Expression of an RSV-gag virus-like particle in insect cell lines and silkworm larvae

SURE 静岡大学学術リポジトリ Shizuoka University REpository

メタデータ	言語: eng
	出版者:
	公開日: 2011-08-11
	キーワード (Ja):
	キーワード (En):
	作成者: Deo, Vipin Kumar, Tsuji, Yoshitaka, Yasuda,
	Tomomi, Kato, Tatsuya, Sakamoto, Naonori, Suzuki,
	Hisao, Park, Enoch Y.
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10297/5800

1	Expression of RSV-gag virus like particle in insect cell lines and
2	silkworm larvae
3	
4	Vipin Kumar Deo ^a , Yoshitaka Tsuji ^b , Tomomi Yasuda ^b , Tatsuya Kato ^b , Naonori
5	Sakamoto ^c , Hisao Suzuki ^d and Enoch Y Park ^{a,b*}
6	
7	
8	^a Laboratory of Biotechnology, Integrated Bioscience Section, Graduate School of Science and
9	Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
10	^b Laboratory of Biotechnology, Department of Applied Biological Chemistry, Faculty of Agriculture,
11	Shizuoka University, 836 Ohya, Shizuoka 422-8529, Japan
12	^c Department of Materials Science and Chemical Engineering, Shizuoka University, 3-5-1 Johoku,
13	naka-ku, Hamamatsu, Shizuoka 432-8561, Japan
14	^d Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku,
15	Hamamatsu, Shizuoka 432-8561, Japan

Corresponding author at Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan. Tel. & Fax: +81-54-238-4887, *E-mail address*: acupack.a *

Abbreviations: BmNPV, Bombyx mori nucleopolyhedrovirus; DDS, Drug delivery system; ER, Endoplasmic reticulum; QD525, Quantum dot 525nm; RSV-gag, Rous sarcoma virus-group antigen; TEM, Transmission electron microscope; VLPs, Virus like particles

16 Abstract

Rous sarcoma virus group antigen protein based virus like particles (VLPs) are well 1718 known for their structural integrity and ease of handling. VLPs are playing an important role in drug delivery system as they can be manipulated with ease. Therefore, in this 19study a new method was established for expressing Rous sarcoma virus group antigen 2021protein based VLPs in silkworm larvae and establishing stably expressing insect cell 22lines. These VLPs have been isolated using step sucrose gradient of 10%-60% (v/v) by 23ultracentrifugation method and their spherical structure has been confirmed under 24transmission electron microscope. The spherical morphology is similar in both the silkworm larvae and in stably expressing cell lines. Silkworm larvae are better suited for 2526producing Rous sarcoma virus group antigen protein based VLPs on large scale approximately 8.2 fold higher than the stable cell lines. These VLPs shall provide a new 27method for large scale application in vaccine development and drug delivery system. 28Keywords: Rous sarcoma virus group antigen protein, Virus like particle, Bombyx mori 29nucleopolyhedrovirus bacmid, Silkworm, Insect cell 30

1. Introduction

33	Rous sarcoma virus (RSV) species belongs to the family Retroviridae, subfamily
34	Orthoretrovirinae, genus Alpharetrovirus of single stranded RNA virus was one of the
35	first found to cause cancer in chickens. Lot of study has been reported to elucidate the
36	structure of group antigen protein (gag) which is important in the assembly and
37	packaging of the RNA into the virus and subsequent pinching from the host's cell
38	membrane. It's composed of mature proteins matrix (MA), capsid (CA) and
39	nucleocapsid (NC) proteins required to package the RNA genome and later being
40	cleaved off by viral proteases (Ma and Vogt, 2002). RSV-gag codes for 701 amino acid
41	length protein which dimerize on the cellular membrane to form the VLPs of 30-120
42	kDa range. These researches have become more relevant owing to the conserved nature
43	of the protein found in other virus belonging to the retroviridae family.
44	Retrovirus based vaccines have the potential of becoming the next generation DDS.
45	Retroviruses are famous for their ingenuity to enter the host cell utilizing the viron
46	which have evolved the art of crossing the host plasma membrane barrier efficiently
47	(Waelti and Gluck, 1998). Up till now mainly viral based gene therapy has been focus
48	of research and improvement but a yet not well established field wherein only the virion
49	or the viral envelope only is used as a container to transport therapeutics to a cell or

