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Abstract. The lemma given by Schmitt and Vogel is an important tool
in the study of the arithmetical rank of squarefree monomial ideals. In
this paper, we give a Schmitt–Vogel type lemma for reductions as an
analogous result.
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1. Introduction

Throughout this paper, let R be a commutative Noetherian ring with non-
zero identity. Let I be an ideal of R. Then the arithmetical rank of I is defined
by

ara I := min{r : there exist a1, . . . , ar ∈ R such that
√
(a1, . . . , ar) =

√
I}.

If
√

(a1, . . . , ar) =
√
I holds, then we say that a1, . . . , ar generate I up to

radical.
Assume that R is a polynomial ring over a field K and I is generated

by squarefree monomials. Then we have the following inequalities:

height I ≤ pdR R/I = cd(I) ≤ ara I ≤ µ(I),

where height I (resp. pdR R/I, cd(I), µ(I)) denotes the height of I (resp. the
projective dimension of R/I over R, the cohomological dimension of I, the
minimal number of generators of I); see e.g. [7]. Many researchers, e.g. Barile
[1, 2, 3, 4, 5], Schmitt and Vogel [12] and the authors [7, 8] have proved that,
in many cases, ara I = pdR R/I using the following lemma given by Schmitt
and Vogel [12] or its generalizations.

Fact (Schmitt and Vogel [12, Lemma, p. 249]). Let P be a finite subset of R,
and let I be the ideal generated by P. Let r ≥ 0 be an integer. Assume that
there exist subsets P0,P1, . . . ,Pr of P such that the following conditions are
satisfied:
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(i) P = P0 ∪ P1 ∪ · · · ∪ Pr.
(ii) ]P0 = 1.
(iii) For each ` (0 < ` ≤ r) and for every a, a′′ ∈ P` with a 6= a′′, there exist

an integer `′ (0 ≤ `′ < `), and an element a′ ∈ P`′ , such that aa′′ ∈ (a′).

If we set

g` =
∑
a∈P`

a, ` = 0, 1, . . . , r,

then
√
I =

√
(g0, g1, . . . , gr).

An ideal J ⊂ I is said to be a reduction of I if there exists some integer
s ≥ 1 such that Is+1 = JIs holds. When this is the case,

√
J =

√
I holds.

If J is minimal among all reductions of I with respect to inclusion, then it
is said to be a minimal reduction of I. Let R be a polynomial ring over a
field K and I a homogeneous ideal of R, or let R be a local ring with unique
maximal ideal m and K = R/m and I an ideal of R. If K is infinite, then
any ideal I has a minimal reduction J and the minimal number of generators
of J is independent of the choice of J ; see [10]. The number of generators of
J is called the analytic spread of I (denoted by `(I)) and it gives an upper
bound for ara I. In the commutative ring theory, minimal reductions play an
important role because they admit the same integral closure as the original
ideal. Moreover, the analytic spread is equal to the Krull dimension of the
fiber cone F (I) =

⊕
n≥0 I

n/mIn of I in a local ring (R,m), and hence it is
an important invariant.

The main purpose of this note is to give results on reductions that are
analogous to the Schmitt-Vogel Lemma and some of its generalizations. Let
us consider the following monomial ideal in a suitable polynomial ring R:

I = (x11, . . . , x1h1) ∩ · · · ∩ (xq1, . . . , xqhq ), (1.1)

where the indeterminates are pairwise distinct. In order to give an upper
bound for cd(I), Schenzel and Vogel [11] computed depthR/I` for all ` ≥ 1,
and proved that

cd(I) ≤ `(I) ≤ depthR− inf
`
depthR/I` =

q∑
i=1

hi − q + 1
(
= pdR R/I

)
,

where the second inequality is known as Burch’s inequality. On the other
hand, Schmitt and Vogel [12] constructed pdR R/I generators up to radical
using their lemma. By using Theorem 2.1 instead of their lemma, we can
provide a minimal reduction with pdR R/I generators; see Proposition 2.3.

The proof of our main theorem is given in Section 3. It is based on
refinements of the results presented by Barile in [1] and [3].



Schmitt–Vogel type lemma for reductions 3

2. Schmitt–Vogel type lemma for reductions and its
application

The following theorem is the main result in this paper, and is analogous to
the Schmitt-Vogel Lemma. It is an immediate consequence of Theorem 3.1,
which will be proved in Section 3.

