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Abstract. We consider the free boundary problem of the Navier-Stokes equation with surface
tension. Our initial domain Ω is one of a bounded domain, an exterior domain, a perturbed half-
space or a perturbed layer in Rn (n ≥ 2). We report a local in time unique existence theorem in the
space W 2,1

q,p = Lp((0, T ), W 2
q (Ω))∩W 1

q ((0, T ), Lq(Ω)) with some T > 0, 2 < p < ∞ and n < q < ∞ for
any initial data which satisfy compatibility condition. Our theorem can be proved by the standard
fixed point argument based on the Lp-Lq maximal regularity theorem for the corresponding linearized
equations. Our results cover the cases of a drop problem and an ocean problem that were studied
by Solonnikov [15, 16, 18, 19], Beale [3] and Tani [21].

1 Introduction and Results

In this paper we would like to report a result concerning the local in time existence theorem of the free
boundary problems of the motion of a viscous, incompressible fluid for the Navier-Stokes equations. In
the models the effect of surface tension on free surface is included.

Let Ω0 be an initial domain in Rn (n ≥ 2) and v0 be an initial velocity. Both are given. Throughout
the paper, we assume that Ω0 is one of the following domains:

• a bounded domain;

• an exterior domain, that is the complement of Ω0 is a bounded domain;

• a perturbed half space, that is there exist a constant R > 0 and a function η(x′), x′ = (x1, . . . , xn−1)
such that

Ω0 ∩ BR = {x = (x′, xn) ∈ Rn | xn < η(x′)} ∩ BR, (1.1)

where BR = {x ∈ Rn | |x| > R};

• a perturbed layer, that is there exist a constant R > 0 and two functions η1(x′) and η2(x′) such
that

Ω0 ∩ BR = {x = (x′, xn) ∈ Rn | η1(x′) < xn < η2(x′)} ∩ BR. (1.2)
∗Partially supported by JSPS Grant-in-aid for Scientific Research (C) #20540164.
MOS Subject Classification: 35Q30, 35R35, 76D05.
Keywords: Navier-Stokes equation, free boundary problem, surface tension, local in time solvability.

1



Concerning the boundary of Ω0, we consider the following cases:

• When Ω0 is a bounded domain, we consider the two cases:

– the boundary of Ω0 consists of two hypersurfaces Γ0 and Γb such that Γ0 ∩ Γb = ∅,
– the boundary of Ω consists of only one hypersurface Γ0. In this case, Γb = ∅.

• When Ω0 is an exterior domain or a perturbed half-space, the boundary of Ω0 consists of only one
hypersurface Γ0. In this case, Γb = ∅.

• When Ω0 is a perturbed hypersurface, the boundary of Ω0 consists of two hypersurfaces Γ0 and Γb

such that Γ0 ∩ Γb = ∅. Moreover, we assume that there exists an h such that Γ0 ⊂ {x ∈ Rn | xn >
3h} and Γb ⊂ {x ∈ Rn | xn < h}.

Our problem is to find the domain Ωt for t > 0 occupied by the fluid, the velocity vector field v(x, t) and
the scalar pressure θ(x, t), x ∈ Ωt, satisfying the Navier-Stokes equations:

∂tv + (v · ∇)v − DivS(v, θ) = f(x, t) in Ωt, t > 0,

div v = 0 in Ωt, t > 0,

S(v, θ)νt = σHνt − gaxnνt on Γt, t > 0,

Vn = v · νt on Γt, t > 0,

v = 0 on Γb, t > 0,

v|t=0 = v0 in Ω0, (1.3)

where the boundary of Ωt is denoted by ∂Ωt = Γt ∪ Γb with Γt being the free (deformable) part. In
(1.3), νt is the unit outward normal to Γt, S(v, θ) = µD(v) − θI is the stress tensor, D(v) = (D(v))ij =
∂vi/∂xj+∂vj/∂xi is a deformation tensor, H is the mean curvature which is given by Hνt = ∆Γ(t)x, ∆Γ(t)

is the Laplace-Beltrami operator on Γt, µ and σ denote the coefficient of viscosity and the coefficient of
surface tension, that are positive constants, respectively, and ga > 0 is the acceleration of gravity. Vn is
the velocity of the evolution of Γt in the direction of outward normal νt. For the differentiation, we use
the symbols: div v =

∑n
j=1 Djvj ,

(v · ∇)v = (
n∑

j=1

vjDjv1, . . . ,

n∑
j=1

vjDjvn)∗, Div S = (
n∑

j=1

DjS1,j , . . . ,

n∑
j=1

DjSn,j)∗

where Dj = ∂/∂xj , M∗ denotes the transposed M , v = (v1, . . . , vn)∗ and S = (Sij) (n × n matrix).
The problem (1.3) contains the following special cases:

• If Ω0 is a bounded domain and Γb = ∅ and ga = 0, then (1.3) is a drop problem.