50	tissues has not been exploited efficiently(Kondo et al., 2008). VLPs are capsid proteins
51	minus the genetic material of the virus; in short they are hollow viral protein cages.
52	These capsid proteins from almost any virus minus the genetic material when expressed
53	in an expression system have the innate ability to fold and self-assemble as VLPs. This
54	property has been of great interest from the vaccine development aspect (Roy and Noad,
55	2008). Neutralizing a threat from an epidemic virus like influenza is very important.
56	They have the ability to mask their surface proteins like hemagglutinin (HA) very
57	quickly and resurface with a vengeance with very high mortality rate (Fanning and
58	Taubenberger, 1999). Presenting these active components of the virus for developing
59	antibodies or vaccines for treatment and detection is of prime importance. Concerns
60	regarding the safety of recombinant viruses have prompted increasing interest in viral
61	systems carrying no genetic material; VLPs present an appropriate opportunity to be
62	used as a DDS since it carries no genetic material.
63	Insect cell serves as a good host and an equally better expression system to express
64	different proteins for commercial and research applications utilizing baculovirus
65	(Dojima et al., 2009). Up till now many researchers have used baculovirus expression
66	system to express virus like particles (VLPs) and using it is well known to produce

vaccine delivery systems (Keller et al., 2008; Noad and Roy, 2003; Wills et al., 1989).

68	Recently silkworms have evolved as an efficient expression system able to express
69	proteins at high levels using Bombyx mori nucleopolyhedrovirus (BmNPV) species
70	belonging to family Baculoviridae (Kato et al., 2010) of the family of double stranded
71	DNA virus. It takes almost one month to express and purify any protein at milligram
72	level using BmNPV bacmid based expression system in silkworm larvae (Dojima et al.
73	2010). Injecting two or more bacmids with two or more sub-unit proteins can be
74	co-expressed and allowed to form complete functional proteins which can then be
75	purified. Silkworm larvae are completely domesticated insects and they have been in
76	use for many centuries without affecting humans.
77	In the current study the focus is on the need to establish a system comprising of
78	stable insect cell line and silkworm based expression system to express a complete and
79	RSV-gag minus the PR region of approximately 75 kDa and 61 kDa theoretical
80	molecular weight, respectively. The short RSV-gag-577 codes for 577 amino acids and
81	its ability to form VLPs is well documented (Joshi and Vogt, 2000). The ability of
82	silkworms to express the VLPs and serve as a more potent system to express VLPs in
83	future compared to other bacterial systems (Yu et al., 2001). This is also important for a
84	large scale application of VLPs as vaccine/DDS can be made by fusing robustness of
85	insect cell expression system and VLPs.

 $\mathbf{5}$

86 2. Materials and methods

87 2.1. Cell line, medium, silkworm larvae and culture

88	Tn-5B1-4 cells from Trichoplusia ni were purchased from Invitrogen (San Diego,
89	CA, USA) and grown in both 25 cm ² tissue culture flasks (Falcon) and 100 ml flasks.
90	Suspension cultures were carried out in 100 ml flask with a working volume of 15 ml in
91	Express five serum free medium (SFM) (Invitrogen) supplemented with $1\% (v/v)$
92	antibiotic-antimycotic (Invitrogen) (Deo and Park, 2006). A scale up of the suspension
93	culture was done under similar condition of culture using 500 ml flask with a culture
94	volume of 100 ml. Fifth instars larvae (Ehime Sansyu Co. Ltd., Ehime, Japan) were
95	reared on an artificial diet Silkmate S2 (Nihon Yokohama, Japan) for silkworms in a
96	chamber (MLR-351H, Sanyo, Tokyo, Japan) with 65% humidity at 27°C.
97	2.2. Construction of vectors
98	pIB/V5-His-Dest Gateway vector was used for stable expression in insect cell
99	expression system (Invitrogen, Carlsbad, CA, USA). The RSV-gag cDNA was PCR
100	amplified using pRep(A) (ATCC catalogue number 87702) as a template. The
101	RSV-gag-577 insert was PCR amplified using primers; Forward primer: 5'-CACC
102	ATGGAAGCCGTCATAAAGGTG -3'; reverse primer: 5'-TTA CGA GAC GGC AGG

103	TGG CTC AGG-	3'. The RSV-gag	2-701 insert w	as PCR am	plified using	primers:
100	100 0101100.			us i cit uni	philles abiling	primero,