Theorem 2.1 (Schmitt–Vogel type lemma for reductions). Let P be a finite
subset of R, and let I be the ideal generated by P. Let r ≥ 0 be an integer.
Assume that there exist subsets P0,P1, . . . ,Pr of P such that the following
conditions are satisfied:

(SV1) P = P0 ∪ P1 ∪ · · · ∪ Pr.
(SV2) ]P0 = 1.
(SV3) For each ` (0 < ` ≤ r) and for every a, a′′ ∈ P` with a 6= a′′, there

exist an integer `′ (0 ≤ `′ < `), and elements a′ ∈ P`′ , b ∈ I such that
aa′′ = a′b.

If we set

g` =
∑
a∈P`

a, ` = 0, 1, . . . , r,

then J = (g0, g1, . . . , gr) is a reduction of I.

We now restrict our attention to the following case: R is a polynomial
ring over a field K and I is a squarefree monomial ideal of R. In this case, as
an application of the above theorem, we have the following result.

Corollary 2.2. Let R be a polynomial ring and I a squarefree monomial ideal
of R. Assume that there exist finite subsets P0, . . . ,Pr of I satisfying the
assumptions in Theorem 2.1 for r = pdR R/I − 1. Then (g0, g1, . . . , gr) is a
minimal reduction of I, and `(I) = ara I = pdR R/I = r + 1.

Proof. Since I is a squarefree monomial ideal, we have

r + 1 = pdR R/I = cd(I) ≤ ara I ≤ `(I),

where the second equality follows from [9]. On the other hand, Theorem 2.1
implies `(I) ≤ r + 1. This proves the claim. �

We can apply our results to Alexander dual of complete intersection
monomial ideals; see below.

Proposition 2.3 (Alexander dual of complete intersection monomial ideals).
Let I ⊆ R be a squarefree monomial ideal of the following shape:

(x11, . . . , x1h1) ∩ · · · ∩ (xq1, . . . , xqhq ), (2.1)

where R = K[x11, . . . , x1h1 , . . . , xq1, . . . , xqhq ] is a polynomial ring over a
field K. Note that I can be regarded as the Alexander dual of the complete
intersection monomial ideal (x11 · · ·x1h1 , . . . , xq1 · · ·xqhq ) if h1, . . . , hq ≥ 2.

Set r = h1 + · · ·+ hq − q and

g` =
∑

`1+···+`q=`

x1`1x2`2 · · ·xq`q , ` = 0, 1, . . . , r.



4 K. Kimura, N. Terai and K. Yoshida

Then (g0, g1, . . . , gr) is a minimal reduction of I. In particular,

`(I) = ara I = pdR R/I =

q∑
i=1

hi − q + 1.

Proof. It is known that

r + 1 = pdR R/I = ara I ≤ `(I);

see e.g. [12, Theorem] or [7, Section 5].
For each ` = 0, 1, . . . , r, we set

P` =
{
x1`1 · · ·xq`q : 1 ≤ `j ≤ hj , `1 + · · ·+ `q = `+ q

}
.

Then I is generated by all monomials in P0 ∪ · · · ∪ Pr, and P0 consists of
only one element, namely x11 · · ·xq1. Thus it suffices to show that condition
(SV3) of Theorem 2.1 is fulfilled. Let a, a′′ ∈ P`, say

a = x1i1x2i2 · · ·xqiq , a′′ = x1j1x2j2 · · ·xqjq ,

where i1 + · · ·+ iq = j1 + · · ·+ jq = `+ q. As a 6= a′′, there exists an integer
k (1 ≤ k ≤ q) such that ik > jk. We may assume without loss of generality,
that k = 1. If we set

a′ = a · x1j1

x1i1

= x1j1x2i2 · · ·xqiq , b = a′′ · x1i1

x1j1

= x1i1x2j2 · · ·xqjq ∈ I,

we then have aa′′ = a′b and a′ ∈ P`′ , where

`′ = j1 + i2 + · · ·+ iq − q < i1 + i2 + · · ·+ iq − q = `.

Hence we can apply Corollary 2.2. �

Remark 2.4. Let I ⊆ R be the ideal that appears in Proposition 2.3. Then
Schmitt and Vogel [12] proved that ara I = pdR R/I by showing that g0, g1, . . . , gr
generate I up to radical. Thus the above proposition gives an improvement
of their result.

We can generalize Proposition 2.3 as follows.