• If Ω0 is a perturbed layer then (1.3) is an ocean problem.

• If Ω0 is a perturbed half-space with xn being the vertical component and Γb = ∅, then (1.3) is an
ocean problem without bottom.

Now, we shall discuss some known results of the unique existence theorem of problem (1.3). Let
W 2,1

q,p (Ω× (0, T )) = Lp((0, T ), W 2
q (Ω))∩W 1

p ((0, T ), Lq(Ω)) and for simplicity, we write W 2,1
q,p = W 2,1

q,p (Ω×
(0, T )) for some T > 0 and W 2,1

p = W 2,1
p,p . We shall state mainly the case that the surface tension is

taken into account.
First we mention about local in time solvability. Solonnikov formulated the drop problem and proved

the local in time solvability of (1.3) for arbitrary initial data in the Sobolev-Slobodetskii space W
2+α,1+ α

2
2

with α ∈ ( 1
2 , 1) in [15, 18, 19]. Moglilevskĭı and Solonnikov [5] proved the local in time solvability in

Hölder spaces. Schweizer [10] proved the local in time unique existence for small initial data by using the
semigroup approach. Concerning the ocean problems, Allain [2] proved local in time unique solvability
when n = 2. Tani [21] proved the local in time unique solvability in W

2+α,1+ α
2

2 with α ∈ ( 1
2 , 1). Prüss
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and Simonett [9] proved local in time unique solvability in W 2,1
p (p > n+2) for two phase free boundary

problem under the assumption of the smallness of the first derivative of a height function.
Concerning the global in time solvability, Solonnikov [16] proved the global in time solvability of the

drop problem in W
2+α,1+ α

2
2 with α ∈ ( 1

2 , 1) for f = 0 provided that initial data are sufficiently small and
the initial domain Ω0 is sufficiently close to a ball. Padula and Solonnikov [8] proved the global in time
unique solvability of the drop problem in Hölder spaces by using the mapping of Ωt on a ball instead of
Lagrangean coordinates. In [3], Beale proved the global in time unique solvability of the ocean problem

in H
`, `

2
2 with 3 < ` < 7

2 for σ > 0, n = 3 and f = 0 provided that the initial data are sufficiently small.
Beale and Nishida [4] obtained the asymptotic power-like in time decay of the global solutions of the
ocean problem. Tani and Tanaka [22] proved the global in time solvability of the ocean problem in W 2+α

2

with α ∈ ( 1
2 , 1) for σ = 0 and n = 3 provided that initial data are sufficiently small by using Solonnikov’s

method.
Concerning the problem without surface tension, the local in time unique solvability for any initial

data and the global in time unique solvability for small initial data of the drop problem were proved
by Solonnikov [17] in W 2,1

p (n < p < ∞), and by Shibata and Shimizu [11], [12] in W 2,1
q,p (2 < p < ∞

and n < q < ∞). Also the local in time solvability in W 2,1
p (n < p < ∞) was proved by Mucha and

Zaja̧czkowski [6, 7] for the drop problem, and Abels [1] for the ocean problem.
In this paper, we shall report a local in time unique existence theorem of (1.3) in the space W 2,1

q,p

(2 < p < ∞ and n < q < ∞) for any initial data which satisfy compatibility condition. In fact, all
the results mentioned above, except for Moglilevskĭı and Solonnikov [5] and Prüss and Simonett [9], are
obtained in some Sobolev-Slobodetskii space W

2+α,1+ α
2

2 with α ∈ ( 1
2 , 1), that is in the L2 framework.

So far, there were no results in W 2,1
q,p in the case that the surface tension is taken into account. But, to

solve the problem (1.3) in the space W 2,1
q,p is important from the viewpoint of lower regularity condition

on the initial data.
Before stating our main results, first of all we shall discuss the formulation of the problem (1.3) by the

Lagrange coordinate, instead of the Euler coordinate. Aside from the dynamical boundary condition, a
further kinematic condition for Γt is satisfied which gives Γt as a set of points x = x(ξ, t), ξ ∈ Γ0, where
x(ξ, t) is the solution of the Cauchy problem:

dx

dt
= v(x, t), x|t=0 = ξ. (1.4)

This expresses the fact that the free surface Γt consists for all t > 0 of the same fluid particles, which do
not leave it and are not incident on it from Ωt.

