EQL-SIZ can be obtained by applying the following rule to
the semantic network:

(RULE S1
(IF (EQL-LEN SEG1 SEG2)
(EQL-WID SEGI1 SEG2))
(THEN (EQL-SIZ SEG1 SEG2)))
where SEG1 and SEG?2 refer to the two MACS’s that are connected by some relation.

It is possible to group the MACS’s according to the derived predicates. Three |
kinds of groupings are used at present: equal size groupings, parallel direction groupings,
and fixed direction groupings. First, let us look at the case of equal size groupings and
parallel direction groupings. At that stage, the semantic network is given as a list of binary
predicates, e.g.,

(EQL-SIZ SEG3 SEGS)
(DIR-VAR SEG3 SEG7)
(EQL-LEN SEGS5 SEG7)

Groups are defined as clusters of segments that share one or more characteristics. In the
case of the equal size grouping, the characteristic is that all segments are of equal size. Such
groups can easily be found by interpreting the semantic network as a graph. Any group
sharing a certain characteristic can then be found as a maximum clique in respect to that
characteristic. Since the number of predicates is rather small, the resulting graph is small as
well, and we opt to find cliques by exhaustive search. If there are several cliques that involve
the same segment, then the clique with the largest number of segments only is retained. As
for the case of fixed direction groupings, we can consider the variable direction predicates
as introducing a dichotomy into the set of all MACS’s. By dichotomy I mean that they
possibly divide the set of all MACS’s into two or more subsets, the relation between subsets

being that of variable direction, while no variable directions can be found within a subset.
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As the different groupings might be inconsistent, they are given a hierarchical ordering.
That means, fixed direction groupings are preferred to equal size groupings, which, in turn,
are preferred to parallel direction groupings.

At this stage, the transformation of a relational network into a simple semantic
network is complete. For purposes of illustration, let us look at the example in Fig. 6.1.

Several relations appear conspicuously: the two engines are of approximately the same

a) Input image b) Decomposition

Figure 6.1: Example image

size, the fuselage and the wings form a right angle, etc. The derived semantic network,

according to the procedure outlined above, is shown in Fig. 6.2.

Group 1

EQL-SIZ
DIR-PAR

Figure 6.2: Semantic network for plane in Fig. 6.1
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6.3 Descriptions in Natural Language

As mentioned earlier, the transformation of the obtained semantic network into English
is strongly based on the work by Simmons and Slocum [53]. In contrast to their work,
however, our application is much more restricted in scope. It is therefore possible to obtain
reasonable results with a very small grammar and dictionary. Simmons and Slocum propose
to represent a grammar as a state transition network. For instance, consider the following
grammar

NP — (DET) + (ADJ*) + N + (PP¥)

PP — PREP + NP

S — NP + (AUX) + VP

S — AUX + NP + VP

VP — V + (NP) + (PP¥)
which is a context-free phrase structure grammar where parentheses indicate optionality
and the asterisk indicates one or more occurrences. The state network representing this
grammar is given in Fig 6.3, where nodes correspond to states and links denote possible
transitions.

In general, the elements of a semantic network are concepts and relations. In our
application, the concepts are implicitly given as the segments of the decomposition or
MACS’s. Hence only relations are relevant for the discourse generation. While travelling
through the state network representing our grammar, state transitions can be constrained by
the information contained in the semantic network. With each state transition, a daemon is
associated. The daemons can roughly be grouped into three categories: transition daemons,
grammar daemons, and terminal daemons. The duties fulfilled by those daemons are
manifold, among others, the transition daemons decide their own applicability and provide
information on which segments of the description we are dealing with at the moment.
The grammar daemons decide whether we are about to start a subject phrase or an object
phrase, and the terminal daemons will produce actual output of some phrases as parts of the

discourse. To be more specific, the information contained in the semantic network will be
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Figure 6.3: Recursive transition network, from [53]

primarily exploited by the transition daemons, while the actual output is generated by the
terminal daemons.

While Simmons and Slocum approach the problem of discourse generation from a
strictly grammatical point of view, this does not appear to be very fruitful in our case. 1
therefore opted to use semantic inference, rather than grammatical inference. The approach
thus reduces to putting together patterns and fragments of sentences that sufficiently describe
the domain in question. The complete grammar used in the present approach is given in
Appendix F. Note that the lexicon is directly built into the grammar, it is therefore sufficient
to just decide whether to use singular or plural, instead of having to look for the appropriate

word as well.
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Let us again look at the example from Fig. 6.1, with its semantic network in Fig. 6.2.
As can be seen from Appendix F, the description starts with a variable group, a size group,
or a rest description. The semantic network in Fig. 6.2 shows one group whose elements
have equal size and are parallel in respect with each other. Hence, the daemon for variable
groups is not applicable, but the one for equal size groups is. The explanation for an
equal size group starts with a prologue and then each group is explained in respect to the
characteristics its members share. Next, the segments that do not belong to any group are
introduced, again with a prologue, before each segment is treated separately in how it relates

to the other segments. The resulting natural language output is given in Fig. 6.4. The above

There is 1 group.

Group G-1 consists of elements N-5, and N-4 which are
of same size and parallel to each other.

Elements N-1, N-3, and N-2 do not belong to any group.

Element N-2 is parallel to G-1.

Element N-3 is parallel to N-1 and of same width
as N-1.

Element N-1 is at a right angle to N-2, and G-1.

Figure 6.4: Natural language explanation of plane from Fig. 6.1

example, though somewhat simplistic, shows the workings of the employed approach quite
clearly. Further examples, notably of more complex concepts, will be given in Chapter 7.
The purpose for implementing the description stage were twofold. First, an expla-
nation of the obtained results in natural language appears to be necessary, as outlined above.
Second, I attempted to show that with a very small effort, many systems could be ren-
dered much more user-friendly. Only a system that can explain itself and that can somehow
communicate with the user will have any practical success. Although the present implerhen-
tation of the explanation stage is still far from actually reaching the goal of communicating

with the user, I believe that it is a step in the right direction.
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CHAPTER 7

Applications

This chapter is divided into three main sections, outlining three different aspects of the
system. The major parts of the explanations so far have concentrated on the aspect of
acquiring models from some visual input. This aspect will be described by some examples
in Section 7.1. However, the basic outline of the system, as explained before, can be used
for different tasks as well. The first such task is the one of conceptual clustering. Conceptual
clustering has been defined by Michalski [35] as the formation of classes of objects that are
describable by a concept from a predefined concept class. In this respect, it is not entirely
adequate to use conceptual clustering to describe the results of the hierarchical abstraction
as obtained by the present system, and I will, therefore, refer to it as hierarchical clustering.
Nevertheless, as is shown in Section 7.2, some grouping of sets of instances, according to
sub-concepts shared by those instances, can be observed. The final application concerns
the problem of instance recognition, and is outlined in Section 7.3.

With all exémples, I took precautions to ensure the uniformity of the approach. This
means, as far as possible the same set of parameters were used for all examples. The main
difficulties encountered with this approach were found during the decomposition of instances
(see Section 3.4). As was pointed out in that section, the used skeletonization might fail
with bigger shapes. This was indeed the case for all the examples using Kanji characters.

For those examples, the skeletonization approach by Jang and Chin [28] has been used. In
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addition, as some of those shapes show transitions from straight segments to slightly curved
segments, the threshold for approximate convexity had to be relaxed. In the case of the
Kanji characters, it was set to 0.96 for expansion and 0.94 for merging, as contrasted to 0.99
and 0.98 for all the other examples. As for matching and generalization, the same set of
parameters were used for all examples. Those parameters include the standard deviations
of the generalized predicates, which were set to o = 0.075 for all generalized predicates,
and the threshold for unfeasible matches, which was made to correspond to 40, again for

all cases.

7.1 Model Acquisition

Model acquisition has been described as the main purpose of the present system, and it,
therefore, warrants some further illustration. I choose three different sets of instances to

outline the performance of the system.
7.1.1 Plane Model I

7.1.1.1 Input Images

For the sequence of input images in Figs 7.1-7.11, the original image is shown on the left,

to the right of it the decomposition results and the relational network.

