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Abstract. We consider the free boundary problem of the Navier-Stokes equation with surface
tension. Our initial domain €2 is one of a bounded domain, an exterior domain, a perturbed half-
space or a perturbed layer in R" (n > 2). We report a local in time unique existence theorem in the
space W2 = Ly ((0,T), W2(Q2))NW, ((0,T), Lg(2)) with some T' > 0,2 < p < 0o and n < ¢ < oo for
any initial data which satisfy compatibility condition. Our theorem can be proved by the standard
fixed point argument based on the L,-L, maximal regularity theorem for the corresponding linearized
equations. Our results cover the cases of a drop problem and an ocean problem that were studied
by Solonnikov [15, 16, 18, 19], Beale [3] and Tani [21].

Introduction and Results

In this paper we would like to report a result concerning the local in time existence theorem of the free
boundary problems of the motion of a viscous, incompressible fluid for the Navier-Stokes equations. In
the models the effect of surface tension on free surface is included.
Let Qg be an initial domain in R™ (n > 2) and vy be an initial velocity. Both are given. Throughout
the paper, we assume that )y is one of the following domains:

e a bounded domain;
e an exterior domain, that is the complement of €}y is a bounded domain;

e a perturbed half space, that is there exist a constant R > 0 and a function n(z’), ' = (x1,...,x
such that
Qo N BE = {z = (2,2,) €R" | 2, < n(z’)} N BE,
where B = {2 € R" | |z| > R};

e a perturbed layer, that is there exist a constant R > 0 and two functions n;(z’) and na(z’)
that
QN B ={z = (2, 2,) € R" | (') < z,, < ma(2’)} N BE.
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Concerning the boundary of €y, we consider the following cases:
e When )y is a bounded domain, we consider the two cases:

— the boundary of Qg consists of two hypersurfaces I'g and Iy, such that T'g N T, = 0,

— the boundary of ) consists of only one hypersurface I'y. In this case, I';, = (0.

e When () is an exterior domain or a perturbed half-space, the boundary of {2y consists of only one
hypersurface I'y. In this case, I'y, = ().

e When € is a perturbed hypersurface, the boundary of £y consists of two hypersurfaces I'g and T’
such that T'o N T, = (). Moreover, we assume that there exists an h such that Ty C {x € R™ | x,, >
3h} and I'y C {x € R" | z,, < h}.

Our problem is to find the domain € for ¢ > 0 occupied by the fluid, the velocity vector field v(z,t) and
the scalar pressure 0(x,t), x € , satisfying the Navier-Stokes equations:

O+ (v-V)v—DivS(v,0) = f(z,t) inQy, t>0,

dive =0 in Q, t >0,
S(v, vy = oHvy — gaTnlt onIy, t>0,
Vo=v- -1y on Iy, t >0,
v=20 onTYy, t>0,
V]i=0 = Vo in Q, (1.3)

where the boundary of €; is denoted by 9Q; = T'; UT}, with T’y being the free (deformable) part. In
(1.3), v is the unit outward normal to I'y, S(v,8) = pD(v) — 01 is the stress tensor, D(v) = (D(v));; =
Ov;/0xj+0v;/0x; is a deformation tensor, H is the mean curvature which is given by Hvy = Appyz, Apgy
is the Laplace-Beltrami operator on I';, u and o denote the coefficient of viscosity and the coefficient of
surface tension, that are positive constants, respectively, and g, > 0 is the acceleration of gravity. V,, is
the velocity of the evolution of I'; in the direction of outward normal v;. For the differentiation, we use
the symbols: dive = 37", Djvj,

(’U . V)’U = (Z ’UijUl, ey ZU]‘D]‘U”)*, DivS = (Z DjSI,ja ceey ZDJSNJ)*
J=1 j=1 j=1

j=1

where D; = 0/0x;, M* denotes the transposed M, v = (v1,...,v,)* and S = (S;;) (n X n matrix).
The problem (1.3) contains the following special cases:

e If Qg is a bounded domain and T', = () and g, = 0, then (1.3) is a drop problem.
e If Qg is a perturbed layer then (1.3) is an ocean problem.

e If Qg is a perturbed half-space with z,, being the vertical component and I', = ), then (1.3) is an
ocean problem without bottom.