104 Forward primer: 5'-CACC ATGGAAGCCGTCATAAAGGTG-3'; reverse primer:

- 105 5'-CTA TAA ATT TGT CAA GCG GAG-3'. PCR products were inserted into the entry
- 106 vector, pENTR/D-TOPO (Invitrogen, Carlsbad, CA, USA) to give
- 107 pENTR/RSV-gag-701 and pENTR/RSV-gag-577 respectively. The sequences of all the
- 108 PCR fragments inserted into pENTR/D-TOPO were confirmed by dideoxynucleotide
- 109 chain terminating sequence (Sanger et al., 1977) using Thermo Sequenase Cycle
- 110 Sequencing kit (USB, Cleveland, Ohio, USA). pENTR/RSV-gag-577 was used to
- 111 prepare the expression plasmid, pIB/V5-His-RSV-gag-577, by performing LR reaction
- as per the protocol of stable cell line technology (Invitrogen).

113 For expression of RSV-gag in silkworm larvae BmNPV bacmid was used.

- 114 *RSV-gag-*701 and *RSV-gag-*577 from pENTR/RSV-gag-701 and pENTR/RSV-gag-577,
- respectively, were transferred to pDEST8 by LR reaction according to the protocol to
- 116 make pDEST8/RSV-gag-701 and pDEST8/RSV-gag-577 respectively, which was used
- 117 to transform the DH10 BmNPV Chi⁻-CP⁻ competent cells to make recombinant bacmids
- 118 (Deo et al., 2006). White colonies of recombinant bacmids carrying the RSV-gag-701
- and RSV-gag-577 were isolated and resulting bacmids were designated as BmNPV
- 120 bacmid/RSV-gag-701 and BmNPV bacmid/RSV-gag-577, respectively, and inoculated

121	into 3 ml LB medium along with the antibiotics used for screening. After culturing them
122	in LB medium with the antibiotics for 36 hours the BmNPV bacmids were isolated and
123	confirmed by using standard M13 primers. Positive transformants were re-inoculated in
124	100 ml LB medium and isolated in large amount for injecting them into fifth-instar
125	silkworm larvae.

126 2.3. Injecting silkworms

127	Each Silkworm was injected with 40 µl recombinant bacmid DNA solutions
128	containing 10 µg of BmNPV bacmid DNA, 10% (v/v) DMREI-C reagent (Invitrogen) in
129	PBS using 1 ml syringes. Post injection 7 th day the silkworm's hemolymph was
130	harvested in falcon tubes containing 2 mM phenyl thiourea to inhibit the melanization.
131	These samples were then aliquoted into 1 ml eppendorf tubes and stored at -80° C.

132 2.4. Serial screening of stable cell lines

133 Tn-5B1-4 cells at 1×10^4 cells per well were seeded into the 6 well plates and 134 allowed to grow overnight in the incubator. The cells were washed with serum free 135 medium and then 1 ml containing vectors and lipofectin mixed as per the kit protocol 136 (Invitrogen) were overlaid. The cells were then incubated for 4 hours in the incubator 137 with mild shaking in an interval of 30 minutes. After 4 hours the medium was removed

138	and replaced with fresh Express Five SFM. These cells were incubated and allowed to
139	grow for 2 days. After 2 days Express five SFM containing 80 µg/ml Blasticidin
140	(Invitrogen) was added and the medium was replaced every 3 rd day. The foci of resistant
141	polyclonal stable cell lines formed were picked up carefully maintaining its
142	homogeneity for each transformed cell line and were seeded into 96-well plates (Falcon,
143	Lincoln Park, NJ, USA) separately, subsequently (Deo and Park, 2006). After 1 week,
144	confluent grown cells were seeded into 24-well plates of 2 cm ² surface area (Falcon).
145	After 2 weeks, confluent grown cells were selected and their supernatant was removed
146	and exchanged with fresh medium. The supernatant was used for western-blot analysis
147	and the positive cell lines were selected and further seeded into six-well plates of 9.6
148	cm ² surface area (Falcon).

149 2.5. Genomic DNA extraction and confirmation by PCR

Genomic DNA was extracted from the transformed cells using a FlexiGene DNA kit (Qiagen, Valencia, CA, USA). For analyzing the genomic *RSV-gag* cDNA, a PCR was performed using the primers used for amplifying the cDNA earlier under similar conditions. PCR product was resolved on 0.75 % (w/v) agarose gel by electrophoresis.

