Production of Rous sarcoma virus-like particles displaying human transmembrane protein in silkworm larvae and its application to ligand-receptor binding assay

SURE 静岡大学学術リポジトリ Shizuoka University REpository

メタデータ	言語: eng
	出版者:
	公開日: 2011-08-12
	キーワード (Ja):
	キーワード (En):
	作成者: Tsuji, Yoshitaka, Deo, Vipin Kumar, Kato,
	Tatsuya, Park, Enoch Y.
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10297/5801

1	Production of Rous sarcoma virus-like particles displaying
2	human transmembrane protein in silkworm larvae and its
3	application to ligand-receptor binding assay
4	
5	Yoshitaka Tsuji ^a , Vipin Kumar Deo ^b , Tatsuya Kato ^a , and Enoch Y Park ^{a,b*}
6	
7	^a Laboratory of Biotechnology, Department of Applied Biological Chemistry, Faculty of
8	Agriculture, Shizuoka University, 836 Ohya, Shizuoka 422-8529, Japan
9	^b Laboratory of Biotechnology, Integrated Bioscience Section, Graduate School of
10	Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka
11	422-8529, Japan

^{*} Corresponding author at: Laboratory of Biotechnology, Integrated Bioscience Section, Graduate
School of Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529,
Japan. Tel.: +81 54 238 4887; fax: +81 54 238 4887. E-mail address: acypark@ipc.shizuoka.ac.jp
(E.Y. Park).

13 ABSTRACT

14 Two types of *Rous sarcoma* virus (RSV) group-antigen protein (Gag) virus like 15 particles (VLPs), full-length Gag (Gag701) and RSV protease domain (PR)-deleted 16 mutant (Gag577) were expressed in silkworm larvae. Gag 577 was secreted into 17 hemolymph efficiently using wild type bacmid (WT), cysteine protease-deficient 18 bacmid (CP⁻), cysteine protease and chitinase-deficient bacmid (CP⁻Chi⁻) bacmids, but 19 comparatively Gag 701 secretion levels were low. VLPs were purified on 10%-60% 20 (v/v) sucrose density gradient by ultracentrifugation and their structures confirmed 21 under electron microscope. When hPRR and RSV Gag577 were co-expressed in 22 silkworm larvae, human prorenin receptor (hPRR) was displayed on the surface of 23 RSV VLPs, which was detected by western blotting and immunoelectron microscopy. 24 Moreover, binding of hPRR localized on the surface of VLPs to human prorenin was 25 confirmed by ELISA. These results indicate that active hPRR was displayed on the 26 surface of RSV VLPs, which can be utilized for drug discovery of hPRR blockers to 27 prevent nephropathy. Moreover, this transmembrane protein display system using RSV 28 Gag in silkworm larvae is applicable to expression of intact transmembrane proteins 29 and binding assay of transmembrane proteins to its ligands, especially for 30 transmembrane proteins which cannot be purified from membrane fractions in active 31 states. 32

Keywords: Rous sarcoma virus, Gag, Virus-like-particles, Surface display, Human
 prorenin receptor, Silkworm

34

1. Introduction

37	Virus-like particles (VLPs) are formed by self-assembling virus-derived structural
38	proteins. VLPs are empty shells and do not have virus genome DNA or RNA, therefore
39	VLPs are not infectious. Moreover, VLPs can induce strong cellular and humoral
40	responses as direct immunogens (Grgacic et al., 2006). For this property, VLPs have
41	been utilized for virus vaccines (Roldão et al., 2010). Human papillomavirus vaccine
42	(HIV), Gardasil and Cervarix, which were produced in Saccharomyces cerevisiae and
43	insect cells respectively, have received approvals for marketing (Garland et al., 2007).
44	The HIV VLPs composed of HIV-1 Pr55Gag have been developed for an AIDS
45	vaccine (Ludwig and Wagner, 2007). Otherwise, VLPs have been utilized as scaffolds
46	in nano-structural technology, especially, nanowires and nanobiopolymers (Mao et al.,
47	2004).
48	VLPs have been produced in Escherichia coli, yeasts, insect cells, plants and
49	mammalian cells. Especially, Gag proteins of enveloped viruses, for example, HIV,
50	Rous sarcoma virus (RSV) have all of the necessary domains for VLP assembly, and
51	VLPs can bud extracellularly from cells when Gag is solely expressed in insect and
52	mammalian cells (Ludwig and Wagner, 2007). RSV belongs to the avian retrovirus
53	family and RSV Gag protein, which self-assembles to VLPs, is proteolytically
54	processed by RSV protease to matrix (MA), p2 (p2a,b), capsid (CA), nucleocapsid
55	(NC) and protease (PR). When full-length RSV Gag protein was expressed in insect

cells, high level of gag protein was observed (Mayo et al., 2002). However, unlike HIV
Gag expression, RSV VLPs were not efficiently secreted into culture medium (Johnson
et al., 2001). PR domain-deleted Gag mutant formed VLP correctly and extracellularly
secreted from cells.