Now, we shall discuss some known results of the unique existence theorem of problem (1.3). Let
W2 Q% (0,T)) = Lp((0,T), W2(Q)) N Wf}((O7 T), Ly(€2)) and for simplicity, we write W7l = W21 (Q x
(0,T)) for some T' > 0 and W2' = W2,. We shall state mainly the case that the surface tension is
taken into account.

First we mention about local in time solvability. Solonnikov formulated the drop problem and proved
the local in time solvability of (1.3) for arbitrary initial data in the Sobolev-Slobodetskii space W22 toolty
with a € (3,1) in [15, 18, 19]. Moglilevskii and Solonnikov [5] proved the local in time solvability in
Holder spaces. Schweizer [10] proved the local in time unique existence for small initial data by using the
semigroup approach. Concerning the ocean problems, Allain [2] proved local in time unique solvability

when n = 2. Tani [21] proved the local in time unique solvability in W22+a’1+% with o € ($,1). Priiss



and Simonett [9] proved local in time unique solvability in W2'' (p > n+2) for two phase free boundary
problem under the assumption of the smallness of the first derivative of a height function.

Concerning the global in time solvability, Solonnikov [16] proved the global in time solvability of the
drop problem in W22 TS Githa € (%, 1) for f = 0 provided that initial data are sufficiently small and
the initial domain € is sufficiently close to a ball. Padula and Solonnikov [8] proved the global in time
unique solvability of the drop problem in Holder spaces by using the mapping of ; on a ball instead of

Lagrangean coordinates. In [3], Beale proved the global in time unique solvability of the ocean problem

in H;’g with 3 < £ < % for o > 0, n = 3 and f = 0 provided that the initial data are sufficiently small.
Beale and Nishida [4] obtained the asymptotic power-like in time decay of the global solutions of the
ocean problem. Tani and Tanaka [22] proved the global in time solvability of the ocean problem in W22+a
with « € (%, 1) for o =2 0 and n = 3 provided that initial data are sufficiently small by using Solonnikov’s
method.

Concerning the problem without surface tension, the local in time unique solvability for any initial
data and the global in time unique solvability for small initial data of the drop problem were proved
by Solonnikov [17] in W2 (n < p < o0), and by Shibata and Shimizu [11], [12] in W2} (2 < p < o0
and n < ¢ < 00). Also the local in time solvability in W' (n < p < o) was proved by Mucha and
Zajaczkowski [6, 7] for the drop problem, and Abels [1] for the ocean problem.

In this paper, we shall report a local in time unique existence theorem of (1.3) in the space Wquz}
(2 <p<ooandn < g < oo) for any initial data which satisfy compatibility condition. In fact, all
the results mentioned above, except for Moglilevskii and Solonnikov [5] and Priiss and Simonett [9], are
obtained in some Sobolev-Slobodetskii space W22 TS Gith o € (3,1), that is in the Ly framework.
So far, there were no results in Wq%’pl in the case that the surface tension is taken into account. But, to
solve the problem (1.3) in the space W23 is important from the viewpoint of lower regularity condition
on the initial data.

Before stating our main results, first of all we shall discuss the formulation of the problem (1.3) by the
Lagrange coordinate, instead of the Euler coordinate. Aside from the dynamical boundary condition, a
further kinematic condition for T'; is satisfied which gives I'y as a set of points © = (&, t), £ € Ty, where
x(&,t) is the solution of the Cauchy problem:

C(li—f =v(z,t), x|4=0 =¢&. (1.4)
This expresses the fact that the free surface I'; consists for all ¢ > 0 of the same fluid particles, which do
not leave it and are not incident on it from €.