From now on, we write Ω = Ω0 and Γ = Γ0. The problem (1.3) can therefore be written as an initial
boundary value problem in the given region Ω if we go over the Euler coordinates x ∈ Ωt to the Lagrange
coordinates ξ ∈ Ω connected with x by (1.4). If a velocity vector field u(ξ, t) = (u1, . . . , un)∗ is known
as a function of the Lagrange coordinates ξ, then this connection can be written in the form:

x = ξ +
∫ t

0

u(ξ, τ) dτ ≡ Xu(ξ, t). (1.5)

Passing to the Lagrange coordinates in (1.3) and setting θ(Xu(ξ, t), t) = π(ξ, t), we obtain

∂tu − DivS(u, π) = Div Q(u) + R(u)∇π + f(Xu(ξ, t), t) in Ω, t > 0,

div u = E(u) = divẼ(u) in Ω, t > 0,

(S(u, π) + Q(u))νtu − σHνtu + gaXu,nνtu = 0 on Γ, t > 0,

u = 0 on Γb, t > 0,

u|t=0 = u0(ξ) in Ω, (1.6)

where u0(ξ) = v0(x) and Xu,n stands for the n-th component of Xu. Moreover, νtu stands for the unit
outer normal to Γt given by νtu = tA−1ν0/|tA−1ν0|, where A is the matrix whose element {ajk} is the
Jacobian of (1.5):

ajk =
∂xj

∂ξk
= δjk +

∫ t

0

∂uj

∂ξk
dτ,
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and Q(u), R(π), E(u) and Ẽ(u) are nonlinear terms of the following forms:

Q(u) = µV1(
∫ t

0

∇u dτ)∇u, R(u) = V2(
∫ t

0

∇u dτ)

E(u) = V3(
∫ t

0

∇u dτ)∇u, Ẽ(u) = V4(
∫ t

0

∇u dτ)u (1.7)

with some polynomials Vj(·) of
∫ t

0
∇u dτ , j = 1, 2, 3, 4, such as Vj(0) = 0 (cf. Appendix in [11]).

We shall discuss a local in time unique existence theorem for the problem (1.6) instead of the problem
(1.3). In order to state our main results precisely, at this point we introduce the function spaces. For
any domain D in Rn, integer m and 1 ≤ q ≤ ∞, Lq(D) and Wm

q (D) denote the usual Lebesgue space
and Sobolev space of functions defined on D with norms: ‖ · ‖

Lq(D) and ‖ · ‖
W m

q (D) , respectively. For any
Banach space X with norm ‖ · ‖X , Xn stands for the n product space defined by

Xn = {f = (f1, . . . , fn)∗ | fi ∈ X (i = 1, . . . , n)}.

The norm of Xn denotes also ‖ · ‖X which is defined by the formula: ‖f‖X =
∑n

j=1 ‖fj‖X for any
f = (f1, . . . , fn)∗ ∈ Xn. For the space of the pressure term, we introduce Ŵ 1

q (D) which is defined by

Ŵ 1
q (D) = {u ∈ Lq,loc(D) | ∇u ∈ Lq(D)n}.

For any interval I ⊂ R, integer ` and 1 ≤ p ≤ ∞, Lp(I,X) and W `
p(I,X) denote the usual Lebesgue

space and Sobolev space of the X-valued functions defined on I with norms: ‖ · ‖
Lp(I,X) and ‖ · ‖

W `
p(I,X)

,
respectively. Set

Wm,`
q,p (D × I) = Lp(I,Wm

q (D)) ∩ W `
p(I, Lq(D)),

‖u‖
W

m,`
q,p (D×I)

= ‖u‖
Lp(I,W m

q (D)) + ‖u‖
W `

p(I,Lq(D))
(u ∈ W 2,1

q,p (D × I)). (1.8)

Note that W 0
q (D) = Lq(D) and W 0

p (I,X) = Lp(I,X).
The following theorem will be proved in the forthcoming paper [14] based on Theorem 4.1 below.