60 Baculoviruses also belongs to enveloped viruses and can bud from infected cell 61 into extracellular fractions. Like HIV and RSV, baculoviruses are surrounded by a 62 lipid bilayer from host cellular membrane. Some transmembrane proteins expressed on 63 the surface of host cells can be displayed on the surface of baculoviruses together with 64 baculovirus major envelope glycoprotein GP64 when baculoviruses bud from host 65 cells (Grabherr et al., 2001; He et al., 2009; Makela and Oker-Blom, 2006). This 66 display system is very useful for some applications, antibody production, screening 67 and cloning of binding partners of transmembrane proteins and antigens and receptor 68 binding assay (Kakutani et al. 2011; Sakihama et al. 2008). 69 In this study, RSV Gag was expressed in silkworm larvae and VLPs derived from 70 RSV Gag were purified from hemolymph by sucrose density gradient centrifugation. 71 Moreover, human prorenin receptor (hPRR), which has a signal peptide at its 72 N-terminus, an extracellular domain, a single transmembrane domain and a short 73 cytoplasmic domain and is a multi-functional protein (Nguyen 2011), was co-expressed together with RSV Gag in silkworm larvae. We investigated the 74 75 possibility of displaying hPRR on the surface of RSV VLPs and improving the 76 incorporation of hPRR into RSVs using different signal peptides and promoters.

_	_
1	1

//	
78	2. Materials and Methods
79	
80	2.1. Construction of recombinant BmNPV bacmid
81	
82	Full-length RSV gag gene (2106 bp) was amplified by PCR using RSV-Gag-F
83	(CACCATGGAAGCCGTCATAAAGGTG) and RSV-Gag701-R
84	(CTATAAATTTGTCAAGCGGAG) primers. ΔPR gag gene or gag577 (1734 bp) was
85	amplified by PCR using RSV-Gag-F and RSV-Gag577-R
86	(TTACGAGACGGCAGGTGGCTCAGG) primers. In both cases, pRep(A), which is
87	purchased from ATCC (ATCC number: 87702), was used as a template. Each
88	amplified gene was inserted into pENTR/D/TOPO (Invitrogen, San Diego, CA) by
89	topoisomerase reaction. Using these plasmids, full-length RSV gag and ΔPR gag genes
90	were inserted into pDEST8 (Invitrogen), respectively and pDEST-Gag701 and
91	pDEST-Gag577 were constructed. These plasmids were transformed into E. coli
92	BmDH10Bac (Motohashi et al., 2005), E. coli BmDH10Bac CP ⁻ (Hiyoshi et al., 2007)
93	and E. coli BmDH10Bac CP ⁻ Chi ⁻ (Park et al., 2008), respectively. Blue-white
94	selection was performed to identify colonies containing the recombinant bacmid.
95	Recombinant BmNPV bacmids were extracted from white transformants and insertion
96	of each Gag gene was confirmed by PCR.
97	To obtain hPRR gene with bomyxin (bx) signal peptide sequence at its N-terminus,

- 98 hPRR was amplified by PCR using EcoRIbxSFLAG-F
- 99 (CACCGAATTCATGATACTCCTTGCTATTGCATTAATGTT
- 100 GTCAACAGTAATGTGGGTGTCAACACAAACCCCGCCCGACTACAAGGACG
- 101 ACGACGACAA) and SphI-hPRR-R
- 102 (TCAGCATGCTCAATCCATTCGAATCTTCTGGTTT). BmNPV CP⁻/GFP_{uv}-hPRR
- 103 bacmid DNA (Du et al., 2008) was used as a template. To obtain hPRR gene connected
- 104 with GP64 signal peptide sequence from BmNPV, hPRR was amplified by PCR using
- 105 EcoRIgp64S1-60-F
- 106 (CACTGCAACGCGCAAATGAAAACGGGTCCGTACAAAATTAAAAACTTGGA
- 107 CATTACCCCGCCCGACTACAAGGACGACGACGACAA) and SphI-hPRR-R.
- 108 Then hPRR gene connected with whole GP64 signal peptide sequence was amplified
- 109 using gp64S60-114FLAG-F
- 110 (CACCGAATTCATGGTAGGCGCTATTGTTTTATACGTGCTTTTGGCGGCGCA
- 111 TTCTGCCTTTGCGGCGGAGCACTGCAACGCGCAAATGAA) and SphI-hPRR-R.
- 112 Each amplified gene was inserted into pENTR/D/TOPO by topoisomerase reaction.
- 113 hPRR connected with bx and gp signal peptides were designated as bx-hPRR and
- gp-hPRR, respectively. Each gene was inserted into pDEST8, pDB3 and pDB5 by
- 115 Gateway system (Invitrogen). pDB3 and pDB5 was constructed previously to enhance
- the protein expression under the control of modified polyhedron promoter (Manohar et
- al., 2010). pDB3 and pDB5 have 3 and 5 repeated burst sequence in the region of
- 118 polyhedrin promoter, respectively. Total six plasmids (pDEST/bx-hPRR,

119	pDB3/bx-hPRR, pDB5/bx-hPRR, pDEST/gp-hPRR, pDB3/gp-hPRR, pDB5/gp-hPRR)
120	were constructed. Each plasmid was transformed <i>E. coli</i> BmDH10Bac CP ⁻ and
121	recombinant bacmids containing hPRR cDNA was extracted from its transformants.
122	
123	2.2 Expression and sample preparation
124	
125	A recombinant bacmid containing Gag cDNA (10 μ g) was mixed with one-tenth
126	of DMRIE-C (Invitrogen) and incubated at room temperature for over 45 min. When
127	Gag protein and hPRR were co-expressed, 5 μ g of each recombinant bacmid
128	containing each gene was mixed with DMRIE-C. Fifty microliter of this mixture was
129	injected into a silkworm larva. Injected silkworm larvae were reared for 5-7 days and
130	hemolymph was recovered. Collected hemolymph was centrifuged at $2400 \times g$ for 10
131	min at 4°C to remove hemocytes. The supernatant was used as a hemolymph sample.
132	In the case of fat body, 100 mg fat body was suspended with 1 ml of TBS buffer
133	containing 0.1 % (v/v) Triton X-100 and sonicated. The homogenate was used as a fat
134	body sample.
135	
136	2.3. Purification of VLPs from silkworm larvae
137	
138	VLPs were purified from hemolymph by sucrose density gradient centrifugation.
139	Two milliliter of hemolymph was mixed with 2 ml of PBS (pH 6.2) and this mixture