154 2.6. Western-blot analysis

155	To detect the expression of recombinant protein, culture supernatants of stable cell
156	lines and larval hemolymph and fat body collected from silkworm larvae, respectively
157	were subjected to 12% (w/v) SDS-poly-acrylamide gel electrophoresis (SDS-PAGE)
158	using the mini-protean II system (Bio-Rad) (Deo and Park, 2006). After SDS-PAGE,
159	proteins were blotted on to a PVDF membrane using the Mini Trans-Blot
160	Electrophoretic Transfer cell (Bio-Rad). The membranes were probes with
161	anti-RSV-gag primary antibody solution for 1 h (A kind gift from Dr. Vogt) and
162	secondary goat anti-rabbit IgG antibody labeled with horse-radish peroxidase (HRP) for
163	1 h. Using ECL plus western blotting reagent pack (Amersham Biosci.) specific bands
164	were detected. Those bands were analyzed using a Fluor-S/MAX multi-imager
165	(Bio-Rad).
166	The protein concentrations were estimated using standard BCA protein estimation
167	protocol from kit (Pierce BCA Assay kit, Japan).
168	2.7. Sucrose gradient and purifications
169	VLPs containing supernatant collected from stable cell line cultures and silkworm
170	larvae were centrifuged at 1000×g in a Sorvall Biofuge (Primo R, Heraeus, Germany)

171 for 3 min using Heraeus 7591 swing bucket rotor to remove any cells or debris. The

172 clear supernatant was spun in a micro ultracentrifuge (Himac CS120GX, Hitachi Koki,

173	Tokyo, Japan) at 171,000×g at 4°C for 30 min using S52ST swing bucket rotor (Hitachi
174	Koki) to pellet the VLPs. The pellets were resuspended in 200 μl of STE (100 mM NaCl,
175	10 mM TrisHCl pH 7.5, 1 mM EDTA) buffer. This was overlaid on a step sucrose
176	gradient of 4.5 ml of 10%-60% (w/w) prepared in STE. Gradients were spun at
177	244,000×g at 4°C for 2 h using S52ST swing bucket rotor (Hitachi Koki). The resulting
178	gradients were collected in 7 fractions (fraction 1 to 4 of 500 μl and fraction 5 to 7 of 1
179	ml). Each fraction was further concentrated and buffer was exchanged using Microsep
180	spin 10K columns (Pall, NY, USA). VLPs containing fractions were pooled and stored
181	at 4°C.

- 182 2.8. Visualization of VLPs under transmission electron microscope (TEM) and confocal
- 183 *laser scanning microscope*

184	Stable cell lines were cultured for 3 days and around 1×10^4 cells were seeded on
185	cover slips (2 cm×2 cm) and incubated at 27°C overnight. The cells were washed with
186	fresh medium and incubated with Quantum dot 525 conjugated anti-RSV-gag antibodies
187	prepared as per kit protocol (Invitrogen) for 2 hours (Kampani et al., 2007). The cells
188	were washed once more and then viewed under confocal laser scanning microscope
189	(LSM 700, Carl Zeiss, Oberkochen, Germany). Zen LE software available on Carl Zeiss
190	website was used for simulating the surface expression of RSV-gag based VLPs.

191	Samples prepared were diluted 1:500 in STE buffer. The samples were then
192	spotted upon the carbon grid (Okenshoji, Tokyo, Japan) and dried at room temperature.
193	Negative staining was performed using 4% phospho tungstenic acid (Silverman and
194	Glick, 1969; Vogt and Simon, 1999). Samples were observed at 50,000× magnifications
195	on TEM (JEM 2100F, JOEL, Tokyo, Japan) operating at 200 kV (Briggs et al., 2006).
196	3. Results
197	3.1. Expression of RSV-gag based VLPs in stably expressing insect cells
198	RSV-gag based VLPs and its components have molecular weight in the region of
199	6-75 kDa (Fig. 1A). Many clones were screened for complete RSV-gag-701 and
200	RSV-gag-577 for expression of RSV-gag based VLPs and their genomic DNAs were
201	isolated. No good clones where found for the complete RSV-gag-701. Using primers
202	specific for RSV-gag-577 cDNA their presence was confirmed in D6 clone (Fig. 1B).
203	D6 clone was then grown in suspension culture and the expression of RSV-gag based
204	VLPs was confirmed using supernatants by western blotting (Fig. 2A). It was found that
205	the expression was the highest on 2 nd after passaging for D6 clone in the supernatant
206	(Data not shown). Clone D6 was scaled up and the supernatant was collected for
207	isolation of VLPs by step sucrose gradient method. The various fractions collected were

208	analyzed and it was found that fraction number 5 was the best. Fraction number 5
209	contains RSV-gag-577 and p10-CA which were more homogenous VLPs based upon
210	the theoretical molecular weight (Fig. 2B).