: , N1
__N2 3 \
V
| [N3 : N2+ N3
L |
i ]
CN4 N4

Figure 7.1: Example I: Input 1
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Figure 7.2: Example I: Input 2

planelc.info
N10 N11
"1 A
N13 r_N14 o/ 11l 1
{ ]
- - N11 N13 N10 N14
{ 1N12 12y
N12

Figure 7.3: Example I: Input 3

RS — N15

14

N15
13

[C=IN17 N17

Figure 7.4: Example I: Input 4
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__planels.info

N19

N18

N20

Figure 7.5: Example I: Input 5

N22
N25 ] N24
l
. N21
CIN23

Figure 7.6: Example I: Input 6
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planeZcinfo
N27
N29

N30

N26

[ JN28

Figure 7.7: Example I: Input 7

Figure 7.8: Example I: Input 8
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N26
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N37
]

N41 N40
N394 n nN42
C

N36
C —IN38

N39

N36

3 ’33%0 3z\y\
4

N41 N37 N40 N42

29

N38

Figure 7.9: Example I: Input 9

“plane2f.info

N43
N46 T N48

Na7n Ol | 4o

i

C N45

N44

N44

AR
N47 N46 N43 N48 N49

40

N45

Figure 7.10: Example I: Input 10

(__plancze.info |

N51

—

N55_. ]

N54| N53

qN56

o

N50

T TTINS2

N50

M L;\\g\
N55 NS4 N51 N53 N56

41

N52

Figure 7.11: Example I: Input 11
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7.1.1.2 Generalization

Generalization proceeds sequentially, according to the input sequence in the previous sec-
tion. As there are 11 input images and the first input is automatically promoted to a concept,
generalization is done in 10 steps. While the intermediate steps have been skipped, the
list of matched nodes and links is shown in Fig. 7.12, while with the resulting topological
generalization is shown in Fig. 7.13.
Node 1, 5, 11, 15, 18, 21, 26, 31, 36, 44, and 50 - Node 1
Node 2, 6, 10, 16, 19, 22, 27, 32, 37,43, and 51 - Node 2
Node 4,7, 12,17, 20, 23, 28, 33, 38,45, and 52 - Node 4
Node 8, 14, 24, 29, 34, 41, 46, and 53 - Node 8
Node 9, 13, 25, 30, 35, 40, 48, and 54 - Node 9
Node 39, 47, and 56 + Node 39
Node 42, 49, and 55 - Node 42
Link 2, 5, 12, 13, 15, 17, 21, 25, 29, 40, and 41 - Link 2
Link 3, 6, 11, 14, 16, 18, 22, 26, 30, 39, and 42 - Link 3
Link 7, 10, 19, 23, 27, 33, 35, and 43 I~ Link 7
Link 8, 9, 20, 24, 28, 32,37, and 44 I- Link 8
Link 31, 36, and 46 F Link 31
Link 34, 38, and 45 |- Link 34
Figure 7.12: Example I: Matched nodes and links
To add some further explanation, node N1 corresponds to the main-wing, while N2
and N4 stand for the fuselage and the tail-wings, respectively. The remaining nodes all

correspond to engines, either connected to the main-wing or to the fuselage.
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Figure 7.13: Example I: Structural generalization

As becomes clear from the above generalization results, besides the concept of a
plane, four subconcepts, each referring to one valid type of plane, have been identified. The
hierarchical grouping among those subconcepts, identifies the subconcept PLANEL as the
least common factor. In other words, for an instance to be recognized as a plane, it should
at least consist of segments N1, N2, and N4, or of the main-wings, the fuselage and the

tail-wings.

7.1.1.3 Generalized Predicates

In Fig. 7.14, a graphic representation of the generalized predicates is shown. Especially

noteworthy is the difference between links 1 and 4 on one hand and the other links on the
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other hand. As can be seen from the list of matched nodes and links, both, link 1 and 4 have
never been matched. They, therefore, remained unchanged during the whole generalization
process. The generalized predicates of the other links have not only grown in amplitude,

but some of them have been spread out or even have a distinct bimodal characteristic.
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Lirk name 3 1 From : 2 To:3 Link nase ;3 2 From : 2 To: 4
Length Length
N /\
Width { Width
AN
Direction /}\ Direction
Eccentricity Eccentricity
A JAN
Link nane 3 3 From 3 1 To:2 Link nase : 4 From 3 1 To:3
Length f Length
AN
Hidth Ridth ]/\
Direction [\ Direction
AN
Eccentricity Eccentricity
AN
Link name ¢ 7 From s 1 To:8 Link name : 8 From : 1 To:8
AN AN
Hidth /\I Ridth /"\
Direction ] Pirection
Eccentricity V‘\ Eccentricity [‘\
Link neae ¢ 31 From : 3 To: 3 Lirk name 34 From: 1 To: 42
AN AN
Width . /\{ Hidth
Direction /\ Birection /\
Eccentricity /—\ Eccentricity
/\

Figure 7.14: Example I: Generalized predicates
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7.1.1.4 Explanations

The verbal description of the generalization results, in Fig. 7.15, reveals that the four engines
can be grouped together. They do not only share the feature of being of equal size, but they
are found to be parallel as well. Furthermore, the main-wings are found to be parallel to the

tail-wings.

There is 1 group.

Group G-1 consists of elements N-8, N-39, N-42, and N-9
which are of same size and parallel to each other.

Elements N-3, N-2, N—-4, and N-1 do not belong
to any group.

Element N-1 is parallel to N-4 and of same width
as N—-4.

Element N-4 is at a right angle to N-2 and of ‘same
length as N-3.

Element N-2 is parallel to N-3, and G-1l.

Element N-3 is parallel to G-1 and of same length as G-1.

Figure 7.15: Example I: Verbal description
The semantic network representation that was used for obtaining the above expla-
nation is shown schematically in Fig. 7.16. Certain relations that were extracted for the
semantic network, as for instance the DIR-RIG relation between the main-wings and the
four engines, have not been used for the verbal description. This is done in order to keep

the description simple and easy to understand.
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Group 1
EQL-SIZ
DIR-PAR

_--p DIR-PAR ,» EQL-WID
- s -
Ol .

.- DIRRIG

8
< DIRPAR * EQL-LEN

Figure 7.16: Example I: Semantic network

7.1.2 Plane Model I1

The second set of instances shows different types of planes. Although only four instances
are used, shown in Figs. 7.17-7.20, the generalization appears difficult, due to the widely

changing features of the instances.

7.1.2.1 Input Images

planeleanfo N1 —7— NS5
N4
N1 10
8
N2 3
N5

N N6 N2 N6 ~1 N7 _N3

6

Figure 7.17: Example II: Input 1
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planelfa into N8

A

N15 N13 N9_ N11-2-N12 NI10
N1 N16 ~— _  —
15 )

N 4N

Ni1 12 N14 N15 N13 N16

Figure 7.18: Example II: Input 2

planelp.info
N20
IN18

N19 17
N1 22

Figure 7.19: Example II: Input 3
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planelkainio N23

A

N28 N29 N24 N26 —i—+ N27 N25
N2 25 36[ K l34
26

27 N28 N29

Figure 7.20: Example II: Input 4

7.1.2.2 Generalization

Generalization proceeds in three steps, according to Fig. 7.21, leading to the final conceptual
network as shown below. Tracing the matched nodes back to the input images reveals that
N1 and N4 correspond to the fuselage, N2 and N3 correspond to the main-wings, and so
on. Again, it is possible to identify some derived partial concepts, corresponding to valid
representations for a plane. To keep the representation simple, those partial concepts have

been skipped here.
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Node 1 and 18 - Node 1

Node 2, 9, 19, and 25 - Node 2

Node 3, 10, 17, and 24 - Node 3

Node 4, 8, 20, and 23 - Node 4

Node 6,11,22, and 26 - Node 6 - —_

Node 7, 12,21, and 27 F Node 7 PLANE

Node 13 and 28 |- Node 13

Node 16 and 29 - Node 16

Link 1, 12,22, and 33 |- Link 1
. Link 3, 20, 24, and 40 - Link 3

Link 4, 21, 23, and 41 - Link 4

Link 5, 19, 32, and 38 |- Link 5

Link 6, 15, 31, and 35 - Link 6

Link 7, 18, 25, and 39 I~ Link 7

Link 8 and 26 |- Link 8

Link 9 and 30 I~ Link 9

Link 10 and 27 +- Link 10

Link 14 and 37 - Link 14

Link 13 and 36 I~ Link 13

N
|mmmm—————

———
—

1
\

-
— — —
- -~
-

Figure 7.21: Example II: Generalization

Although the resulting conceptual network appears to be the correct generalization,
there is one problem that can be found by tracing the list of matched nodes. Namely, nodes
N28 and N29, that is, the two engines of the fourth instance, have been matched to nodes
N13 and N16, respectively. Looking at the second instance reveals that those two nodes
are both attached to the right main-wing and, hence, the symmefry has not been recognized.
The reason for this mismatch is the following. As can be seen from the relational network
of the fourth instance, nodes N24 and N29 share a connection. This connection amounts

to saying that both engines can be attached to the same main-wing. In addition, the angles
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and the width relations between N24 on one hand and N28 and N29 on the other hand

resemble the situation of the right main-wing of the second instance, this mismatch occurs.

The actual reason can therefore be traced back to the decomposition of the fourth instance.

7.1.2.3 Generalized Predicates

As the resulting conceptual network is quite complex, here I only show some generalized

predicates in Fig. 7.22. They include the relation between the tail-wings (link 1), between

the main-wings (lmk 6), and the relations between the fuselage and the two main-wings

(link 8 and 9, respectively). In all of those links, the direction predicate has either been

spread out or shows a bimodal characteristic. This shows the widely varying angles of the

main-wings and the tail-wings of the instances.