140	was laid on 25% (w/v) sucrose cushion. This mixture was centrifuged at 80000 \times g for
141	90 min at 4°C and the pellet was suspended with PBS (pH 6.2). This suspension was
142	sonicated to dissolve the pellet and this suspension was laid on 25-60% (w/v) sucrose
143	density gradient. This suspension was centrifuged at 96000 \times g for 3 h at 4°C. A white
144	band was recovered carefully and diluted with PBS (pH6.2). This diluent was
145	centrifuged at 96000 \times g for 90 min at 4°C. The pellet was suspended with a small
146	volume of PBS (pH 6.2) and this suspension was used as a purified VLP sample.
147	
148	2.4. SDS-PAGE and protein analysis
149	

150 Samples were subjected to SDS-PAGE on 10 or 12% (w/v) polyacrylamide gel 151 with the Mini-protean II system (Bio-Rad Co. Ltd, Hercules, CA, USA). Total proteins 152 on SDS-PAGE gel was detected with Coomassie Brilliant blue (CBB) R-250. In the 153 case of Western Blot, proteins in gels were blotted onto a polyvinylidene fluoride 154 (PVDF) membrane using Mini Trans-Blot Electrophoretic Transfer Cell (Bio-Rad, 155 Hercules, CA, USA). After being blocked in 5% skim milk in Tris-buffered saline 156 containing 0.1% (v/v) Tween 20 (TBST), the membrane was incubated in either 157 1:10000 diluted mouse anti-FLAG M2 antibody (Sigma-Aldrich, St. Louis, MO, USA) 158 or 1:5000 diluted rabbit anti-RSV Gag CA antibody (gifted by Dr. Vogt) for 1 hour. 159 The membrane was washed with TBST, and then incubated in 1:20,000 diluted either 160 anti-mouse or anti-rabbit labeled with horseradish peroxidase (HRP) (GE Healthcare

161	Japan, Tokyo, Japan) for 1 hour. Detection was performed using ECL Plus Western
162	blotting reagent (GE Healthcare Japan). Specific bands were detected using a
163	Fluor-S/MAX multi-imager (Bio-Rad). Protein band intensity was analyzed by
164	Quantity One software (Bio-Rad).
165	Protein concentration was determined by BCA protein assay kit (Thermo Fisher
166	Scientific K. K., Yokohama, Japan).
167	
168	2.5. ELISA
169	
170	VLPs were incubated in a 96 wells plate at 4°C with 0.1M carbonate buffer (pH
171	9.6) for 16 hours to be immobilized on a plate. Wells were washed with PBS (pH 7.4)
172	containing 0.01% (v/v) Tween 20 (PBST) four times. Blocking buffer (PBST
173	containing 3% (w/v) skimmed milk) was added into each well and plates were
174	incubated at room temperature for 1 hour. Wells were washed with PBS (pH 7.4)
175	containing 0.01% (v/v) Tween 20 (PBST) four times. Mouse anti-FLAG M2 antibody
176	diluted by 1000 fold with Can Get Signal Solution I (TOYOBO, Osaka, Japan) was
177	added into each well and plates were incubated at room temperature with moderately
178	stirring for 1 hour. After wells were washed with PBST four times, HRP-conjugated
179	anti-mouse IgG antibody (GE Healthcare Japan) diluted by 5000 fold with Can Get
180	Signal Solution II (TOYOBO) was added into each well and plates were incubated at
181	room temperature with moderately stirring for 1 hour. Wells were washed with PBST

182 four times followed by HRP reaction. 100 µl of substrate [0.1-mg/ml

183 3,3',5,5'-tetramethylbenzidine(TMBZ) in 100-mM sodium acetate, pH 6.0, with 0.2% 184 (v/v) of 30% hydrogen peroxide] was added to each well and left at room temperature 185 for blue-color development. The reaction was stopped by the addition of 50 µl of 1N 186 H₂SO₄ solution. The developed color was measured at optical densities (ODs) of 450 187 nm and 655 nm. The value of OD655 minus OD450 was used as a measure of the 188 amount of hPRR. 189 In prorenin-hPRR binding detection experiment, VLPs were incubated in a 96 190 wells plate at 4°C with 50 mM phosphate buffer (pH 7.4) for 16 hours to be 191 immobilized on a plate. Wells were washed with PBS (pH 7.4) containing 0.01% (v/v) 192 Tween 20 (PBST) four times. Blocking buffer (PBST containing 3% (w/v) BSA) was 193 added into each well and plates were incubated at room temperature for 1 hour. Wells 194 were washed with PBST four times. One hundred nanogram of human prorenin 195 (Cayman Chem., MI, USA) were added into each well and this plate was incubated at 196 room temperature with stirring moderately for 3 hours. Wells were washed with PBST four times. Mouse anti-human prorenin antibody (Innovative Res., MI, USA) diluted 197 198 by 1000 fold with Can Get Signal Solution I (TOYOBO) was added into each well and 199 plates were incubated at room temperature with moderately stirring for 1 hour. After 200 wells were washed with PBST four times, detection of hPRR binding to human 201 prorenin was the same method as hPRR detection.