211 3.2. Expression of RSV-gag based VLPs in silkworm larvae

212	BmNPV bacmid/RSV-gag-701 and BmNPV bacmid/RSV-gag-577 were injected
213	into the silkworms, respectively, and the larval hemolymph and fat bodies were
214	collected post-injection 7 th day. There was no band present for RSV-gag-701 in the
215	larval hemolymph and fat bodies collected (Data not shown). Thus only samples
216	collected from BmNPV bacmid/RSV-gag-577 infected silkworms were used for
217	isolation of VLPs. VLPs produced in silkworms were mostly present in hemolymph and
218	isolated in similar manner using step sucrose gradient by ultracentrifugation. After
219	ultracentrifugation two distinctive layers were observed (Fig. 3A). Both the layers were
220	eluted carefully and checked by western blotting and SDS-PAGE, respectively (Fig. 3B
221	and C) to confirm the RSV-gag protein and the purity of the samples.
222	3.3. Images of VLPs from silkworm and stably expressing cell lines

In order to understand the VLPs assembly on the plasma membrane D6 clone was selected and the cells were prepared for observation using confocal laser microscopy.

225	The cells were stained with ER marker (a of Fig. 4A). Using anti-RSV-gag conjugated
226	with Qdot525nm the cells showed sharp fluorescence on their surface (b of Fig. 4A).
227	VLPs accumulated on the surface can be distinctively observed. The overlap of QD525:
228	Anti-RSV-gag provided the proof that the VLPs were transported to the plasma
229	membrane (d of Fig. 4A). Using Zen LE software for 3D morphology in the Carl Zeiss
230	LSM 700 microscope, pictures were collected in a time stacked manner which was used
231	as a data for simulating the expression of VLPs conjugated to QD525 (Fig. 4B).
232	VLPs purified from the step sucrose gradient method from both D6 clone and
233	silkworm hemolymph were analyzed under TEM using phospho tungstenic acid as a
234	negative stain. The samples from D6 and silkworm hemolymph showed a smooth
235	spherical shaped VLP resembling the native form (Fig.4C and D). The bilayer was
236	distinct and clearly visible owing to the contrast surrounding the dense core. The VLPs
237	purified from fraction number 5 of stably expressing cell lines and from the silkworms
238	showed approximately less than 100 nm (Fig. 4C and D). The VLPs purified from
239	stably expressing cell line D6 were spherical and this proves the establishment of stably
240	expressing RSV-gag based VLPs cell line (Fig. 4C).

4. Discussion

242 The molecular weight of the mature RSV-gag-577 based VLPs is little higher than

243	expected due to post-translational modifications in insect cells. Further glycosylation
244	analysis is required to elucidate this pattern. In western blotting antibody raised against
245	p10 region of RSV-gag was used, this region is very important for VLPs (Kenney et al.,
246	2008; Scheifele et al., 2007). From results it was found that since all the varying sizes of
247	VLPs have p10 region in common hence the antibodies attach to these regions which is
248	why various sizes of bands for VLPs is observed.
249	No significant differences in the molecular weight and the intensity of the bands
250	were observed although there were two distinct layers after ultracentrifugation in
251	hemolymph from silkworms. This might probably be due to some hydrophobic
252	intracellular protein contaminants sticking to the VLPs thereby causing change in
253	density as proteins are separated based upon their density in sucrose gradient. The
254	protein concentrations from the different fractions were estimated (Table 1) and the
255	yield was determined. The purified VLPs from lower layer of silkworm larval
256	hemolymph are approximately 8.2 fold higher than that of 5 th fraction from D6 stable
257	cell line. In larval hemolymph lot of proteins are present in very high concentration
258	compared to expressed VLPs hence the yield is low. This is due to the infection
259	rupturing the internal organs and releasing their contents into the hemolymph. On the
260	other hand in stable cell lines only supernatant is collected as VLPs are secreted out by

forming vesicles at the outer periphery of the cell boundary thereby very less amount of cellular proteins are present giving more overall yield (Nandhagopal et al., 2004). To further enhance the yield and quality of the VLPs tagged proteins carrying the plasma membrane targeting signal can be displayed on the surface and using tag specific columns further improvement can be achieved.