Link nase $ 1 Froa 3 6 To:7 [Exte] Lirk name : & From : 2 To:3
N /I\ - S\
Width /}“\ Hidth /I\
Direction [ Direction
JAIN JAWAN
Eccentricity /-—\ Eccentricity /\
Link name : 8 From s 1 To:2 Exit Lirk name : 9 From s 1 To:3
Length Length /\]
Width Midth
AN AN
Direction [ Direction
JAVAN VAAN
Eccentricity Eccentricity
/\ VAN

Figure 7.22: Example II: Generalized predicates

7.1.2.4 Explanations

The verbal description for this example, shown in Fig. 7.23, is not able to capture any

grouping. This can be understood by noticing the widely changing instances, which do
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not allow for common features to emerge strongly enough. Nevertheless, the relations
of particular importance, like the direction relations, have been captured. Furthermore,
the widely spread direction predicates have now been translated into variable directions.
Although this is not correct from a semantic point of view, the generalized predicates clearly

show such a trend.

Element N-1 is parallel to N~4 and of same width
as N-16, N-6, and N-7.
Element N-7 is parallel to N-3 and'of same length
as N-6.
Element N-6 is at variable angle to N-4, and N-7.
Element N-2 is at variable angle to N-1, N-4, and N-3.
Element N-4 is parallel to N-13 and of same width
as N-15.
Element N-5 is at a right angle to N-4, and N-1.
Element N-3 is at variable angle to N-1, and N-16.
Element N-13 is of same size as N-16.
Element N-14 is parallel to N-15 and of same length
as N-16.

Figure 7.23: Example II: Verbal description
The semantic network representation for this example is rather complicated and
badly structured, as shown in Fig. 7.24. From this representation it is quite difficult to
see what relations are important, a fact that is also mirrored in the above description.

Nevertheless, the important relations have been captured.
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" DIR-PAR EQL-LEN - " BQLSIZ

Figure 7.24: Example II: Semantic network

7.1.3 Tool Model

The final example for model acquisition shows the generalization of a dynamically changing
shape. The sequence of the pair of tongs in Figs. 7.25-7.28 shows an increasing opening

angle, together with changes in direction and size.

7.1.3.1 Input Images

N5 1
4 8 2
N1
6

Figure 7.25: Example III: Input 1
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plb.info
q 10 N10
[« \ 9 \
14
NS N6 ——> N8
N6 131 11 X15 19
7
N7—> N9
12

Figure 7.26: Example III: Input 2
s N15

N14
N13 23 17
21

N11 — N13
12 2 >< l 16
N11 1
N12— N14
19
Figure 7.27: Example II: Input 3
pld.info
N16 N19
N19 \
30 24
N20 N16—> N18
18
81 26031 |25
N17
N17— N20
27

Figure 7.28: Example III: Input 4

7.1.3.2 Generalization

The generalization results in Fig. 7.29 reveal that all instances have been matched com-

pletely. It is therefore not possible to identify any partial concepts in the conceptual network.
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Node 1, 6, 11, and 16 - Node 1
Node 2, 7,12, and 17 + Node 2

Node 3, 8, 13, and 18 - Node 3 ITOOL)

Node 4, 9, 14, and 20 - Node 4 | \:\‘\2‘:‘:: e

Node 5, 10, 15, and 19 - Node 5 “\\\\ \\_]:r;\ \\\\
Link 1,9, 16, and 25 - Link 1 R ™,
Link 2, 10, 17, and 24 |- Link 2 \\ \8\ ) 2 \\
Link 3, 11, 18, and 26 - Link 3 \ N1—> N3
Link 4, 12, 19, and 27 - Link 4 \s >< y
Link 5, 13, 20, and 28 - Link 5 \1\32_4_)]\]2

Link 6, 14, 21, and 29 - Link 6
Link 7, 15, 22, and 31 F Link 7
Link 8, 23, and 30 + Link 8

Figure 7.29: Example III: Generalization

7.1.3.3 Generalized Predicates

More interesting than the structural generalization is the generalization of the generalized
predicates, as shown in Fig. 7.30. Especially noteworthy is the spreading out of the direction
predicates of links 5 and 6. Going back to the instances shows that those links correspond to

the relations between the handles and between the upper handle and the pivot, respectively.

Clearly, this mirrors the change of direction as caused by opening

other hand, the direction predicates of links 2 and 3 have hardly changed, implying that the

direction between segments N2, N3, and N5 is fixed.
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Lirk name ¢ 1 From : 3 To:d Lirk nase s 2 From : 3 To: s
A\ - A
Hidth A Hidth /~\
Direction { Direction
JAAN /\
Eccentricity /k-\ Eccentricity /\
Exit Lirk neme : 3 From : 2 To:3 [Exie] Lirk name : 4 Froa s 2 To:4
Length /\ Length
AN
Width J/\ Hidth /\_/{/\
Direction A Direction
JAVAN
Eccentricity Eccentricity
Ve J\
Lirk nome 3 § Fros ; 1 To: 2 Lirk nane : 6 Froa 1 1 To:3
/AN VAN
Midth /R Hidth V\
Direction Direction
IANAYAN AN
Eccentricity /\/\/\ Eccentricity
Link name 3 7 From: 1 To: 4 Lirk name : 8 From s 1 To:5
Length Length
N JANE
Width /‘}/\ #idth /F\
Direction ‘ /\ Direction /T\
JAN
Eccentricity [ /\ Eccentricity

Figure 7.30: Example III: Generalized predicates
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7.1.3.4 Explanations

In this case, illustrated in Fig. 7.31, the variable direction grouping that was found is more
than adequate, although it did not perfectly identify the group consisting of elements N-2,
 N-3, and N-5. It might be arguable whether the constraints for recognizing variability are

too strict in this case.

There are 2 groups which have variable angle
with respect to each other.

Group G-1 consists of elements N-2, and N-3.

Element N-2 is of same size as N-1.

Element N-3 is at a right angle to N-5 and
of same width as N-4.

Group G-2 consists of elements N-4, and N-1.

Element N-4 is parallel to N-5 and of same

- size as N-5.

Element N-1 is parallel to N-5 and of same
width as N-5, and N-4.

Element N-5 does not belong to any group.

Element N-5 is of same width as N-2.

Figure 7.31: Example III: Verbal description
Due to the missed attributing of segment N5 to group 1, the derived semantic
network in Fig. 7.32 shows a symmetry that cannot be found in the instances. However,
this symmetry is only structural, and looking at the actual predicates reveals some of the

real structure of the pair of tongs.
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DIR-VAR

Figure 7.32: Example III: Semantic network

7.1.4 Discussion

The three examples presented in the context of model acquisition outline the basic per-
formance of the proposed system. We can try to analyze those examples from the four
viewpoints of decomposition, matching, generalization, and explanation, which correspond
to the four main stages of the system. Decomposition appears to yield good results in almost
all cases. While no important details have been missed, almost no superfluous segments
were extracted either. The biggest problem with decomposition appears to be that in some
cases the shape of the original detail was not captured well. This is, for instance, shown
in the extraction of some of the engines of the planes, whose direction and width vary
too much. The result of the matching appears reasonable as well. The only mismatch
detected was the matching of the engines as explained in the second example. Of course,
such a mismatch could be overcome by employing symmetry constraints. However, how
to extract and deal with symmetries has not been addressed and remains and open problem.
As for generalization, we can restrict the discussion to the generalization of the predicates,
as topological generalization is a direct outcome of the matching. It might be desirable to
introduce some further generalization operators on generalized predicates. For instance, in

the case of the direction relation between the handles of the pair of tongs, the generalized
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predicate shows a trimodal characteristic. In accordance with generally used generaliza-
tion heuristics, it might be of advantage to smooth out those modes. Finally, although
eiplanation is helpful in some cases, generally, its implementation seems too weak to give
reasonable results, especially for more complicated scenes with few instances. Besides, the
transformation of the relational network into a semantic network representation relies on
some preset thresholds, for instance for the extraction of variable direction predicates (see
Section 6.2). It seems that those thresholds are rather difficult to set in a general context.
Although several problems are remaining, the obtained results are accurate and
reliable. Especially, the second example emphasizes the actual possibilities of the approach.
It seems that at least for the acquisition of models from binary images, the chosen approach

gives the expected results.

7.2 Hierarchical Clustering

Hierarchical clustering refers to the abstraction that becomes possible during generalization
(see Section 5.3). Clearly, such a clustering cannot be unique, but it can still be used to
identify common structures among instances. The used set of instances, which are shown in
Fig. 7.33, have all been acquired from a real Gothic font through scaling and rasterization.
The resulting hierarchical abstraction is outlined in Section 7.2.2. Finally, in Section 7.2.3,1

will show some resulting partial concepts that are derived as building blocks of the instances.
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7.2.1 Input Images

KANS

KAN9 KAN10 KAN11 KANI12

KAN13 KAN14

Figure 7.33: Hierarchical clustering: Input shapes

7.2.2 Generalization

The actual ordering of the input sequence is according to Section 7.2.1. In the generalized
representation in Fig. 7.34, the instances have been reordered in order to clarify the obtained
results. The framed entries refer to the instances, whereas the other entries refer to derived
partial concepts. For the sake of simplicity, the relational network layer, together with all

connections to it, has been left out.

