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ABSTRACT 

A local thermal non-equilibrium model has been considered for the case of 

thermally fully developed flow within a constant heat flux tube filled with a 

porous medium. Exact temperature profiles for the fluid and solid phases are 

found after combining the two individual energy equations and then transforming 

them into a single ordinary differential equation with respect to the temperature 

difference between the solid phase and the wall subject to constant heat flux. The 

exact solutions for the case of metal-foam and air combination reveal that the 

local thermal equilibrium assumption may fail for the case of constant heat flux 

wall. The Nusselt number is presented as a function of the Peclet number, which 

shows a significant increase due to both high stagnant thermal conductivity and 

thermal dispersion resulting from the presence of the metal-foam.. 
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List of symbols 

 

A surface area (m
2
) 

Aint interface between the fluid and solid (m
2
) 

c specific heat (J/kgK)  

cp specific heat at constant pressure (J/kgK) 

D tube diameter 

md  mean pore diameter (m) 

vh   volumetric heat transfer coefficient (W/m
3
K)  

k  thermal conductivity (W/mK) 

K
 

permeability (m
2
) 

jn  unit vector pointing outward from the fluid 

side to solid side (-) 

Pr Prandtl number (-) 

q  heat flux (W/m
2
) 

r

 

radial coordinate 

T temperature (K)  

Du  Darcian velocity (Uniform inlet velocity) (m/s) 

iu  velocity vector (m/s) 

V  representative elementary volume (m
3
) 

ix  Cartesian coordinates (m) 

x, y, z Cartesian coordinates (m) 

  porosity (-) 

*                           effective porosity (-) 

  kinematic viscosity (m
2
/s) 

  density (kg/m
2
) 
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Special symbols 


~

 deviation from intrinsic average 

  Darician average 

,f s
  intrinsic average 

Subscripts and superscripts 

dis                          dispersion  

f fluid 

s solid 

stag                         stagnation 

w                           wall  

1 INTRODUCTION 

A number of researchers such as Quintard (1998), Quintard and Whitaker 

(1993, 1995) , Haddad et al. (2004), Hsu (2000), Hsu et al. (1995) and Alazmi and 

Vafai (2002) investigated heat transfer within fluid saturated porous media and 

noted that there are many physical situations in which the local thermal 

equilibrium assumption fails. They pointed out shortcomings of local thermal 

equilibrium models (i.e. one energy equation models) and proposed local thermal 

non-equilibrium models (i.e. two energy equation models). In the thermal 

equilibrium models, local thermal equilibrium between the solid and fluid phases 

is assumed whereas such assumption is discarded in the local thermal non-

equilibrium models. Extensive discussions on the validity and assessment of the 

local thermal equilibrium assumptions were made by a substantial number of 

researchers such as Minkowycz et al. (1999), Kim and Jang (2002), Al-Nimr and 

Kiwan (2002), Al-Nimr and Abu-Hijleh (2002), Abu-Hijleh et al. (2002), 

Khashan et al. (2005) and Khashan, S. and Al-Nimr (2005). Concise yet 

comprehensive discussion on the topic may be found in Nield and Bejan (2006). 

Some analytical investigations on the local thermal non-equilibrium 

problems are available in which the exact solutions based on the local thermal 

equilibrium have been examined by comparing the results against those based on 
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a two equation model. Kuznetsov (1996, 1997) presented elegant perturbation 

solutions for sensible heat storage packed beds. Nakayama et al. (2001) used the 

two energy equation model introduced by Hsu (2000) and Hsu et al. (1995), and 

obtained exact solutions for two fundamental steady heat transfer cases, namely, 

one-dimensional steady heat conduction in a porous slab with internal heat 

generation, and also thermally developing unidirectional flow through a semi-

infinite porous medium. They pointed out that the thermal equilibrium assumption 

ceases to be valid even for certain steady thermal problems. Recently, Kuznetsov 

and Nield (2010) investigated the onset of convection in a horizontal layer of a 

porous medium saturated by a nanofluid and reported that the effect of the local 

thermal equilibrium can be quite significant in some circumstances. 