From the results it's clear that VLPs aggregate on the plasma membrane and it 266also supports the theory that the VLPs accumulate on the plasma membrane where they 267are self assembled to form the VLPs (Dalton et al., 2005; Johnson et al., 2005; Krishna 268et al., 1998). When sufficient number of gag monomers have accumulated then owing to 269270the decrease in surface tension causes pinching of the VLPs from the surface of the plasma membrane. Because of this phenomenon the VLPs can be easily collected from 271the supernatant and larval hemolymph without the use of any procedure leading to 272disruption of cells. Using the stable cell lines the pinching method of VLPs was 273confirmed. The assembly and pinching of VLPs is dependent upon the cells ability to 274express the core proteins which in turn is also dependent upon the culture conditions. 275276These variables have yet not been explored and from the data presented in current study a hypothesis can be proposed that the VLPs form different sizes of VLPs and hence the 277presence of different bands in purified samples. The structural morphology was similar 278

279	to native RSV particles (Keller et al., 2008) and better than bacterial expression systems
280	(Joshi and Vogt, 2000). The RSV-gag based VLPs purified from silkworms had smooth
281	spherical morphology and the distinctive bilayer of the lipid was very well preserved
282	(Fig. 4D). The protein core is stained differentially in comparison with lipid bilayer as
283	phospho tungstenic acid has more specificity for protein. The results from electron
284	microscopy have revealed that there are more number of approximately 50-100 nm
285	diameter RSV-gag based VLPs although there are many bands in western blotting. This
286	proves that the path of VLPs formation is similar, but the rate of pinching was fast or
287	slow which gave the VLPs the size (Ako-Adjei et al., 2005; Campbell and Vogt, 1997).

288 **5.** Conclusion

In conclusion, VLPs were expressed in silkworms and stable cell lines to establish a VLPs purification system. It was clear that the silkworm based expression system owing to its scale of production and ease of handling makes the expression system very reliable. Further studies are required to improve the purification of VLPs in order to obtain a fixed size and molecular weight VLPs using some tags. This shall benefit in making VLPs a prominent candidate for vaccine platform and drug delivery systems.

295 Acknowledgements

296	We thank Dr. Vogt for the generous gift of anti-RSV-gag. This project has been
297	funded by promotion of nanobio-technology research to support aging and welfare
298	society and double degree special program from Ministry of Education, Culture, Sports,
299	Science and Technology (MEXT) Japan.
300	References
301	Ako-Adjei, D., Johnson, M.C., Vogt, V.M., 2005. The retroviral capsid domain dictates
302	virion size, morphology, and coassembly of gag into virus-like particles. J Virol
303	79, 13463-72.
304	Briggs, J.A., Johnson, M.C., Simon, M.N., Fuller, S.D., Vogt, V.M., 2006. Cryo-electron
305	microscopy reveals conserved and divergent features of gag packing in
306	immature particles of Rous sarcoma virus and human immunodeficiency virus.
307	J Mol Biol 355, 157-68.
308	Campbell, S., Vogt, V.M., 1997. In vitro assembly of virus-like particles with Rous
309	sarcoma virus Gag deletion mutants: identification of the p10 domain as a
310	morphological determinant in the formation of spherical particles. J Virol 71,
311	4425-35.