202 2.6. Immunoelectron microscopy

203	Purified VLPs were immobilized on the carbon grid (Okenshoji, japan) and
204	blocked with 4% (w/v) BSA in PBS (pH 7.4). This grid was soaked in either mouse
205	anti-FLAG M2 antibody diluted by 30 fold with 1% (w/v) BSA in PBS or rabbit
206	polyclonal anti-GP64 antibody (Dojima et al., 2010) diluted by 500 fold with 1% (w/v)
207	BSA in PBS for 2 h. After washing with PBS, grid was soaked in either 10 nm gold
208	conjugated goat polyclonal anti-mouse IgG+IgM (H+L) (British BioCell International,
209	Cardiff, UK) diluted by 25 fold with 1%(w/v) BSA in PBS or 10 nm gold conjugated
210	goat polyclonal anti-rabbit IgG+IgM (H+L) (British BioCell International) diluted by
211	25 fold with $1\%(w/v)$ BSA in PBS for 1 h. After washing with PBS, grid was stained
212	with 2% (v/v) phosphotungstic acid. VLPs were observed by transmission electron
213	microscope (TEM, JEM-2100F (JEOL Ltd., Tokyo, Japan)) at 200 kV.
214	
215	3. Results
216	
217	3.1. Expression of RSV Gag protein in silkworms
218	
219	RSV Gag protein has several domains including N-terminal matrix domain (MA),
220	proline-rich late (L) domain (p2), spherical shape determinant (p10), two capsid
221	sub-domain (CA), RNA binding nucleocapsid domain and virus protease (PR). In
222	insect cells, PR deletion allowed to express normal spherical VLPs (Johnson et al.,
223	2001). In this study, two type of RSV gag protein (full-length Gag: amino acid 1-701,

224	Δ PR Gag: amino acid 1-577) was expressed in silkworm larvae using wild type
225	BmNPV bacmid (WT), cysteine protease-deficient BmNPV bacmid (CP ⁻) and cysteine
226	protease- and chitinase-deficient BmNPV bacmid (CP ⁻ Chi ⁻). Its expression pattern in
227	hemolymph is shown in Fig.1. Full-length Gag was expressed in hemolymph using
228	WT bacmid, but no bands were observed in hemolymph using CP ⁻ and CP ⁻ Chi ⁻
229	bacmids respectively. However, proteins in hemolymph of WT sample contained
230	approximately 60, 50 and 30 kDa of expected size. Full length Gag (75 kDa) could not
231	be observed. Likewise, ΔPR Gag was expressed using three types of BmNPV bacmid.
232	A protein band with estimated molecular weight (61 kDa) was observed with some low
233	molecular weight bands. In fat body, some protein bands were observed in all samples
234	using six bacmids, indicating that RSV Gag protein was expressed in all the cases of
235	full-length Gag and ΔPR Gag using three types of BmNPV bacmid but ΔPR Gag was
236	secreted into hemolymph more efficiently than full-length Gag. These results were
237	reaffirmed by Johnson et al. (Johnson et al., 2001). WT bacmid was adopted for further
238	experiment because RSV Gag protein was secreted most efficiently.
239	

240 3.2. Purification of RSV Gag VLPs from hemolymph

241

RSV Gag expressed was purified from hemolymph by sucrose density gradient
centrifugation. RSV Gag expressed was concentrated by ultracentrifugation (Fig. 2A)
and RSV Gag (61 kDa) was brought down into the pellet from the supernatant.

245	However, the band below 30 kDa remained in the supernatant. Molecular weight of
246	this band corresponded to that of CA domain (27 kDa). After sucrose density gradient
247	centrifugation, two white bands appeared (Fig. 2B) and were recovered separately.
248	These samples had the same protein band pattern in view of CBB staining and western
249	blotting (Fig. 2B). Little distorted particles were observed in these samples (Fig. 2C),
250	indicating that RSV Gag formed VLPs in hemolymph. Calculating the recovery ratio
251	of RSV Gag VLPs by densitometry based on the result of western blotting, these VLPs
252	were purified with 5.4 % of recovery ratio (Data not shown).
253	
254	3.3 Co-expression of RSV Gag and hPRR in silkworm larvae
255	
256	RSV Gag and hPRR were co-expressed in silkworm larvae by injection of the
257	mixture two BmNPV bacmids at similar concentrations. In previous study, active
258	hPRR fused with GFP_{uv} could be expressed in silkworm larvae (Du et al., 2008).
259	Hemolymph and fat body were collected from injected larvae and hPRR expression
260	was checked by western blotting (Fig. 3). Judging from the densitometric band
261	intensity of the bands on the western blot membranes, hPRR expression level using
262	DB3 promoter was the highest among the three types of promoters. Using DB3
263	promoter, hPRR expression level was the same regardless of kinds of signal peptides.
264	hPRR expression level is higher under the polyhedrin promoter using gp signal peptide
265	than that using bx signal peptide. DB3 promoter was used in further experiments.

