Expression, purification and antigenicity of Neospora caninum-antigens using silkworm larvae targeting for subunit vaccines

SURE 静岡大学学術リポジトリ Shizuoka University REpository

メタデータ	言語: eng
	出版者:
	公開日: 2012-12-28
	キーワード (Ja):
	キーワード (En):
	作成者: Otsuki, Takahiro, Dong, Jinhua, Kato, Tatsuya,
	Park, Enoch Y.
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10297/6936

- 1 Expression, purification and antigenicity of *Neospora*
- 2 caninum-antigens using silkworm larvae targeting for
- 3 subunit vaccines
- 4 Takahiro Otsuki ^a, Jinhua Dong ^a, Tatsuya Kato ^a and Enoch Y. Park ^{a,b,*}
- ^a Laboratory of Biotechnology, Department of Applied Biological Chemistry, Faculty of
- 6 Agriculture, Shizuoka University, Shizuoka 422-8529, Japan
- 7 ^b Laboratory of Biotechnology, Integrated Bioscience Section, Graduate School of
- 8 Science and Technology, Shizuoka University, 836 Ohya, Suruga-Ku, Shizuoka
- 9 422-8259, Japan

^{*} Corresponding author at: Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-Ku, Shizuoka 422-8259, Japan. Tel. & Fax: +81-54-238-4887.

E-mail address: <u>acypark@ipc.shizuoka.ac.jp</u> (E.Y. Park).

10 ABSTRACT

11 Infection of Neospora caninum causes abortion in cattle, which has a serious worldwide impact on the economic performance of the dairy and beef industries. Now, 12inexpensive and efficacious vaccines are required to protect cattle from neosporosis in 13livestock industry. In this study, N. caninum surface antigen 1 (SAG1) and 1415SAG1-related sequence 2 (SRS2) were expressed in hemolymph of silkworm larvae as a soluble form. Expressed SAG1 and SRS2 clearly showed antigenicity against N. 16caninum-positive sera of cow. SAG1 and SRS2 were purified to near homogeneity 17from hemolymph of silkworm larvae using anti-FLAG M2 antibody agarose: 18 approximately 1.7 mg of SAG1 from 10 silkworm larvae and 370 µg of SRS2 from 17 19silkworm larvae. Mice that were injected by antigens induced antibodies against SAG1 20and SRS2. This study indicates that it is possible that this silkworm expression system 2122leads to a large-scale production of N. caninum-antigens with biological function and low production cost. Bombyx mori nucleopolyhedrovirus (BmNPV) bacmid expression 23system paves the way to produce largely and rapidly these recombinant antigens for its 24application to subunit vaccines against neosporosis in cattle. 25

26

Keywords: Neospora caninum, neosporosis, silkworm, BmNPV bacmid

27

1. Introduction

30	Neospora caninum is a protozoan parasite of animals, which causes reproductive
31	failure in cattle (Dubey et al., 2007). Neosporosis is a major cause of abortion in cattle
32	and has serious impacts on the economic performance of dairy and beef industries
33	(Reichel and Ellis, 2006). Vaccination is the most cost-effective way to control
34	neosporosis, according to an economic analysis (Reichel and Ellis, 2006).
35	Subunit vaccines have been the most focused in this field. Various N.
36	caninum-antigens have been reported and evaluated as a vaccine. N. caninum surface
37	antigen 1 (SAG1), anchored on the surface of tachyzoites by
38	glycosylphosphatidylinositol (GPI) anchor, was expressed in E. coli and purified
39	recombinant SAG1 protected cerebral infection of N. caninum when immunized into
40	mice (Cannas et al., 2003). SAG-related sequence protein 2 (SRS2) has also GPI
41	anchor (Nishikawa et al., 2002), being localized on the surface of N. caninum, and is
42	expressed in both tachyzoites and bradyzoites (Fuchs et al., 1998; Hemphill and
43	Gottstein, 1996). Antibodies against SRS2 inhibit tachyzoite from attaching and
44	invading to host cells and induce cellular and humoral immunity, supposing that SRS2
45	is a strong vaccine candidate (Baszler et al., 2008; Haldorson et al., 2006; Nishikawa et
46	al., 2000).
47	Silkworms have been used for recombinant protein production because of its high
48	capacity of producing proteins and cost-effectiveness for large-scale production (Kato
49	et al., 2010(Li et al., 2010; Tsuji et al., 2011; Usami et al., 2010; Zhou et al., 2011).

