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Fermi surface effect on intrinsic Lorenz number of Fermi liquids

Takuya Okabe

Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan

Abstract

We investigate a Fermi surface effect on the ideal Lorenz ratio of an anisotropic Fermi liquid caused by the onset of
Umklapp scatterings. After discussing simple models by way of illustration, we present numerical results for transition
metals, and indicate a material with a simple Fermi surface like sodium cobaltite as a possible candidate to observe the
effect.
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1. Introduction

The discovery of large thermopower in NaxCoO2[1] has
prompted investigations for related good thermoelectric
(TE) materials and encouraged experimental and theo-
retical researches on TE properties of strongly correlated
electron systems. In practical applications, one of the im-
portant material parameters is the figure of merit ZT =
S2/(κ/σT ), defined by the Seebeck coefficient S, ther-
mal conductivity κ, electrical conductivity σ, and abso-
lute temperature T . While it is important to enhance S,
it is equally important to suppress the Lorenz number L
defined by L = κ/σT [2]. However, the latter is usually
supposed to be hampered by the Wiedemann-Franz (WF)
law, according to which the Lorenz number L should be a

universal constant, e.g., L = π2

3 (k/e)2 for impure metals.
In fact, normal metals which generally have low S are not
suitable for good TE devices. Thus it is interesting to see
if the limit set by the WF law or the constancy of L is
overcome.

We investigate the material dependence of L for corre-
lated paramagnets, i.e., anisotropic Fermi liquids of d and
f electrons where electron-electron scatterings are domi-
nant. One of the major interests in recent studies of corre-
lated electrons is persistent non-Fermi liquid behavior[3].
Some unusual properties may be explained within the or-
thodox framework of Fermi liquid theory. Anisotropic de-
formation of an Fermi surface caused by Pomeranchuk
instability is one of intriguing mechanisms[4, 5, 6]. It
must be worthwhile discussing unconventional behavior of
anisotropic Fermi liquids in other respect too. We dis-
cuss the ideal value L0 of anisotropic Fermi liquids. The
Lorenz number of pure transition metals has been ob-
served experimentally[7, 8, 9, 10]. Theoretically, Herring
had derived a ‘universal’ value for the Lorenz number of
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Fermi liquids[11]. This problem had been addressed also
specifically by treating s-d hybridization as perturbation,
namely, by a two band model of conduction s-electrons
scattering off localized d-electrons[12, 13]. At low temper-
atures, Herring’s argument based on the Fermi liquid the-
ory should be the proper approach. The constant value of
Herring is obtained by neglecting momentum dependence
of quasiparticle scatterings to relax thermal and electrical
currents altogether. In this paper, we investigate the im-
portance and effect of the momentum dependence on the
basis of a formula which we derive theoretically.

In §2, on the basis of Fermi liquid theory, we derive an
expression for the Lorenz number to be used in what fol-
lows. We introduce a dimensionless factor L, by which we
describe the material dependence. Qualitatively, it is not
difficult to see how L depends on the Fermi surface (FS).
Quantitatively, however, it is not easy to evaluate multiple
integrals for L duly properly with enough accuracy. This
is a striking contrast to ordinary transport calculations
based on a relaxation time approximation. In §3.1, we
present results for simple models to show the effect repre-
sentatively. In §3.2, we present numerical results for cubic
transition metals, and compare them with available exper-
imental data. Last, in §3.3, we discuss a simple model of
the sodium cobaltite to see that the effect may be realized.
It is remarked that a qualitatively similar effect should be
expected for the resistivity coefficient A of the T 2 term,
as the effect is essentially caused by Umklapp processes
responsible for finite electrical resistivity.

2. Fermi Liquid theory

2.1. General theory

Under a temperature gradient∇rT and an electric field
E, the transport equation for the distribution function
np(r, t) of quasiparticle with electric charge e is given by

∂np

∂t
+∇rnp ·∇pε̃p+∇pnp ·(eE −∇r ε̃p) = I(np).(1)
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Here ε̃p denotes local excitation energy of the quasiparticle
with crystal momentum p, and it depends on the distribu-
tion function np(r, t) implicitly through the Landau func-
tion fpp′ [14]. In the right-hand side, I(np) is a collision
integral due to intrinsic quasiparticle scatterings. To solve
Eq. (1), we introduce the linear deviation δn̄p(r) by

np(r) = n0(ε̃p, T ) + δn̄p(r), (2)

where n0(ε, T ) = 1/(e(ε−µ)/T + 1) is the equilibrium dis-
tribution function at the temperature T . It is convenient
to define φp by

