Detoxification of aflatoxin B1 by manganese peroxidase from the white-rot fungus Phanerochaete sordida YK-624

SURE 静岡大学学術リポジトリ Shizuoka University REpository

メタデータ	言語: eng
	出版者:
	公開日: 2012-04-10
	キーワード (Ja):
	キーワード (En):
	作成者: Wang, Jianqiao, Ogata, Makoto, Hirai, Hirofumi,
	Kawagishi, Hirokazu
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10297/6549

1	Research Paper

2	
3	Detoxification of a flatoxin B_1 by manganese peroxidase from the white-rot fungus
4	Phanerochaete sordida YK-624
5	
6	Jianqiao Wang ^a , Makoto Ogata ^b , Hirofumi Hirai ^{a, *} , Hirokazu Kawagishi ^{a, b}
7	
8	^a Department of Applied Biological Chemistry, Faculty of Agriculture, Shizuoka
9	University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
10	^b Graduate School of Science and Technology, Shizuoka University, 836 Ohya,
11	Suruga-ku, Shizuoka 422-8529, Japan
12	
13	* Corresponding author. Department of Applied Biological Chemistry, Faculty of
14	Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
15	Tel. & Fax: +81 54 238 4853
16	E-mail address: ahhirai@ipc.shizuoka.ac.jp (H. Hirai).
17	
18	Keywords: manganese peroxidase, aflatoxin B ₁ , Phanerochaete sordida YK-624,

19 mutagenic activity, detoxification

20

21 Running title: detoxification of AFB₁ by MnP

23 Abstract

25	Aflatoxin B_1 (AFB ₁) is a potent mycotoxin with mutagenic, carcinogenic,
26	teratogenic, hepatotoxic and immunosuppressive properties. In order to develop a
27	bioremediation system for AFB1-contaminated foods by white-rot fungi or ligninolytic
28	enzymes, AFB1 was treated with manganese peroxidase (MnP) from the white-rot
29	fungus Phanerochaete sordida YK-624. AFB1 was eliminated by MnP. Maximum
30	elimination (86.0%) of AFB_1 was observed after 48 h in a reaction mixture containing 5
31	nkat of MnP. Addition of Tween 80 enhanced AFB1 elimination. Elimination of AFB1
32	by MnP greatly reduced its mutagenic activity in an umu test, and the treatment of
33	AFB ₁ by 20 nkat MnP reduced the mutagenic activity by 69.2%. ¹ H-NMR and
34	HR-ESI-MS analysis suggested that AFB ₁ is first oxidized to AFB ₁ -8,9-epoxide by
35	MnP and then hydrolyzed to AFB ₁ -8,9-dihydrodiol. This is the first report that MnP can
36	effectively remove the mutagenic activity of AFB1 by converting it to
37	AFB ₁ -8,9-dihydrodiol.

1. Introduction

41	The human diet can contain a wide variety of natural carcinogens due to the
42	contamination of raw materials or the production of metabolites during food processing
43	or cooking (Osowski et al., 2010). Aflatoxins, a group of potent mycotoxins with
44	mutagenic, carcinogenic, teratogenic, hepatotoxic, and immunosuppressive properties,
45	are of particular importance because of their adverse effects on animal and human
46	health (Lewis et al., 2005). Aflatoxins are produced as secondary metabolites of fungal
47	strains (Aspergillus flavus Link: Fries, A. parasiticus Speare, and A. nomius Kurtzman et
48	al.) that grow on a variety of food and feed commodities (Peltonen et al., 2001; Jiang et
49	al., 2005). Aflatoxin B_1 (AFB ₁), which is the most toxic aflatoxin, is of particular
50	interest because it is a frequent contaminant of many food products and one of the most
51	potent naturally occurring mutagens and carcinogens known (Teniola et al., 2005).
52	White-rot fungi have the apparently unique ability to degrade lignin to the level of
53	CO ₂ (Kirk & Farrell, 1987). Lignin peroxidase (LiP), manganese peroxidase (MnP), and
54	laccase are the major extracellular ligninolytic enzymes of white-rot fungi involved in
55	lignin biodegradation (Kirk & Farrell, 1987). There is a great interest in
56	lignin-degrading white-rot fungi and their ligninolytic enzymes because of their