Many investigators, who worked on two equation models, neglected the 

effects of tortuosity on the stagnant thermal conductivity, and simply evaluated 

the fluid phase thermal conductivity as a product of the porosity and its thermal 

conductivity, and likewise for the solid phase thermal conductivity. Such 

evaluations lead to significant errors in thermal conduction especially when the 

solid thermal conductivity is much higher than the fluid thermal conductivity, 

such as in the case of metal foams. Yang and Nakayama (2009) proposed a 

general two-energy equation model, which takes account of both tortuosity and 

thermal dispersion. Kuwahara et al. (2011) recently proposed an effective porosity 

concept, which reduces their general two-equation model in a concise form and 

applied it to two fundamental plane convection cases, namely, convection in a 

channel filled with a metal foam bounded by isothermal walls and also that 

bounded by constant heat flux walls. However, none of axi-symmetric cases were 

treated.        

In this study, we shall treat what seems to be one of the most fundamental yet 

important axi-symmetric cases in practical applications, namely, the thermally 

fully developed flow in a circular tube filled with a porous medium. An aluminum 

foam and air combination is treated in consideration of possible practical 

applications in heat exchanging systems. We shall examine the general two-

energy equation model introduced by Yang and Nakayama (2009) and seek 

possible exact solutions for this particular fundamental problem, exploiting the 

effective porosity concept. These exact solutions may be quite useful for the 

benchmark tests of numerical tools based on the thermal non-equilibrium 
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assumption. An elegant integral treatment will also be presented to obtain an 

approximate yet useful expression for the Nusselt number. It will be shown that 

the case of constant wall heat flux must be treated by using a thermal non-

equilibrium model, since the fluid and solid phases within the channel are never at 

thermal equilibrium.  

2 LOCAL THERMAL NON-EQUILIBRIUM MODEL 

Yang and Nakayama (2009) considered the two energy equations for the 

fluid and solid matrix phases, respectively, and integrated them over a local 

control volume using the volume averaging theory

 

(Quintard and Whitaker 1993; 

Quintard and Whitaker 1995; Cheng 1978; Nakayama 1995). The resulting 

volume averaged energy equations run as follows: 

For the fluid phase:    
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For the solid matrix phase: 
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where the volume average of a certain variable   in the fluid phase is defined as 

1

f

f

V
f

dV
V

  
 

such that 
f

T  is the intrinsic volume average of the fluid temperature, while 

s
T  is the intrinsic volume average of the solid matrix temperature, where fV  is 

the volume space which the fluid phase occupies. The porosity /fV V   is the 

volume fraction of the fluid space. The variable   is decomposed into its 

intrinsic average and the spatial deviation from it: 

f
   

 

Moreover, intA  is the local interfacial area between the fluid and solid matrix, 

while in  is the unit vector pointing outward from the fluid side to solid side. The 

continuity of both temperature and heat flux is imposed on the interface. 
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Obviously, the parenthetical terms on the right hand-side of Equation (1) denote 

the diffusive heat transfer, while the last term describes the interfacial heat 

transfer between the solid and fluid phases. 

 One-equation models use the following single equation, which can be 

reduced by combining Equations (1) and (2) under the local thermal equilibrium 

assumption: 

     
int

1 1
f f f

fj f s

f p s s f p f s j f p j
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     


(3) 

where  

1

V
dV

V
  

 

is the Darcian average of the variable  such that 
f

j ju u is the Darcian 

velocity vector. From the foregoing equation (3), the macroscopic heat flux vector

 zyxi qqqq ,,  and its corresponding stagnant thermal conductivity stagk  may 

be defined as follows: 
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   (4) 

Note that the first term in the rightmost expression corresponds to the upper 

bound of the effective stagnant thermal conductivity based on the parallel model, 

namely,   sf kk   1 . Thus, it is the tortuosity term (i.e. the second term) that 

adjusts the level of the effective stagnant thermal conductivity from its upper 

bound to a correct one. 