266	Incorporation level of hPRR onto RSV Gag VLPs was compared under the control
267	of polyhedrin and DB3 promoters (Fig. 4). Higher expression level of hPRR was
268	observed in purified VLP fraction using DB3 promoter than that using polyhedrin
269	promoter in the both cases of bx and gp64 signal peptides. The expression of bx-hPRR
270	was the highest in all purified VLP samples. bx signal peptide allowed to enhance the
271	incorporation of hPRR in purified VLPs compared to gp signal peptide.
272	Moreover, to compare the incorporation level of hPRR into RSV Gag VLPs,
273	hPRR in purified VLP fractions was detected by ELISA (Fig. 5). bx-hPRR in a VLP
274	fraction showed the highest absorbance in all four samples (VLPs, GFP_{uv} -hPRR in
275	VLPs, bx-hPRR in VLPs, gp-hPRR in VLPs), indicating that bx-hPRR was more
276	efficiently incorporated into RSV Gag VLPs than gp-hPRR (Fig. 4). This ELISA
277	utilized intact VLPs immobilized onto the plate and then hPRR was detected using
278	primary and secondary antibodies. hPRR can be detected in this ELISA only when
279	hPRR is localized on the surface of VLPs. Considering this, hPRR could be displayed
280	on the surface of RSV Gag VLPs in this system. To confirm hPRR display on the
281	surface of VLPs, immunoelectron microscopy was performed using VLPs
282	incorporating bx-hPRR (Fig. 6). Gold particles conjugated to the anti-FLAG specific
283	for FLAG tagged hPRR were used to confirm the presence on the surface of VLPs
284	together with GP64 (Fig. 6). It was confirmed that hPRR could be displayed on the
285	surface of RSV Gag VLPs when RSV Gag and hPRR was co-expressed in silkworm
286	larvae. Higher expression of GP64 was observed on the surface of VLPs compared to

hPRR, indicating that GP64 was more efficiently displayed on the surface of RSV GagVLPs than hPRR.

289

290 3.4. Binding of hPRR on the surface of VLPs to human prorenin.

291

Activity of RSV VLPs displaying hPRR on its surface, expressed in silkworm larvae using bx signal peptide under the control of DB3 promoter, was assayed by ELISA and confirmed by binding of hPRR to human prorenin. Compared to normal VLPs, higher absorbance was detected using VLPs displaying hPRR (Fig. 7), indicating that hPRR on VLPs' surface was active and able to bind to human prorenin.

298 **4. Discussion**

299

300 Various VLPs have been pro	oduced in <i>E. coli</i> , yeasts, insect	(cells), plants,
--------------------------------	---	------------------

301 mammalian cells and have been used as vaccines, for antibody production and

302 nanocarriers for gene targeting (Ludwig and Wagner, 2007; Tan et al., 2011). In this

303 study, VLPs of *Rous sarcoma* virus were produced in silkworm larvae by the

304 expression of RSV Gag with protease (PR) domain deleted and hPRR was pseudo

305 typed on the VLPs surface. The hPRR is involved in hypertension, cardiovascular and

- 306 renal disease and organ damage and binds to both prorenin and renin (Barakumar and
- 307 Jagadeesh 2011; Nguyen 2011; Welkinson-Berka et al., 2011). In this study, the hPRR

308	was displayed on VLPs' surface when RSV Gag and hPRR were co-expressed in
309	silkworm larvae. It was previously reported that hPRR was displayed on the surface of
310	BmNPV a baculovirus belonging to the family of enveloped double stranded DNA
311	viruses in silkworm larvae (Kato et al., 2009; 2011). When baculoviruses bud from the
312	surface of infected cells, some transmembrane proteins can be incorporated onto its
313	envelope and then transmembrane proteins can be displayed on the surface of
314	baculoviruses (Grabherr et al., 2001; He et al., 2009; Makela and Oker-Blom, 2006).
315	Similar to this baculovirus surface display, active hPRR could be displayed on the
316	surface of RSV Gag VLPs. BmNPV GP64 was also displayed on its surface,
317	suggesting that RSV Gag VLPs bud from cells somehow with the similar route to
318	baculovirus. The advantage of using VLPs display system is that it is free from any
319	active virus carrying any genetic material. Thus the VLPs display system is safer for
320	biological applications in human without the risk of causing any viral infections.
321	hPRR expression in fat body was higher using gp signal peptide under the control
322	of normal polyhedrin promoter than bx signal peptide, but vice versa with regard to
323	hPRR incorporation level into RSV VLPs. It has been reported, HIV envelope protein
324	(Env) was more efficiently incorporated into HIV Gag VLPs using mellitin signal
325	peptide than its native and AcMNPV GP64 signal peptides (Wang et al., 2007).
326	Normally, most of signal peptides are cleaved from expressed proteins in endoplasmic
327	reticulum by signal peptidase and expressed proteins are folded and transported to
328	Golgi apparatus. It is a well-established theory that signal peptides do not work during

329 the incorporation of transmembrane proteins into VLPs. But from our results we can

330 speculate that in the case of transmembrane proteins, signal peptides might contribute

to the efficient anchoring to membrane.