Proposition 2.5. For each i = 1, 2, . . . , s, let Ii be a squarefree monomial ideal
of the shape (2.1):

Ii = (x
(i)
11 , . . . , x

(i)

1h
(i)
1

) ∩ · · · ∩ (x
(i)

q(i)1
, . . . , x

(i)

q(i)h
(i)

q(i)

).

Let G(Ii) be the minimal set of monomial generators of Ii. Suppose that there
are no variables which appear both in G(Ii) and in G(Ij) for each i, j with

i 6= j. For all i, define g
(i)
` as in Proposition 2.3. Then

(g
(i)
` : i = 1, . . . , s, ` = 0, 1, . . . , h

(i)
1 + · · ·+ h

(i)

q(i)
− q(i))

is a minimal reduction of I1 + · · · + Is. In particular, `(I1 + · · · + Is) =
`(I1) + · · ·+ `(Is).

In order to prove Proposition 2.5, it is enough to show the following
lemma.
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Lemma 2.6. Let R, S be polynomial rings over a field K with no common
variables, and put T = R ⊗K S. Let I ⊆ R (resp. J ⊆ S ) be a squarefree
monomial ideal. Then:

(1) pdT T/(IT + JT ) = pdR R/I + pdS S/J .
(2) Assume that P0,P1, . . . ,Pr ⊆ R (resp. Q0,Q1, . . . ,Qs ⊆ S ) satisfy

(SV 1), (SV 2) and (SV 3) in Theorem 2.1. Then P0,P1, . . . ,Pr,Q0,Q1, . . . ,Qs

also satisfy the same conditions as finite subsets of T .

Proof. (1) Let F• (resp. G•) be a minimal free resolution of R/I over R (resp.
S/J over S). Then F• ⊗K G• is a minimal free resolution of T/(IT + JT ).
Thus we have pdT T/(IT + JT ) = pdR R/I + pdS S/J .

(2) It is clear by definition. �

Remark 2.7. Under the same notation as in Lemma 2.6, it is easy to see that
ara(IT + JT ) ≤ ara I + ara J holds. If both ara I = pdR R/I and ara J =
pdS S/J hold, then equality holds. But we do not know whether it is always
true. Moreover, it seems that a similar result holds for analytic spreads, but
we do not have any proof in general.

3. Proof of the theorem

In this section, we prove Theorem 2.1, which is the analogue of the Schmitt-
Vogel Lemma in the framework of reductions. Some generalizations of this
lemma have been given by Barile [1, 3, 5]. Theorems 3.1 and 3.3 are analogous
results for reductions.

The following theorem gives an analogous result for Barile [3, Lemma
2.1], which is a generalization of Theorem 2.1.

Theorem 3.1. Let P ⊂ R be a finite subset, and put I = (P). Let P0,P1, . . . ,Pr

be subsets of P. Assume that the following conditions:

(B1) P = P0 ∪ P1 ∪ · · · ∪ Pr.
(B2) ]P0 = 1.
(B3) For each ` (0 < ` ≤ r) and for every a, a′′ ∈ P` with a 6= a′′, there exists

an integer m ≥ 1 such that (aa′′)m ∈ (P0 ∪ · · · ∪ P`−1)I
2m−1.

Set

g` =
∑
a∈P`

a, ` = 0, 1, . . . , r.

Then J = (g0, g1, . . . , gr) is a reduction of I.

Remark 3.2. The difference between Theorem 3.1 and the original result of
Barile [3] lies in condition (B3). The condition of the original result corre-
sponding to (B3) is

(B3)’ For each ` (0 < ` ≤ r) and for every a, a′′ ∈ P` with a 6= a′′, there exists
an integer m ≥ 1 such that (aa′′)m ∈ (P0 ∪ · · · ∪ P`−1).
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Proof of Theorem 3.1. Since J ⊆ I, it suffices to show that Is+1 ⊂ JIs for
some s. To this end, we set ]P` = c` and I` = (P0 ∪ · · · ∪ P`) for each
` = 0, 1, . . . , r. Moreover, for each `, we choose an integer m` ≥ 1 such that

(aa′′)m` ∈ I`−1I
2m`−1 (3.1)

for all a, a′′ ∈ P` with a 6= a′′. Set n0 = 1 and nj = c1 · · · cjm1 · · ·mj for each
j = 1, . . . , r. Then it is enough to prove that

I
nj

j ⊂ I
nj−1

j−1 Inj−nj−1 + JInj−1 (3.2)

for each j = 0, 1, . . . , r. Indeed, I0 = (P0) = (g0) ⊂ J . Then (3.2) implies
that

Inr = Inr
r ⊂ I

nr−1

r−1 Inr−nr−1 + JInr−1

⊂ (I
nr−2

r−2 Inr−1−nr−2 + JInr−1−1)Inr−nr−1 + JInr−1

= I
nr−2

r−2 Inr−nr−2 + JInr−1

⊂ · · · ⊂ In0
0 Inr−n0 + JInr−1 = JInr−1.