Theorem 1.1. Let Ω ⊂ Rn (n ≥ 2) be one of a bounded domain, an exterior domain, a perturbed
half-space or a perturbed layer. Let Γ ∈ W 3

q and Γb ∈ W 2
q . Let 2 < p < ∞ and n < q < ∞. Then, for

any initial data u0 ∈ [Lq(Ω), W 2
q (Ω)]1−1/p,p which satisfies the compatibility conditions:

div u0 = 0 in Ω, D(u0)ν0 − (D(u0)ν0, ν0)ν0 = 0 on Γ, u0 = 0 on Γb, (1.9)

and f ∈ Lp(R+, Lq(Rn))n such that Djf ∈ L∞(Rn × R+)n for j = 1, . . . , n, there exists a T > 0 such
that the problem (1.6) admits a unique solution

(u, π) ∈ W 2,1
q,p (Ω × (0, T )) × Lp((0, T ), Ŵ 1

q (Ω)).

Here, [·, ·]1−(1/p),p denotes the real interpolation functor.

In the rest of the paper, we shall give a sketch of our idea of the proof of Theorem 1.1.

2 Reduction of the boundary condition to linearized problems

In this section, we shall discuss the reduction of the boundary condition:

(S(u, π) + Q(u))νtu − σHνtu + gaXu,nνtu = 0, (2.1)

which is the first key step in our proof of Theorem 1.1. Let Πt and Π0 be projections to tangent
hyperplanes of Γt and Γ0, which are defined by

Πtd = d − (d, νtu)νtu, Π0d = d − (d, ν0)ν0. (2.2)

for an arbitrary vector field d defined on Γt and Γ0, respectively. We know the following fact (cf.
Solonnikov [20] and also the appendix below).

4



Lemma 2.1. If νt · ν0 6= 0, then for arbitrary vector d, d = 0 is equivalent to

Π0Πtd = 0, ν0 · d = 0. (2.3)

We apply Lemma 2.1 for (2.1). Since we obtain

Πt(µD(u) + Q(u))νtu = 0 (2.4)

by applying Πt to the left hand side of (2.1), the first equation of (2.3) for (2.1) is given by

Π0µD(u)ν0 = −Π0(Πt − Π0)(µD(u)νtu) − Π0µD(u)(νtu − ν0) − Π0Πt(Q(u)νtu), (2.5)

where we have used Π0Π0 = Π0.
On the other hand, we shall consider the innerproduct of the boundary condition with ν0. Using the

fact that Hνtu = ∆Γ(t)Xu and substituting (1.5) for (2.1), we obtain

ν0 · (S(u, π) + Q(u))νtu − σν0 · (∆Γ(t) − ∆Γ)
(
ξ +

∫ t

0

u(ξ, τ) dτ
)

− σν0 · ∆Γ

(
ξ +

∫ t

0

u(ξ, τ) dτ
)

+ gaν0 ·
(
ξn +

∫ t

0

un(ξ, τ) dτ
)
νtu = 0. (2.6)

Taking a commutator between ∆Γ and ν0·, we have

ν0 · ∆Γ

∫ t

0

u dτ = ∆Γ

(∫ t

0

ν0 · u dτ
)
− (∆Γν0) ·

∫ t

0

u dτ − 2
(
∇Γ ·

∫ t

0

u dτ
)
∇Γ · ν0. (2.7)

By (2.6) and (2.7), we obtain

ν0 · S(u, π)ν0 − σ∆Γ

∫ t

0

ν0 · u dτ

+ σ
[
∆Γν0 ·

∫ t

0

u dτ + ν0 · (∆Γ − ∆Γ(t))
∫ t

0

u dτ + ν0 · (∆Γ − ∆Γ(t))ξ
]

= ν0 · (S(u, π)(ν0 − νtu)) − ν0 · (Q(u)νtu) + σH0(Γ) − gaξn

− ga

∫ t

0

un dτ ν0 · νtu − gaξn ν0 · (νtu − ν0) − 2σ
(
∇Γ ·

∫ t

0

u dτ
)
∇Γ · ν0, (2.8)

where we have used ν0 · ∆Γξ = H0(Γ). We denote the terms in the bracket of the left hand side of (2.8)
by F (u), that is

F (u) = ∆Γν0 ·
∫ t

0

u dτ + ν0 · (∆Γ − ∆Γ(t))
∫ t

0

u dτ + ν0 · (∆Γ − ∆Γ(t))ξ.

