Leccinine A, an endoplasmic reticulum stress-suppressive compound from the edible mushroom Leccinum extremiorientale

SURE 静岡大学学術リポジトリ Shizuoka University REpository

メタデータ	言語: eng
	出版者:
	公開日: 2012-06-15
	キーワード (Ja):
	キーワード (En):
	作成者: Choi, Jae-Hoon, Ozawa, Nobuhiko, Yamakawa,
	Yasuhiro, Nagai, Kaoru, Hirai, Hirofumi, Kawagishi,
	Hirokazu
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10297/6696

Graphical abstract

Leccinine A, an endoplasmic reticulum stress suppressive compound from the edible mushroom Leccinum extremiorientale

3 Jae-Hoon Choi, Nobuhiko Ozawa, Yasuhiro Yamakawa, Kaoru Nagai, Hirofumi Hirai, Hirokazu Kawagishi

1	Leccinine A, an endoplasmic reticulum stress suppressive compound from the
2	edible mushroom Leccinum extremiorientale
3	
4	Jae-Hoon Choi ^a , Nobuhiko Ozawa ^a , Yasuhiro Yamakawa ^a , Kaoru Nagai ^b , Hirofumi
5	Hirai ^a , Hirokazu Kawagishi ^{a,c,*}
6	
7	^a Department of Applied Biological Chemistry, Faculty of Agriculture, Shizuoka
8	University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
9	^b Department of Epigenetic Medicine, Interdisciplinary Graduate School of Medicine
10	and Engineering, University of Yamanashi, Yamanashi 409-3898, Japan
11	^c Graduate School of Science and Technology, Shizuoka University, 836 Ohya,
12	Suruga-ku, Shizuoka 422-8529, Japan
13	* Corresponding author. E-mail address: achkawa@ipc.shizuoka.ac.jp (H. Kawagishi)
14	

1 ABSTRACT

2	Leccinine A (1) along with a known compound (2) , were isolated from the edible
3	mushroom Leccinum extremiorientale. The structure of 1 was determined by the
4	interpretation of spectral data. Leccinine A showed protective activity against
5	endoplasmic reticulum stress-dependent cell death. Seven analogues (3 to 9) of 1 were
6	synthesized in order to evaluate the structure-activity relationship, and the result
7	indicated that the formamide group of 1 was indispensable for the activity.

1 1. Introduction

3	The endoplasmic reticulum (ER) is the organelle responsible for folding and
4	modification of proteins destined for the secretory pathway and endosomal
5	compartment. ER stress-dependent neuronal death has been reported to cause some
6	neurodegenerative diseases, such as Alzheimer, Parkinson, and Huntington diseases, ¹⁻³
7	and amyloid-beta (A β) peptides was reported to induce neuronal cell death via ER stress
8	signaling. ⁴ ER stress signals are induced when functions of the ER are impaired by
9	various physiological and pathological conditions. ER stress has been reported to cause
10	not only neurodegenerative diseases but also some other diseases, such as diabetes,
11	atherosclerosis, heart and liver disease. ⁵ Therefore, the protective activity against ER
12	stress is an important target for the cure or prevention of these diseases. Recently,
13	beneficial effects of natural products that protect cell death by ER stress have been
14	reported. For example, we have reported the isolation of
15	dilinoleoylphosphatidylethanolamine and 3-hydroxyhericenone F as ER
16	stress-suppressive compounds from the mushroom <i>Hericium erinaceum</i> . ^{6,7} Three
17	furanones and a phenylpentanone from the mushroom Mycoleptodonoides aitchisonii, ⁸
18	and termitomycamides A to E from the mushroom Termitomyces titanicus also have