57	potential for degrading recalcitrant environmental pollutants, such as polychlorinated
58	dibenzodioxin (Kamei et al., 2005), lindene (Bumpus et al., 1985), chlorophenols (Joshi
59	& Gold, 1993), and polycyclic aromatic carbons (Bezalel et al., 1996; Collins et al.,
60	1996). Recently, ligninolytic enzymes such as MnP and laccase were shown to be
61	effective in degrading of methoxychlor (Hirai et al., 2004) and Irgarol 1051 (Ogawa et
62	al., 2004) and in removing the estrogenic activities of bisphenol A, nonylphenol
63	(Tsutsumi et al., 2001), 4-tert-octylphenol (Tamagawa et al., 2007), butylparabens
64	(Mizuno et al., 2009), genistein (Tamagawa et al., 2005), and steroidal hormones
65	(Suzuki et al., 2003; Tamagawa et al., 2006). More recently, the degradation of AFB_1
66	by fungal laccases has been reported (Alberts et al., 2009). However, a degradation
67	product was not detected and the mechanism of degradation remains unclear.
68	In the present study, we demonstrate the detoxification of AFB ₁ by MnP from the
69	white-rot fungus Phanerochaete sordida YK-624 which produces LiPs (Sugiura et al.,
70	2003; Hirai et al., 2005) and MnP (Hirai et al., 1994; Kondo et al., 1994) as ligninolytic
71	enzymes. We also detected the metabolites and, on their basis, developed a possible
72	mechanism for their production.
73	
74	2. Materials and methods

76	2.1 Fungus
10	2.1 1 индиз

77	P. sordida YK-624 (ATCC 90872) from rotten wood (Hirai et al., 1994) was used
78	in this study. The fungus was maintained on potato dextrose agar slants at 4°C.
79	
80	2.2 Chemicals
81	AFB1 was purchased from Wako Pure Chemical Industries, Japan. The umu test
82	with umulac AT (Protein Purify Ltd. Japan) was used to assay mutagenic activity. All
83	other chemicals were extra-pure grade and were used without further purification.
84	
85	2.3 MnP preparation and determination of MnP activity
86	MnP from <i>P. sordida</i> YK-624 was prepared and purified by the modified method
87	described by Kondo et al. (Kondo et al., 1994). The MnP solution did not contain LiP
88	activity, and has been purified to homogeneity in SDS-PAGE. The purified MnP on IEF
89	showed one isoform (data not shown). MnP activity was measured by monitoring the
90	oxidation of 2,6-dimethoxyphenol to coerulignone ($\epsilon_{470} = 49.6 \text{ mM}^{-1}\text{cm}^{-1}$) (Pèriè and
91	Gold, 1991). The reaction mixture (1 ml) contained 2,6-dimethoxyphenol (1 mM),
92	MnSO ₄ (1 mM), and H ₂ O ₂ (0.2 mM) in 50 mM malonate, pH 4.5. One katal (kat) was
93	defined as the amount of enzyme producing 1 mol of product per second.

FB_1
7

96	MnP reactions were performed in 1 ml of reaction mixture containing 5 nkat MnP,
97	10 μ l of 1 mM AFB ₁ in 10% dimethylsulfoxide, 1 mM MnSO ₄ , 0.1% Tween 80, 4 nkat
98	glucose oxidase, and 2.5 mM glucose in 50 mM malonate, pH 4.5. Reactions were
99	performed in triplicate for 24 h at 30°C and mixing at 150 rpm. In some experiments,
100	the amount of MnP (1-20 nkat) and the reaction time (1-48 h) were changed, and Tween
101	80 was omitted. The amount of AFB_1 was determined by high-performance liquid
102	chromatography (HPLC) under the following conditions: column, Wakosil-II 5C18HG
103	(4.6 mm x 150 mm, Wako Pure Chemical Industries, Japan); mobile phase, 40%
104	aqueous methanol; flow rate, 0.5 ml/min; detection wavelength, 365 nm.
105	
106	2.5 Mutagenic activity of AFB ₁
107	The umu test with umulac AT was used to assay the mutagenic activity of $\ensuremath{\mathrm{AFB}}\xspace_1$
108	(Oda et al., 1995). The test was performed with Salmonella typhimurium TA1535 and
109	S9 liver homogenate. The TA1535 strain was constructed by subcloning the bacterial
110	O-acethyltransferase gene into a plasmid vector pACYC184 and introducing the
111	plasmid into the original strain S. typhimurium TA1535/pSK1002 strain harboring an