332 It has been already reported that substitution of HIV Env transmembrane and

333 cytoplasmic domains with that of mouse mammary tumor virus (MMTV) envelope

334 glycoprotein or AcMNPV GP64 enhanced the incorporation of Env into HIV Gag

335 VLPs (Wang et al., 2007), indicating that transmembrane and cytoplasmic domains of

336 viral glycoproteins play an important role in its incorporation onto VLPs. Env has a

337 long cytoplasmic domain (over 162 amino acids). On the contrary, cytoplasmic

domains of MMTV glycoprotein and AcMNPV GP64 are composed of 43 and 7 amino

acids, respectively. So it can be concluded that the long cytoplasmic domain may cause

340 low level of incorporation of HIV Env onto VLPs. hPRR has a short cytoplasmic

341 domain (19 amino acids). This short cytoplasmic domain may be favored and hPRR be

342 displayed with more efficiency on the surface of RSV Gag VLPs. Moreover, it is

343 possible that hPRR incorporation level to RSV VLPs can be improved by substitution

344 of the transmembrane and cytoplasmic domains.

345 Gag577 was expressed and formed VLPs in hemolymph, but Gag701 did not form

346 VLPs with efficiency. Especially, higher level of Gag577 was detected using WT

347 bacmid in hemolymph than using CP⁻ and CP⁻Chi⁻ bacmids. WT bacmid has

348 baculovirus cysteine protease gene and its gene is deleted in CP⁻ and CP⁻Chi⁻ bacmids.

349 Normally, high level expression of recombinant proteins is achieved by using cysteine

protease-deficient baculovirus compared to using wild type baculovirus. So it can be
concluded that, with respect to RSV gag expression, cysteine protease may enhance
RSV gag expression or VLP formation because full-length Gag (Gag701) has aspartic
protease domain and this protease cleaves expressed Gag protein to make Gag protein
mature (Katz and Skalka, 1994; Xiang et al., 1997). However, full length Gag protein
was neither processed nor purified in this study.

356 Surface of VLPs purified from hemolymph was more uneven compared to ones 357 produced in insect cells (Ako-Adjei et al., 2005). This might be owing to BmNPV 358 having specificity for the hemocytes and buds from hemocytes. As a result the budded 359 BmNPV infects fat body cells (Katsuma et al., 2008). Since recombinant proteins are 360 mainly expressed in fat body, the RSV Gag VLPs were expressed in fat body. On the 361 other hand, in most of cultured insect cells originating from insect ovaries the VLPs 362 surface morphology is smooth. This difference of host cell origin accounts for the 363 difference of surface morphology between VLPs from hemolymph and cultured insect 364 cells. Active hPRR was observed on the surface of VLPs from hemolymph, indicating 365 that the surface environment on the surface of VLPs from hemolymph may be not so 366 different from that of cultured insect cells in view of expressed protein stability. 367 In this study RSV Gag deleted PR domain was expressed in silkworm larvae and 368 VLPs composed of RSV Gag were purified from hemolymph. hPRR was displayed on 369 the surface of RSV Gag VLP when hPRR and RSV Gag were co-expressed in 370 silkworm larvae. Moreover, hPRR on its surface can bind to human prorenin,

371 indicating that hPRR was displayed as an active form. It is possible that various

transmembrane proteins can be displayed on the surface of RSV Gag VLPs using this

373 system and this system is applicable to binding assay of transmembrane proteins or

antigens to its ligands, especially for transmembrane proteins which cannot be purified

375 from membrane fractions as active forms.

376

377 Acknowledgement

We thank Dr. Volker M. Vogt for gifting rabbit polyclonal anti-RSV Gag (CA) antibody. We also appreciate Drs. Naonori Sakamoto and Hisao Suzuki in Department of Materials Science and Chemical Engineering, Shizuoka University for helping TEM observation. This work was funded by promotion of nanobio-technology research to support aging and welfare society, and double degree special program from Ministry of Education, Culture, Sports, Science and Technology (MEXT) Japan.

384

385

386 **References**

387

388 Ako-Adjei D., Johnson M.C., Vogt V.M., 2005. The retroviral capsid domain dictates

389 virion size, morphology, and coassembly o gag into virus-like particles. J. Virol.

390 **7**9, 13463-72.

391 Balakumar P., Jagadeesh G., 2011. Cardiovascular and renal pathologic implications of

- 392 prorenin, renin, and (pro)renin receptor: promising young players from the old
- 393 renin-angiotensin-aldosterone system. J. Cardiovasc. Pharmacol. 56, 570-579.
- 394 Dojima T., Nishina T., Kato T., Ueda H., Park E.Y. 2010. Production of
- 395 scFv-displaying BmNPV in silkworm larvae and its efficient purification.
- Biotechnol Appl. Biochem. 57, 63-69.
- 397 Du D., Kato T., Nabi A.H., Suzuki F., Park E.Y., 2008. Expression of functional
- 398 human (pro)renin receptor in silkworm (*Bombyx mori*) larvae using BmMNPV
- 399 bacmid. Biotechnol. Appl. Biochem. 49, 195-202
- 400 Garland S.M, Hernandez-Avila M., Wheeler C.M., Perez G., Harper D.M., Leodolter
- 401 S., Tang G.W., Ferris D.G., Steben M., Bryan J., Taddeo F.J., Railkar R., Esser
- 402 M.T., Sings H.L., Nelson M., Boslego J., Sattler C., Barr E., Koutsky L.A.;
- 403 Females United to Unilaterally Reduce Endo/Ectocervical Disease (FUTURE) I
- 404 Investigators, 2007. Quadrivalent vaccine against human papillomavirus to
- 405 prevent anogenital diseases. N. Engl. J. Med. 356, 1928-1943.
- 406 Grabherr, R., Ernst, W., Oker-Blom, C. and Jones, I., 2001. Developments in the use of
- 407 baculoviruses for the surface display of complex eukaryotic proteins. Trends
- 408 Biotechnol. 19, 231-6.
- 409 Grgacic E.V., Anderson D.A., 2006. Virus-like particles: passport to immune
- 410 recognition. Methods 40, 60-65.
- 411 He, F., Madhan, S. and Kwang, J., 2009. Baculovirus vector as a delivery vehicle for
- 412 influenza vaccines. Expert Rev. Vaccines 8, 455-67.