From now on, we write Q = g and I' = I'g. The problem (1.3) can therefore be written as an initial
boundary value problem in the given region €2 if we go over the Euler coordinates = € ); to the Lagrange
coordinates ¢ € Q connected with z by (1.4). If a velocity vector field w(,t) = (uq,...,un)* is known
as a function of the Lagrange coordinates £, then this connection can be written in the form:

x:§+/0 w(€, ) dr = Xu(&,1). (1.5)

Passing to the Lagrange coordinates in (1.3) and setting 0(X,(,t),t) = m(&,t), we obtain

0w — Div S(u, ) = Div Q(u) + R(u)Vr + f(Xu(£,¢),t) inQ, t>0,

divu = E(u) = divE(u) in Q, t>0,

(S(u, ) + Q(u)vty, — oHVty + GaXunViu =0 onTl, t>0,

u=0 on I, t >0,

ult=o = up(§) in Q, (1.6)

where ug(§) = vo(z) and X, ,, stands for the n-th component of X,,. Moreover, v, stands for the unit
outer normal to I'y given by vy, = *A7 vy /|! A= yy|, where A is the matrix whose element {a;;} is the
Jacobian of (1.5):

- 6$]‘ - t 8uj
Gk = B, O +/o o5, "



and Q(u), R(r), E(u) and E(u) are nonlinear terms of the following forms:
t t
Qu) = le(/ Vudr)Vu, R(u)= Vg(/ Vudr)
0 0
t t
B(u) = vg,(/ Vudr)Vu, B(u) = v4(/ Vudr)u (1.7)
0 0

with some polynomials V;(-) of fot Vudr, j =1,2,3,4, such as V;(0) = 0 (cf. Appendix in [11]).

We shall discuss a local in time unique existence theorem for the problem (1.6) instead of the problem
(1.3). In order to state our main results precisely, at this point we introduce the function spaces. For
any domain D in R", integer m and 1 < ¢ < oo, Ly(D) and W;*(D) denote the usual Lebesgue space

and Sobolev space of functions defined on D with norms: [|- ||, ., and |||l p,, respectively. For any
q

Banach space X with norm || - || x, X™ stands for the n product space defined by

X"={f=1,-., ) fieX (i=1,...,n)}
The norm of X™ denotes also || - ||x which is defined by the formula: ”;f”X = 2?21 | fillx for any
f=(f1,-.., fn)" € X™. For the space of the pressure term, we introduce qu(D) which is defined by

WH(D) = {u € Lg0c(D) | Vu € Ly(D)"}.

For any interval I C R, integer £ and 1 < p < oo, L,(I,X) and sz(l, X) denote the usual Lebesgue

space and Sobolev space of the X-valued functions defined on I with norms: |||, , ,, and [|- wa(z X
respectively. Set
WiH(D x I) = L,(I, W, (D)) NW(I,Ly(D)),
2,1
oy = g+ [l sy (0 € WE(D X D)), (1.5)

Note that W(?(D) = Ly(D) and WS(I,X) =L,I,X).
The following theorem will be proved in the forthcoming paper [14] based on Theorem 4.1 below.

Theorem 1.1. Let Q@ C R™ (n > 2) be one of a bounded domain, an exterior domain, a perturbed
half-space or a perturbed layer. Let I' € Wz? and 'y € qu. Let2 < p<ooandn < g < oco. Then, for
any initial data ug € [Lq(2), W2(Q)]1-1/p,, which satisfies the compatibility conditions:

divug =0 in Q, D(ug)vo — (D(ug)vo,vo)vo =0 onT, wug=0 onTy, (1.9)

and f € Ly(Ry, Ly(R™))™ such that D;f € Loo(R™ x Ry)™ for j = 1,...,n, there exists a T > 0 such
that the problem (1.6) admits a unique solution

(u,m) € Wi (@ x (0,T) x Ly((0,T), W, ().
Here, [-,-]i—(1/p),p denotes the real interpolation functor.

In the rest of the paper, we shall give a sketch of our idea of the proof of Theorem 1.1.