143



-0
1-0
0 LT-O 740 60
710 €0 96D 81D 0€-D 19NV !
N\
CINVL I NV zeD [ €eD 18D 8D\ 6T0 STO ¥D €D
N\

o i o ——— - o e o e S R em e S ———— ——— . — —

VINVT L VENV L 1SNV L 10NV L ISNVY L I6NVI LI TINVI | IPINVI | TEINVI L ITINV Y | _Nmam.vml_

e e e o - e S e e —— o ——f S —

Figure 7.34: Hierarchical clustering: Generalization
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7.2.3 Partial Concépts

It is possible to identify a number of terminal nodes, or terminal partial concepts, in the
preceding hierarchical generalization. Those nodes can be considered as expressing the
basic building blocks of the instances they represent. The terminal partial concepts are
shown in Fig. 7.35. As a simplification, those parts of the instances that first corresponded
to the partial concepts are shown here. As some subsequent generalization took place, the

actual relations are more generally valid than the shown examples imply.

Ch ok 27
— N1 — N1
. ye
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% N2
N4
(“‘-98 C-30 (.35
N e—
l 1\}16 g\’
6
C ] N5 ———— Né6

Figure 7.35: Hierarchical clustering: Terminal concepts

The partial concepts in Fig. 7.36 are not terminal nodes of the hierarchical clustering.

Nevertheless, they express some important aspects of the represented instances.
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Figure 7.36: Hierarchical clustering: Partial concepts

One of the basic and meaningful building blocks is C-1, which contributes to
instances KAN1, KAN2, KAN3, KAN7, KANS8, KAN9, and KAN10. The illustration of
C-1 in Fig. 7.36 is actually somewhat misleading, as segment N6 has consistently been
merged with longer segments. The real partial concept C-1 would therefore look similar to
C-9. Itis C-9 which forms the basic building block for cohcepts KAN4,KAN6,KAN12, and
K13. Clearly, partial concepts C-1 and C-6 intuitively represent the same basic structure.
The representation of KAN12 by C-9 deserves some more comments. C-9 is found to stand
for the upper part of KAN12, a correspondence that is rather counter intuitive. However,
the vertical stroke of C-9 was matched to the right vertical stroke of KAN12, leading
to this correspondence. A geometrically nice relation can be found between KAN7 and
KANQ9, fhe latter being made up of KAN7 and C-35, however, this relation is not intuitive
from the ordinary theory of Kanji configuration. The relation between KANS and partial

concept C-27 can be understood by considering the relational invariance of the employed
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representation. A vproblem seems to manifest itself by the correspondence of C-12 to
KANS. As only relations between pairs of segments are considered, segment N5 from
partial instance C-12 gets matched to the middle one of the three horizontal segments in
the upper part of KANS. Therefore, although locally the matching is consistent, global
consistency is not completely ensured. Finally, instances KAN1 and KAN10 are actually
the same character. This can be seen in the fact that KANT1 fully represents KAN10.

7.2.4 Discussion

Hierarchical clustering differs from conceptual clustering in that instances are represented in
terms of building blocks. Whereas in conceptual clustering instances are grouped in respect
to their similarities with some predefined class, in hierarchical clustering, a grouping is
obtained by analyzing each instance in terms of its decomposition. As the main purpose of
the present system is the learning of concepts, hierarchical clustering can at most be regarded
as a by-product, and it should be viewed in that context. First, hierarchical clustering is
not stable under the ordering of the instances. This means, if we shuffle the instances,
the resuiting hierarchy might not be the same anymore. This inétability is closely related
to the non-uniqueness of the clustering. Nevertheless, the clustering might be useful for
recognizing‘new: instances based on partial characteristics they share with some concept.
Although most of the clusterings in Fig. 7.34 make sense from a geometrical point
of view, they are by no means a model for human character learning. Anybody somewhat
familiar with Kanji characters could not do much with the clustering in Fig. 7.34. For
instance, the instantiation of KAN12 by KANG6 seems to be far fetched. On the other hand,
most of the clusterings, not all though, make sense from a geometrical point of view. This
is because the system does not rely on any knowledge about the processed shapes, hence,

there is nothing but geometry that can guide the clustering.
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7.3 Recognition

Recognition as done here is based on the complete world paradigm, as explained in Sec-
tion 2.1. Complete world paradigm means that we attempt an interpretation of the image or
scene, rather than recognition. In any case, interpretation is based on previous knowledge,
or, in our case, on previously acquired concepts. For illustrating the aspect of recogni-
tion, two different concept data-bases have béen used, the resulting examples are shown in
Sections 7.3.1 and 7.3.2, respectively.

Recognition is very similar to matching, as has been described in Chapter 4. There-
fore, the part of the data-base that matches the instance best, can be viewed as standing
for the concept the instance belongs to. If no satisfactory match can be found, then we
either explain the instance in terms of partial concepts, that is, concepts that have been
instantiated partially only, or the instance is judged to be non-recognizable or to belong to.
some concept that has not been learned yet. For a complicated image, it is possible to group
the interpretations so as to find an image interpretation that is globally optimal. Globally
optimal means, that the interpretation is able to explain the biggest number of segments.

This interpretation has been termed the most-likely image interpretation.

7.3.1 Tools

The first example uses a simple data-base consisting of four tools only, as shown in Fig. 7.37.
The resulting conceptual network for the database is shown in Fig. 7.38. Two experiments
are shown in Sections 7.3.1.2 and 7.3.1.3, both consisting of an occlusion scene of different

complexity.

7.3.1.1 Data Base

The input shapes, together with the resulting data-base used for recognition is shown below.
Asthere were insufficient similarities found during matching, the relational network consists
of three, disjoint parts. The hammer has been matched to the pivot and the upper jaw of

TOOL?2. This is, admittedly, not a very intuitive correspondence, however, it appears
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reasonable from a structural point of view.

N

Figure 7.37: Recognition: Input shapes
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Figure 7.38: Recognition: Generalization

7.3.1.2 Simple Occlusion Scene

In Fig. 7.39, the input shape used is shown on the left, whereas the decomposition, overlaid

with the most likely image interpretation, is shown on the right.
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Explanations:

DRIVER
EE Ttoor2

Figure 7.39: Recognition: Example 1

The actual output of the recognition stage is shown in Fig. 7.40. The most likely
interpretation is the one shown above in different shades of gray. Besides this interpretation,
different ones are possible as well. However, those interpretations are only locally optimal ,
and do not optimize the interpretation of the scene. Besides the instantiated concept, the
nodes of the instance that are instantiated are listed, together with the cost of matching that
concept to the instance. The numerical value at the end of each line corresponds to the cost

of the matching. Therefore, small values indicate a better match.
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The following interpretation of the scene is most likely:
Concept: DRIVER, Inst. nodes: (14 15), Val: 13.085
Concept: TOOL2, Inst. nodes: (16 17 19 18 20), Val: 12.678

The following interpretations are also possible:

Fully instantiated concepts:

Concept: HAMMER, Inst. nodes: (18 20), Val: 13.082

Partially instantiated concepts:

Concept: TOOL1l, Inst. nodes: (19 15 17), Vval: 12.999

Figure 7.40: Recognition: Output for example 1

7.3.1.3 Complicated Occlusion Scene

The next example in Fig. 7.41 shows another, more complicated occlusion scene, similar
to the one that was used when explaining the performance of the decomposition, in Sec-
tion 3.4. Although the scene is quite complicated, humans would not have any problems in

recognizing the basic tools.
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Figure 7.41: Recognition: Example 2
Again, the decomposition has been overlaid with the recognition results in different

shades of gray. This is shown in Fig. 7.42.

152



occl3.info

N29

TOOL1
@8 DRrRIVER
B aAMMER

Explanations:

Figure 7.42: Recognition: Results for example 2
The actual output from which the above description has been derived is given below,
in Fig. 7.43. Again, besides the most likely interpretation, several other interpretations have

been found. They correspond, for instance, to a second hammer represented by segments
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N18 and N28, or, a rather difficult to explain, partial appearance of TOOL2 at nodes N15,

N17,N23, and N28.