Kuwahara et al. (2011) followed Yang and Nakayama (2009) and 

transformed the energy equations (1) and (2) to the following two-energy equation 

model along with the effective porosity: 

For the fluid phase: 
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For the solid matrix phase: 
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where the sub- and super-scripts, f and s, refer to fluid and sold phases, 

respectively. The effective porosity * which accounts for the effect of tortuosity 

on the stagnant thermal conductivity is defined such that the stagnant thermal 

conductivity is given by 

                      
  sfs t a g kkk ** 1  

                      (7a) 

namely, 
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                 (7b) 

such that Equation (4) gives 
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As the stagnant thermal conductivity stagk  is given either empirically or 

theoretically, the effective porosity *  can easily be evaluated from (7b). 

Furthermore, the thermal dispersion term is modeled according to the gradient 

diffusion hypothesis (Nakayama et al. 2006): 

                         
f k j
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f

f p j d i s
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T
c u T k

x



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                    (9) 

while the interfacial heat transfer between the solid and fluid phases is modeled 

using Newton’s cooling law:  
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T
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V
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1

                   (10) 

where vh is the volumetric heat transfer coefficient. 

3 PHYSICAL MODEL 

We shall seek possible exact solutions for convective heat transfer in a tube 

filled with metal foams, using the foregoing thermal non-equilibrium model. As 

illustrated in Figure 1, the air is flowing through an infinitely long tube of 

diameter D  filled with a metal foam. The tube wall is heated by constant wall 

heat flux wq . As pointed out by Dukhan et al. (2006), the Darcian velocity shows 

its dependence on the transverse direction only in a small region very close to the 
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wall. Therefore, we may neglect the boundary term (i.e. Brinkman term) and use 

the slug-flow approximation. Under this approximation, sufficiently away from 

the entrance, the energy equations (5) and (6) for the individual phases reduce to 

the following differential equations: 

 

Figure 1 Heat transfer in a tube filled with a metal foam bounded by constant heat flux wall

 

 

For the fluid phase: 
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For the solid phase: 
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with the boundary condition: 
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4 EXACT SOLUTIONS 

 

Equations (11) and (12) are added to form
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where where  is the Darcian velocity. Upon integrating the foregoing 

equation (14) across the tube cross-section with the boundary condition given by 

Equation (13), the energy balance readily gives 
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f

B
T  is the bulk temperature of the fluid phase. Hence,   
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which can be substituted into Equation (14) to give 
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This may be integrated as 
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where the symmetry condition at r=0 is exploited. The equation can further be 

integrated as 
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Note that  w
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and 0I  is the modified zero order Bessel function of the first kind. Equation (18) 

together with (16) gives the temperature of the fluid phase: 
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As for the degree of thermal non-equilibrium, T , let us consider the two 

asymptotic conditions, namely, the local thermal equilibrium condition at the 

wall, i.e. T =0, and the local uniform heat flux condition at the wall, as given by  
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which gives 
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Note that 
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where 3,2,1I  are the modified Bessel functions of the first, second and third order, 

respectively.  

 

5 ILLUSTRATIVE TEMPERATURE PROFILES AND NUSSELT 

NUMBER 

 

Calmidi and Mahajan (1999, 2000) examined experimental data available for 

the case of aluminum foam and air combination and proposed the empirical 

correlations for the stagnant thermal conductivity, the volumetric heat transfer 

coefficient and the dispersion coefficient as follows: 
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The permeability K  is given by the following empirical correlation (Calmidi and 

Mahajan 1999): 
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where 
md

 
is the pore diameter.