112	umuC'-'lacZ fusion gene. Assays were carried out in triplicate using 10 µl of test
113	sample, 10 μ l of S9mix (a metabolic activation system based on S9 liver homogenate),
114	and 100 µl of bacterial culture. After incubation for 2 h at 37°C, 100 µl of X-Gal
115	solution was added to each well, and after 1 h at 37°C, the reaction was stopped by the
116	addition of SDS/dimethylsulfoxide solution. The absorbance of the mixture was read at
117	600 nm. The relative mutagenic activity (%) was defined as the percentage of
118	β -galactosidase activity of the AFB ₁ -containing reaction mixture (with 5, 10, or 20 nkat
119	MnP) divided by the activity of the AFB ₁ -containing reaction mixture without MnP.
120	

121 2.6 Metabolism experiments

122	AFB ₁ (final concentration 160 μ M) was incubated at 30°C for 48 h in a 100-ml
123	reaction mixture containing 750 nkat MnP, 1 mM MnSO ₄ , 0.1% Tween 80, 600 nkat
124	glucose oxidase, and 2.5 mM glucose in 50 mM malonate buffer, pH 4.5. The reaction
125	mixture was extracted twice with 100 ml ethyl acetate. The extract was dried over
126	anhydrous sodium sulfate and then evaporated to dryness. The concentrate was
127	separated by HPLC to isolate the AFB_1 metabolite. The purified metabolite was then
128	analyzed by HR-ESI-MS (JMS-T100LC, JEOL, Japan) and ¹ H-NMR (Jeol lambda-500,
129	500 MHz, JEOL, Japan). Chemical shifts are expressed in δ relative to the external

130 standard, sodium 3-(trimethylsilyl) propionate.

131

132 **3. Results**

133

134 *3.1 Elimination of AFB*₁ by MnP from P. sordida YK-624

135 We previously showed that ligninolytic enzymes from white-rot fungi can

degrade a wide range of aromatic compounds (Tsutsumi et al., 2001; Suzuki et al.,

137 2003; Hirai et al., 2004; Tamagawa et al., 2005; Tamagawa et al., 2006; Tamagawa et

al., 2007; Mizuno et al., 2009). In the current study, we examined whether MnP from *P*.

139 sordida YK-624 can oxidize AFB₁, which is a difuranceoumarin derivate.

140 After a 24-h reaction using 5 nkat MnP, the level of AFB_1 was reduced by 73.3%

141 (Fig. 1). Further examination of the dose-dependence showed that maximum

elimination was obtained at 5 nkat of enzyme. Tween 80, an unsaturated fatty acid that

allows MnP to oxidize nonphenolic compounds (Bao et al., 1994), enhanced the

144 elimination of AFB₁ (Fig. 1). Analysis of the time course of AFB₁ elimination by MnP

in the presence of Tween 80 (Fig. 2) reveals that AFB₁ was drastically decreased after a

146 4-h treatment, and that 86.0% of AFB₁ was eliminated after a 48-h treatment.

147

148 *3.2 Removal of mutagenic activity of AFB*₁

149	Because removal of toxicity is essential for the biodegradation of environmental
150	pollutants, we examined the mutagenic activity of the metabolites of AFB1 generated by
151	MnP. Mutagenic activity was measured with the umu test following treatment of AFB ₁
152	by a metabolic activation system (S9mix) because, in animals, the toxicity of AFB_1 is
153	activated by cytochrome P450 in the liver (Eaton & Gallagher, 1994). AFB ₁ (100 μ M)
154	had approximately 7-fold higher mutagenic activity than 2-aminoanthracene (100 μ M),
155	a well-known mutagen (Fig. 3). Treatment of AFB_1 by 5 and 20 nkat MnP reduced the
156	mutagenic activity by 49.4% and 69.2%, respectively (Fig. 4).
157	