The following interpretation of the scene is most likely:
Concept: TOOLl, Inst. nodes: (26 24 16 19 25), val: 27.740
Concept: HAMMER, Inst. nodes: (14 27), Val: 28.481
Concept: HAMMER, Inst. nodes: (15 28), Val: 28.484
Concept: DRIVER, Inst. nodes: (20 17), Val: 28.498
Concept: DRIVER, Inst. nodes: (22 21), Val: 28.499

The following interpretations are also possible:

Fully instantiated concepts:
Concept: HAMMER, Inst., nodes: (18 28), Val: 28.487
Concept: HAMMER, Inst. nodes: (21 14), Val: 28.494
Concept: HAMMER, Inst. nodes: (19 22), Val: 28.498
Concept: HAMMER, Inst. nodes: (14 29), Val: 28.499
Partially instahtiated concepts:
Concept: TOOLZ2, Inst. nodes: (23 17 15 28), Val: 28.284
Concept:.TOOLZ, Inét. nodes: (23 17 18 28), Val: 28.287

Figure 7.43: Recognition: Output for example 2

7.3.2 Kanji characters

The second examplé uses a data-base of six Japanese Kanji characters, as shown in Fig. 7.44,
The characters used for the data-base can be considered ideal. This means, they have been
created by hand so as to represent the basic structure of the character, while leaving out
all decorations or unneeded details. In addition, the data-base consists of characters that
are commonly used as building blocks for other, more complicated characters. The aim of
this fecognition experiment is, therefore, to recognize any Kanji character in terms of its

building blocks.
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7.3.2.1 Data Base

A o O

Basel Base2 Base3
Base4 Base5 Base6

Figure 7.44: Kanji recognition: Input shapes
The resulting conceptual network is shown in Fig. 7.45. Evidently, concept dis-
crimination cannot be done in the relational network anymore, but has to be done in the

concept layer.
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Figure 7.45: Kanji recognition: Conceptual network

7.3.2.2 Recognition

The instances used for recognition were all obtained from a real Gothic font, through
scaling and rasterization, and they correspond to some of the instances used in hierarchical -
clustering. Due to the reality of the font, many small details and especially the slightly
curved strokes pose some problems. Especially the curvature of the strokes is a difficult

problem for the decomposition stage. The recognition results are shown in Figs. 7.46-7.53.
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N21

Explanations:

@ BASE!

Figure 7.46: Kanji recognition: Example 1

For the input shown in Fig. 7.46, very nicely, an instantiation of BASEI has been
found. This instantiation, together with an analysis of the remaining segments, should lead

to a complete recogﬂition of the instance.

The following interpretation of the scene is most likely:

Concept: BASEl, Inst. nodes: (23 24 21 22), Val: 12.408
The following interpretations are also possible:

Fully instantiated concepts:

Conceptf BASE5, Inst. nodes: (25 21 22), Val: 12.807

Partially instantiated concepts:

Concept: BASEl, Inst. nodes: (26 24 21 22), Val: 12.524

Concept: BASE4, Inst. nodes: (26 23 24), Val: 12.962

Figure 7.47: Kanji recognition: Output for example 1
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Explanations:

B@ BASEl1

Figure 7.48: Kanji recognition: Example 2

In this case, Fig. 7.48, two instances of BASE] have been found, although one only
partially. Looking at the data-base makes clear that the instantiation of segment N27 is
quite difficult, it is simply too short. Maybe it would be of advantage to consider the left |

part as an altogether different concept.

The following interpretation of the scene is most likely:
Concept: BASEl, Inst. nodes: (26 24 25 21), Val: 11.547
Concept: BASEl, Inst. nodes: (28 22 29), Val: 4.200

The following interpretations are also possible:
Partially instantiated concepts:

Concept: BASEl, Inst. nodes: (26 24 25 21), Vval: 11.547
Concept: BASEl, Inst. nodes: (24 23 21 26), Val: 11.684

Concept: BASE4, Inst. nodes: (25 21 23), VvVal: 11.883

Figure 7.49: Kanji recognition: Output for example 2
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Explanations:

@@ BASE1
BASE3

Figure 7.50: Kanji recognition: Example 3

While the two instantiations in Fig. 7.50 are correct, it seems that a different
interpretation in terms of BASE1 and BASE4 would be more intuitive. However, again this
was not possible because segment N22 is too long to give a viable alternative to segment
N24 for instantiating BASE1. As can be seen from Fig. 7.51 segment N22 does not appear

in any instantiation of BASEL, it has therefore been pruned during the match stage.
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The following interpretation of the scene is most likely:

Concept: BASEl, Inst. nodes: (28 25 24 21), Vval: 17.
Concept: BASE3, Inst. nodes: (23 27 26 29), Val: 17.

The following interpretations are also possible:

Fully instantiated concepts:

Concept: BASE4, Inst. nodes: (27 23 21 26 29), Val:

Concept: BASE6, Inst. nodes: (27 24 21), Val: 17.279
Concept: BASE6, Inst. nodes: (22 21 24), Val: 17.313

Partially instantiated concepts:
Concept: BASE4, Inst. nodes: (27 24 21 26 29), Val:
Concept: BASE4, Inst. ncdes: (26 23 29 24 21), Val:
Concept: BASE4, Inst. nodes: (23 26 27 24 21), Val:
Concept: BASEl, Inst. nodes: (28 25 26 21), Val: 17.

166
071

16.791

17.009
17.069
17.074
205

Figure 7.51: Kanji recognition: Output for example 3

Explanations:

@@ BAskEl

N30 N27

BASE4

Figure 7.52: Kanji recognition: Example 4

160




The final example in Fig. 7.48 is maybe the most successful one. Both, BASE1 and
BASE#4 have been identified correctly, and the remaining segments could either be treated

as noise, or they could be used for further analysis of the instance.

The following interpretation of the scene is most likely:
Concept: BASE1l, Inst. nodes: (23 28 21 31), Val: 10.689
Concept: BASE4, Inst. nodes: (27 26 22 24 30), Val: 5.919

The following interpretations are also possible:

Fully instantiated concepts:

Concept: BASE6, Inst. nodes: (21 23 25), Vval: 10.715

Partially instantiated concepts:
Concept: BASE2, Inst. nodes: (29 25 23), Vval: 10.739
Concept: BASEl, Inst. nodes: (31 25 23), Val: 10.758

Concept: BASE4, Inst. nodes: (21 29 23), Val: 10.789

Figure 7.53: Kanji recognition: Output for example 4

7.3.3 Discussion

Although the used examples are rather simple, I think they outline the possibilities for
recognition with the present system. As in the case of hierarchical clustering, recognition
was not the main purpose for the design of the system. Rather, because of its similarity with
the implemented matching scheme, straightforward recognitions become possible. One
major problem with the examples shown is that the used concept data-base is too small.
Therefore, an accurate implementation of the complete world paradigm was not really
possible. An interpretation of instances that have not actual relation to the used concept
data-base is, therefore, meaningless. Even though, the obtained results are useful, as in
practical applications a system would never be confronted with objects from many different

domains.

161



Obviously, the presented system does not represent an alternative to dedicated
schemes for Kanji recognition. However, it should be kept in mind that the system was
developed with the aim of concept learning. The above examples should therefore be taken

as an illustration of the general purpose performance of the presented system.
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CHAPTER 8

Conclusions

In this thesis I proposed a system that learns descriptions and concepts from visual input.
Visual input has been restricted to binary images, a strong limitation in some sense, but
still reasonable if we consider how many objects can be sufficiently characterized by their
silhouettes. Binary images are first decomposed into MACS, that is, maximal approximately
convex subparts, whose interrelation is then extracted and described. Interrelations among
MACS are translated into relational networks, whose basic building blocks are generalized
predicates. Whereas the structure of the relational network mirrors the topological or
qualitative aspect of the input object, the generalized predicates mirror the quantitative
aspects. The actual learning consists of the generalization of two or more relational networks
into a conceptual network, where the conceptual network can be understood as giving a class
description, covering all the acquired instances. Finally, based on the obtained conceptual
network, a very simple explanation in natural language becomes available. This explanation
serves a twofold purpose: first, it allows for a better evaluation of the obtained results, and
second, the gap between man and machine can be partially bridged.

Lately, research on inductive learning has concentrated on so-called constructive
induction systems [36], which include mechanisms for generating new, more relevant de-
scriptors, and for removing the less relevant descriptors. In comparison, selective induction

systems are utilizing a fixed, a priori defined representation space. The present work does
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not fully fit into either of the two categories. Basically, it is a selective induction approach,
as the representation space, that is the set of possible generalized predicates is fixed. On
the other hand, the extraction and construction of partial concepts during generalization is
characteristic of constructive induction.

Since the present system is analyzing its input data, especially the interrelation
among features or MACS in our case, according to Wnek and Michalski {62], it can be
further characterized as being a data-driven system that learns concepts from examples
(concept acquisition). This means, based on specific instances of some concept, the system
attempts to induce general descriptions for the concepts in question. The instances, or ob-
servations, are characterizations of some objects, whereas the induced concept description,
or hypothesis, can be viewed as a concept recognition rule. In other words, if an object
satisfies the concept description, then it represents the given concept. Since no negative in-
stances are being used for deriving the concept description, we can characterize the present
system as one learning characteristic descriptions, rather than a system that learns discrim-
inant descriptions. Discrimination power derives from the acquisition of multiple concepts,
which will then act as negative concept descriptions. The major danger in learning from
positive instances only, as opposed to Winston’s system utilizing near-misses, is that there
is no limit to which a description can be generalized. This problem was dealt with in the
present work by introducing the monotonically decreasing weight € in Eq. 5.2. That weight
will cause the generalization of generalized predicates to approach'a stable state after a
certain number of generalization steps.