1	been reported as the suppressive compounds by us. ⁹ In the course of our continuing
2	search for ER stress protecting compounds from mushrooms, we found a novel active
3	compound from the edible mushroom Leccinum extremiorientale. This mushroom,
4	having a red brown areolate cap, grows worldwide, but distributed mainly in the
5	northern temperate zone. Here we describe the isolation and structural determination of
6	the active compound, and structure-activity relationship by comparing the activity of the
7	compound with those of its seven synthesized analogues.
8	
9	2. Results and discussion
10	
10 11	The fresh fruiting bodies of <i>L. extremiorientale</i> were extracted with EtOH and
10 11 12	The fresh fruiting bodies of <i>L. extremiorientale</i> were extracted with EtOH and acetone, successively. The combined extract of the mushroom was divided into a
10 11 12 13	The fresh fruiting bodies of <i>L. extremiorientale</i> were extracted with EtOH and acetone, successively. The combined extract of the mushroom was divided into a hexane soluble-, an EtOAc soluble- and a water soluble-fractions. The hexane soluble-
10 11 12 13 14	The fresh fruiting bodies of <i>L. extremiorientale</i> were extracted with EtOH and acetone, successively. The combined extract of the mushroom was divided into a hexane soluble-, an EtOAc soluble- and a water soluble-fractions. The hexane soluble- and the EtOAc soluble-fractions were repeatedly subjected to column chromatography,
10 11 12 13 14	The fresh fruiting bodies of <i>L. extremiorientale</i> were extracted with EtOH and acetone, successively. The combined extract of the mushroom was divided into a hexane soluble-, an EtOAc soluble- and a water soluble-fractions. The hexane soluble- and the EtOAc soluble-fractions were repeatedly subjected to column chromatography, followed by HPLC to afford compounds 1 and 2 , respectively.
 10 11 12 13 14 15 16 	The fresh fruiting bodies of <i>L. extremiorientale</i> were extracted with EtOH and acetone, successively. The combined extract of the mushroom was divided into a hexane soluble-, an EtOAc soluble- and a water soluble-fractions. The hexane soluble- and the EtOAc soluble-fractions were repeatedly subjected to column chromatography, followed by HPLC to afford compounds 1 and 2 , respectively. Leccinine A (1) was purified as a colorless oil. Its molecular formula was
 10 11 12 13 14 15 16 17 	The fresh fruiting bodies of <i>L. extremiorientale</i> were extracted with EtOH and acetone, successively. The combined extract of the mushroom was divided into a hexane soluble-, an EtOAc soluble- and a water soluble-fractions. The hexane soluble- and the EtOAc soluble-fractions were repeatedly subjected to column chromatography, followed by HPLC to afford compounds 1 and 2 , respectively. Leccinine A (1) was purified as a colorless oil. Its molecular formula was determined as $C_{13}H_{17}NO_3$ by HRESIMS [<i>m/z</i> 258.1077 [M + Na] ⁺ (calcd for

1	signals were paired to each other. The MS and the NMR data implied that compound 1
2	was a set of rotational isomers. The ratio of the main isomer to the minor one was
3	determined as 3 to 1 by their integral values in the ¹ H NMR spectroscopy. The structure
4	of the major isomer (1a) was elucidated by interpretation of NMR spectra including
5	DEPT, COSY, HMBC, and HMQC (Fig. 1). The complete assignment of the protons
6	and the carbons was accomplished as shown in Table 1. The presence of the phenylethyl
7	moiety was suggested by the COSY correlations (bold line in Fig. 1) and the HMBC
8	correlations (H-1'/C-1", H-1'/C-2', H-2'/C-1', H-2'/C-1", H-2'/C-2",-6", H-2",-6"/C-2',
9	H-2",-6"/C-3",-5", H-2",-6"/C-4", H-3",-5"/C-1", H-3",-5"/C-2",-6", H-4"/C-2",-6"
10	H-4"/C-3",-5", H-5"/C-3"). The ethoxycarbonylmethyl was elucidated by the COSY
11	(bold line in Fig. 1) and the HMBC correlations (H-1 ^{'''} /C-1, H-1 ^{'''} /C-2 ^{'''} , H-2 ^{'''} /C-1 ^{'''} ,
12	H-2/C-1) and the chemical shift of C-1 ($\delta_{\rm C}$ 170.2). The other part, N-CHO group, was
13	suggested by the molecular formula and the NMR signals at $\delta_{\rm H}$ 7.85 (1H, s) and $\delta_{\rm C}$
14	165.6. The connection of the phenylethyl, the ethoxycarbonylmethyl and the N-CHO
15	moieties was determined by the HMBC correlations (N-CHO/C-2, N-CHO/C-1',
16	H-2/N-CHO, H-2/C-1', H-1'/C-2, H-1'/N-CHO). The structure of the minor isomer (1b)
17	was also deduced by the interpretation of spectroscopic data. All the data allowed us to
18	conclude that 1 was ethyl 2-(N-phenethylformamido)acetate.

1	Detailed assignments of the NMR signals revealed that the differences of the
2	chemical shifts between the two isomers were larger near the foramide (N-CHO) than
3	the other parts (Table 1). The significant NOEs were observed between the formyl
4	proton at $\delta_{\rm H}$ 7.85 and H-1' ($\delta_{\rm H}$ 3.63, t, 2H) in 1a , and the proton at $\delta_{\rm H}$ 8.02 and H-2 ($\delta_{\rm H}$
5	4.03, s, 2H) in 1b in the NOE difference experiment, indicating that the structures of the
6	two rotational isomers are as shown. These rotational isomers, 1a and 1b, appeared as
7	two different signals from each other in reverse-phase HPLC and were able to be
8	separated. However, after the isolation, each isomer also gave a set of two signals of the
9	rotational isomers at the same molar ratio as that before the isolation in HPLC analysis
10	(data not shown). In addition, the formyl analogues (3, 7 and 9, as described later) of 1
11	also existed as a set of rotational isomers. Similar isomers have been reported for
12	tertiary amide-containing compounds such as rhizopodin and haliclonin A. ^{10,11}
13	Compound 2 was identified as pyrrolezanthine, which had been isolated from a
14	plant Zanthoxylum simulans, by analyses of NMR and mass spectra. ¹² To our
15	knowledge, this compound is the first isolation from fungi including mushrooms.
16	Leccinine A (1) was subjected to the protective activity assay against ER
17	stress-dependent cell death caused by tunicamycin (TM) or thapsigargin (TG). ER stress
18	was induced by the addition of TM or TG into the culture medium of Neuro2a cells in