2 Reduction of the boundary condition to linearized problems

In this section, we shall discuss the reduction of the boundary condition:
(S(u,m) + Q) vty — o HVy + o XunViu = 0, (2.1)

which is the first key step in our proof of Theorem 1.1. Let II; and II, be projections to tangent
hyperplanes of I'; and I'g, which are defined by

th =d-— (d, Vtu)l/tua Hod =d-— (d, llo)Vo. (22)

for an arbitrary vector field d defined on I'; and Iy, respectively. We know the following fact (cf.
Solonnikov [20] and also the appendix below).



Lemma 2.1. If vy - vy # 0, then for arbitrary vector d, d = 0 is equivalent to
IIIL,d =0, vp-d=0. (2.3)
We apply Lemma 2.1 for (2.1). Since we obtain
T, (D) + Q)i = 0 (2.4)
by applying II; to the left hand side of (2.1), the first equation of (2.3) for (2.1) is given by
IopD(u)ry = =Tl (I — Io) (uD(w)vew) — opD(uw) (Ve — 1) — IoIe (Q(u)veu), (2.5)

where we have used ITgIIy = IT,.
On the other hand, we shall consider the innerproduct of the boundary condition with 1. Using the
fact that Hvy, = Ap Xy and substituting (1.5) for (2.1), we obtain

vo - (S(u,m) + Q(u))vew — ovo - (Ary) — Ar) (f + /Ot u(&,7) dT)

— v+ Ap (5 + /Ot (€, 7) dT) T Gallo - (gn n /Ot un(€,7) dT)ym —0. (2.6)

Taking a commutator between Ar and vg-, we have

t t
V0~Ap/ ud’r:Ap(/ Vo'udT)*(AFllo)"/
0 0 0

By (2.6) and (2.7), we obtain

¢ ¢
udT—Q(VF~/ udT)vF'l/o. (2.7)
0

t
vy - S(u, vy —UAF/ vy - udr
0

+ O'[AFVO : /O wdt + vg - (Ar — Ap(t))/o wdr + vg - (Ar — AF(t))€:|
=vo - (S(u, ™) (10 = viw)) — vo - (Q(uw)rin) + oHo(T) — galn

t t
— ga/ Up AT V0 * Vi, — Galn Vo - (Ve — 10) — ZU(VF . / udT) Vr - 1o, (2.8)
0 0

where we have used vg - Aré = Ho(I'). We denote the terms in the bracket of the left hand side of (2.8)
by F(u), that is

t t
F(u) = AFVO . / wdr + [0 (AF - Ap(t))/ wdr + vy - (AF - Ap(t))g.
0 0

In (2.8), since Ap() and Ar contain the second order tangential derivatives of X, in order to avoid the

loss of regularity we apply the inverse operator (m — Ar)~! with sufficiently large number m to F(u).
Namely, we proceed as follows:

t t
vo - S(u, m)vg + o(m — Ar) (l/o-/ udT—l—(m—Ap)_lF(u)) —amuo~/ udr
0 0
=1 - (S(u, 7)(1 — viu)) — 10 - (Q(u)viw) + 0 Ho(T) = gabn
— 0a n AT V0 * Vi — 9aén Vo * (Viw — Vo) — 20 V- dr )Vr - 1. 2.9
g/OUTOt Gabnvo - (v 0) U(F/OUT)FO (2.9)

We introduce a function n by the formula:

t
n:y0~/ wdr + (m — Ap) ' F(u) onT. (2.10)
0



Then, from (2.9) and (2.10), we obtain the two equations on the boundary I' as follows:
vy - S(u, m)vg + o(m — Ar)n
t
=Vo- (S(U’ﬂ(VO - Vtu)) — V- (Q(U>Vtu) + UHO(F) = Yabn — ga/ Up dT
0
¢ t
*ga/ Un AT V0 * Ve — Gan Vo - (Vew — V0) — QU(VF / UdT)Vr 1
0 0
t
+ omuyy - / udr (2.11)
0
Om—vo-u=(m—Ar) " F(u), (2.12)

where F'(u) denotes the derivative of F'(u) with respect to t.
Finally we arrive at the equivalent equation to (1.6) as follows:

Oyu — Div S(u, ) = DivQ(u) + R(u)Vr + f(Xu(&,),t) inQ, t>0,

divu = E(u) = divE(u) inQ, t>0,

o —vo-u=Gu) onT, t >0,

MouD(u)vy = Hi(u) onT, t>0,

vy - S(u, m)vg +o(m — Ar)n = Hy(u,7) + cHo(I') — gu€n on T, ¢ >0,

u=20 only, t >0,

ult=o = uo(§) in Q, n|t=o =0o0n T, (2.13)

where
G(u) = (m — oAr) ™ F(u),
F(u) = Arvg - u— 1 - Apg /Ot wdr +vo - (Ar — Ary)u — vo - Appé,
Hy(u) = ~TIo(TL, — TI) (uD(w)vie) — Mo (D () (v — ) — T TL(Q ()1,

t
Hy(u,m) =vo - (S(u,m) (o — vew)) — vo - (Q(u)vey) — ga/ Uy dT
0
¢ ¢ ¢
— ga/ Up AT Vo * Vi, — Galn Vo - (Ve — Vo) — 20’(V1’* . / udT)Vp - Vg + omuyg - / wdr,
0 0 0
and Q(u), R(u), E(u) and E(u) are nonlinear terms defined by (1.7).

3 Initial flow

In this section, we shall discuss the initial flow to reduce the problem (2.13) to the case where ug(§) =0
and oHo(I') — gu&, = 0. We study the problem in the two steps.
Step 1 Let (uj,m) be a solution to the problem:

Aup — Div S(uq,m) =0 in Q,
divu; =0 in Q,
S(ur,m)vo = (0Ho(I') — gabn)vo on T,
up =0 on I'y. (3.1

If positive number A is large enough, then we know that (3.1) admits a unique solution

(Ul,ﬂ'l) S WqQ(Q) X W;(Q)



which satisfies the estimate
Al + 192201y + 197y @) < Co(oAHo(D s vy + allEnllgrviae) (32
Step 2 We consider the linear time-dependent problem in the time interval (0,2):

Orug — Div S(ug, m) = —Auy  in Q x (0,2)

divug =0 in  x (0,2)

S(ug, m2)vg =0 on T x (0,2)

uz =0 on I'y x (0,2)

uzli=0 = uo(§) — u1(§) in . (3.3)

If the initial data ug € [Lq(€2), W2 ()]1—(1/p),p satisfies the compatibility condition (1.9), then problem
(3.3) admits a unique solution

up € Wi (2% (0,2)), € Ly((0,2), WH(Q)).

Moreover, w5 has an additional information about the regularity at boundary with respect to time variable
t. To state this fact, we give a functional space. Given o > 0, we set

< Dy > u(t) = F (1 + 522 Fu(s)](1),
HS(R,X) ={u€ Ly(R,X):< D, >* u € Ly(R, X)},

”uHHg(R,x) = ” < Dt > u”LP(R,x) + ||u||LP(]R‘X)'
Here and hereafter, 7 and F~! denote the Fourier transform and its inverse formula, respectively. Set

H)Y2(D x R) = HY?(R, Ly(D)) N Ly(R, W2(D)),
HEV2(D x (0,7) ={u|ve H-V*(D xR), u=wvonDx(0,T)},

[l Y = mf{Jloll,1e,, |U€H“/2(D><R) v=u onDx(0,T)}

(DX (0,1))
By using these symbols, we can state the additional property of mo on the boundary I' as follows: There

exists Ty € H,;,’;Q(Q x R) such that 7o|r = mo|r. Moreover, ug, mo and 7o satisfy the estimate:

||“2||W§;(Qx(02 +H7T2HLP((02) Wi(Q) +H7T2||H1 2% (0,00))

< CQ(“UO‘lB(?F;*l/P)(Q)) + O'HHO(P)”W;*U‘I(F) + ga||§n||qu*1/q(p))' (34)

If we set 2 = uy + ug and 7 = 71 + m, then (z,7) satisfies the time-dependent linear equation in the
time interval (0, 2):

Oiz —DivS(z,7) =0 in  x (0,2)

divz =0 in Q x (0,2)

S(z, vy = (6Ho(T) — ga&n)vo on T x (0,2)

z=0 on I'y x (0,2)

z|t=0 = ug in Q. (3.5)

z is our initial flow.