158 *3.3 Identification of an AFB*₁ metabolite generated by MnP

159 HPLC detected a metabolite generated by MnP from AFB₁ with a retention time of 160 10.5 min, whereas AFB₁ has a retention time of 32.8 min (Fig. 5). The metabolite was 161 fractionated and purified by HPLC and then analyzed by ¹H-NMR and HR-ESI-MS. 162 The ¹H-NMR spectrum in the presence of CD₃OD gave strong C8 and C9 proton 163 signals ($\delta_{\rm H}$ 4.54 and 3.44, respectively) in the upper field compared to AFB₁ (AFB₁ H8 164 [$\delta_{\rm H}$ 6.78], AFB₁ H9 [$\delta_{\rm H}$ 6.44]). HR-ESI-MS, which gave a *m*/*z* of 345.06229 [M-H]⁻ 165 (calcd. for C₁₇H₁₃O₈, 345.06104) indicated a molecular formula of C₁₇H₁₄O₈, suggesting

166	a molecular mass of 346. The metabolite had a mass 34 greater than the molecular ion
167	of AFB ₁ . These results indicate that AFB ₁ was converted to AFB ₁ -8,9-dihydrodiol by
168	MnP.
169	
170	4. Discussion
171	
172	The extracellular ligninolytic enzymes produced by white-rot fungi are
173	nonspecific and nonstereoselective enzymes that can degrade not only lignin but also a
174	range of recalcitrant pollutants, making them of great interest for the removal of
175	environmental contamination (Asgher et al., 2008). In the present study, we showed that
176	AFB ₁ , which is a non-phenolic, difuranceoumarin derivate, can be oxidized by MnP
177	from <i>P. sordida</i> YK-624.
178	MnP removed approximately 70% of AFB1 after 24 h and was capable of
179	removing AFB ₁ even in the absence of Tween 80. Although the complete elimination of
180	AFB ₁ was not observed in the present study, it is thought that AFB ₁ is completely
181	eliminated by the multi-treatment with MnP. Mn(III), which is produced by MnP, could
182	not oxidize AFB1 directly (data not shown). In the presence of Tween 80, lipid-derived
183	peroxy radicals are produced (Bao et al., 1994) that may directly oxidize AFB ₁ . On the

other hand, formate and superoxide anion radicals, which are generated in the MnP 184 reaction mixture in the absence of Tween 80 (Khindaria et al., 1994), may mediate the 185oxidation of AFB₁ by MnP alone. 186 AFB₁-8,9-dihydrodiol was generated as a metabolite generated from AFB₁ by 187 MnP. This metabolite has also been detected in some animals treated with AFB₁ (Wu et 188 al., 2009). AFB₁-8,9-dihydrodiol is produced in some animals by the hydrolysis of 189 190 AFB₁-8,9-epoxide, which is formed when the 8,9-vinyl bond is oxidized by the microsomal cytochrome P450 system (Kuilman et al., 2000). Our current results suggest 191 192that similar reactions, namely the epoxidation of AFB₁ followed by hydrolysis of AFB_1 -8,9-epoxide, occur when AFB_1 is oxidized by MnP. As detailed in Fig. 6, we 193propose that the 8,9-vinyl bond of AFB₁ can be oxidized by the peroxy radicals of 194 195Tween 80, formate radical, superoxide anion radical, or MnP directly (Tuynman et al., 2000) and that the epoxide thus generated is spontaneously hydrolyzed to AFB_1 196197 -8,9-dihydrodiol (Guengerich et al., 1996). Removal of toxicity is the most important goal for the biodegradation of 198 environmental pollutions. We showed here that MnP not only removes but detoxifies 199

- AFB₁. The metabolite generated from AFB_1 by MnP, AFB_1 -8,9-dihydrodiol, is less
- 201 toxic than AFB1 because AFB1-8,9-dihydrodiol can rearrange and form a reactive