1	the presence or absence of 1 . TM is an inhibitor of <i>N</i> -linked glycosylation and the
2	formation of N-glycosidic protein-carbohydrate linkages. ¹³ It specifically inhibits
3	dolichol pyrophosphate-mediated glycosylation of asparaginyl residues of glycoproteins
4	and induces the ER stress. ¹⁴ TG, an inhibitor of the sarcoplasmic/endoplasmic reticulum
5	Ca^{2+} -ATPase, also induces ER stress by disrupting the homeostatic balance of the Ca^{2+}
6	concentration in the ER. ¹⁵ Leccinine A (1) showed the significant protective activity
7	against TG-toxicity dose-dependently, although it did not show the activity in the test
8	using TM (Fig. 2).
9	To investigate structure-activity relationship of 1 on protective activity against ER
10	stress-dependent cell death, analogues (3-9) of 1 were synthesized as described
11	previously except for a new compound (7) . ¹⁶⁻²¹ Compounds 4 and 6-8 did not show any
12	activity. Compounds 3, 5 and 9 having a formamide group in each molecule exhibited
13	the tendency of protective activity in a dose-dependent manner as 1, although the data
14	showed no significant differences (data not shown). These results indicated that the
15	backbone carbon chain requires the formamide group of 1 and is indispensable for the
16	activity.

3. Experimental

3.1. General

3	¹ H NMR spectra (one- and two-dimensional) were recorded on a JEOL
4	lambda-500 spectrometer at 500 MHz and 270 MHz, while ¹³ C NMR spectra were
5	recorded on the same instrument at 125 MHz. The HRESIMS spectra were measured on
6	a JMS-T100LC mass spectrometer. A JASCO grating infrared spectrophotometer was
7	used to record the IR spectra. HPLC separations were performed with a JASCO
8	Gulliver system using reverse-phase HPLC columns (Capcell pak C18 AQ, Shiseido,
9	Japan; COSMOSIL Cholester Waters, Nacalai tesque, Inc. Japan; Develosil C30-UG-5,
10	Nomura chemical Co., Ltd, Japan; Wakosil-2 5C18 HG Prep, Wako, Japan; XBridge
11	Prep Phenyl ODB, Waters, Japan). Silica gel plate (Merck F_{254}) and silica gel 60 N
12	(Merck 100-200 mesh) were used for analytical TLC and for flash column
13	chromatography, respectively.
14	
15	3.2. Fungus materials
16	Mature fruiting bodies of <i>L. extremiorientale</i> were collected at Narusawa village,
17	Yamanashi Prefecture in Japan, in August 2007.
18	

3.3. Extraction and Isolation

2	The fresh fruiting bodies of <i>L. extremiorientale</i> (14.9 kg) were extracted with
3	EtOH (20 L, three times) and then acetone (10 L). The combined solution was
4	evaporated under reduced pressure and the concentrate was partitioned between hexane
5	and H_2O and then between EtOAc and H_2O . The EtOAc-soluble part (32.4 g) was
6	fractionated by silica gel flash column chromatography (CH ₂ Cl ₂ /EtOAc 7:3, 1:1;
7	EtOAc; EtOAc /MeOH 4:1; and MeOH, 2.0 L each) to obtain eleven fractions (fractions
8	1 to 11), and fraction 8 (3.0 g) was further separated by silica gel flash column
9	chromatography (CH ₂ Cl ₂ ; CH ₂ Cl ₂ /EtOAc 95:5, 9:1, 6:4, 1:4; EtOAc; MeOH, 1.2 L
10	each), affording fifteen fractions (fractions 8-1 to 8-15). Fraction 8-9 (77.4 mg) was
11	further separated by reverse-phase HPLC (Develosil C30-UG-5, 40% MeOH) to obtain
12	four fractions (fractions 8-9-1 to 8-9-4). Compound 1 (1.0 mg) was obtained from
13	fraction 8-9-3 (5.9 mg) by reverse-phase HPLC (Capcell pak C18 AQ, 50% MeOH).
14	The hexane-soluble part (58.0 g) was fractionated by silica gel flash column
15	chromatography (hexane/CH ₂ Cl ₂ 1:1, 1:4; CH ₂ Cl ₂ /acetone 9:1, 1:1; acetone; and MeOH,
16	2.0 L each) to obtain fourteen fractions (fraction 1 to 14), and fraction 5 (27.2 g) was
17	further separated by silica gel flash column chromatography (CH2Cl2; CH2Cl2/acetone
18	19:1, 9:1, 7:3, 1:1; and acetone, 1.2 L each) affording thirteen fractions (fraction 5-1 to