Now, we look for a solution (u,7) of the equation (2.13) of the form: v = z+w and 7 = 7+ & in
the time interval (0,7") with 0 < T' < 1. Setting 7 = 71 + 72, we see that v, 6 and 1 should satisfy the
equations:

Oyw — Div S(w, k) =DivQ(z + w) + R(z + w)V(T + k) + f( X140 (&, 1), 1) in Qx(0,T)
divw = E(z +w) = divE(z + w) in Qx(0,7T)



on—vy-w=G(z+w)+vy-z on T x (0,7T)

IMop D(w)vg = Hy(z + w) onI, t>0
vo - S(w,k)vg +o(m — Ar)n = Hy(z +w, 7+ K) onI, t>0
w=20 onTy, t>0
W= =0in Q, njt=o=0onT. (3.6)

4 L,-L, maximal regularity

In order to solve (3.6) locally in time, we consider the following time-dependent problem:

Ou — Div S(u, ) = f, inQ, t>0,

divu = fg =div fy in Q, t>0,

on—vy-u=d onl, t>0,

S(u,m)vg +o(m—Ap)nvy=h onl, t>0,

u =0 onIy, t >0,

ult=0 = 0, n]t=0 = 0. (4.1)

Our L,-L, maximal regularity result about the problem (4.1) is the following, which will be proved in a
forthcoming paper based on [13].

Theorem 4.1. Let Q@ C R™ (n > 2) be one of a bounded domain, an exterior domain, a perturbed
half-space or a perturbed layer. Let 1 < p,q < oo and r be a number such that n < r < oo and q < r.

Assume that T' € WS’_NI/T and 'y € Wf_l/r, respectively. Let Ty be any positive number and 0 < T < Tj.
Then, for any f, fa, fa, d and h in (4.1) satisfying the regularity conditions:

f € Ly((0,T), Ly(Q)", fa € Lp((0,T), W (), fa € Wp((0,T), Lg()",
d € Ly((0,T), W2 4T)), he H:/2(Qx (0,T)"

and compatibility conditions: ~
falt=o =0, hli=0 =0,

the problem (4.1) admits a unique solution (u,m,n) which satisfies the regularity condition:
ue Wy (2% (0.7)), 7€ Ly((0,1), Wy(Q)),
Qi € Lp((0,T),Wg=V4(I)), € Ly((0,T), Wo=14(T)).

Moreover there exists a T|p = w|p such that 7 € H;7’;/2(Q>< (0,7)), and u, w, n and T satisfy the estimate:
lellwz: xomy T IVl L, 0.0).Lo@) F 1T 10720 0.0
0l 0.y wz=r0 oy Tl 0.7y w0 )
= C( Az, 0,200 Ml 0.y, w2172y
+ Mallzpomywp@ + I Falwpom.zo@) + 1Al o, )

with some constant C independent of T whenever 0 <T < Ty.

Using the standard fixed point argument based on Theorem 4.1 (cf. [11]), we can solve (3.6) locally
in time. Concerning the estimates of the nonlinear terms appearing in (3.6), we use the following facts.

Lemma 4.2. Let n < q < co. Then, for any f, g € W} (Q) and u € Wll_(l/q) (T) and v € Wll_(l/q) (1),
we have

Ifalwi) < Caglfllwralglwe@y:  lwollyi-am gy < Crgllullyi-aro g 0llya-arm

for some constants Cq 4 and Cr 4.



Lemma 4.3. BUC((0,2), [Lq(2), W2 )]1—-(1/p),p) s continuously imbedded into W} (2% (0,2)). Here,
BUC((0,2), X) denotes the set of all bounded uniformly continuous X -valued function on (0,2).