312	Dalton, A.K., Murray, P.S., Murray, D., Vogt, V.M., 2005. Biochemical characterization
313	of rous sarcoma virus MA protein interaction with membranes. J Virol 79,
314	6227-38.
315	Deo, V.K., Hiyoshi, M., Park, E.Y., 2006. Construction of hybrib Autographa californica
316	nuclear polyhedrosis bacmid by modification of p143 helicase. J Virol Methods
317	134, 212-6.
318	Deo, V.K., Park, E.Y., 2006. Multiple co-transfection and co-expression of human
319	beta-1,3-N-acetylglucosaminyltransferase with human calreticulin chaperone
320	cDNA in a single step in insect cells. Biotechnol Appl Biochem 43, 129-35.
321	Dojima, T., Nishina, T., Kato, T., Ueda, H., Park, E.Y., 2010. Production of scFv
322	displaying BmNPV in silkworm larvae and its efficient purification. Biotechnol
323	Appl Biochem.
324	Dojima, T., Nishina, T., Kato, T., Uno, T., Yagi, H., Kato, K., Park, E.Y., 2009.
325	Comparison of the N-linked glycosylation of human
326	beta1,3-N-acetylglucosaminyltransferase 2 expressed in insect cells and
327	silkworm larvae. J Biotechnol 143, 27-33.
328	Fanning, T.G., Taubenberger, J.K., 1999. Phylogenetically important regions of the
329	influenza A H1 hemagglutinin protein. Virus Res 65, 33-42.

330	Johnson, M.C., Spidel, J.L., Ako-Adjei, D., Wills, J.W., Vogt, V.M., 2005. The
331	C-terminal half of TSG101 blocks Rous sarcoma virus budding and sequesters
332	Gag into unique nonendosomal structures. J Virol 79, 3775-86.
333	Joshi, S.M., Vogt, V.M., 2000. Role of the Rous sarcoma virus p10 domain in shape
334	determination of gag virus-like particles assembled in vitro and within
335	Escherichia coli. J Virol 74, 10260-8.
336	Kampani, K., Quann, K., Ahuja, J., Wigdahl, B., Khan, Z.K., Jain, P., 2007. A novel
337	high throughput quantum dot-based fluorescence assay for quantitation of virus
338	binding and attachment. J Virol Methods 141, 125-32.
339	Kato, T., Kajikawa, M., Maenaka, K., Park, E.Y., 2010. Silkworm expression system as
340	a platform technology in life science. Appl Microbiol Biotechnol 85, 459-70.
341	Keller, P.W., Johnson, M.C., Vogt, V.M., 2008. Mutations in the spacer peptide and
342	adjoining sequences in Rous sarcoma virus Gag lead to tubular budding. J Virol
343	82, 6788-97.
344	Kenney, S.P., Lochmann, T.L., Schmid, C.L., Parent, L.J., 2008. Intermolecular

interactions between retroviral Gag proteins in the nucleus. J Virol 82, 683-91. 345

346	Kondo, Y., Fushikida, K., Fujieda, T., Sakai, K., Miyata, K., Kato, F., Kato, M., 2008.
347	Efficient delivery of antibody into living cells using a novel HVJ envelope
348	vector system. J Immunol Methods 332, 10-7.
349	Krishna, N.K., Campbell, S., Vogt, V.M., Wills, J.W., 1998. Genetic determinants of
350	Rous sarcoma virus particle size. J Virol 72, 564-77.
351	Ma, Y.M., Vogt, V.M., 2002. Rous sarcoma virus Gag protein-oligonucleotide
352	interaction suggests a critical role for protein dimer formation in assembly. J
353	Virol 76, 5452-62.
354	Nandhagopal, N., Simpson, A.A., Johnson, M.C., Francisco, A.B., Schatz, G.W.,
355	Rossmann, M.G., Vogt, V.M., 2004. Dimeric rous sarcoma virus capsid protein
356	structure relevant to immature Gag assembly. J Mol Biol 335, 275-82.
357	Noad, R., Roy, P., 2003. Virus-like particles as immunogens. Trends Microbiol 11,
358	438-44.
359	Roy, P., Noad, R., 2008. Virus-like particles as a vaccine delivery system: myths and
360	facts. Hum Vaccin 4, 5-12.
361	Sanger, F., Nicklen, S., Coulson, A.R., 1977. DNA sequencing with chain-terminating
362	inhibitors. Proc Natl Acad Sci U S A 74, 5463-7.

