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Recently we have proposed a novel coherent diffractive imaging using a noniterative phase retrieval method with the filter of 
an aperture array.  The first experimental demonstration of this coherent imaging is presented here, in which a complex-
valued object illuminated by a laser diode is reconstructed from isolated diffraction intensities of the object’s wave field 
transmitted through an array filter of square apertures by using the phase retrieval method.  This imaging method requires 
only a single measurement of the diffraction intensity and does not need a tight object’s support constraint utilized in iterative 
phase retrieval algorithms or a reference wave used in holographic techniques. © 2010 Optical Society of America 

OCIS Codes: 100.0100, 100.5070 

Lensless coherent imaging from diffraction intensities, in 
principle, provides wavelength-limited resolution 
without the aberration and the finite extent of a lens.  In 
particular, coherent x-ray diffractive imaging has 
attracted considerable attention during the past decade, 
because the resolution of x-ray optics such as Fresnel 
zone plates is many times the wavelength of the x rays.  
In various approaches to the diffractive imaging, object 
imaging from a single-shot intensity measurement is 
especially important, because it enables us to observe an 
object in real time, and also it allows the reduction of 
sample damage by an x-ray illumination.  Some 
approaches to such lensless object imaging from a single 
diffraction intensity measurement have been proposed, 
for example, in-line [1,2] or off-axis holography [3], 
interferometric method with a reference illumination 
containing sharp features [4,5] or a well-characterised 
illumination [6] or a special designed pinhole array [7],  
iterative phase retrieval image reconstruction [8,9], 
combined method of in-line holography and iterative 
phase retrieval [10], and so forth.  In such holographic 
and interferometric methods, however, the spatial 
resolution is limited by the range of the Fourier 
spectrum of a reference wave.  On the other hand, the 
convergence of iterative methods becomes generally 
difficult in the case of the reconstruction of complex-
valued objects, and hence a priori information such as 
tight support constraints or good initial estimates of the 
objects is necessary. 

     Recently we have proposed [11] a nonholographic and 
noniterative phase-retrieval method that allows the 
reconstruction of a complex-valued object from a single 
diffraction intensity pattern measured with an aperture-
array filter.  In this Letter the proof-of-concept 
experiment of this method is demonstrated at optical 
wavelengths. 

The optical system used in the experiment is shown in 
Fig.1.  A diode laser beam of wavelength 0.635 m   
through a circular pinhole was used to illuminate a 
negative USAF 1951 resolution target as an object.  The 

strength and polarization of the light was controlled by a 
polarizer placed in front of the laser.  An array filter was 
placed at a distance of 530 mmz downstream of the 
object.  The array filter consists of a 64 64 array of 
square apertures of each width 0.1mmw  distributed 
over Cartesian coordinates ( , ) ( , )n mx y nd md , 

or(n m   32 , 0, 31)      , of period 0.2 mmd , 
which was made by depositing chromium on a glass slide 
of 1mm thickness.  The plane of the aperture array can 
be regarded as the Fraunhofer (or Fresnel) diffraction 
plane for the object’s area illuminated through the 
pinhole of 0.4 mm   (or 0.6 mm) diameter.  The 
diffraction pattern from the array filter was measured at 
a distance of 6.8 mml using a 1024 1024 , 15-bit, 
13 m  pixel pitch, Apogee (AP47P) CCD detector.   

Fig. 1. Schematic arrangement of the experiment.  The isolated 
diffraction intensity of each aperture from those of the adjoining 
apertures is measured in the detector. 

The outline of the method [11] is as follows. When the 
diffraction pattern of each square aperture in the 
detector is isolated approximately from those of the 
adjoining apertures, the measured intensity of the 
amplitude distribution ( , )K    at the coordinates 
( , ) ( , ),n max ay   (where 1 /a l z  ) can be written as  