Lemma 4.4. Let 1 <p<oo,n<qg<oo and 0 <T < 1. Set
W (Qx I)={f e Wi (Qx1I):0,f € L,(I, Wy (Q))}.
If f e qu,’pl (QxR), g€ H;,’;/Q(Q x R) and f vanishes when t ¢ [0,2T], then we have

+ 7@/ 0| £, || A=/ D) | £,/ (20)

Loo (R,Lq(£2)) LP(R!WQI(Q))]HQHH;)’;/2(QXR).

1780133 0y S Coall N onsgion

Lemma 4.5. Let Q C R™ (n > 2) be one of a bounded domain, an exterior domain, a perturbed half-
space or a perturbed layer. Assume that T € C%. Let 1 < q < oo and let Wq_l/q(F) be the dual space of
qu,f(l/q/)(F) with (1/q) + (1/¢') = 1. Then, we have the following two assertions:

(1) There exists an m > 1 such that (m — Ar) is a bijection from W(?*(l/q)(l") onto W,;l/q(I‘). (2) For
any f € W;l/q(I‘) and g € qu*(l/q)(f‘) we have

||fg||Wq_1/‘1(1") < CF,q”waq—l/‘l(p)”g”qu—(l/‘I)(p)'

A A proof of Lemma 2.1

Solonnikov used the fact formulated in Lemma 2.1 without proof to formulate his linearization of the
nonlinear problem, that is different from ours given in Section 2. We did not find any proof of Lemma
2.1 and it is important to our formulation, so that we will give its proof below.

To prove Lemma 2.1, we use the following fact about the determinant which can be proved by
mathematical induction.

Lemma A.1l. Let ay,...,a, be n real numbers such that a3 +---a2 < 1 and let di; be the Kronecker’s
delta symbol, that is 6;; = 1 and 6;; = 0 for i # j. Let A be an n x n matriz whose (i,5) component is
57;]‘ — a;ay, that is

2
1—af —aia2 -+ —aia,
—asa; 1 -— a% cee —asay
A =
_ _ 1—a?
an a1 an a9 e a,

Then, det A=1—(3_"_, a?).

j=17j

Now we prove Lemma 2.1. If d = 0, then obviously IIyIl;d = 0 and vy - d = 0. Therefore, we shall
prove the opposite direction. Let ey, ...,e,_1, vgp be an orthonormal basis of R™ and set a; = e; - 14
(j=1,...,n—1). Here, - stands for the standard inner-product of R™. Then, we have

Vv = Zajej + (vt - vo)1o.
j=1

Since v; - vy # 0 and 1y - 1, = 1, we have
n—1
Y el <l (A1)
j=1

Let d be an n-vector such that ITgII;d = 0 and v - d = 0. Then, we have



because vy - d = 0. Since d - v, = Z;:ll (ej-d)(e; 1) = Z;:ll aj(e;-d), we have ILd =d — (d - v)v, =

d— (37—, aj(ej - d))v;. Therefore, we have

ToTd = d — (Y aj(e; - d))ve — (vo - (d— (D aj(e; - d)m))wo
j=1 j=1

n—1

=d- (i aj(e; - d)ve + () _aj(e;-d))(vo-1)ro

j=1

<
—

<
I

1 n-1

=d—) () ajlej w))lex-vi)ex,

n

T
<.
I

where we have used v, = Ez;ll (er - vi)er + (vo - 41 in the final step. Now, substituting (A.2) into the
last formula, we have
n—1 n—1

MoId =Y (ex-d— Y ajar(e; - d))e.
k=1 j=1
Since ITgII;d = 0 and v - d = 0, we have
n—1
er-d— Y ajap(ej-d)=0 (k=1,...,n—1). (A.3)
j=1

If we define the (n — 1) x (n — 1) matrix A by the formula:

1— a% —aias cee =1 Qp_1
—asaq 1-— a% cee —Q9Up—1
A= . )
— — e 1= g2
Gn—-101 Ap—102 an,_1

then noting (A.1) and using Lemma A.1 we have det A # 0. On the other hand, the equation (A.3) is

written in the matrix form: A(e; - d,...,e,_1 - d)* = 0, which implies that e; -d =--- =e,_1 - d = 0.
Since v - d = 0, we have d = 0, which completes the proof of Lemma 2.1. O
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