δn̄p(r) =
∂n0

∂εp
φp, (3)

according to which φp is interpreted as local deformation of
the FS caused by the external disturbances. To the linear
order in φp, it is shown that the collision term I(np) ≡ I[φ]
is given by

TI[φ] =
∑
p′,k

W pp′

k npnp′(1− np−k)(1− np′+k)(φp+

φp′ − φp−k − φp′+k)δ(εp + εp′ − εp−k − εp′+k),

where np = n0(εp, T ) and W pp′

k denotes the transition
probability that quasiparticles with momenta p and p′ are
scattered into those with p−k and p′+k. For the left-hand
side in Eq. (1), we obtain

∇rnp · ∇pε̃p =

(
∂n0

∂T
∇rT +

∂n0

∂ε̃p
∇r ε̃p

)
· ∇pε̃p

=
∂n0

∂T
∇rT · ∇pε̃p +∇pnp · ∇r ε̃p. (4)

The last term is canceled with the second term in the
parenthesis in Eq. (1). We may set

∂n0

∂T
= −εp − µ

T

∂n0

∂εp

and ∇pε̃p = vp in Eq. (4), and

∇pnp =
∂np

∂εp
vp (5)

in Eq. (1). In a steady state, the first term of Eq. (1)
vanishes. As a result, we obtain

∂np

∂εp

(
−εp − µ

T
∇T · vp + eE · vp

)
= I[φ]. (6)

The electric and heat currents carried by quasiparticles
are given by

J = 2e
∑
p

vp
∂n

∂εp
φp, (7)

and

JQ = 2
∑
p

vp(εp − µ)
∂n

∂εp
φp, (8)

respectively. The solution φp of the linear equation (6) is
represented as a sum of the terms proportional to E and
∇rT . By comparing Eqs. (7) and (8) with the phenomeno-
logical formula,

J = σE − σS∇T,

JQ = TσSE − κ0∇T,

we get expressions for the transport coefficients σ, S, and
κ0, where κ0 is the thermal conductivity at zero electric
field. The thermal conductivity at zero current κ is given
by κ = κ0−TσS2[2]. The difference between κ and κ0 can
be neglected at low temperatures. Although the above re-
sults expressed by the renormalized quantities εp, vp and
φp remind us of similar results for a weakly interacting
Fermi gas, it should be remarked that the above results
include many body effects not only through the renormal-
ization of the individual quasiparticles, but also in the shift
φp caused by the applied fields, which implicitly includes
a collective Fermi liquid effect depending on the Landau
function fpp′ [14, 15]. We do not present their explicit ex-
pressions, as they do not affect the results of our investi-
gation.

For definiteness, assuming that the currents J and JQ

flow in the x-direction, we introduce the two functions l1
and l2 by

φp = −eExl1 + ∂xT l2. (9)

Then we obtain the equations

−∂np

∂εp
vpx = I[l1], (10)

and

−∂np

∂εp
tpvpx = I[l2], (11)

where tp = (εp − µ)/T . The transport coefficients are
obtained by substituting Eq. (9) into Eqs. (7) and (8), for
which we have to solve the integral equations, Eqs. (10)
and (11).

2.2. Approximations

In the isotropic system of 3He, the collision integral
I is given by normal processes obeying the conservation
of momentum, and it has been evaluated analytically by
Abrikosov and Khalatnikov[16]. They evaluated thermal
conductivity of the isotropic Fermi liquid by an elabo-
rate approximation based on the geometry of the scatter-
ing processes. Similarly, we follow them to decouple the
crystal momentum p into the radial (energy) component
tp = (εp − µ)/T and the perpendicular (angular) com-
ponent Ω̄p to set li,p = Mi(Ω̄p)Ni(tp) (i = 1, 2). Accord-
ingly, the momentum sum is given by

∑
p = T

∫
ρdt

∫
dΩ̄p,

where ρ represents the density of (quasiparticle) states
(DOS) under the normalization condition

∫
dΩ̄p = 1. The

FS dependence comes in through Mi(Ω̄p), for which equa-
tions are obtained by integrating out Ni(tp) over the en-
ergy variable tp. To this end, however, we have to adopt a
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different method, as we discuss an anisotropic Fermi liquid
on a lattice where Umklapp processes should be treated on
an equal footing with normal processes. To simplify the
multiple sum in I, we replace (1 − n(εp′+k))δ(εp + εp′ −
εp−k−εp′+k) with (1−n(εp+εp′−εp−k))δ(εp′+k−µ). This
must be legitimate because significant contributions to the
collision term should come from a thermal neighborhood
of the FS. This will not affect our results essentially, as
we discuss below at the end of §2.3. It is important for us
that this approximation brings no specific FS dependence
into our results.