In (2.8), since ∆Γ(t) and ∆Γ contain the second order tangential derivatives of Xu, in order to avoid the
loss of regularity we apply the inverse operator (m − ∆Γ)−1 with sufficiently large number m to F (u).
Namely, we proceed as follows:

ν0 · S(u, π)ν0 + σ(m − ∆Γ)
(

ν0 ·
∫ t

0

u dτ + (m − ∆Γ)−1F (u)
)
− σmν0 ·

∫ t

0

u dτ

= ν0 · (S(u, π)(ν0 − νtu)) − ν0 · (Q(u)νtu) + σH0(Γ) − gaξn

− ga

∫ t

0

un dτ ν0 · νtu − gaξn ν0 · (νtu − ν0) − 2σ
(
∇Γ ·

∫ t

0

u dτ
)
∇Γ · ν0. (2.9)

We introduce a function η by the formula:

η = ν0 ·
∫ t

0

u dτ + (m − ∆Γ)−1F (u) on Γ. (2.10)
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Then, from (2.9) and (2.10), we obtain the two equations on the boundary Γ as follows:

ν0 · S(u, π)ν0 + σ(m − ∆Γ)η

= ν0 · (S(u, π)(ν0 − νtu)) − ν0 · (Q(u)νtu) + σH0(Γ) − gaξn − ga

∫ t

0

un dτ

− ga

∫ t

0

un dτ ν0 · νtu − gaξn ν0 · (νtu − ν0) − 2σ
(
∇Γ ·

∫ t

0

u dτ
)
∇Γ · ν0

+ σmν0 ·
∫ t

0

u dτ (2.11)

∂tη − ν0 · u = (m − ∆Γ)−1Ḟ (u), (2.12)

where Ḟ (u) denotes the derivative of F (u) with respect to t.
Finally we arrive at the equivalent equation to (1.6) as follows:

∂tu − DivS(u, π) = Div Q(u) + R(u)∇π + f(Xu(ξ, t), t) in Ω, t > 0,

div u = E(u) = divẼ(u) in Ω, t > 0,

∂tη − ν0 · u = G(u) on Γ, t > 0,

Π0µD(u)ν0 = Ht(u) on Γ, t > 0,

ν0 · S(u, π)ν0 + σ(m − ∆Γ)η = Hn(u, π) + σH0(Γ) − gaξn on Γ, t > 0,

u = 0 on Γb, t > 0,

u|t=0 = u0(ξ) in Ω, η|t=0 = 0 on Γ, (2.13)

where

G(u) = (m − σ∆Γ)−1Ḟ (u),

Ḟ (u) = ∆Γν0 · u − ν0 · ∆̇Γ(t)

∫ t

0

u dτ + ν0 · (∆Γ − ∆Γ(t))u − ν0 · ∆̇Γ(t)ξ,

Ht(u) = −Π0(Πt − Π0)(µD(u)νtu) − Π0(µD(u)(νtu − ν0)) − Π0Πt(Q(u)νtu),

Hn(u, π) = ν0 · (S(u, π)(ν0 − νtu)) − ν0 · (Q(u)νtu) − ga

∫ t

0

un dτ

− ga

∫ t

0

un dτ ν0 · νtu − gaξn ν0 · (νtu − ν0) − 2σ
(
∇Γ ·

∫ t

0

u dτ
)
∇Γ · ν0 + σmν0 ·

∫ t

0

u dτ,

and Q(u), R(u), E(u) and Ẽ(u) are nonlinear terms defined by (1.7).

3 Initial flow

In this section, we shall discuss the initial flow to reduce the problem (2.13) to the case where u0(ξ) = 0
and σH0(Γ) − gaξn = 0. We study the problem in the two steps.

Step 1 Let (u1, π1) be a solution to the problem:

λu1 − Div S(u1, π1) = 0 in Ω,

div u1 = 0 in Ω,

S(u1, π1)ν0 = (σH0(Γ) − gaξn)ν0 on Γ,

u1 = 0 on Γb. (3.1)

If positive number λ is large enough, then we know that (3.1) admits a unique solution

(u1, π1) ∈ W 2
q (Ω) × Ŵ 1

q (Ω)
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which satisfies the estimate

|λ|‖u1‖Lq(Ω) + ‖∇2u1‖Lq(Ω) + ‖∇π1‖Lq(Ω) ≤ C1(σ‖H0(Γ)‖
W

1−1/q
q (Γ)

+ ga‖ξn‖W
1−1/q
q (Γ)

). (3.2)

Step 2 We consider the linear time-dependent problem in the time interval (0, 2):

∂tu2 − Div S(u2, π2) = −λu1 in Ω × (0, 2)
div u2 = 0 in Ω × (0, 2)
S(u2, π2)ν0 = 0 on Γ × (0, 2)
u2 = 0 on Γb × (0, 2)
u2|t=0 = u0(ξ) − u1(ξ) in Ω. (3.3)

If the initial data u0 ∈ [Lq(Ω),W 2
q (Ω)]1−(1/p),p satisfies the compatibility condition (1.9), then problem

(3.3) admits a unique solution

u2 ∈ W 2,1
q,p (Ω × (0, 2)), π2 ∈ Lp((0, 2), Ŵ 1

q (Ω)).