Another important characterization of data-driven inductive learning systems is
based on Mitchell’s version space [10]. In version space, concepts are partially ordered
according to their generality. In the present system, however, no such partial ordering can
be found, thus making version space not applicable. Why this is so can again be understood
by looking at Eq. 5.2. Clearly, the generalization of two generalized predicates does not
completely subsume the two generalized predicates, therefore, no partial ordering can be

defined in general.
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One weakness of the proposed system is that no set of plausible hypotheses, that
is, candidate concepts, is maintained, and we are restricted to updating a single hypothesis.
The advantages of this approach are considerable savings in memory and processing time.
On the other hand, it is not possible to develop hypotheses simultaneously and to see which
one finally represents the concept best. Having only one hypothesis corresponds to having
a well structured, one-dimensional hypothesis space, or in other words, to having a strong
bias. As has been pointed out by Rendell [45] having strong bias allows for fast learning,
while it might exclude some possible hypotheses. Another problem arises when the used
bias is not appropriate. This problem has not been addressed in the present work, and it
arises when the used features are not appropriate for the concept acquisition. In such a case,
the need for constructive induction becomes evident.

Several contributions made in the preceding chapters deserve some more emphasis.
The most important three are approximate convexity, the decomposition into MACS, and
the notion of generalized predicates. Each of those contributions can be considered in

isolation and they could be used in other systems.

1. The idea of approximate convexity, as outlined in Section 3.3, relies on a deﬁnition‘
that is very intuitive. Although other definitions, leading to different measures
of approximate convexity, might be possible, similar fo changing the axioms of
Euclidean geometry, which leads to non-Euclidean geometries, the derivations are
mathematically sound and general. As opposed to other measures, the proposed
measure of approximate convexity yields simple estimators for the important cases of
two and three-dimensional spaces. Although the actual estimation in spaces of higher
dimensionality has not been treated here, the results presented reduce this question to

the measuring of hypervolumes and hypersurfaces.

2. Heavily relying on the results of approximate convexity in two-dimensions is the
decomposition of binary objects into MACS, as explained in Section 3.4. The results
of that decomposition are meaningful in many cases, as has been illustrated with

some examples. The main problem at the moment, however, appears to lie in the

165



implemented skeletonization approaches. Ashas been shown in Chapter 6, depending
on the class of input shapes, a different skeletonization scheme might be called for. As
a thorough comparison by Haralick et al. [21] showed, a skeletonization approach by
Ogniewicz [39] is among the best in respect to resistance towards noise and rotational
invariance. An implementation of that approach might improve the stability of the
decomposition. Furthermore, an extension of the approach for three-dimensional

objects should be possible.

3. The idea that is the centerpiece of the proposed learning scheme is the generalized
predicate. Generalized predicates allow for quantitative generalizations in an intuitive
way, unlike, for instance, the graded predicates proposed by Gang et al. [14]. Based
on the idea of generalized predicates, relational networks and conceptual networks
were introduced, the former representing the structure of an instance, whereas the
latter can be understood as a generalization of semantic networks. Although these
two network structures have not been developed fully yet, further extensions based

on generalized predicates appear possible.

Future work based on the ideas presented here, seems possible and necessary. The |
most urgent extension might be to enlarge the used domain. Although working with binary
imagés showed some possibilities of generalized predicates and conceptual networks, only
if those notions are applied to real world objects, can thei; validity be verified. Real world
objects might mean three-dimensional objects, recovered from range-data or from gray-
scale or colour images. Even at present, there are some remaining problems that ought to

be addressed.

1. Both, matching and generalization are based on an optimization. Although optimiza-
tion is an approach that appears close to human problem solving, the problem of
how to distinguish between a good optimization and a bad optimization has not been
solved. In other words, how do we recognize an instance or a part of an instance that

has no counterpart in the existing concept. At present, the question has been solved
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by introducing a threshold for avoiding infeasible matches. Although this appears to

work for the shown examples, it cannot really be considered a general solution.

. The employed approach of representing only relations among segments of the de-
composition that at least partially overlap cannot be considered sufficient in general.
Often, the constraints available are not really enough for guiding the matching. For
instance, the matching of the engines of the various planes shown in Chapter 7, is
only restricted by their relations to the main-wings. The relations of the engines to the
fuselage or to the other engines would add constraints that could be used for a more
meaningful matching. On the other hand, introducing a complete graph structure
for the representation of an instance would severely impede the performance of the
system. What relations to choose, and whether those relations should be grouped

hierarchically, are some more questions that should be considered in further detail.

. Another problem I would like to mention here is how to find a better generalization
function for generalized predicates. Although the function proposed in Section 5.2
is intuitive and has been used in previous research, certain points deserve some more
attention. For instance, it is a valid assumption that the generalization of instances
with widely varying generalized predicates should spread out the resulting generalized
predicate. However, even if we generalize the same predicate over and over, the result
will be a generalized predicate with increased standard deviation. Intuitively, the
standard deviation should decrease in such a case, mirroring the growing confidence
in the repeatedly found generalized predicate. How to incorporate this, together
with keeping the definition of generalized predicates closed under the generalization

operator is another open question.

. Finally, a more complete system would be possible by incorporating some sources
of domain knowledge. If this domain knowledge is available in the form of a
conceptual network, then it could be directly used for matching and generalization.

To incorporate domain knowledge in the decomposition, however, some changes to
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the present system would be necessary. For instance, at the moment there are no
possibilities of driving the decomposition based on some given constraints. To allow
for such a guided decomposition, some feedback links, prompting the decomposition
towards the right direction while penalizing deviations from it, would be necessary.

This point as well might be a worthwhile extension of the present system.

Although the above list is by no means complete, it mentions the most urgent
problems encountered with the system. Addressing some of them in a future system might

lead to a more versatile and generally useful system than the one described here.
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APPENDIX A

Convex Hull

The necessafy size of the discrete structuring element used for the computation of the
convex hull, together with the maximal depth of non-detectable concavities, can easily be
calculated by using the geometrical structure of the structuring element. First, let us assume
that the s&ucmﬂng element is a regular polygon with n vertices, designed to approximate
the disk as closely as possible. If we connect each vertex of the structuring element with the
origin O, i.e., the centre of the polygon, then we can define a set of n lines, let us call them
1), & = 1,...,n, normal to the lines emanating from the centre and each passing through
one vertex of the polygon. Now, we can consider the projection of the set X, of which we
want to obtain the convex hull, on the kth line, namely X | 1(%), Clearly the length of this
projection, that is, L(X | 1(k)), specifies the maximal dimension of the set X in direction
of the line [(¥), The maximum dimension of the set X is therefore given as the maximum

of the length of all projections on the lines 1® je.,
(k)
max (L(X |1 )) .

Now, we can again return to the structuring element and look at its properties as a regular
polygon. We can choose three consecutive vertices ag—1, Gk, Gk-+1s such that the projection
of X on the normal through ay is maximal for all possible projections. If we consider

L(X | 1(k)) as fixed, then the maximal possible width of a concavity is d(ag—1, Gk+1)
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(imagine a crescent-like figure as shown in Fig. A.1), where d(ax—1, aj+1) denotes the

Euclidean distance between points a1 and a;1. Thus, in order to fill the concavity by a

closing operation, we need
d(ag-1, a41) 2 max (LX | 14)) (A1)

as otherwise a part of the concavity reappears during the erosion stage of the closing.
Further, if we consider the triangle ai, O, ax41 then the centre angle is given as 2 /n.

Therefore, as d(O, ax) = d(O, ak+1) = r, we obtain
2m
(k) in { <&
m’?x(L(X |1 )) < 2rsin ( - )

max, (L(X | 1®))

=r>

= 2sin(2n/n)

L%y

Figure A.1: Maximal possible concavity

The depth d,,, of the maximal non-detectable concavity is given as the height in

the triangle a1, a, ax+1. Therefore,
max (L(X [ l(k)))

2tan (r (%2))
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APPENDIX B

Approximate Convexity

Here, I will try to give a very simplified derivation of the equations used in Section 3.3.
For a more thorough treatment, the reader is referred to the books by Hadwiger [20] and
Santalé [47].

Let us denote by = (1, z2,..., ) the coordinates of an n-dimensional space.
The measure m(X) of a set of points X is defined as the integral over the set of a
differential form w = f(z1,22,...,Zn)dz; Adza A... A dz, (provided that integral exists
in the Lebesgue sense), where the function f(z1,Z2, ..., Z») is chosen so that the measure
m(X) is invariant under the group of motions in n-space.