First we note that we can reproduce an electrical con-
ductivity formula derived and discussed previously micro-
scopically [15, 17]. By setting N1(tp) as a constant, we
can evaluate analytically the energy integrals for the four
terms of I[l1] in Eq. (10). As a result, we obtain

vpx =
π2

2
ρ2T 2

∫
dΩ̄p′

∫
dΩ̄p′′W pp′

p−p′′(M1,p +M1,p′

−M1,p′′ −M1,p+p′−p′′)× δ(εp+p′−p′′ − µ)

=
π2T 2

2

∑
p′,p′′

W pp′

p−p′′(M1,p +M1,p′

−M1,p′′ −M1,p+p′−p′′)ρp′ρp′′ρp+p′−p′′ , (12)

and

σ = 2e2ρ

∫
vpxM1(Ω̄p)dΩ̄p. (13)

In Eq. (12), we used ρp = δ(εp−µ). For practical purpose,
we assume the angular dependence M1,p ∝ vpx. This does
not spoil the essential point discussed below, that is, nor-
mal and Umklapp processes are distinguished in terms of
the function M1,p+M1,p′−M1,p′′−M1,p+p′−p′′ in Eq. (12),
which should not vanish for the latter processes to give a
finite electric resistivity. In effect, by a simple model cal-
culation, we find that this approximation is numerically
reliable[15]. Thus, from Eqs. (12) and (13), we obtain
the resistivity coefficient A for the electrical resistivity
σ−1 = AT 2[15],

A =
π2

4e2
(∑

p ρpv
2
px

)2 ∑
p,p′,p′′

W pp′

p−p′′ρpρp′ρp′′ρp+p′−p′′

vpx(vpx + vp′x − vp′′x − vp+p′−p′′x). (14)

Next we derive a corresponding expression for the ther-
mal conductivity. This is more difficult because to this
end we need to take into account the energy dependence
of the solution. In this respect, a simple functional form
for N2(t) is often assumed by noting that N2(t) should be
an odd function of t. Following Herring[11], we substitute
N2(t) ∝ t/(t2 + π2), which holds valid in the low energy
limit of our concern. Note that the energy dependence
has been derived and discussed previously[16, 18]. Thus,
by taking the t-derivative at tp = 0 of Eq. (11), we obtain
a similar equation,

vpx = ρ2T 2

∫
dΩ̄p′

∫
dΩ̄p′′W pp′

p−p′′(M2,p − c(M2,p′

+M2,p′′ +M2,p+p′−p′′))δ(εp+p′−p′′ − µ), (15)

where

c =

∫ ∞

0

dt

(
t coth

t

2
− 2

)
2t/(t2 + π2)

sinh t
≃ 0.162,(16)

and

κ0 = 2π2ρT

∫ ∞

−∞

∂n

∂t

t2dt

t2 + π2

∫
vpxM2(Ω̄p)dΩ̄p. (17)

From these, we obtain the thermal resistivity coefficient
B of κ−1

0 = BT . It is remarked that the difference in
the integrand kernels of Eqs. (12) and (15) stems from
the fact that N2(t) for κ0 must be an odd function, while
N1(t) for σ is even. This is required to make the respective
conductivities finite. Assuming M2,p ∝ vpx as above, we
obtain the ratio

L0 ≡ κ0

σT
=

π2

12
(12− π2)

(
k

e

)2

L, (18)

where the Boltzmann constant k is written explicitly. The
constant factor in Eq. (18) originates from the energy de-
pendence, while the dimensionless factor L is determined
by the directional dependence of the scatterings. For the
former, our result differs by a factor of π2/12 ≃ 0.82 from
the previous result[11]. This is because we set N1 =const.
to recover our previous results for σ, which is exact in the
sense of Fermi liquid theory. The dimensionless factor L
in Eq. (18) is given by