202	dialdehyde that can react with primary amine groups in proteins by Schiff base reactions
203	(Sabbioni et al., 1987). This prevents the formation of DNA adducts, which can cause
204	mutations. Although AFB1 eliminations by MnP (5-20 nkat) were almost the same, the
205	decrease in mutagenic activity was higher with 20 nkat MnP (69.2%) than with 5 nkat
206	MnP (49.4%), as shown in Fig. 4. It is thought that the amount of AFB ₁ -8,9-epoxide in
207	the reaction mixture containing 5 nkat MnP was higher than that in the reaction mixture
208	containing 20 nkat MnP.
209	In summary, we show for the first time that MnP can remove the mutagenic
210	activity of AFB ₁ by converting it to AFB ₁ -8,9-dihydrodiol. This system should therefore
211	be useful in the bioremediation of AFB ₁ -contaminated foods.

References

215	Alberts JF, Gelderblom WCA, Botha A & van Zyl WH (2009) Degradation of aflatoxin
216	B ₁ by fungal laccase enzymes. Int J Food Microbiol 135 : 47-52.
217	Asgher M, Bhatti HN, Ashraf M & Legge RL (2008) Recent developments in
218	biodegradation of industrial pollutants by white rot fungi and their enzyme system.
219	Biodegradation 19: 771–783.
220	Bao W, Fukushima Y, Jensen KA Jr, Moen MA & Hammel KE (1994) Oxidative
221	degradation of non-phenolic lignin during lipid peroxidation by fungal manganese
222	peroxidase. FEBS Lett 354 : 297–300.
223	Bezalel L, Hadar Y, Fu PP, Freeman JP & Cerniglia C (1996) Initial oxidation products
224	in the metabolism of pyrene, anthracene, fluorine, and dibenzothiophene by the
225	white rot fungus <i>Pleurotus ostreatus</i> . Appl Environ Microbiol 62 : 2554–2559.
226	Bumpus JA, Tien M, Wright D & Aust SD (1985) Oxidation of persistent environmental
227	pollutants by a white rot fungus. Science 228 : 1434–1436.
228	Collins PJ, Kotterman MJ, Field JA & Dobson AW (1996) Oxidation of anthracene and
229	benzo[<i>a</i>]pyrene by laccases from <i>Trametes versicolor</i> . Appl Environ Microbiol 62 :
230	4563-4567.

231	Eaton DL & Gallagher EP (1994) Mechanisms of aflatoxins carcinogenesis. Ann Rev
232	Pharmacol Toxicol 34 : 135–172.

- 233 Guengerich FP, Johnson WWJohnson WW, Ueng YFUeng YF, Yamazaki HYamazaki H
- 234 & Shimada T (1996) Involvement of cytochrome P450, glutathione S-transferase,
- and epoxide hydrolase in the metabolism of aflatoxin B1 and relevance to risk of
- human liver cancer. Environ Health Perspect **104**: 557-562.
- 237 Hirai H, Kondo R & Sakai K (1994) Screening of lignin-degrading fungi and their
- ligninolytic enzyme activities during biological bleaching of kraft pulp. Mokuzai
- 239 Gakkaishi **40**: 980-986.
- 240 Hirai H, Nakanishi S & Nishida T (2004) Oxidative dechlorination of methoxychlor by
- ligninolytic enzymes from white-rot fungi. Chemosphere **55**: 641-645.
- 242 Hirai H, Sugiura M, Kawai S & Nishida T (2005) Characteristics of novel lignin
- 243 peroxidases produced by white-rot fungus *Phanerochaete sordida* YK-624. FEMS
- 244 Microbiol Lett **246**: 19–24.
- Jiang Y, Jolly PE, Ellis WO, Wang JS, Phillips TD & Williams JH (2005) Aflatoxin B₁
- albumin adduct levels and cellular immune status in Ghanaians, Int Immunol **17**:
- 247 **807–814**.
- Joshi DK & Gold MH (1993) Degradation of 2,4,5-trichlorophenol by the