413	Hiyoshi M, Kageshima A., Kato T., Park E.Y., 2007. Construction of a cysteine
414	protease deficient Bombyx mori multiple nucleopolyherosis bacmid and its
415	application to improve expression of a fusion protein. J. Virol. Methods. 144,
416	91-97.
417	Johnson M.C., Scobie H.M., Vogt V.M., 2001. PR domain of Rous sarcoma virus gag
418	causes an assembly/budding defect in insect cells. J. Virol. 75, 4407-4412.
419	Kakutani H., Takahashi A., Kondoh M., Saito Y., Yamaura T., Sakihama T.,
420	Hamakubo T., Yagi K., 2011. A novel screening system for claudin binder using
421	baculovirus display. PLoS One. 6, e16611.
422	Kato, T., Manoha, S.L., Tanaka, S. and Park, E.Y., 2009. High-titer preparation of
423	Bombyx mori nucleopolyhedrovirus (BmNPV) displaying recombinant protein in
424	silkworm larvae by size exclusion chromatography and its characterization. BMC
425	Biotechnol. 9, 55.
426	Kato, T., Suzuki F. and Park, E.Y., 2011. Purification of functional baculovirus
427	particles from silkworm larval hemolymph and their use as nanoparticles for the
428	detection of human prorenin receptor (PRR) binding, BMC Biotechnol. 11, 60.
429	Katsuma S, Horie S, Shimada T., 2008. The fibroblast growth factor homolog of
430	Bombyx mori nucleopolyhedrovirus enhances systemic propagation in B. mori
431	larvae. Virus Res. 137, 80-85.
432	Katz R.A., Skalka A.M., 1994. The retroviral enzymes. Annu. Rev. Biochem. 63,

433 133-173.

- 434 Ludwig C., Wagner R., 2007. Virus-like particles-universal molecular toolboxes. Curr.
 435 Opin. Biotechnol. 18, 537-545.
- 436 Makela, A.R. and Oker-Blom, C., 2008. The baculovirus display technology--an
- 437 evolving instrument for molecular screening and drug delivery. Comb. Chem.
- 438 High Throughput Screen. 11, 86-98.
- 439 Manohar S.L., Kanamasa S., Nishina T., Kato T., Park E.Y., 2010. Enhanced gene
- 440 expression in insect cells and silkworm larva by modified polyhedrin promoter
- 441 using repeated burst sequence and very late transcription factor-1. Biotechnol.
- 442 Bioeng. 107, 909-916.
- 443 Mao C., Solis D.J., Reiss B.D., Kottmann S.T., Sweeney R.Y., Hayhurst A., Georgiou
- G., Iverson B., Belcher A.M., 2004. Virus-based toolkit for the directed synthesis
 of magnetic and semiconducting nanowires. Science 303, 213-217.
- 446 Mayo K., Vana M.L., McDermott J.M., Huseby D., Leis J., Barklis E., 2002. Analysis
- 447 of *Rous sarcoma* virus capsid protein variants assembled on lipid monolayers. J.
- 448 Mol. Biol. 316, 667-678.
- 449 Motohashi, T., Shimojima, T., Fukagawa, T., Maenaka, K. and Park, E.Y., 2005.
- 450 Efficient large-scale protein production of larvae and pupae of silkworm by
- 451 *Bombyx mori* nuclear polyhedrosis virus bacmid system. Biochem. Biophys. Res.
- 452 Commun. 326, 564-569.
- 453 Nguyen G., 2011. Renin, (pro)renin and receptor: an update. Clin. Sci. (Lond) 120,
- 454 169-178.

455	Park E.Y., Abe T., Kato T., 2008. Improved expression of fusion protein using a
456	cysteine-protease- and chitinase-deficient Bombyx mori (silkworm) multiple
457	nucleopolyhedrovirus bacmid in silkworm larvae. Biotechnol. Appl. Biochem. 49,
458	135-40.
459	Roldão A., Mellado M.C., Castilho L.R., Carrondo M.J., Alves P.M., 2010. Virus-like
460	particles in vaccine development. Expert Rev. Vaccines 9, 1149-1176.
461	Sakihama, T., Sato, T., Iwanari, H., Kitamura, T., Sakaguchi, S., Kodama, T. and
462	Hamakubo, T., 2008b. A simple detection method for low-affinity membrane
463	protein interactions by baculoviral display. PLoS One 3, e4024.
464	Tan M., Huang P., Xia M., Fang P.A., Zhong W., McNeal M., Wei C., Jiang W., Jiang
465	X., 2011. Norovirus P particle, a novel platform for vaccine development and
466	antibody production. J. Virol. 85, 753-64.
467	Wang B.Z., Liu W., Kang S.M., Alam M., Huang C., Ye L., Sun Y., Li Y., Kothe D.L.,
468	Pushko P., Dokland T., Haynes B.F., Smith G., Hahn B.H., Compans R.W., 2007.
469	Incorporation of high levels of chimeric human immunodeficiency virus envelope
470	glycoproteins into virus-like particles. J. Virol. 81, 10869-10878.
471	Wilkinson-Berka J.L., Miller A.G., Binger K.J., 2011. Prorenin and the (pro)renin
472	receptor: recent advances and implication for retinal development and disease.
473	Curr. Opin. Nephrol. Hypertens. 20, 69-76.