L =
A

B
=

∫
dΩ̄1dΩ̄2dΩ̄3W

p1p2

p1−p3
vp1x(vp1x + vp2x

−vp3x − vp1+p2−p3,x)δ(εp1+p2−p3 − µ)

/

∫
dΩ̄1dΩ̄2dΩ̄3W

p1p2

p1−p3
vp1x

(vp1x − c(vp2x

+vp3x + vp1+p2−p3,x))δ(εp1+p2−p3 − µ)

=
∑
1,2,3

W p1p2

p1−p3
ρp1ρp2ρp3ρp1+p2−p3vp1x(vp1x

+vp2x − vp3x − vp1+p2−p3,x)

/
∑
1,2,3

W p1p2

p1−p3
ρp1ρp2ρp3ρp1+p2−p3vp1x(vp1x

−c (vp2x + vp3x + vp1+p2−p3,x)). (19)

2.3. General discussion

It is generally difficult to evaluate the multiple momen-
tum sums in L duly properly with good accuracy. This
is not only because the integrals cannot be deconvoluted
into simpler forms but also because there occur the delta
function singularities in the integrands. Before detailed
calculations, let us see how L varies qualitatively.

First it is noted that we get a trivial constant result
L = 1 if we neglect all the vertex correction terms, i.e.,
the three terms following vp1x in the parentheses both in
the denominator and the numerator of Eq. (19). Thus, to
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obtain a non-trivial result L ≠ 1, it is essential not to dis-
regard the detailed momentum structure of relevant quasi-
particle scatterings. In fact, L is determined by the shape
and the size of FS. In a sense, it is a mathematical ex-
pression of the fact that thermal and electrical resistivities
are controlled by different types of scattering processes.
Normal processes are important for the thermal resistivity
B, while the electrical A is caused by Umklapp processes.
For the numerator, or the resistivity coefficient A, to take
a finite value, there must exist at least a set of four mo-
menta pi (i = 1, 2, 3, 4) on the FS satisfying the Umklapp
condition p1+p2 = p3+p4+G, where G(̸= 0) is a recip-
rocal lattice vector. This condition is not met when the
FS is too small. The limit Fermi momentum is estimated
by the equation |pi| = |G|/4 which holds at a threshold
where all the momenta are parallel or anti-parallel. In
the vicinity of the threshold, it is expected that L should
have a strong FS dependence. This is the main interest of
our investigation. The differences in the effects of vertex
corrections to electric and heat currents have been micro-
scopically analyzed[19]. We argue that the Lorenz number
is the ideal quantity to reveal the difference in the vertex
corrections to the two different currents manifestly.

Although our primary interest is in the Lorenz ratio,
it would be worthwhile to mention the Seebeck coefficient
S. In the same manner as Eq. (13), we find

σS =
2π2e

3
T

∫
d(ρvpx)

dε
M1dΩ̄p. (20)

As σ depends on M1, the effect of the angular dependence
M1 is canceled for the thermopower S. Thus it is con-
cluded that S would be determined primarily by the energy
derivative of quasiparticle DOS at the Fermi level. This
is formally the same result as for free electrons, though
in our case the electron mass m∗ to which S is propor-
tional is effectively enhanced by a many body effect. For

instance, we obtain S = 2π2

3e
ρ′

ρ T = π2

3e
T
εF

for the Fermi

energy εF =
p2
F

2m∗ of a parabolic band in the isotropic
system. Hence, to discuss the enhancement of S quan-
titatively, we have to make microscopic analysis on the
one-electron property m∗. This is beyond the scope of
this paper. Furtheremore, in the vicinity of a ferromag-
netic quantum critical point, we have to take into account
paramagnon drag thermopower in addition to this diffuse
term, as we discussed recently[20].