363	Scheifele, L.Z., Kenney, S.P., Cairns, T.M., Craven, R.C., Parent, L.J., 2007.
364	Overlapping roles of the Rous sarcoma virus Gag p10 domain in nuclear export
365	and virion core morphology. J Virol 81, 10718-28.
366	Silverman, L., Glick, D., 1969. The reactivity and staining of tissue proteins with
367	phosphotungstic acid. J Cell Biol 40, 761-7.
368	Vogt, V.M., Simon, M.N., 1999. Mass determination of rous sarcoma virus virions by
369	scanning transmission electron microscopy. J Virol 73, 7050-5.
370	Waelti, E.R., Gluck, R., 1998. Delivery to cancer cells of antisense L-myc
371	oligonucleotides incorporated in fusogenic, cationic-lipid-reconstituted
372	influenza-virus envelopes (cationic virosomes). Int J Cancer 77, 728-33.
373	Wills, J.W., Craven, R.C., Achacoso, J.A., 1989. Creation and expression of
374	myristylated forms of Rous sarcoma virus gag protein in mammalian cells. J
375	Virol 63, 4331-43.
376	Yu, F., Joshi, S.M., Ma, Y.M., Kingston, R.L., Simon, M.N., Vogt, V.M., 2001.
377	Characterization of Rous sarcoma virus Gag particles assembled in vitro. J
378	Virol 75, 2753-64.
379	

380 Table 1

381 Purification of VLPs using ultracentrifugation.

	Protein amount after	Total Protein before	Yield of VLPs
	purification (mg)	ultracentrifugation (mg)	(%)
5 th fraction of D6 cell line	0.78	17*	4.50
Hemolymph (Upper layer)	2.60	384**	0.67
Hemolymph (Lower layer)	6.40	384**	1.67

³⁸² ^{*}Total protein was collected from 100 ml of culture supernatant

383 **Total protein was collected from 10 silkworms

385 Figure Legends

Fig. 1. A. Schematic representation of the RSV-gag-701 and RSV-gag-577 and various 386 protein components in un-assembled form expressed in insect cell line and silkworm 387larvae when RSV-gag is expressed. MA, CA, NC, and PR denote matrix associated 388 protein, capsid associated protein, nucleocapsid associated protein, and protease region, 389 respectively. B. PCR product using genomic DNA from clones D6 expressing RSV-gag 390 where runned on an agaorse gel 0.75% (w/v). M, 1 kbp DNA ladder (New England 391Biolabs); +, PCR product using pENTR/RSV-gag as template; D6 PCR products using 392 genomic DNA as template. The primers used were specific for the cDNA as mentioned 393 in the materials and method. An Arrow indicates the expected size of RSV-gag-577. 394Fig. 2. A. Western blot from 100 ml of suspension culture collected on 2nd day after 395passage. The membranes were probed using primary antibody anti-RSV-gag as 396 mentioned in materials and method. M: MagicMarkTM XP western marker (Invitrogen). 397**B.** Western blots of fractions 1-6 collected from sucrose gradient after removing the 398 sucrose using MWCO 10K (Pall Corporation) for D6 clone. M, MagicMarkTM XP 399 400 western marker (Invitrogen); lanes 1-6, fractions 1-6. Fig. 3. A. Picture taken after the sucrose step gradient purification step from silkworm 401

402 larval hemolymphs. Two distinctive layers as highlighted by the white arrows were

403	observed. B. Expression of RSV-gag-577 in silkworm was confirmed by western
404	blotting using anti-RSV-gag. 30 μ g protein per well of each sample was loaded as
405	follows; lane 1, larval hemolymph sample; lane 2, higher density layer; lane 3, lower
406	density layer; lane 4, purified baculovirus (Negative control); lane M, MagicMark TM XP
407	Molecular marker. C. 12% SDS-PAGE was loaded with 45 μ g protein per well was
408	loaded and stained with Coomassie Blue as followed; 1 ane 1, larval hemolymph
409	sample; lane 2, higher density layer; lane 3, lower density layer; lane 4, purified
410	baculovirus (Negative control); lane M, dual precision molecular marker (Bio-Rad).
411	Fig. 4. A. D6 (from a to d) clone cells stained for ER (a), Anti-RSV-gag conjugated with
412	Qdot525 (b), light (c), and a,b,c merged (d). Bar denotes 20 μ m. B. Reconstructed
413	image of D6 clone cell utilizing the fluorescence data. Zen LE software available on
414	Carl Zeiss website simulated image using the time scanned images from Carl Zeiss
415	LSM 700. Bar denotes 15 $\mu m.$ C. TEM images of VLPs collected from D6 at 50,000 \times
416	magnification. Bar denotes 100 nm. D. TEM images of VLPs collected from silkworm
417	larval hemolymph and purified using sucrose step gradient, and were observed under
418	TEM at 50,000× magnification. Bar denotes 100 nm.