- 474 Xiang Y., Ridky T.W., Krishna N.K., Leis J., 1997. Altered Rous sarcoma virus Gag
- 475 polyprotein processing and its effects on particle formation. J. Virol. 71,
- 476 2083-2091.
- 477

478	Figure	legends
-----	--------	---------

480 Fig. 1. Expression of Gag701 and Gag577 in hemolymph and fat body. Silkworm 481 larvae were reared for 7.5 days after injecting each recombinant bacmid and 482 hemolymph and fat body were harvested. Each Gag expression was analyzed by 483 western blotting. Sample preparation and western blotting methods are described in 484 Materials and methods. 485 486 Fig. 2. Purification of RSV Gag VLP from hemolymph. (A) Western blotting analysis 487 of each fraction during purification. H: hemolymph, C: concentrated VLP fraction 488 (pellet) by centrifugation from hemolymph, S: supernatant after VLP concentration 489 step, P: VLPs purified by sucrose density gradient centrifugation. (B) Purification of 490 VLPs by sucrose density gradient centrifugation. After sucrose density gradient 491 centrifugation two bands appeared. 1: hemolymph, 2: upper band after sucrose density 492 gradient centrifugation, 3: lower band after sucrose density gradient centrifugation, 4: 493 BmNPV purified by sucrose density gradient centrifugation. (C) TEM observation of 494 purified RSV Gag VLPs. Mixture of upper and lower bands in (B) was used as purified 495 VLPs. 496

497 Fig. 3. Expression of GFP_{uv}-hPRR, bx-hPRR and gp-hPRR in fat body. (A) Western
498 blotting analysis (B) Densitometry analysis of each hPRR expression based on (A).

499 Grey bar: GFP_{uv}-hPRR expression, open bars: gp-hPRR expression, black bars:

500 bx-hPRR expression. polh indicates polyhedrin promoter. GFP_{uv}-hPRR was expressed

- 501 using polyhedrin promoter. Detailed methods are described in Materials and Methods.
- 502

503 Fig. 4. Western blotting analysis of incorporation level of each hPRR into RSV Gag

504 VLPs. RSV Gag VLPs were purified by sucrose density gradient centrifugation from

505 hemolymph when hPRR and RSV Gag577 were co-expressed in silkworm larvae. RSV

506 Gag 577 and each hPRR were detected by western blotting using purified VLPs. For

507 detection of hPRR using mouse anti-FLAG M2 antibody, 10 µg protein of purified

508 VLPs was applied to SDS-PAGE. For detection of Gag577 using rabbit anti-RSV Gag

509 antibody, 1 μg protein of VLPs was applied to SDS-PAGE.

510

512 Purified VLPs were immobilized onto the ELISA plate and hPRR was detected by

513 HRP reaction using mouse anti-FLAG M2 antibody and HRP conjugated anti-mouse

514 IgG antibody. Detailed methods are described in Materials and methods. Open circles:

515 RSV Gag VLPs, black circles: RSV Gag VLPs from GFPuv-hPRR- and RSV

516 Gag-co-expressing silkworms, squares: RSV Gag VLPs from gp-hPRR- and RSV

517 Gag-co-expressing silkworms, triangles: RSV Gag VLPs from bx-hPRR- and RSV

518 Gag-co-expressing silkworms. gp-hPRR and bx-hPRR was expressed using DB3

519 promoter.

521	Fig. 6. Immunoelectron microscopy of RSV Gag VLP displaying bx-hPRR. (A)
522	Images of VLPs using mouse anti-FLAG M2 antibody as a primary antibody. (B) An
523	image of VLPs using rabbit anti-BmNPV GP64 antibody as a primary antibody.
524	Detailed methods are described in Materials and methods.
525	
526	Fig. 7. Binding assay of hPRR on the surface of RSV Gag VLPs by ELISA using
527	purified RSV Gag VLPs. RSV Gag VLPs displaying hPRR were purified from
528	hemolymph by sucrose density gradient centrifugation after bx-hPRR and RSV
529	Gag577 were co-expressed in silkworm larvae. Human prorenin was added into each
530	well and the plate was incubated at room temperature after purified VLPs were
531	immobilized onto the ELISA plate. Human prorenin binding to hPRR were detected by
532	HRP reaction using mouse anti-human prorenin antibody and HRP-conjugated
533	anti-mouse IgG antibody. Detailed methods are described in Materials and methods.
534	Open bars: RSV Gag VLPs, black bars: RSV Gag VLPs displaying hPRR.

100 nm

Fig. 4. Tsuji et al.

Fig. 5. Tsuji et al.

Fig. 6. Tsuji et al.

A. Anti-FLAG

50nm

B. Anti-gp64

50nm

Fig. 7. Tsuji et al.