To conclude this section, we make a numerical estimate
of the vertex-correction effect on the thermal resistivity co-
efficient B. The effect on B is quantitative but not quali-
tative. For definiteness, we focus ourselves to the isotropic
Fermi liquid, for which one may consult the classical work
by Abrikosov and Khalatnikov[16]. Their result is given
by

B ∝ ⟨2W (θ, ϕ)(1− cos θ)/cos(θ/2)⟩, (21)

where θ and ϕ denote scattering angles between quasipar-
ticles and the outer bracket denotes to take an average

over them. Formally, this can be written as a sum of two
terms, B = Bqp + Bvc. The former Bqp is a quasiparticle
term which is formally obtained by using a quasiparticle
lifetime in place of a proper transport lifetime. The latter
Bvc denotes the vertex correction term. By close inspec-
tion, we find

Bqp ∝ ⟨3W/cos(θ/2)⟩, (22)

and

Bvc ∝ −⟨W (1 + 2 cos θ)/cos(θ/2)⟩, (23)

with the same proportionality factor. By neglecting the
angular dependence of W , we obtain Bvc/B = −1/8 ≃
−0.13. On the other hand, the denominator of Eq. (19)
gives Bqp ∝ ⟨W ⟩ and Bvc ∝ −c⟨W (1 + 2 cos θ)⟩, so we
get Bvc/B ≃ −0.16 under the same condition. Thus we
find that the correction effect is negative in sign and the
relative magnitude is of the order of 0.1. In fact, we can
check that this is actually the case from numerical results
of the following sections. The above estimate indicates
that inaccuracy of the approximations should be of the
order of several per cent.

3. Results

3.1. Nearly free electron model

To show a singular dependence of L on the electron
density, we begin with simple lattice models with an isotropic
Fermi surface, for which the angular integrals in Eq. (19)
are considerably simplified.

Microscopically, the scattering probabilityW pp′

k is given
by the scattering amplitudes for quasiparticles with paral-

lel and anti-parallel spins, App′

↑↑,k and App′

↑↓,k, i.e., by

W pp′

k =
2π

~

(
|App′

↑↓,k|
2 +

1

2
|App′

↑↑,k|
2

)
. (24)

The momentum dependence of W pp′

k may become conspic-
uous in the vicinity of quantum critical points, where there
occur quantum fluctuations localized in k space. To take
this effect into account, we adopt

App′

↑↑,k ∝ App′

↑↓,k ∝ App′

k =
1

1 + ξ2γ(k −Q)
, (25)

which is peaked at the wavevector of an incipient order
k = Q. The parameter ξ is the correlation length of the
fluctuations around k = Q. To the integrals, dominant
contributions come from around the long wavelength limit
k → 0, so that we use γ(k) = 1

z

∑
d

(
1− eik·d

)
as a lattice

periodic function to reproduce the proper behavior γ(k) ≃
k2 in this limit, where z is the coordination number of the
lattice. The sum is taken over the nearest neighboring
lattice vectors d.

For a two-dimensional (2D) model with d = (±1, 0), (0,±1),
and z = 4, we have to make a special remark. One finds
that normal forward scatterings make the denominator B
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Figure 1: For a parabolic band on a square lattice, the dimensionless
Lorenz factor L is shown as a function of the number of electrons
per orbital n. The solid line is the result for the correlation length
ξ = 0, i.e., without any fluctuation effect. The dashed line is the
result for which the fluctuations with ξ = 1 around the ordering
vector Q = (π, π) (AFM) are taken into account. The dotted line
is for ξ = 1 and Q = (0, 0) (FM). In all cases, L vanishes at the
threshold nc,1 ≃ 0.2.

of Eq. (19) logarithmically divergent. This is caused by
the same mechanism as it occurs for the inverse lifetime
of quasiparticle, for which there occurs the sum for c = 0
of the denominator in Eq. (19)[21]. On the other side, the
numerator A still remains finite, as noted by Fujimoto et
al.[22]. To see a typical filling dependence of L = A/B,
we put a small decay rate Γ to quasiparticles. In a real
system, such a cutoff must be provided either by three di-
mensionality or by impurities. In effect, the dependence
on Γ is numerically very weak. In the nearly free electron
approximation, we use εp = p2 for the quasiparticle dis-
persion, for the result is independent of the quasiparticle
mass.

In Fig. 1, we show L for the parabolic band on a square
lattice as a function of the electron number n per orbital

for Γ = 0.02. The solid line is the result for W pp′

k =const.,
i.e., ξ = 0, which clearly indicates characteristic anomalies,
as expected. The first onset of Umklapp processes involv-
ing the smallest reciprocal lattice vector G = (2π, 0) is
noticed at nc,1 = π/16 ≃ 0.20, and the second one occurs
at nc,2 ≃ 0.39 for G = (2π, 2π). The threshold fillings can
be estimated straightforwardly, as they are geometrically
determined by the given FS. The dashed line in Fig. 1
represents the result for the commensurate antiferromag-
netic (AFM) fluctuations with Q = (π, π) and ξ = 1, for
which a shoulder structure for n > nc,2 is emphasized by
the fluctuations. By contrast, the dotted line is the result
for the ferromagnetic (FM) fluctuations with Q = (0, 0).
In this case, L is suppressed. This is because scatterings
with the fluctuations increase the relative weight of normal
processes contributing to the thermal resistivity B.