Now suppose j = ` ≥ 1 and assume that (3.2) holds for every j ≤ `− 1.
To prove (3.2) for j = `, it is enough to show that for arbitrary n` elements
(it is allowed to take the same element more than once) in P0 ∪ · · · ∪ P`,
the product of all elements is contained in the right hand side of (3.2). We
divide these elements into n`−1 sequences of c`m` elements, and show that
the product of the elements in each sequence is in I`−1I

c`m`−1 + JIc`m`−1.
In what follows, we consider one of such sequences. If this sequence

contains an element of P0 ∪ · · · ∪ P`−1, then it is clear that the product is
in I`−1I

c`m`−1. Therefore, we may assume that all elements in the sequence
are in P`. If we can find a pair (a, a′′) with a 6= a′′ which appears at least
m` times in this sequence, then from (3.1) we deduce that the product of
all elements in the sequence belongs to I`−1I

c`m`−1. Otherwise, we pick an
element a1 in P` such that the number of times (say, d) it appears in the
sequence is maximal. Note that d > m`. Let P` = {a1, a2, . . . , ac`}. Then the
product of all elements in the sequence is

ad1a
k2
2 · · · akc`

c` = am`
1 ad−m`

1 ak2
2 · · · akc`

c`

= am`
1

(
g` −

c∑̀
i=2

ai

)d−m`

ak2
2 · · · akc`

c`

= g` · (an element of Ic`m`−1) + am`
1

(
−

c∑̀
i=2

ai

)d−m`

ak2
2 · · · akc`

c`

= g` · (an element of Ic`m`−1)±
∑

am`
1 a

k′
2

2 · · · a
k′
c`

c` ,

where k2+. . .+kc` = c`m`−d and k′2+. . .+k′c` = (c`−1)m`. Then there exists
an integer j with 2 ≤ j ≤ c` such that k′j ≥ m`. Now consider the last term.
Since the pair (a1, aj) appears at least m` times in the sequence, we deduce
that the product of all elements in the sequence belongs to I`−1I

c`m`−1 by
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assumption. Hence the right-hand side is contained in JIc`m`−1+I`−1I
c`m`−1.

Hence we have finished the proof. �

Proof of Theorem 2.1. Assume that I satisfies (SV1),(SV2), and (SV3). Then
it also satisfies (B1), (B2) and (B3). Hence the assertion immediately follows
from Theorem 3.1. �

In the proof of the following two examples, we need Theorem 3.1 instead
of Theorem 2.1.

Example. Let K be a field, and let m ≥ 2 be an integer. Consider the hyper-
surface R = K[[x, y, z]]/(xmym − z2m). Let I = (x, y, z)R and set

P0 = {z}, P1 = {x, y}.

Then since (xy)m = z ·z2m−1 ∈ (P0)I
2m−1, by virtue of Theorem 3.1, we can

conclude that (x + y, z) is a (minimal) reduction of I. But we cannot apply
Theorem 2.1 because xy /∈ (z).

Example. Let R = K[x1, x2, x3, x4, x5, x6] be a polynomial ring over a field
K. Consider the ideal

I = (x1x2+x1x3, x1x4, x1x5, x1x6, x2x5, x2x6, x3x4, x3x6, x4x5, x4x6, x5x6),

and set

P0 = {x1x6}, P1 = {x1x5, x2x6},
P2 = {x1x4, x3x6}, P3 = {x2x5, x4x6},
P4 = {x3x4, x5x6}, P5 = {x1x2 + x1x3, x4x5}.