2
2( ) ( , ) ( , ) ,n m n mK ax ay F x y R x x y y dxdy




      (1) 



where ( , )F x y  is the Fourier (or Fresnel) transform of an 
object amplitude ( , )f u v  and ( , )R x y is the amplitude 
transmittance (1.0 within each square and 0.0 otherwise).  
Since the period d  of the array is smaller than 2z  , 
the intensity pattern of the correlation can be encoded 
into the discrete data measured in the detector by the 
sampling theorem.  Let ( , )n mK ax ay and ( , )n mx y be 
the modulus and the phase, respectively, of ( )n mK ax ay .  
Under the Gaussian approximation of the square 
aperture’s function, the one-dimensional (1-D) phases of  

( , )n mx y  along lines parallel to the x  axis can be 
calculated from sampling data of ( , )K    at the points 
of coordinates ( , ) ( , )n max ay    by [11]  

               (2) 

 
where      and  1

    denote the 1-D Fourier and 
the inverse Fourier transforms, respectively,   is the 
coordinate in the Fourier space for nx  coordinate, 

( , )n mx yD   ln[ ( ) ( ) ]n m n mK ax ay K ax ay     , and 
 2 6c w l   , in which   is a known constant.  The 

1-D phases along lines parallel to the y  axis are also 
retrieved from sampling data of ( , )K    at the points of 
coordinates ( , ) ( , )n max ay    .  Then the overall two-
dimensional phase ( , )n mx y  can be determined by 
combining those 1-D phases in the directions of  x  and 
y  axes.  Finally, the object ( , )f u v  can be reconstructed 

through compensation for the known function ( , )R x y  
from the inverse Fourier transform of the retrieved 
correlation integral ( )n mK ax ay  in Eq. (1). 

The calculation of the phase was done from only a 
single diffraction pattern in the detector. No other 
calibration was performed on the data except that a 
chosen center of the measured diffraction pattern was 
shifted to the center of the 1024 1024  sampling points, 
and that a constant bias component due to the noise of 
the CCD was subtracted from the measured data.  In 
this system, the lateral resolution of the reconstruction is 
theoretically limited [11] by NA 52.6 m( )  , where 
the NA is the numerical aperture of the array filter, 
defined by   32 0.0121NA d z  .   

Figure 2 shows the first example of the experiments. 
Figure 2(a) shows the modulus of the object image by a 
convex lens of focal length 120 mm, which is inserted 
between the object and the CCD instead of the aperture-
array filter.  This object corresponds to lines in the 
portion (group 3, element 4) of the USAF 1951 target 
illuminated through a circular pinhole of 0.4-mm.  The 
picture of Fig. 2(a) is represented on the same resolution 
as in the optical system with the array filter.  

 Figure 2(b) shows the measured intensity through the 
aperture-array filter without lenses.  Figures 2(c) and 
2(d) show the modulus and the phase, respectively, of the 
reconstructed object using the direct phase retrieval with 
Eq. (2) from multiple groups of sampling data of the 
intensity distribution in Fig. 2(b), consisting of one group 
of 64 64  sampling data at the coordinates 
( , ) ( , ),n max ay   and twenty groups of 64 64  
sampling data at the coordinates ( , )n max ay  and 
( , )n max ay   with five values of   at intervals of a 
quarter of the CCD’s pixel, which were used to improve   

 
Fig. 2. (a) Modulus of the object image by a convex lens. (b) 
Measured intensity pattern. (c) Modulus and (d) phase of the 
reconstructed object. The solid curves in (e) and (f), and the 
dotted curve in (e) show the cross-sectional profiles of (c) and (d), 
and (a), respectively, along horizontal lines through the 
positions indicated by the arrows.  

 
the  accuracy  of  the phase calculation [11].  Since those 
coordinates did not coincide with the positions of the 
measured data (1024 1024  points) in Fig. 2(b), the 
intensity data at those coordinates were calculated only 
from the measured data by a linear interpolation. 