1	5-13). Fraction 5-11 (1.1 g) was further separated by reverse-phase HPLC (Wakosil-2
2	5C18 HG, 90% MeOH) to obtain nineteen fractions (fraction 5-11-1 to 5-11-19).
3	Compound 2 (0.7 mg) was obtained from fraction 5-11-3 by reverse-phase HPLC
4	(COSMOSIL Cholester Waters, 30% MeOH).
5	
6	<i>3.3.1. Leccinine (1).</i> Colorless oil; IR (neat): 2937, 1747, 1675 cm ⁻¹ ; ¹ H and ¹³ C NMR,
7	see Table 1; ESIMS m/z 258 [M+Na] ⁺ ; HRESIMS m/z 258.1077 [M+Na] ⁺ (calcd for
8	C ₁₃ H ₁₇ NaNO ₃ , 258.1107).
9	
10	3.3.2. Compound 2. ¹ H NMR (CDCl ₃ , 500 MHz) δ 9.56 (1H, s), δ 6.94 (2H, d, 8.0), δ
11	6.90 (1H, d, 4.0), δ 6.71 (2H, d, 6.5), δ 6.15 (1H, d, 4.0), δ 4.68 (1H, br s), δ 4.49 (2H, t,
12	7.0), δ 4.31 (1H, s), δ 2.96 (2H, t, 6.5); ESIMS <i>m</i> / <i>z</i> 268 [M+Na] ⁺ ; HRESIMS <i>m</i> / <i>z</i>
13	268.0922 $[M+Na]^+$ (calcd for C ₁₄ H ₁₅ NNaO ₃ , 268.0950).
14	
15	3.4. Synthesis
16	3.4.1. N-Phenethylformamide (3). 2-Phenethylamine (1 mmol, 125 μ L) was dissolved in
17	pyridine (0.5 mL) and a mixture of formic acid (4 mmol, 150 μ L) and
18	diisopropylcarbodiimide (DIPCD, 4 mmol, 600 μ L) was added to the solution. The
19	resulting mixture was stirred for 72 h at room temperature. The products were purified

1	by silica gel flash column chromatography (CH_2Cl_2 ; CH_2Cl_2 /acetone 9:1, 5:5; acetone;
2	acetone/MeOH 5:5) and then reversed-phase HPLC (XBridge Prep Phenyl OBD, 16%
3	MeOH) to give 3 (22.7 mg, 15.0% yield). Compound 3 was obtained a set of rotational
4	isomers (3a and 3b). The molar ratio of 3a to 3b was 5.7 to 1. 3a : ¹ H NMR (CDCl ₃ , 270
5	MHz) & 8.03 (1H, s), & 7.07-7.27 (5H, m), & 5.61 (1H, br, s), & 3.50 (2H, q, 7.2), & 2.76
6	(2H, t, 7.0). 3b : δ 7.83 (1H, d, 11.9), δ 7.07-7.27 (5H, m), δ 3.39 (2H, q, 6.8), δ 2.76
7	(2H, t, 7.0). ESIMS m/z 172 [M+Na] ⁺ ; HRESIMS m/z 172.0738 [M+Na] ⁺ (calcd for
8	C ₉ H ₁₁ N ₁ NaO ₁ , 172.0746). ¹⁶

10 3.4.2. N-Phenethylacetamide (4). 2-Phenethylamine (1 mmol, 125 µL) was dissolved in pyridine (150 μ L) and a mixture of acetyl chloride (1 mmol, 70 μ L) and diethylamine 11 12 (0.1 mmol, $10 \,\mu$ L) was added to the solution. The resulting mixture was stirred for 72 h 13 at room temperature. The products were purified by silica gel flash column 14 chromatography (CH₂Cl₂; CH₂Cl₂/acetone 9:1, 5:5; acetone; acetone/MeOH 5:5) and 15 then reversed-phase HPLC (XBridge Prep Phenyl OBD, 70% MeOH) to give 4 (16.0 mg, 9.8% yield). 4: ¹H NMR (CDCl₃, 270 MHz) δ 7.16-7.33 (5H, m), δ 3.50 (2H, d, 16 17 6.8), δ 2.79 (2H, t, 7.0), δ 1.92 (3H, s); ESIMS *m/z* 186 [M+Na]⁺; HRESIMS *m/z*