Moreover, π2 has an additional information about the regularity at boundary with respect to time variable
t. To state this fact, we give a functional space. Given α ≥ 0, we set

< Dt >α u(t) = F−1[(1 + s2)α/2Fu(s)](t),
Hα

p (R, X) = {u ∈ Lp(R, X) : < Dt >α u ∈ Lp(R, X)},
‖u‖

Hα
p (R,X) = ‖ < Dt >α u‖

Lp(R,X) + ‖u‖
Lp(R,X) .

Here and hereafter, F and F−1 denote the Fourier transform and its inverse formula, respectively. Set

H1,1/2
q,p (D × R) = H1/2

p (R, Lq(D)) ∩ Lp(R,W 1
q (D)),

H1,1/2
q,p (D × (0, T )) = {u | v ∈ H1,1/2

q,p (D × R), u = v on D × (0, T )},

‖u‖
H

1,1/2
q,p,0 (D×(0,T ))

= inf {‖v‖
H

1,1/2
q,p (D×R)

| v ∈ H1,1/2
q,p (D × R), v = u on D × (0, T )}.

By using these symbols, we can state the additional property of π2 on the boundary Γ as follows: There
exists π̄2 ∈ H

1,1/2
q,p (Ω × R) such that π̄2|Γ = π2|Γ. Moreover, u2, π2 and π̄2 satisfy the estimate:

‖u2‖W 2,1
q,p (Ω×(0,2)) + ‖π2‖Lp((0,2),Ŵ 1

q (Ω)) + ‖π̄2‖H
1,1/2
q,p (Ω×(0,∞))

≤ C2(‖u0‖B
2(1−1/p)
q,p (Ω))

+ σ‖H0(Γ)‖
W

1−1/q
q (Γ)

+ ga‖ξn‖W
1−1/q
q (Γ)

). (3.4)

If we set z = u1 + u2 and τ = π1 + π2, then (z, τ) satisfies the time-dependent linear equation in the
time interval (0, 2):

∂tz − Div S(z, τ) = 0 in Ω × (0, 2)
div z = 0 in Ω × (0, 2)
S(z, τ)ν0 = (σH0(Γ) − gaξn)ν0 on Γ × (0, 2)
z = 0 on Γb × (0, 2)
z|t=0 = u0 in Ω. (3.5)

z is our initial flow.
Now, we look for a solution (u, π) of the equation (2.13) of the form: u = z + w and π = τ + κ in

the time interval (0, T ) with 0 < T ≤ 1. Setting τ̄ = π1 + π̄2, we see that v, θ and η should satisfy the
equations:

∂tw − Div S(w, κ) = Div Q(z + w) + R(z + w)∇(τ + κ) + f(Xz+w(ξ, t), t) in Ω × (0, T )

div w = E(z + w) = divẼ(z + w) in Ω × (0, T )
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∂tη − ν0 · w = G(z + w) + ν0 · z on Γ × (0, T )
Π0µD(w)ν0 = Ht(z + w) on Γ, t > 0
ν0 · S(w, κ)ν0 + σ(m − ∆Γ)η = Hn(z + w, τ̄ + κ) on Γ, t > 0
w = 0 on Γb, t > 0
w|t=0 = 0 in Ω, η|t=0 = 0 on Γ. (3.6)

4 Lp-Lq maximal regularity

In order to solve (3.6) locally in time, we consider the following time-dependent problem:

∂tu − DivS(u, π) = f, in Ω, t > 0,

div u = fd = div f̃d in Ω, t > 0,

∂tη − ν0 · u = d on Γ, t > 0,

S(u, π)ν0 + σ(m − ∆Γ)η ν0 = h on Γ, t > 0,

u = 0 on Γb, t > 0,

u|t=0 = 0, η|t=0 = 0. (4.1)

Our Lp-Lq maximal regularity result about the problem (4.1) is the following, which will be proved in a
forthcoming paper based on [13].