In order to prevent the phase calculation in Eq. (2) 
from aliasing, the resultant data with 64 64  sampling 
points were transformed into the data with 256 256  
sampling points by using an inverse Fourier transform of 
the function embedded the Fourier transform of the data 
64 64  in the 256 256  points of zero data.  Figures 
2(c) and 2(d) are shown in the central 33 33  points of 
the reconstructed object by an inverse Fourier transform 
of the complex function consisting of the measured 
modulus and the retrieved phase, where the phase 
curvature of the illuminating beam was compensated for. 
In Fig. 2(e), the solid and the dotted curves show the 
cross-sectional profiles of the moduli of the 
reconstruction and the image in Figs. 2(c) and 2(a), 
respectively, along horizontal lines through the positions 
indicated by the arrows, provided that the total intensity 
for Fig. 2(c) was matched with that for Fig. 2(a).  Figure 
2(f) shows the cross-sectional profile of the reconstructed 
phase shown in Fig. 2 (d) along the same line as in Fig. 
2(c).  The reconstruction is in good agreement with the 
modulus image, and the reconstructed phase shows 
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nearly constant among the images of lines in relation to 
the original object having no phase variation.  The effect 
of noises on the reconstruction in Fig. 2(c) is larger than 
that in Fig. 2(a).  This reason is that the phase retrieval 
from the Fourier intensity distribution is influenced by 
noises on the whole surface of the CCD in contrast to the 
modulus image containing noises in a small part of the 
CCD.  Note that the three lines (for group 3, element 4 of 
the USAF 1951 target) with the period ( 88.5 m ) is 
resolved.  This fact shows that the resolution of the 
system is not limited by the aperture’s size (0.1mm ) of 
the filter unlike the method with a pinhole array [7].   

Figure 3 shows the reconstruction of an object with 
phase variation.  Figure 3(a) shows the modulus image 
by the same lens as in Fig. 2(a).  This object consists of 
the circular pinhole of 0.6-mm and the lines in the 
portion (group 2, element 6) of the USAF 1951 target, of 
which three lines were covered with a film of half-wave 
retarder as shown in Fig. 3(a).  The film has a thickness 
and index of refraction such that it retards the phase of a 
light of wavelength 0.560 m by   radians relative to 
the phase retardation of the light in the air.  Thus we 
investigated the retardation of the illuminating light of 
wavelength 0.635 m by using another interferometric 
experiment. As a result, it was found that the film 
retards the phase of the illuminating light by about 2.77 
radians relative to the retardation in the air.  This 
retardation agrees with the theoretical expectation [i.e., 

(0.560 0.635)  ]. 
Figure 3(b) shows the measured intensity through the 

aperture-array filter without lenses.  Figures 3(c) and 
3(d) show the modulus and the phase, respectively, of the 
reconstructed object (which are shown in the central 
33 33  points of the reconstructed object with 
256 256 points) using the same calculation as in Fig. 2 
from the intensity in Fig. 3(b).  The solid curves in Figs. 
3(e) and 3(f), and the dotted curve in Fig. 3(e) show the 
cross-sectional profiles of the reconstructed modulus and 
phase in Figs. 3(c) and 3(d), and the modulus image in 
Figs. 3(a), respectively, along horizontal lines through 
the positions indicated by the arrows, provided that the 
total intensity for Fig. 3(c) was matched with that for Fig. 
3(a).  In Fig. 3(d), the average value and the standard 
deviation of the phase difference between three lines 
covered with the film and one line in the air became 
about 2.79  and 0.19 radians, respectively.  It was found 
that the object’s phases in Figs. 2(d) and 3(d) were 
reconstructed with the accuracy of about 2 30  
radians.  On the other hand, the normalized root-mean 
square errors (i.e., Eq. (21) in [11]) of the reconstructed 
moduli in Figs. 2(c) and 3(c) were 0.430 and 0.435, 
respectively, on the basis of each corresponding image. 

In conclusion, we have experimentally demonstrated 
coherent diffractive imaging from a single intensity 
measurement with the aperture-array filter.  
Reconstructions of the complex-valued objects have been 
shown by using the noniterative phase retrieval method 
without a reference wave.  We did not make use of the 
tight object’s support constraint needed in the iterative 
methods [8,9].  The resolution of the present system is 
limited not by the aperture’s size of the array filter but 
by the numerical aperture of the array filter.  Therefore, 

there is a possibility that the present method provides a 
useful means of coherent x-ray diffractive imaging with 
wavelength resolution. 

 

Fig. 3.  Same as Fig. 2, except for the object with phase variation. 
The three lines of the object were covered with a film of half-
wave retarder.  
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