Then, by Theorem 3.1, we can conclude that

J = (x1x6, x1x5+x2x6, x1x4+x3x6, x2x5+x4x6, x3x4+x5x6, x1x2+x1x3+x4x5)

is a (minimal) reduction of I because the product of any two elements in P`

belongs to (P0 ∪ · · · ∪ P`−1)I for every ` = 1, 2, . . . , 5. But we cannot apply
Theorem 2.1 because the product of (x1x2 + x1x3) ∈ P5 and x4x5 ∈ P5 is
not contained in the ideal (a′) for any element a′ ∈ P0 ∪ · · · ∪ P4.

Next, we refine the result by Barile [1, Proposition 1.1].

Theorem 3.3. Assume that R is a local ring. Let P ⊂ R be a finite subset,
and let P0,P1, . . . ,Pr be subsets of P. We set ]P` = c` for all ` and I = (P).
Assume that the following conditions are satisfied:

(Ba1) P = P0 ∪ P1 ∪ · · · ∪ Pr.
(Ba2) ]P0 = 1.
(Ba3) For each ` (0 < ` ≤ r) with c` ≥ 2, there exists an integer n` with 2 ≤

n` ≤ c` such that for arbitrary n` distinct elements p1, p2, . . . , pn`
∈ P`,

there exist an integer `′ with 0 ≤ `′ < `, elements p′ ∈ P`′ and b ∈ In`−1

such that p1p2 · · · pn`
= p′b.
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For 0 ≤ ` ≤ r with c` = 1, we set n` = 2. For each ` = 0, 1, . . . , r, let

A(`) = (a
(`)
ij ) be an (n` − 1) × c` matrix with a

(`)
ij ∈ R. Assume that all

maximal minors of A(`) are units in R. Set

P` = {p(`)1 , p
(`)
2 , . . . , p(`)c`

}, 0 ≤ ` ≤ r,

g
(`)
i =

c∑̀
j=1

a
(`)
ij p

(`)
j , 1 ≤ i ≤ n` − 1, 0 ≤ ` ≤ r,

J = (g
(`)
i : 0 ≤ ` ≤ r, 1 ≤ i ≤ n` − 1).

Then J is a reduction of I.

Remark 3.4. The difference between Theorem 3.3 and the original result of
Barile [1] lies in condition (Ba3). The condition of the original result corre-
sponding to (Ba3) is

(Ba3)’ For each ` (0 < ` ≤ r) with c` ≥ 2, there exists some integer n`, 2 ≤
n` ≤ c` such that for arbitrary n` distinct elements p1, p2, . . . , pn`

∈ P`,
there exist `′ with 0 ≤ `′ < ` and p′ ∈ P`′ , such that p1p2 · · · pn`

∈ (p′).

Proof of Theorem 3.3. It is enough to show that Is+1 ⊂ JIs for some s ≥ 0.
For each ` = 0, 1, . . . , r, we set I` = (P0 ∪ · · · ∪ P`). Then it is enough

to prove that

I
n0n1···nj

j ⊂ I
n0n1···nj−1

j−1 I(n0n1···nj−1)(nj−1) + JIn0n1···nj−1 (3.3)

for each j = 0, 1, . . . , r.
The case of j = 0 is clear because p0 = g0 ∈ J by assumption (Ba2).
Now suppose j = ` ≥ 1 and assume that (3.3) holds for every j ≤ `− 1.

In order to prove (3.3) for j = `, it is enough to show that for arbitrary
n0n1 · · ·n` elements (it is allowed to take the same element more than once)
in P0 ∪ · · · ∪ P`, the product of these elements is contained in the right
hand side of (3.3). We divide these elements into n0n1 · · ·n`−1 sequences of
n` elements, and show that the product of all elements in each sequence is
contained in I`−1I

n`−1 + JIn`−1.
Fix one of these sequences. If this sequence contains an element of P0 ∪

· · · ∪ P`−1 in the sequence, then it is clear that the product is contained
in I`−1I

n`−1. Therefore, we may assume that all elements in the sequence
belong to P`.

In the following, we omit the symbol ` for simplicity. Consider the prod-
uct

µ = pk1
1 pk2

2 · · · pkc
c , k1 + k2 + · · ·+ kc = n, ki ≥ 0

and set

t := t(µ) := ]{i : ki = 1}.
We prove that µ ∈ I`−1I

n−1 + JIn−1 by descending induction on t (0 ≤ t ≤
n).