Similarly, we show results for three dimensional (3D)
systems. In Fig. 2, the lattice-structure dependence of L
is presented for the parabolic band. The filled circles are
the result for a simple cubic (sc) lattice, while the open

 0
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Figure 2: The factor L(≡ A/B) of a parabolic band on a simple
cubic (sc) and a face centered cubic (fcc) lattice. In the inset, the
electric resistivity coefficient A ∝ σ−1/T 2 and the thermal one B for
the sc lattice are shown as a function of n.

Table 1: Calculated values of the ideal Lorenz ratio L0 and the
experimental values Lexp.

L L0 (10−8V2/K2) Lexp (10−8V2/K2)
Pd (ξ = 0) 1.0 1.3
Pd (ξ = 5Å) 0.60 0.78 1.1 [7]
Ni 1.1 1.4 1.0 [8]
Fe 0.87 1.1 1.1 [9]
W 0.61 0.79 0.4 [10]

circles are the result for a face centered cubic (fcc) lattice.

In both cases, we set W pp′

k as constant. As the numerical
evaluation was time consuming, in Fig. 2, the calculated
points are connected by the lines as a guide to the eye.
The results are interpreted similarly as above. The first
threshold of the sc lattice lies at nc,1 ≃ 0.065 for G =
(2π, 0, 0), while for the fcc lattice we obtain nc,1 ≃ 0.085
with G = (2π, 2π,−2π). For the former, we observe the
secondary kink at nc,2 ≃ 0.19 due to G = (2π, 2π, 0). For
the latter, however, the corresponding structures expected
at nc,2 ≃ 0.13 and nc,3 ≃ 0.37 for G = (4π, 4π, 0) and
(4π, 0, 0) respectively are not conspicuous. In the inset of
Fig. 2, the resistivity coefficients A and B are shown, re-
spectively, for the sc lattice. We find that the presence
of the threshold nc,1 is more easily anticipated from a rel-
atively gradual n-dependence of L than from the electri-
cal resistivity coefficient A. The latter changes abruptly
around nc,1.

To summarize, it was shown that the ideal Lorenz ratio
of a Fermi liquid is not constant but can have a peculiar
lattice structure dependence. In principle, it is not diffi-
cult to know where to expect the singular behavior. The
singularity becomes less distinct in 3D systems than in 2D
systems, so that it may be easily overlooked in 3D systems.

3.2. Transition metals

In practice, generally, we confront difficulties in the nu-
merical evaluation of the ratio L. By following the same
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line as in the previous calculations[23], we manage to ob-
tain results for some special materials with a highly sym-
metric lattice structure. By focusing ourselves on pure
transition metals in cubic systems, we make use of band
structures obtained from the first principles calculations by
the Vienna Ab-initio Simulation Code (VASP)[25]. Then
we apply Eq. (19) to the main band with the largest DOS,
which is physically considered to make a dominant con-
tribution to the resistivities. We make full use of the cu-
bic symmetry in order to reduce the numerical task. The
other subsidiary bands would have only a minor effect in
the sense that they contribute lesser to the resistivities, not
only because they have smaller weights of the DOS, but
their Fermi surfaces are so small and/or detached from the
zone boundary that Umklapp scatterings should become
ineffective geometrically. In fact, this is in conformity with
our previous results in a many band analysis[23]. For ex-
ample, for palladium, we pick up the fifth band with an
intricate open heavy d electron surface, which exhibits flat
dispersion from X to W points above the Fermi level[24]
(Fig. 3 of [23] corresponds to Fig. 4 of [24]). Large values
observed for the resistivity coefficients A andB are primar-
ily ascribed to this hole band, while the other bands, e.g,
the sixth electron band, have only a minor effect[23, 24].