18 186.0888 $[M+Na]^+$ (calcd for $C_{10}H_{13}N_1NaO_1$, 186.0895).¹⁷

2	3.4.3. Ethyl formamidoacetate (5). Trimethyl orthoformate (10 mmol, 1.1 mL) and
3	glycine ethyl ester hydrochloride (10 mmol, 1.39 g) were stirred at 110°C for 2 h. The
4	products were purified by reversed-phase HPLC (Capcell pak C18 AQ, 10% MeOH) to
5	afford 5 (126 mg, 9.6% yield). 5 : ¹ H NMR (CDCl ₃ , 270 MHz) δ 8.16 (1H, s), δ 4.14
6	(2H, q, 7.0), δ 3.98 (2H, d, 5.4), δ 1.12 (3H, t, 7.3); ESIMS <i>m/z</i> 285 [2M+Na] ⁺ ;
7	HRESIMS <i>m</i> / <i>z</i> 285.1071 [2M+Na] ⁺ (calcd for $C_{10}H_{18}N_2NaO_6$, 285.1063). ¹⁸
8	
9	3.4.4. Ethyl 2-(phenethylamino)acetate (6). 2-Phenethylamine (6 mmol, 755 µL) was
10	dissolved in pyridine (500 $\mu L)$ and a mixture of ethyl bromoacetate (6 mmol, 660 $\mu L)$
11	and diethylamine (0.6 mmol, 60 μ L) was added to the solution. The resulting mixture
12	was stirred for 24 h at room temperature. The products were purified by silica gel flash
13	column chromatography (acetone) and then reversed-phase HPLC (Capcell pak C18
14	AQ, 50% MeOH) to obtain 6 (45.4 mg, 3.6% yield). 6 : ¹ H NMR (CDCl ₃ , 270 MHz) δ
15	7.12-7.29 (5H, m), δ 4.14 (2H, q, 7.0), δ 3.31 (2H, s), δ 2.87 (2H, t, 2.7), δ 2.77 (2H, t,
16	2.7), δ 1.23 (3H, t, 7.0); ESIMS <i>m</i> / <i>z</i> 208 [M+H] ⁺ ; HRESIMS <i>m</i> / <i>z</i> 208.1338 [M+H] ⁺
17	(calcd for $C_{12}H_{19}N_1O_2$, 208.1359). ¹⁹
18	

1	3.4.5. Ethyl 2-(N-phenethylacetamido)acetate (7). 6 (100 mmol, 20 mg) was dissolved
2	in pyridine (500 $\mu L)$ and a mixture of acetyl chloride (0.4 mmol, 30 $\mu L)$ and DIPCD
3	(0.4 mmol, 60 $\mu L)$ was added to the solution. The resulting mixture was stirred for 24 h
4	at room temperature. The products were purified by silica gel flash column
5	chromatography (CH ₂ Cl ₂ ; CH ₂ Cl ₂ /acetone 9:1, 5:5; acetone; acetone/MeOH 5:5) and
6	then reversed-phase HPLC (Capcell pak C18 AQ, 50% MeOH) to give 7 (4.7 mg, 19%
7	yield). Compound 7 was obtained a set of rotational isomers (7a and 7b). The molar
8	ratio of 7a to 7b was 2.5 to 1. 7a : ¹ H NMR (CD ₃ OD, 270 MHz) δ 7.19-7.32 (5H, m,
9	H-2", H-3", H-4", H-5", H-6"), δ 4.18 (2H, q, 7.0, H-1""), δ 4.04 (2H, s, H-2), δ 3.63
10	(2H, t, 7.2, H-1'), δ 2.88 (2H, t, 7.1, H-2'), δ 1.86 (3H, s, NCO- <i>Me</i>), δ 1.26 (3H, t, 7.0,
11	H-2'''). 7b : δ 7.19-7.32 (5H, m, H-2'', H-3'', H-4'', H-5'', H-6''), δ 4.18 (2H, q, 7.0,
12	H-1'''), δ 4.09 (2H, s, H-2), δ 3.55 (2H, t, 7.7, H-1'), δ 2.80 (2H, t, 7.6, H-2'), δ 2.01
13	(3H, s, NCO- <i>Me</i>), δ 1.26 (3H, t, 7.0, H-2'''). ESIMS <i>m</i> / <i>z</i> 272 [M+Na] ⁺ ; HRESIMS <i>m</i> / <i>z</i>
14	272.1254 $[M+Na]^+$ (calcd for C ₁₄ H ₁₉ N ₁ NaO ₃ , 272.1262).
15	