249	lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl Environ
250	Microbiol 59 : 1779–1785.
251	Kamei I, Suhara H & Kondo R (2005) Phylogenetical approach to isolation of white-rot
252	fungi capable of degrading polychlorinated dibenzo-p-dioxin. Appl Microbiol
253	Biotechnol 69 : 358–366.
254	Khindaria A, Grover TA & Aust SD (1994) Oxalate-dependent reductive activity of
255	manganese peroxidase from Phanerochaete chrysosporium. Arch Biochem Biophys
256	314 : 301-306.
257	Kirk TK & Farrell RL (1987) Enzymatic combustion: the microbial degradation of
258	lignin. Annu Rev Microbiol 41: 465–505.
259	Kondo R, Harazono K & Sakai K (1994) Bleaching of hardwood kraft pulp with
260	manganese peroxidase secreted from Phanerochaete sordida YK-624, Appl
261	Environ Microbiol 60 : 4359-4363.
262	Kuilman MEM, Maas RFM & Fink-Gremmels J (2000) Cytochrome P450-mediated
263	metabolism and cytotoxicity of aflatoxin B_1 in bovine hepatocytes. Toxicol In Vitro
264	14 : 321-327.
265	Lewis L, Onsongo M, Njapau H, Schurz-Rogers H, Luber G, Kieszak S, Nyamongo J,
266	Backer L, Dahiye AM, Misore A, DeCock K & Rubin C (2005) Aflatoxin

267	contamination of commercial maize products during an outbreak of acute
268	aflatoxicosis in eastern and central Kenya. Environ. Health Perspect 113:
269	1763–1767.
270	Mizuno H, Hirai H, Kawai S & Nishida T (2009) Removal of estrogenic activity of
271	iso-butylparaben and <i>n</i> -butylparaben by laccase in the presence of
272	1-hydroxybenzotriazole. Biodegradation 20: 533-539.
273	Oda Y, Yamazaki H, Watanabe M, Nohmi T & Shimada T (1995) Development of high
274	sensitive umu test system: rapid detection of genotoxicity of promutagenic
275	aromatic amines by Salmonella typhimurium strain NM2009 possessing high
276	<i>O</i> -acetyltransferase activity, Mutat Res 334 : 145–156.
277	Ogawa N, Okamura H, Hirai H & Nishida T (2004) Degradation of the antifouling
278	compound Irgarol 1051 by manganese peroxidase from the white rot fungus
279	Phanerochaete chrysosporium. Chemosphere 55: 487-491.
280	Osowski A, Pietrzak M, Wieczorek Z & Wieczorek J (2010) Natural compounds in the
281	human diet and their ability to bind mutagens prevents DNA-mutagen intercalation.
282	J Toxicol Environ Health A 73: 1141-1149.
283	Peltonen K, El-Nezami H, Haskard C, Ahokas J & Salminen S (2001) Aflatoxin B ₁
284	binding by dairy strains of lactic acid bacteria and bifidobacteria. J Dairy Sci 84:

285 1256–2152.

286	Pèriè FH & Gold MH (1991) Manganese regulation of manganese peroxidase
287	expression and lignin degradation by the white rot fungus Dichomitus squalens.
288	Appl Environ Microbiol 57: 2240-2245.
289	Sabbioni G, Skipper PL, Buchi G & Tannenbaum SR (1987) Isolation and
290	characterization of the major serum albumin adduct formed by aflatoxin B_1 in vivo
291	in rats. Carcinogenesis 8: 819–824.
292	Sugiura M, Hirai H & Nishida T (2003) Purification and characterization of a novel
293	lignin peroxidase from white-rot fungus Phanerochaete sordida YK-624. FEMS
294	Microbiol Lett 224 : 285-290.
295	Suzuki K, Hirai H, Murata H & Nishida T (2003) Removal of estrogenic activities of
296	17β -estradiol and ethinylestradiol by ligninolytic enzymes from white rot fungi.
297	Water Res 37 : 1972-1975.
298	Tamagawa Y, Hirai H, Kawai S & Nishida T (2005) Removal of estrogenic activity of
299	endocrine-disrupting genistein by ligninolytic enzymes from white rot fungi. FEMS
300	Microbiol Lett 244 : 93-98.
301	Tamagawa Y, Hirai H, Kawai S & Nishida T (2007) Removal of estrogenic activity of
302	4-tert-octylphenol by ligninolytic enzymes from white rot fungi. Environ Toxicol

203 **22**: 281-286.