The results are shown in Table 1 with experimental

results[7, 8, 9, 10]. We set W pp′

k as constant, with the ex-
ception of Pd, for which we present also the result with
the ferromagnetic correlation length ξ = 5Å[26] taken into
account according to Eq. (25). We observe a discernible
role of the fluctuations. We find a small value for tungsten,
which is qualitatively in agreement with an experimental
report. This is caused by the fact that the relevant band
allows a rather small number of Umklapp processes ow-
ing to its peculiarly necked FS[27]. Quantitatively, how-
ever, we need some remarks. To extract the electron terms
for tungsten is more difficult than the other transition
metals, because the resistivity coefficients A and B as
well as a electronic specific heat coefficient γ are small.
Wagner et al. have interestingly reported very small val-
ues of Lexp for several samples[10]. In Table 1, we cited
Lexp = 0.4 × 10−8 V2/K2 for the sample with the lowest
residual resistivity ρ0 = 0.566×10−10Ωcm. They obtained
the resistivity coefficients by least squares fitting for 1.5 -
6.0K[28]. They included a phonon term to fit the electri-
cal resistivity, while no phonon term was observed corre-
spondingly in the thermal resistivity. This is inconsistent
theoretically. At low temperatures below 1.5K, Uher et
al. found a consistent fit without phonon term, i.e., with
ρ = ρ0 +AT 2[28]. They observed that the electrical resis-
tivity coefficient A is systematically modified from those
of Wagner et al. This may hold true for the thermal resis-
tivity, though not reported. Furthermore, they observed
only a small deviation from Matthiessen’s rule, i.e., no
systematic variation of A with ρ0[28]. In contrast, the
thermal resistivity coefficient B tends to decrease with de-
creasing impurity content[28]. By plotting Lexp against ρ0
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Figure 3: L as a function of the filling x and the Fermi surface at
x = 0.6 of a single band tight-binding model of NaxCoO2. A slight
deformation of the Fermi surface due to the hopping integrals t2 and
t3 has a strong effect on L.

of the experimental data[10], we observe an apparent in-
crease in Lexp as ρ0 decreases past 1.0× 10−10Ω cm down
to 0.5× 10−10Ω cm. Therefore, the ideal limit Lexp to be
compared with our L0 can be larger than that presented in
Table 1. Furtheremore, in general, it might be necessary
to consider explicitly the extraneous effects due to impuri-
ties and so on. In this regard, Matthiessen’s rule is usually
assumed, according to which the electronic contribution to
resistivity applies independently of and additively to the
other scattering mechanisms. Even if the rule is violated,
the qualitative predictions on the FS dependence should
not lose validity. We plan to investigate the Matthiessen
rule in a future work, according to which we find an inter-
esting deviation of the rule caused by the thermal resistiv-
ity, though it is negligible in the context of this work (cf.
Appendix).

3.3. NaxCoO2

Last, we discuss a simple model of NaxCoO2, which in-
terests us because of its simple cylindrical FS. As a nearly
2D system on a triangular lattice, it has an almost circular
hole surface centered at the Γ point with a slight hexago-
nal distortion bulging into the sides of the hexagonal Bril-
louin zone[29, 30, 31]. The FS suggests that the Umklapp
threshold lies around xc ∼ 0.6. As noted above, even
slight change in the shape of the FS around the thresh-
old should have an appreciable effect on the doping de-
pendence of quasiparticle transport properties. If we as-
sume an undistorted parabolic band, we get an estimate
of xc = 2nc,1 − 1 ≃ 0.55. Experimentally, the T 2 depen-
dence of the electrical resistivity has been observed up to
x ≃ 0.7[32, 33], around which therefore it is necessary to
take account of three dimensional lattice distortion[30, 31].
For simplicity, we neglect the three dimensional effect and
incipient ferromagnetic in-plain correlations[34]. To exam-
ine how the factor L tends to vanish around a threshold
x . xc, we use a 2D tight-binding model on a triangular
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Figure 4: As in Fig. 3, we show the filling x dependences of the factor
F , to which the Kadowaki-Woods ratio A/γ2 is proportional.

lattice, in which up to third neighbor hopping integrals ti
(i = 1, 2, 3) are considered[35]. In Fig. 3, the x-dependence
of L around x . xc is shown for t1 > 0 and Γ/t1 = 0.02,
along with the Fermi surface for x = 0.6. To compare
with the dashed line for t2 = t3 = 0, the solid line shows
the strong effect around x . xc caused by slight change of
the FS due to t2 and t3. As the threshold value xc ∼ 0.6
should depend sensitively on portions of the FS closest to
the Brillouin zone boundary, the value itself must not be
taken too seriously quantitatively.