16 *3.4.6. 2-(Phenethylamino)acetic acid (8).* Bromoacetic acid (1 mmol, 139 mg) was

- 17 dissolved in pyridine (500 μ L) and a mixture of 2-phenethylamine (1 mmol, 125 μ L)
- 18 and diethylamine (0.1 mmol, 10 µL) was added to the solution. The resulting mixture

1	was stirred for 48 h at room temperature. The products were purified by silica gel flash
2	column chromatography (CH ₂ Cl ₂ ; CH ₂ Cl ₂ /acetone 9:1, 5:5; acetone; acetone/MeOH
3	5:5) and then reversed-phase HPLC (Capcell pak C18 AQ, 33% MeOH) to obtain 8
4	(23.4 mg, 13% yield). 8: ¹ H NMR (CD ₃ OD, 270 MHz) δ 7.21-7.35 (5H, m), δ 3.50 (2H,
5	s), δ 3.25 (2H, q, 7.0), δ 2.97 (2H, t, 7.0); ESIMS <i>m/z</i> 381 [2M+Na] ⁺ ; HRESIMS <i>m/z</i>
6	$381.1782 [2M+Na]^+$ (calcd for C ₂₀ H ₂₆ N ₂ NaO ₄ , 381.1790). ²⁰
7	
8	3.4.7. 2-(N-Phenethylformamido)acetic acid (9). Glyoxylic acid monohydrate (10 mmol,
9	1.84 g) was dissolved in distilled water (5 mL) and 2-phenethylamine (5 mmol, 630 $\mu L)$
10	was added to the solution. The resulting mixture was stirred for 24 h at room
11	temperature. The products were purified by silica gel flash column chromatography
12	(acetone; acetone/MeOH 5:5) and then reversed-phase HPLC (Capcell pak C18 AQ,
13	28% MeOH) to afford 9 (113 mg, 11% yield). Compound 9 was obtained a set of
14	rotational isomers (9a and 9b). The molar ratio of 9a to 9b was 2.8 to 1. 9a: ¹ H NMR
15	(CD ₃ OD, 270 MHz) δ 7.83 (1H, s), δ 7.20-7.28 (5H, m), δ 4.06 (2H, s), δ 3.61 (2H, t,
16	7.0), δ 2.86 (2H, t, 7.0). 9b : δ 8.02 (1H, s), δ 7.20-7.28 (5H, m), δ 3.99 (2H, s), δ 3.56
17	(2H, t, 8.1), δ 2.86 (2H, t, 7.0). ESIMS <i>m/z</i> 230 [M+Na] ⁺ ; HRESIMS <i>m/z</i> 230.0792
18	$[M+Na]^+$ (calcd for C ₁₁ H ₁₃ N ₁ NaO ₃ , 230.0794). ²¹

2	3.4.8. Ethyl 2-(N-phenethylformamido)acetate (1). 6 (100 mmol, 20 mg) was dissolved
3	in pyridine (500 $\mu L)$ and a mixture of formic acid (0.4 mmol, 15 $\mu L)$ and DIPCD (0.4
4	mmol, 60 $\mu L)$ was added to the solution. The resulting mixture was stirred for 24 h at
5	room temperature. The products were purified by silica gel flash column
6	chromatography (CH ₂ Cl ₂ ; CH ₂ Cl ₂ /acetone 9:1, 5:5; acetone; acetone/MeOH 5:5) and
7	then reverse-phase HPLC (Capcell pak C18 AQ, 50% MeOH) to give 1 (7.7 mg, 33%);
8	¹ H and ¹³ C NMR, see Table 1.
9	
10	3.5. Bioassay
10 11	3.5. Bioassay Neuro2a cells were obtained from the Health Science Research Resources Bank,
10 11 12	3.5. BioassayNeuro2a cells were obtained from the Health Science Research Resources Bank,Japan, and maintained in the Dulbecco's modified Eagles medium (D-MEM) (SIGMA,
10 11 12 13	3.5. BioassayNeuro2a cells were obtained from the Health Science Research Resources Bank,Japan, and maintained in the Dulbecco's modified Eagles medium (D-MEM) (SIGMA,USA) supplemented with 10% (v/v) fetal bovine serum (FBS), unless particularly noted.
10 11 12 13 14	 3.5. Bioassay Neuro2a cells were obtained from the Health Science Research Resources Bank, Japan, and maintained in the Dulbecco's modified Eagles medium (D-MEM) (SIGMA, USA) supplemented with 10% (v/v) fetal bovine serum (FBS), unless particularly noted. Cell viability analysis was performed by
10 11 12 13 14 15	 3.5. Bioassay Neuro2a cells were obtained from the Health Science Research Resources Bank, Japan, and maintained in the Dulbecco's modified Eagles medium (D-MEM) (SIGMA, USA) supplemented with 10% (v/v) fetal bovine serum (FBS), unless particularly noted. Cell viability analysis was performed by 3-(4,5-dimethyl-2-thiazolyl)2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. MTT
10 11 12 13 14 15 16	 3.5. Bioassay Neuro2a cells were obtained from the Health Science Research Resources Bank, Japan, and maintained in the Dulbecco's modified Eagles medium (D-MEM) (SIGMA, USA) supplemented with 10% (v/v) fetal bovine serum (FBS), unless particularly noted. Cell viability analysis was performed by 3-(4,5-dimethyl-2-thiazolyl)2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. MTT assay was performed as follows; Neuro2a cells were cultured in 96-well plates at cell
 10 11 12 13 14 15 16 17 	 3.5. Bioassay Neuro2a cells were obtained from the Health Science Research Resources Bank, Japan, and maintained in the Dulbecco's modified Eagles medium (D-MEM) (SIGMA, USA) supplemented with 10% (v/v) fetal bovine serum (FBS), unless particularly noted. Cell viability analysis was performed by 3-(4,5-dimethyl-2-thiazolyl)2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. MTT assay was performed as follows; Neuro2a cells were cultured in 96-well plates at cell density 5000 cells/well and after one-day cultivation, the cells were cultured in D-MEM