A motion in Euclidean n-space is an affine transformation of E™ onto itself such
that distances are preserved. The motions form a subgroup .# of the group of affine

transformations, defined by
o' =Az+ B, AA' =1, (B.1)

where I denotes the identity matrix of dimension n, and, therefore, A is an orthogonal
matrix.
Clearly, A = (a;;) and B = (b;) are n x n and n X 1 matrices respectively. Hence,

if we set A = (ai;), B = (b;), A™! = (vi;), then we obtain the covectors w;; and w;:

n
wij = Y cindan
h=1
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n
wi = Y apndbn. (B.2)
h=1

Consider a moving frame (p;ey,...,e,) composed of a point p and n independent unit

vectors e;. Using the relations e; - e; = §;5, de; - ej +€; - de; = 0, we have

w; = dp =
Wy = dei - €5
wj; +wiy = 0. (B.3)

Now, we want to define a density for r-dimensional planes L” in E", invariant
under the group of motions. If we denote the group of motions in E" by .# , we can further
" denote by £ the group of all motions that leave a fixed r-dimensional plane Lg invariant.
Clearly, there is a one-to-one correspondence between the r-planes of E™ and the elements
of the homogeneous space .# \ 7, which is the set bf left cosets g#", g € 4. This
means that each plane L™ can be obtained from Lj by some motion. Therefore, the problem
of finding an invariant density for sets of 7-planes is equivalent to that of finding an invariant
density on . \ 7.
It can be proven (see [47] for details) that

d( M\ HF) = wi A Awg, (B4)

is invariant under .#, and up to a constant factor, is the unique form with this property.

In terms of our r-plane in E, the invariant density for .# \ " is therefore given by
dL” :i/}wiﬁ /‘} Weys (BS)

witho, 3=7+1,...,n52=1,...,7.
Let us next consider a g-dimensional plane L%, fixed in E". Now, we are looking
for the density of 7-planes L™ (r > g) that contain L. With similar reasoning as above,

the density for 7-planes about L9y becomes
arrl = AWh; (h=r+1,...,m; i= g+1,...,7). (B.6)
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Let us next try‘ to compute the measure of all 7-planes L™ about L%. To this aim,
we first consider the case where ¢ = 0, that is, the group of rotations about the origin p of
the moving frame (p; e;). By rotation about p, the end points of the vectors e; move on
the unit sphere U,,_; centered at p. The scalar product de; - e; = wj; is equal to the arc
element on U,_; at the endpoint of e; in the direction of e;, so that, denoting by du,— the

(n — 1)-dimensional volume element of Uy,_; at the end point of e;, we have
AQUn—1 = Wt A ... Awn. (B.7)
Therefore
dUp—r = Wry1 0 Ao Apr. (B.8)

If du,—; denotes the volume element of the unit (r — 1)-dimensional sphere in L9, then

after some transformation, we obtain

AL A dupy = szg_l[lo)] A dip_1. (B.9)

By successive exterior multiplications and by integrating we get the total measure of -
planes of E™ through a fixed point

/dLT[O] Adur—1 A...Nduy = /dun,l Ao ANdup_p. (B.10)

Hence,

On-10n—2-- On—r
Op—10r—3--- 010’

m(Gr,n——r) = m(Gn_m) = / dL"[O] =

=7

(B.11)

where O; is the surface area of the n-dimensional unit sphere1 .
We have seen in Eq. B.S5, that dL" is given in terms of a point p and r orthonormal

vectors e; contained in L”. If we set doy—r = Wr41 AwWr42 A ... A wy, then we get
dL" = dop_r AdL™O (B.12)

such that do,,_, is the volume element of Lol gt D, 88 Wryp = dp - €,4p is the arc

element of L™~ at p in direction e, 1.

. . . . (n+1)/2
"The surface area of the n-dimensional unit sphere is given as O, = 2lr(—’¢r)—
Sl
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Let K be a convex set and let O be a fixed point in E™. We consider all the (n — )~
dimensional planes L™ "[°! through O and we let K"~ be the orthogonal projection of
K onto L™ 7ll, In other words, K™ " denotes the convex set of all intersection points of
L=l with the r-planes L™ perpendicular to L0l through each point of K. Now, the

mean value of the projected volumes V (K'"™") becomes

Jo_. VE™ )L

E(V(K'™ ) = o R (B.13)

The relation

L(K) = / V(K™ ")aLo), (B.14)

n—r,r

is an important characteristic in integral geometry. I.(K) can be expressed in terms of the
* quermassintegrals W, (K ) as introduced by Minkowski. We have

(n —r)Op_1 “.OOIT(K)- (B.15)

Wr (I{) - nOp—2- - On—r—1

In general, the following equalities hold for quermassintegrals

Wo = V
nW1 = F
nWyn = On_i, (B.16)

where V is the volume, F is the surface, and O,,_1 is the surface of the n — 1-dimensional
unit ball.
Integrating Eq. B.12 and substituting Eq. B.15 gives for the measure of the r-planes

m(I7, [T K #0) = / L™ = / do™ " A 4L
LTNK#0

NOp—2-+  Oner—1 1) ,1-
_ (K. :
(n—-'r)Or_1~--OoW( ) (B.17)

Let K be a convex body in the ¢g-plane L? C E™. Further, let Wi (K9, (r =
0,1,...,q) be the quermassintegrals of K7 as a convex body of L4. If we consider K¢ as

a flattened convex body of E™ (n > ¢), the quermassintegrals w™ (K1) can be evaluated
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by considering first the quermassintegrals of the parallel convex body? K7 and then taking
the limit as p — 0. The actual derivation and proof has been done by Hadwiger [20], here
we will only give the results. As Hadwiger showed, if we assume that ¢ = n — 1, then we

have
r Or 1

O;

Now, we can recursively apply Eq. B.18 to obtain the quermassintegrals for any convex

WM (K1) = w1, (B.18)

3

body K7 of dimensionality ¢, such that ¢ < n:

q
W) (K9) = (r—z+q) Or+1 (@)

(M) Or—ntqtt rntq(KY): (B.19)

“The parallel body K, in the distance p of a convex set K is the union of all solid spheres of radius p, the
centers of which are points of K.
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APPENDIX C

Approximation of the Product of two

Gaussians

A scaled Gaussian normal distribution is, in its general form, given as

1 (z—pg)?
Gz) = —2e7 o (C.1)
270 '

When multiplying two scaled Gaussians, we face the problem of approximating the result

by a single of scaled Gaussians. That is,

G1(x) - Ga(z) ~ Ga(x).

Writing out the above equation gives

: —1 (2=p)? | 1 (m—pp)? —1 (z—pg)?
aia TR e 7 (c2)
2wo10, V2mos

The purpose of this appendix is to give an estimate for the three parameters ps, a3, os. We
approach the problem by first noting that by setting the derivative of G (z) - Ga(z) to zero

and solving for z, we can obtain y3.

(z=pu)? 1 (=—pp)? —1(z=p)? | 1 (E—pp)?
d ajap e—%_‘fl—m,': —%_‘TLZUZ _ Mo T a? +'2‘w;,;52 ( T T
_Gida -l

dz 2moi09 2ro0g Uf o3

) =0.
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The solutions where either a1, az, 01, or oy are zero can be discarded as meaningless.

Therefore, we have
(z~w)? | (z—p)?
> + 5 =0.
o1 o1

This gives the following solution

_ moi+ paot

C.
cr% + 0% ( 3)

H3

Now, given the solution for 3, we can calculate 3. To this aim, we note that the coefficient
of the two multiplied Gaussians in Eq. C.2 is approximately equal to the coefficient of
the derived Gaussian G3. Therefore, we can divide by the common coefficient, apply the

~ logarithm and solve for o3 by a least square fit over the exponent. That is,

2
d Lz —m)® 1(z—m)?  1(z—p)
L _= - dz = 0. 4
dos / { 2 o 2 o3 * 2 o2 33 (C4)

The integral in Eq. C.4 can not be solved generally, as the two polynomials diverge towards
+00. However, integrating over a wide enough range, for instance from —10 to 10
should yield acceptable results. Differentiating with respect to o3 and integrating for

z = —10...10 gives the following equation

g3 =

P 3(2000+#§(20°+I‘%)) (C 5)
192 d%(6000+100#%+400u1n3+100u§+3ﬂ§ﬁt§)+cr%(6000+100#%+400#zu3+100#§+3P§#%)' :

Although the above equation appears quite involved, its evaluation is simple and straight-
forward.
Finally, we need to find an estimate for a3. Again, given the values for 3 and o3,
this is straightforward
a® = G1(u3)Galus)osV2r. (C.6)

The validity of this approximation can be confirmed by looking at a simple example.
Fig. C.1 shows two Gaussians, together with their product, which is shown by a dashed
line. The product of the two Gaussians is shown overlayed with the above approximation in

Fig. C.2. The error of the approximation, that is, | G1 - G2 — G3 |, is shown in Fig. C.3. As
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can be verified easily, the approximation error is within the bounds of numerical instabilities

and is therefore negligible.