Theorem 4.1. Let Ω ⊂ Rn (n ≥ 2) be one of a bounded domain, an exterior domain, a perturbed
half-space or a perturbed layer. Let 1 < p, q < ∞ and r be a number such that n < r < ∞ and q ≤ r.
Assume that Γ ∈ W

3−1/r
r and Γb ∈ W

2−1/r
r , respectively. Let T0 be any positive number and 0 < T ≤ T0.

Then, for any f , fd, f̃d, d and h in (4.1) satisfying the regularity conditions:

f ∈ Lp((0, T ), Lq(Ω))n, fd ∈ Lp((0, T ),W 1
q (Ω)), f̃d ∈ W 1

p ((0, T ), Lq(Ω))n,

d ∈ Lp((0, T ), W 2−1/q
q (Γ)), h ∈ H1,1/2

q,p (Ω × (0, T ))n

and compatibility conditions:
f̃d|t=0 = 0, h|t=0 = 0,

the problem (4.1) admits a unique solution (u, π, η) which satisfies the regularity condition:

u ∈ W 2,1
q,p (Ω × (0, T )), π ∈ Lp((0, T ), Ŵ 1

q (Ω)),

∂tη ∈ Lp((0, T ),W 2−1/q
q (Γ)), η ∈ Lp((0, T ), W 3−1/q

q (Γ)).

Moreover there exists a π̄|Γ = π|Γ such that π̄ ∈ H
1,1/2
q,p (Ω×(0, T )), and u, π, η and π̄ satisfy the estimate:

‖u‖W 2,1
q,p (Ω×(0,T )) + ‖∇π‖Lp((0,T ),Lq(Ω)) + ‖π̄‖

H
1,1/2
q,p (Ω×(0,T ))

+ ‖∂tη‖Lp((0,T ),W
2−(1/q)
q (Γ))

+ ‖η‖
Lp((0,T ),W

3−(1/q)
q (Γ))

≤ C
(
‖f‖Lp((0,T ),Lq(Ω)) + ‖d‖

Lp((0,T ),W
2−1/q
q (Γ))

+ ‖fd‖Lp((0,T ),W 1
q (Ω)) + ‖f̃d‖W 1

p ((0,T ),Lq(Ω)) + ‖h‖
H

1,1/2
q,p (Ω×(0,T ))

)
.

with some constant C independent of T whenever 0 < T ≤ T0.

Using the standard fixed point argument based on Theorem 4.1 (cf. [11]), we can solve (3.6) locally
in time. Concerning the estimates of the nonlinear terms appearing in (3.6), we use the following facts.

Lemma 4.2. Let n < q < ∞. Then, for any f , g ∈ W 1
q (Ω) and u ∈ W 1

1−(1/q)(Γ) and v ∈ W 1
1−(1/q)(Γ),

we have

‖fg‖W 1
q (Ω) ≤ CΩ,q‖f‖W 1

q (Ω)‖g‖W 1
q (Ω), ‖uv‖

W
1−(1/q)
q (Γ)

≤ CΓ,q‖u‖W
1−(1/q)
q (Γ)

‖v‖
W

1−(1/q)
q (Γ)

for some constants CΩ,q and CΓ,q.
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Lemma 4.3. BUC((0, 2), [Lq(Ω), W 2
q (Ω)]1−(1/p),p) is continuously imbedded into W 2,1

q,p (Ω×(0, 2)). Here,
BUC((0, 2), X) denotes the set of all bounded uniformly continuous X-valued function on (0, 2).

Lemma 4.4. Let 1 < p < ∞, n < q < ∞ and 0 < T 5 1. Set

Ŵ 1,1
q,p (Ω × I) = {f ∈ W 1,1

q,∞(Ω × I) : ∂tf ∈ Lp(I,W 1
q (Ω))}.

If f ∈ Ŵ 1,1
q,p (Ω × R), g ∈ H

1,1/2
q,p (Ω × R) and f vanishes when t 6∈ [0, 2T ], then we have

‖fg‖
H

1,1/2
q,p (Ω×R)

5 Cp,q[‖f‖L∞(R,W1
q (Ω))

+ T (q−n)/(pq)‖ft‖(1−n/(2q))
L∞(R,Lq(Ω))

‖ft‖n/(2q)

Lp(R,W1
q (Ω))

]‖g‖
H

1,1/2
q,p (Ω×R)

.