 $\,$ without FBS, and with 0.5 $\mu g/mL$ of tunicamycin (or 20 nM thapsigargin) and varying

1	concentrations of test compounds were applied to the medium. The cells were incubated			
2	for 24 h, and then the viability was measured by MTT assay, as described previously. ²²			
3	Briefly, 0.25 mg/mL of MTT in D-MEM without FBS were added onto the cells and			
4	incubated for 2 h. The incubation was terminated by addition of 20% SDS (v/w) and			
5	50% DMSO (v/v) in water. The absorbance at 570 nm of the reaction mixture was			
6	measured by a microplate reader (Molecular Devices, USA).			
7				
8	3.6. Statistical Analysis			
9	Data collected were analyzed statistically using Tukey-Kramer multiple			
10	comparisons tests to determine significant difference in the data among the groups. P			
11	values less than 0.01 were considered significant. The values are expressed as mean \pm			
12	SEM.			
13				
14	Acknowledgment			
15	We thank V. K. Deo (Shizuoka University) for valuable discussion.			
16				

References

- 1 1. Katayama, T.; Imaizumi, K.; Sato, N.; Miyoshi, K.; Kudo, T.; Hitomi, J.; Morihara,
- 2 T.; Yoneda, T.; Gomi, F.; Mori, Y.; Nakano, Y.; Takeda, J.; Tsuda, T.; Itoyama, Y.;
- 3 Murayama, O.; Takashima, A.; St George-Hyslop, P.; Takeda, M.; Tohyama, M. Nat.
- 4 *Cell. Biol.* **1999**, *1*, 479-485.
- 5 2. Imai, Y.; Soda, M.; Takahashi, R. J. Biol. Chem. 2000, 275, 35661-35664.
- 6 3. Kouroku, Y.; Fujita, E.; Jimbo, A.; Kikuchi, T.; Yamagata, T.; Momoi, M. Y.;
- 7 Kominami, E.; Kuida, K.; Sakamaki, K.; Yonehara, S.; Momoi, T. Hum. Mol. Genet.
- 8 **2002**, *11*, 1505-1515.
- 9 4. Nakagawa, T.; Zhu, H.; Morishima, N.; Li, E.; Xu, J.; Yankner, B. A.; Yuan, J.
- 10 *Nature* **2000**, *403*, 98-103.
- 11 5. Yoshida, H. FEBS J. 2007, 274, 630-658.
- 12 6. Nagai, K.; Chiba, A.; T., N.; Kubota, T.; Kawagishi, H. J. Nutr. Biochem. 2006, 17,
- 13 525-530.
- 14 7. Ueda, K.; Tsujimori, M.; Kodani, S.; Chiba, A.; Kubo, M.; Masuno, K.; Sekiya, A.;
- 15 Nagai, K.; Kawagishi, H. Bioorg. Med. Chem. 2008, 16, 9467-9470.
- 16 8. Choi, J.-H.; Horikawa, M.; Okumura, H.; Kodani, S.; Nagai, K.; Hashizume, D.;
- 17 Koshino, H.; Kawagishi, H. Tetrahedron 2009, 65, 221-224.