 
 

 

(a) Local thermal equilibrium wall ( T =0) 

 

 

(b) Local uniform heat flux wall 

Figure 2 Fluid and solid temperature profiles in a tube filled with a metal foam bounded by 

constant heat flux wall
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Both fluid and solid temperature profiles over the duct cross-section for the 

case of aluminum-foam and air combination, with  =8200,  =0.95, 

fDpf kDuc
f

/ =5000, Ddm =0.1 and 
2

/ mdK =0.015, are presented in Figures 

2(a) and (b) for these two asymptotic wall conditions, namely, the local thermal 

equilibrium wall condition, i.e. 0T  and the local uniform heat flux wall 

condition, respectively. Equations (24) to (27) are used to evaluate the stagnant 

thermal conductivity, the volumetric heat transfer coefficient and the dispersion 

coefficient. Note that 160/ fstag kk ,
 

67.3/ fdis kk
yy


 
and

 
42.1D . 

It should be noted that the local uniform heat flux condition at the wall, as 

shown in Figure 2(b), leads us to negative  
2/Dr

fs
TTT



  , since, under 

such a condition, the fluid temperature gradient towards the wall becomes so high 

in order to generate the required uniform heat flux on the adjacent wall. This 

makes the fluid temperature exceed the solid temperature towards the wall. 

However, this asymptotic condition may never be realized in practical 

applications. The reality is much closer to what would be realized under the other 

asymptotic condition of local thermal equilibrium wall ( 0T ), as illustrated in 

Figure 2(a), since the base materials usually exhibit sufficiently high thermal 

conductivity.  

Both figures clearly show that the solid temperature in the core region is 

always substantially higher than the fluid temperature for the case of tubes with 

constant heat flux wall, irrespective of the degree of thermal non-equilibrium T . 

Hence, the local thermal equilibrium assumption fails to be valid for the case of 

constant heat flux wall.  

The corresponding Nusselt number may be evaluated from 
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    (28)

 

Equation (20) may be substituted into the foregoing equation to find the 

Nusselt number for the case of local thermal equilibrium at the wall ( 0T ), 

which is presented in Figure 3. The figure shows a substantial increase in the 
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Nusselt number with the Peclet number based on the pore diameter, due to both 

high stagnant thermal conductivity and thermal dispersion. 

 

 

Figure 3 Nusselt number for a tube filled with a metal foam bounded by constant heat flux wall

 

 

6 APPROXIMATE ANALYSIS 

 

An approximate treatment based on an integral method is presented here to 

confirm the validity of the foregoing exact solutions. We shall utilize Equation 

(17), which, for the case of local thermal equilibrium wall ( 0T ), may be 

integrated as 
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where 
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Further integration leads to 
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The solid phase temperature profile  

 

may be assumed as 

 

                              2-10                        (33) 

Substitution of Equation (33) into (32) yields 

 

 

























2

2

3

16
14

1
0

D



         (34) 

From Equation (16), we find 
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Thus, the Nusselt number of our concern may be evaluated according to (28) and 

(35) as 
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The approximate curve for the Nusselt number based on Equation (36) is 

presented in Figure 3, which shows reasonably good agreement with the exact 

curve. 

 

7 CONCLUSIONS 

 

Thermally fully developed flow in a tube filled with a porous medium, 

subject to constant wall heat flux tube was treated using a local thermal non-

equilibrium model. Exact solutions are obtained for the cases of thermally fully 
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developed flow within a constant heat flux tube filled with a porous medium. An 

aluminum-foam and air combination was considered as an illustrative example. 

The volume averaged temperature profiles thus obtained for the air and aluminum 

phases reveal that the aluminum temperature is much higher than the air 

temperature, suggesting that the local thermal equilibrium assumption may fail for 

the cases of constant heat flux wall. An approximate solution was also proposed to 

evaluate the Nusselt number for the case of uniform wall heat flux. The solution 

agrees fairly well with the exact solution. 
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FIGURE CAPTIONS 

Figure 1 Heat transfer in a tube filled with a metal foam bounded by constant heat 

flux wall

 
Figure 2 Fluid and solid temperature profiles in a tube filled with a metal foam 

bounded by constant heat flux wall (a) Local thermal equilibrium wall ( T =0) (b) 

Local uniform heat flux wall 

Figure 3 Nusselt number for a tube filled with a metal foam bounded by constant 

heat flux wall

 