Lemma 4.5. Let Ω ⊂ Rn (n ≥ 2) be one of a bounded domain, an exterior domain, a perturbed half-
space or a perturbed layer. Assume that Γ ∈ C2. Let 1 < q < ∞ and let W

−1/q
q (Γ) be the dual space of

W
1−(1/q′)
q′ (Γ) with (1/q) + (1/q′) = 1. Then, we have the following two assertions:

(1) There exists an m ≥ 1 such that (m−∆Γ) is a bijection from W
2−(1/q)
q (Γ) onto W

−1/q
q (Γ). (2) For

any f ∈ W
−1/q
q (Γ) and g ∈ W

1−(1/q)
q (Γ) we have

‖fg‖
W

−1/q
q (Γ)

≤ CΓ,q‖f‖W
−1/q
q (Γ)

‖g‖
W

1−(1/q)
q (Γ)

.

A A proof of Lemma 2.1

Solonnikov used the fact formulated in Lemma 2.1 without proof to formulate his linearization of the
nonlinear problem, that is different from ours given in Section 2. We did not find any proof of Lemma
2.1 and it is important to our formulation, so that we will give its proof below.

To prove Lemma 2.1, we use the following fact about the determinant which can be proved by
mathematical induction.

Lemma A.1. Let a1, . . . , an be n real numbers such that a2
1 + · · · a2

n < 1 and let δij be the Kronecker’s
delta symbol, that is δii = 1 and δij = 0 for i 6= j. Let A be an n × n matrix whose (i, j) component is
δij − aiaj, that is

A =


1 − a2

1 −a1a2 · · · −a1an

−a2a1 1 − a2
2 · · · −a2an

...
...

. . .
...

−ana1 −ana2 · · · 1 − a2
n


Then, det A = 1 − (

∑n
j=1 a2

j ).

Now we prove Lemma 2.1. If d = 0, then obviously Π0Πtd = 0 and ν0 · d = 0. Therefore, we shall
prove the opposite direction. Let e1, . . . , en−1, ν0 be an orthonormal basis of Rn and set aj = ej · νt

(j = 1, . . . , n − 1). Here, · stands for the standard inner-product of Rn. Then, we have

νt =
∑
j=1

ajej + (νt · ν0)ν0.

Since νt · ν0 6= 0 and νt · νt = 1, we have
n−1∑
j=1

a2
j < 1. (A.1)

Let d be an n-vector such that Π0Πtd = 0 and ν0 · d = 0. Then, we have

d =
n−1∑
j=1

(ej · d)ej (A.2)
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because ν0 · d = 0. Since d · νt =
∑n−1

j=1 (ej · d)(ej · νt) =
∑n−1

j=1 aj(ej · d), we have Πtd = d − (d · νt)νt =
d − (

∑n
j=1 aj(ej · d))νt. Therefore, we have

Π0Πtd = d − (
n∑

j=1

aj(ej · d))νt − (ν0 · (d − (
n∑

j=1

aj(ej · d))νt))ν0

= d − (
n−1∑
j=1

aj(ej · d))νt + (
n−1∑
j=1

aj(ej · d))(ν0 · νt)ν0

= d −
n−1∑
k=1

(
n−1∑
j=1

aj(ej · νt))(ek · νt)ek,

where we have used νt =
∑n−1

k=1(ek · νt)ek + (ν0 · νt)ν0 in the final step. Now, substituting (A.2) into the
last formula, we have

Π0Πtd =
n−1∑
k=1

(ek · d −
n−1∑
j=1

ajak(ej · d))ek.

Since Π0Πtd = 0 and ν0 · d = 0, we have

ek · d −
n−1∑
j=1

ajak(ej · d) = 0 (k = 1, . . . , n − 1). (A.3)

If we define the (n − 1) × (n − 1) matrix A by the formula:

A =


1 − a2

1 −a1a2 · · · −a1an−1

−a2a1 1 − a2
2 · · · −a2an−1

...
...

. . .
...

−an−1a1 −an−1a2 · · · 1 − a2
n−1

,


then noting (A.1) and using Lemma A.1 we have detA 6= 0. On the other hand, the equation (A.3) is
written in the matrix form: A(e1 · d, . . . , en−1 · d)∗ = 0, which implies that e1 · d = · · · = en−1 · d = 0.
Since ν0 · d = 0, we have d = 0, which completes the proof of Lemma 2.1.
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