If t = n, then µ is a product of n distinct elements in P`. It follows that
µ ∈ I`−1I

n−1 by assumption (Ba3).
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Now we consider the case where 0 ≤ t ≤ n − 1. Then we can assume
without loss of generality that k1 = k2 = · · · = kt = 1 and kt+1 ≥ 2. Notice
that t ≤ n−2. Let A′ be the (n−1)×(n−1) submatrix of A consisting of the
first n− 1 columns of A. By assumption, A′ is invertible. Since R is local, it
is possible to transform, by elementary row operations, the matrix A into the
matrix B = (bij) having the same size as A with bij = δij for 1 ≤ i ≤ n− 1,
1 ≤ j ≤ n− 1. Then we put

g′t+1 = pt+1 +
c∑

j=t+2

bt+1,jpj ∈ J.

Since kt+1 ≥ 2, we have

µ = p1p2 · · · ptpt+1

(
g′t+1 −

c∑
j=t+2

bt+1,jpj

)kt+1−1

p
kt+2

t+2 · · · pkc
c

= g′t+1(an element of In−1)

+ p1p2 · · · ptpt+1

(
−

c∑
j=t+2

bt+1,jpj

)kt+1−1

p
kt+2

t+2 · · · pkc
c

= (an element of JIn−1)

+
∑

(an element of R) · p1p2 · · · ptpt+1 p
k′
t+2

t+2 · · · pk
′
c

c ,

where

t+ 1 + k′t+2 + · · ·+ k′c = t+ kt+1 + kt+2 + · · ·+ kc = n.

Then the induction hypothesis implies that the second term in the last equa-
tion is contained in I`−1I

n−1 + JIn−1. This completes the proof. �

In the next example, the analytic spread of I is known, but we can
provide a concrete minimal reduction using Theorem 3.3.

Example. Let r ≥ 2 be an integer. Set I = (x1x2, x2x3, . . . , x2r−1x2r, x2rx1),
the edge ideal of the 2r-cycle (r ≥ 2). Put

P` = {x2`+1x2`+2}, ` = 0, 1, . . . , r − 1,

Pr = {x2x3, x4x5, . . . , x2r−2x2r−1, x2rx1}.
Then the assumptions of Theorem 3.3 are satisfied with n` = 2 for ` =
0, 1, . . . , r − 1 and nr = r. Moreover, since all maximal minors of the matrix

A(r) =


1 1

1 1

. . .
...

1 1


are units in R, from Theorem 3.3, we obtain that

x1x2, x3x4, . . . , x2r−1x2r, x2x3+x2rx1, x4x5+x2rx1, . . . , x2r−2x2r−1+x2rx1

is a reduction of I.
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On the other hand, we have `(I) = 2r−1 due to Vasconcelos [14, Section
1.3.3, p.50] because any 2r-cycle is a bipartite graph. In particular, the above
reduction is a minimal reduction of I.

In the following example, we cannot apply the above theorem, but we
can find a minimal reduction by a similar argument as in the proof.

Example. Let R = K[x1, x2, x3, x4, x5] be a polynomial ring over an infinite
field K, and let a, b, c, d ∈ K \{0} be pairwise distinct elements. Let I be the
edge ideal of the complete graph K5, that is, I is the ideal generated by the
following squarefree monomials of degree 2:

x1x2, x1x3, x1x4, x1x5, x2x3, x2x4, x2x5, x3x4, x3x5, x4x5.

Set

P0 = {x1x2}, P1 = {x2x3, x4x5},
P2 = {x3x4, x1x5}, P3 = {x1x3, x1x4, x2x4, x2x5, x3x5},

and I` = (P0 ∪ · · · ∪ P`) for each ` = 0, 1, 2. If we put

g0 = x1x2,
g1 = x2x3 + x4x5,
g2 = x3x4 + x1x5,
g3 = x1x3 + ax1x4 + bx2x4 + cx2x5 + dx3x5,
g4 = x1x3 + a2x1x4 + b2x2x4 + c2x2x5 + d2x3x5,

then J = (g0, g1, g2, g3, g4) is a (minimal) reduction of I. Indeed, we note
that I32 ⊆ (g0, g1, g2)I

2. Moreover, one can easily see that P3 satisfies the
condition (Ba3) as n3 = 3. Then, by a similar argument as in the proof of
Theorem 3.3, we obtain that I3 = I33 ⊂ I2I

2 + JI2. Therefore

I9 = I32I
6 + JI8 ⊂ (g0, g1, g2)I

2 · I6 + JI8 = JI8.
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