- 1 9. Choi, J.-H.; Maeda, K.; Nagai, K.; Harada, E.; Kawada, M.; Hirai, H.; Kawagishi, H.
- 2 Org. Lett. 2010, 12, 5012-5015.
- 3 10. Jansen, R.; Steinmetz, H.; Sasse, F.; Schubert, W.-D.; Hageluken, G.; Albrecht, S.
- 4 C.; Muller, R. Tetrahedron Lett. 2008, 49, 5796-5799.
- 5 11. Jang, K. H.; Kang, G. W.; Jeon, J.-e.; Lim, C.; Lee, H.-S.; Sim, C. J.; Oh, K.-B.;
- 6 Shin, J. Org. Lett. 2009, 11, 1713-1716.
- 7 12. Yang, Y. P.; Cheng, M. J.; Teng, C. M.; Chang, Y. L.; Tsai, I. L.; Chen, I. S.
- 8 *Phytochemistry* **2002**, *61*, 567-572.
- 9 13. Mahoney, W. C.; Duksin, D. J. Biol. Chem. 1979, 254, 6572-6576.
- 10 14. Olden, K.; Pratt, R. M.; Jaworski, C.; Yamada, K. M. Proc. Natl. Acad. Sci. U.S.A.
- 11 **1979**, *76*, 791-759.
- 12 15. Hitomi, J.; Katayama, T.; Taniguchi, M.; Honda, A.; Imaizumi, K.; Tohyama, M.
- 13 Neurosci. Lett. 2004, 357, 127-130.
- 14 16. Ito, Y.; Ushitora, H. *Tetrahedron* **2006**, *62*, 226-235.
- 15 17. Sakai, N.; Moriya, T.; Konakahara, T. J. Org. Chem. 2007, 72, 5920-5922.
- 16 18. Matsuo, T.; Hayashi, A.; Abe, M.; Matsuda, T.; Hisaeda, Y.; Hayashi, T. J. Am.
- 17 Chem. Soc. 2009, 131, 15124-15125.

- 1 19. Lopez-Cobenas, A.; Cledera, P.; Sanchez, J. D.; Lopez-Alvarado, P.; Ramos, M. T.;
- 2 Avendano, C.; Menendez, J. C. Synthesis 2005, 19, 3412-3422.
- 3 20. Seiler, N.; Schmidt, G. Tetrahedron Lett. 1966, 7, 4603-4607.
- 4 21. Gibbs, T. J. K.; Boomhoff, M.; Tomkinson, N. C. O. Synlett. 2007, 10, 1573-1576.
- 5 22. Liu, Y.; Peterson, D. A.; Kimura, H.; Schubert, D. J. Neurochem. 1997, 69,
- 6 581-593.
- 7

1 Figure Legends

2

1 a.
1

5	Figure 2. Protective activity of 1 against ER stress-dependent cell death. Neuro2a
6	cells were incubated with various concentrations of leccinine A (1) in the absence (A)
7	or presence of 0.5 μ g/mL of tunicamycin (B) or 20 nM thapsigargin (C) for 24 h. The
8	cell viabilities were analyzed by MTT assay, and the values were represented as the
9	mean \pm SEM of the relative percentage of surviving cells compared with the untreated
10	cells ($n = 16$). (*) $p < 0.01$, Tukey-Kramer multiple comparisons tests.

Fig 2. Choi et al.

position	$\delta_{\rm H}$ (mult, J in Hz)	$\delta_{ m C}$	HMBC
h			
10		170.2	
1 ^{<i>c</i>}		171.1	
2^b	4.08 (s)	45.5	N-CHO, C-1, 1'
2 ^{<i>c</i>}	4.03 (s)	50.3	
1′ ^b	3.63 (t, 7.0)	51.3	N-CHO, C-2, 2', 1"
1′ ^c	3.55 (t, 7.6)	46.9	
2' ^b	2.87 (t, 7.0)	35.8	C-1', 1'', 2'', 6''
2' ^c	2.82 (t, 7.6)	34.4	
1'' ^b		139.6	
1′′′		140.0	
2''	7.21 (d, 9.0)	130.1	C-2', 3'', 4''
3''	7.28 (m)	129.7	C-1", 2"
4''	7.21 (m)	127.7	C-2", 223", 6"
5''	7.28 (m)	129.7	C-1", 3", 6"
6''	7.21 (d, 9.0)	130.1	2', 4''
1'''	4.19 (q, 7.0)	62.4	C-1, 2'''
2'''	1.26 (t, 7.0)	14.4	C-1'''
$N-CHO^b$	7.85 (s)	165.6	C-2, 1′
N-CHO ^c	8.02 (s)	166.1	

Table 1. NMR Spectroscopic Data for Leccinine A $(1)^a$

^{*a*} Data were obtained in CD₃OD (500 MHz). ^{*b,c*} Denote chemical shifts for the major (**1a**) and minor rotational isomer (**1b**), respectively.