104 I amagawa 1, Tamaki K, Tinai 11, Kawai 5 & Misinda 1 (2000) Kemovai of Csuo	304	Tamagawa Y, Yamaki R	, Hirai H, Kawai S & Nishida T ((2006) Removal of estrogenic
---	-----	----------------------	----------------------------------	------------------------------

- activity of natural steroidal hormone estrone by ligninolytic enzymes from white
- 306 rot fungi. Chemosphere **65**: 97-101.
- 307 Teniola OD, Addo PA, Brost IM, Färber P, Jany KD, Alberts JF, van Zyl WH, Steyn PS
- 308 & Holzapfel WH (2005) Degradation of aflatoxin B₁ by cell-free extracts of
- 309 *Rhodococcus erythropolis* and *Mycobacterium fluoranthenivorans* sp. nov.
- 310 DSM44556^T. Int J Food Microbiol **105**: 111–117.
- 311 Tsutsumi Y, Haneda T & Nishida T (2001) Removal of estrogenic activities of
- bisphenol A and nonylphenol by oxidative enzymes from lignin-degrading
- basidiomycetes. Chemosphere **42**: 271-276.
- Tuynman A, Spelberg JL, Kooter IM, Schoemaker HE & Wever R (2000)
- Enantioselective epoxidation and carbon-carbon bond cleavage catalyzed by
- 316 Coprinus cinereus peroxidase and myeloperoxidase. J Biol Chem **275**: 3025-3030.
- 317 Wu Q, Jezkova A, Yuan Z, Pavlikova L, Dohnal V & Kuca K (2009) Biological
- degradation of aflatoxins. Drug Metab Rev **41**: 1-7.
- 319

320 Figure Legends

321

322	Fig. 1. Elimination of AFB_1 in the presence of different activities of MnP. Close circles,
323	with Tween 80: open circle, without Tween 80. MnP reactions were performed in 1 ml

- of reaction mixture containing 1-20 nkat MnP, 10 μl of 1 mM AFB₁ in 10%
- dimethylsulfoxide, 1 mM MnSO₄, 0.1% Tween 80, 4 nkat glucose oxidase, and 2.5 mM
- 326 glucose in 50 mM malonate, pH 4.5. Reactions were performed for 24 h at 30°C and

mixing at 150 rpm. Values are means \pm SD of triplicate samples.

328

```
Fig. 2. Time course for AFB<sub>1</sub> elimination by MnP. Reactions contained 5 nkat MnP, 10
```

³³⁰ μl of 1 mM AFB₁ in 10% dimethylsulfoxide, 1 mM MnSO₄, 0.1% Tween 80, 4 nkat

331 glucose oxidase, and 2.5 mM glucose in 50 mM malonate, pH 4.5. Reactions were

performed for 24 h at 30°C and mixing at 150 rpm. Values are means \pm SD of triplicate

333 samples.

334

Fig. 3. Mutagenic activity of AFB₁ in the umu test. Close circles, AFB₁; open circle,

- 336 2-aminoanthracene. Experimental details were described in Materials and methods.
- 337 Values are means \pm SD of triplicate samples.

339	Fig. 4. MnP decreases the mutagenic activity of AFB ₁ . MnP reactions were performed
340	in 1 ml of reaction mixture containing 5-20 nkat MnP, 10 μ l of 1 mM AFB ₁ in 10%
341	dimethylsulfoxide, 1 mM MnSO ₄ , 0.1% Tween 80, 4 nkat glucose oxidase, and 2.5 mM
342	glucose in 50 mM malonate, pH 4.5. Reactions were performed for 24 h at 30°C and
343	mixing at 150 rpm. Values are means \pm SD of triplicate samples.
344	
345	Fig. 5. Detection of the AFB_1 metabolite by HPLC (a) and ESI-MS spectra of AFB_1
346	metabolite (b) and AFB_1 (c). These compounds were detected by HPLC under the
347	following conditions: column, Wakosil-II 5C18HG; mobile phase, 40% aqueous
348	methanol; flow rate, 0.5 ml/min; detection wavelength, 365 nm.
349	
350	Fig. 6. Proposed mechanism of AFB_1 oxidation by MnP.

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

AFB1-8,9-dihydrodiol