-1

Figure C.1: Two Gaussians and their Figure C.2: Product of Gaussians
product overlayed with approximation

0.0001
0.00008
0.00006

0.00004

~0.4 -0.2 0 0.2 0.4

Figure C.3: Approximation error
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APPENDIX D

Approximation of a Sum of

Gaussians

Given a sum of Gaussian normal distributions as for instance obtained during the gen-
eralization of generalized predicates, we face the problem of finding a sufficiently close
approximation of this sum in terms of a sum of Gaussians containing fewer terms than the

initial sum. That is,

no —1 (z=p3)?
a3
G(z) = Z S R
= V2no;
koo, il
Gapprox(z) = Z \/ﬁa_e % for some integer k < h

Gapprox(z) —A < G(z) < Gapprox(z) + A.

This should not just be done by discarding summands that are deemed to be insignificant.
But rather we would like to find an approximation that minimizes the error A. Since a
direct least square fit yields non-linear equations that are very difficult to solve, we apply
an iterative scheme, that approximates one Gaussian after the other, using the results from
Appendix C.

We proceed as follows. First, let us assume that the maximal component of the sum
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of Gaussians can be found around the maximum of the sum. Therefore,
o = x such that G(z) is maximal. (D.1)

Again, we solve for o by a least square fit over the exponent. To this aim, we assume that

G(z) has the form of a Gaussian. Therefore, we can write the equation for the least square

fit as follows
d 1@ o]’ 0 D.2
Zfl?o In(G(z)/G(ro)) + i | T (D.2)
Solving for o2 gives
2 Z(CU - Mo)2
0% = — ) D.3
0= "2 (G () /Glao) (B3)
Finally, we can calculate the scaling factor as
ag = G(po)V2moy. (D.4)
Hence, we obtain the first term of the approximation as
—1 (z—ng)?
ag 7z —"29_
Golz) = e o . D.5
0( ) \/ZT—U() ( )

Using this first approximation term, we can calculate a new function, namely
G'(z) = G(z) — Go(z). (D.6)

If we now apply the same procedure as above to G'(z), we successively obtain the lesser
terms of the approximation, namely G1(z), G2(z),...Gi(z). This procedure can be re-
peated either until a previously fixed number of approximation terms has been calculated,
or until the remaining function G'(z) is below a certain threshold A.

Again, we can look at an example in order to verify the above procedure empiri-
cally. Fig. D.1 shows a sum of Gaussians with 25 terms (solid line), overlayed with their
approximation using 7 terms (dashed line). No significant difference can be seen. This
is further stressed by plotting the approximation error, that is, | G(z) — Gapprox(z) | in
Fig. D.2. The approximation appears to be sufficiently accurate. However, to improve
accuracy even further, in the actual implementation of the system, approximations with 12

terms have been used.
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Figure D.1: Sum of Gaussians over-
layed with their approximation
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APPENDIX E

Splitting of Generalized Predicates

" An unsupervised approach for the splitting of bimodal histograms has been proposed by
Otsu [40]. First, we assume a discrete, normalized histogram, which represents a probability
distribution such that

> opi=1, (E.1)
with the range ¢ = 1,..., L. Suppose that we divide the distribution into two classes by
thresholding it at some level k. Cy denotes the class with i < k, and C) represents the class
with 2 > k. The class probabilities wo and wy, together with the means 1 and y; are given

by

k
wo =Zpi = w(k) : (E.2)
i=1
L
w o= Y. p =1-wk) (E.3)
i=k+1
k.
_—ipi u(k)
o =2y T ED
L .
_ wpi_ pr — p(k)
I —i=§k;1wl = TTo) (E.5)
where
k
pk) = ip; (E.6)

i=1
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L
pro= p(L) =) ip;. E7)
i=1

w(k) and (k) are the Oth and the 1st order moments of the distribution up to the kth level,

and p is the mean of the original distribution. For any choice of k, we have
wolo + w1 = pr, wo+w; = 1. (E.8)

Finally, the variances for the two classes are given by

k

o3 = SG-m)E (E.9)
i=1 «o
L i

of = 3 (i-mP (E.10)
i=k+t1 w1

In order to find the best threshold , the criterion measure, given by

a
n=-%, (E.11)
or
where
2 2 2 2
op = wolto = pr)* +wi(py — pr)* = wowi (1 — Ko) (E.12)
L
op = > (i— )i (E.13)
=1

must be minimized. Since 0% does not depend on k, the optimal threshold &* that minimizes

1), maximizes 0129. Therefore, the optimal threshold k£* is given as

oB(k") = max oB(k), (B.14)
where .
2 _ lprw(k) — u(k)]

75 = o w(b)] (E13)

Since both, w(k) and o (k) can be updated cumulatively, Eq. E.14 corresponds to a simple

linear search, which is very effective in practice.
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APPENDIX F

Grammar used for Description

F.1 Transitions

(Description —  (VariableGroupDescription RemainingSegments)
(SizeGroupDescription RemainingSegments)

(RemainingDescription))

(VariableGroupDescription

—  (VariablePrologue VariableGroup))

(VariableGroup
—  (VariableGroup VariableGroup)
(VariableGroupContents  VariableGroupMembers))

(VariableGroupContents

—  (SubjectPhrase Group Name Consist ObjectPhrase Identifier Dot))

(VariableGroupMembers
—  (VariableGroupMembers VariableGroupMembers)
(VariableMemberDecsription))

(VariableMemberDescription
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—  (SubjectPhrase Identifier Verb2 ObjectPhrase ModifierPhrase Dot))
(SizeGroupDescription —  (SizePrologue SizeGroup))

(SizeGroup  —  (SizeGroup SizeGroup)
(SizeMemberDescription))

(SizeMemberDescription

—  (SizeGroupContents Pronoun Verb2 SizeGroupRelation Dot))

(SizeGroupContents
—  (SubjectPhrase Group Name Consist ObjectPhrase Identifier))

{(SizeGroupRelation —  (SizeModifier Conjunction ParallelModifier)
(SizeModifier) '
(ParallelModifier))

(PérallelModiﬁcr —  (ParallelAngle Rell StructureModifier))

(RemainingSegments —  (SegmentDescription RemainingDescription))

(RemainingDescription

- —  (RemainingDescription RemainingDeséription)
(SingleSegment))

(SingleSegment
—  (SubjectPhrase Identifier Verb2 ObjectPhrase Modifier Dot))

(SegmentDescription

—  (SubjectPhrase Identifier NonMembership ObjectPhrase Group Dot))

(Modifier —  (AngleModifier Conjunction SizeModifier)
(AngleModifier)
(SizeModifier))

(AngleModifier —  (AngleDirection Rell Name)
(AngleDirection))
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(AngleDirection —  (ParallelDirection)
(NormalDirection)
(VariableDirection))

(ParallelDirection —  (ParallelAngle))

(NormalDirection — (Rel2 Article RightAngle))

(VariableDirection —  (Rel2 VariableAngle))

(SizeModifier —  (SizeRelation Rel3 Name)
(SizeRelation))

(SizeRelation - (SizeEqual)

‘ (LengthEqual)
(WidthEqual))

(SizeEqual —  (SameSize))

(LengthEqual —  (SameLength))

(WidthEqual —  (SameWidth))

(Identifier —  (Segmentldentifier)
(Groupldentifier))

(SegmentlIdentifier —  (Segment Name))

(Groupldentifier —+  (Group Name))

(VariablePrologue —  (SubjectPhrase Intro VariableCharacteristic Dot))

(SizePrologue —  (SubjectPhrase Intro Dot))

(Intro —  (Existential Verb2 Number Group))

(VariableCharacteristic —  (Pronoun Verbl VariableDirection Rel4 Rell Rel5))

186



F.2 Terminals

(Group
(Segment
(ParallelAﬁgle
(RightAngle
(VariableAngle
(SameSize
(SameLength
(SameWidth
(NonMembership
(Existential
(Consist
(Article

(Rell

(Rel2

(Rel3

(Reld

(Rel5
(Pronoun
(Conjunction

(Verbl

(TERM
(TERM
(TERM
(TERM
(TERM
(TERM
(TERM
(TERM
(TERM
(TERM
(TERM
(TERM
(TERM
(TERM
(TERM
(TERM
(TERM
(TERM
(TERM

(TERM

ngoupll
"segment"

"parallel”

"right angle"
"variable angle"
"of same size"

"of same length"
"of same width"

"does not belong to any"

"there"
"consists of"
"a" NIL))
"to" . NIL))
"at" NIL))
"as" NIL))
"in respect"
"each other"
"which"
"and”

"has"
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NIL))

ngoupsll))
"segments"))

NIL))

NIL))
NIL))

NIL))
NIL))
NIL))

"do not belong to any™))

NIL))

NIL))

NIL))

NIL))

NIL))

nhaven))



(Verb2 — (TERM "is" "are"))

(Name — (TERM NIL NIL))
(Number — (TERM NIL NIL))
(Dot — (TERM "." NIL))

F.3 Grammar Daemons

(SubjectPhrase — (GRAM T))

(ObjectPhrase — (GRAM NIL))
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