Unfortunately, the theoretical prediction is not directly
compared with experiments, because normally the intrin-
sic electron term for the thermal resistivity (∝ BT ) of
the perovskite oxides is outweighed by the terms due to
phonons and impurities[32, 33]. Therefore, we present
the result for the resistivity coefficient A, as the FS de-
pendence of the factor L is in good correspondence to
that of the electrical resistivity. For the coefficient A,
or the Kadowaki Woods (KW) ratio A/γ2, the absolute
value of the scattering amplitude is required. Under the

strong coupling condition ρ2W pp′

p−p′′ ≃ π[23], we obtain

A/γ2 = 9F/16πe2 with

F =
1

ρ4

(∑
p

ρpv
2
px

)2

∑
1,2,3

ρp1ρp2ρp3ρp3−p1−p2

×vp1x(vp1x + vp2x − vp3x − vp1+p2−p3,x) (26)

We display F as a function of x in Fig. 4, which looks
similar to L in Fig. 3. The ratio A/γ2 goes to zero as x
approaches xc, but it is of the order of a common value,
A/γ2 ≃ 1 × 10−5µΩ cm(mol K/mJ)2. Li et al. have ob-
served a strongly enhanced value at x = 0.7[32]. The T 2-
dependence must be due to intrinsic quasiparticle scatter-
ings. Nevertheless, it seems difficult to consider the devia-
tion simply as the FS effect, and it is less likely to be caused
by randomness or imperfection (Appendix). It may be due

to enhancement of the scattering strength ρ2W pp′

p−p′′ ≫ 1
caused by a proximity to some sort of instability[32].

4. Summary

On the basis of anisotropic Fermi liquid theory, we in-
vestigated the ideal Lorenz ratio of correlated metals by
taking due care of the momentum dependence of quasipar-
ticle scatterings to relax electrical and thermal currents. It
was shown explicitly that the ratio is not constant but can
vary very conspicuously. The ratio can be made vanish-
ingly small not only by quantum fluctuations but by the
filling control across the thresholds of Umklapp scatter-
ings. We derived a mathematical formula and applied it
to cubic transition metals. Although it is generally not a
simple matter to extract the ratio experimentally in prac-
tice, we discussed that the variable ratio may be corrobo-
rated in a correlated metal with a two-dimensional Fermi
surface.
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Appendix A. Impurity Effect

In the main text, we assumed the clean limit where
extraneous effects due to impurities and imperfections are
disregarded. In order to see that they do not affect our
result essentially, we discuss electrical resistivity in the op-
posite limit where quasiparticle scatterings are dominated
by the extrinsic elastic scatterings. For this purpose, to the
right-hand side of Eq. (10), we add an impurity scattering
term Iimp given by

Iimp[l1] =

(
−∂np

∂εp

)
l1
τ
, (A.1)

where a phenomenological relaxation time τ is introduced.
In the dirty limit, the electron term I[l1] can be neglected
altogether. Then we obtain l1 = l01 ≡ vpxτ , as the zeroth
order solution. This gives the residual resistivity ρ0 = σ−1

0 .
To obtain the correction term of the electronic origin, we
look for a perturbative solution by setting l1 = l01 + l11,
where l11 denotes the first order correction. To the first
order, we get

I[l01] + Iimp[l
1
1] = 0, (A.2)

from which we obtain l11 explicitly. In terms of the solution
l1 = l01 + l11, we obtain the total conductivity σ = σ0 + σ1,
where the electronic term σ1 depends linearly on l11 so that
it gives the electronic resistivity proportional to T 2. Owing
to σ0 ≫ σ1 by assumption, the resistivity ρ = σ−1 is given
by

ρ ≃ σ−1
0 − σ1

σ2
0

≡ ρ0 +AT 2. (A.3)
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For the resistivity coefficient A thus defined, it is straight-
forward to check that the same result is recovered as given
in Eq. (14). Therefore, the formula used in the main text
is valid in this case too. In effect, it is surely expected
that the resistivity coefficient should not strongly depend
on impurities. This is physically plausible, as it repre-
sents nothing but a specific example of Matthiessen’s rule.
The rule is customarily adopted also for thermal resistiv-
ity similarly. We examine a deviation from the rule in a
future work by developing an exact solution of a transport
equation.
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