Veterinary vaccines produced by recombinant baculoviruses are now on the market and 50some are under the development for licensing (Kamen et al., 2011). In addition, 5152subunit vaccines produced in silkworms are immunogenic and efficacious in cattle when used as prophylactic ones (Li et al., 2008; Li et al., 2011). Especially, in these 53cases, a hemolymph of silkworm larvae containing expressed the recombinant protein 54was used as a subunit vaccine against infectious disease in cattle. 5556In this study, several antigens of *N. caninum* were expressed as FLAG-tagged proteins in silkworm larvae using BmNPV bacmid system. Purified antigens with an 57adjuvant induced antigen-specific antibodies in mice. This study demonstrates that 58BmNPV bacmid system can be applied to cost-effective large-scale production of 5960 subunit vaccines against cattle.

61 **2. Materials and methods**

62 2.1. Gene amplification, cloning, and construction of recombinant BmNPV bacmids

SAG1 or SRS2 was expressed in hemolymph of silkworm larvae using the signal
peptide sequence of bombyxin from *Bombyx mori* (bx signal). bx signal peptide allows
expressed proteins to be secreted into hemolymph of silkworm larvae efficiently (Park
et al., 2007). Genomic DNA of *N. caninum* Nc-1 was purchased from American Type
Culture Collection (ATCC No. 50843D) and used as a PCR template. Antigen genes, *sag1* and *srs2* have no intron in genomic DNA. Then *sag1* gene was amplified by PCR
using SAG1-F (TATGGTACCGATCAGAAAAATCACCTCTA) and SAG1-R

70 (ATAGAGCTCTCACGCGACGCCAGCCGCTAT). srs2 gene was amplified by PCR

vising SRS2-FL-F (TGCGGTACCGATTTCCTCGGGCAGTGAGAC) and SRS2-FL-R

72 (ATAGAGCTCTCACGCGACGCCAGCCGCTAT). Each gene was cloned into

pET52b vector at *Kpn* I-Sac I site. Next, each gene was amplified by PCR using

74 CACC-bx-FLAG-HRV3C primer

75 (CACCATGAAGATACTCCTTGCTATTGCATTAATGTTGTCAACAGTAATGTGG

76 GTGTCAACAGACTACAAGGATGACGATGACAAGGGTGCACTTGAAGTCCTC

77 TTTCAG) and each reverse primer (SAG1-R or SRS2-FL-R). Each amplified gene

vas composed of bx signal peptide sequence, FLAG peptide sequence, human

rhinovirus 3C protease cleavage site sequence, and each protein coding sequence. Each

80 amplified gene was inserted into pENTR/D/TOPO (Life Technol. Japan Ltd, Tokyo,

Japan) vector by TOPO reaction. A recombinant CP⁻ Chi⁻ BmNPV bacmid harboring

82 each gene (BmNPV CP⁻ Chi⁻bx-FLAGHRV3C-SAG1s or BmNPV CP⁻

83 Chi-bx-FLAGHRV3C-SRS2FL) was constructed to express each N. caninum-antigen

84 according to the previous report (Park et al., 2008).

85 2.2. Injection of BmNPV bacmid DNA into silkworm larvae, harvesting hemolymph of
86 silkworm larvae, and purification of expressed recombinant N. caninum-antigens

87 BmNPV bacmid DNA injection into silkworm larvae and breeding silkworm larvae 88 were performed according to the previous report (Park et al., 2008). Hemolymph was 89 collected from silkworm larvae by cutting prolegs, and 1-phenyl-2-thiourea was put

 $\mathbf{5}$

90	into collected hemolymph at 0.1 mM to prevent melanization. Hemolymph was
91	centrifuged at 10000 \times g for 15 min to remove hemocytes and debris, and its
92	supernatant was used as a hemolymph sample.
93	To purify expressed recombinant N. caninum-antigens, 2 ml of anti-FLAG M2
94	antibody agarose (Sigma Aldrich Japan, Tokyo, Japan) was packed in an empty column
95	and equilibrated with TBS (pH 7.5). Hemolymph diluted 5-fold with TBS was loaded
96	onto the anti-FLAG M2 antibody agarose column. The column was washed with 40 ml
97	of TBS after loading hemolymph, and proteins were eluted with 8 ml of glycine-HCl
98	buffer (pH 3.5). Every fraction of 1 ml elute was collected.
99	2.3. SDS-PAGE, western blot and protein concentration determination
100	SDS-PAGE and western blot were carried out according to the previous report
101	(Tsuji et al., 2011). Mouse anti-FLAG M2 antibody (Sigma Aldrich Japan) and goat
102	anti-mouse labeled with horseradish peroxidase (HRP) (GE Healthcare Japan, Tokyo,
103	Japan) were used as primary and secondary antibodies. Protein concentration was
104	determined by BCA protein assay kit (Thermo SCIENTIFIC, Rockford, IL, USA).
105	2.4. Indirect enzyme-linked immunosorbent assay (Indirect ELISA)
106	One hundred microliters of hemolymph or purified antigens were immobilized on
107	an ELISA plate at 4°C overnight. Solution in each well was removed, and 2% skim
108	milk in PBST (PBS containing 0.05% Tween 20) as a blocking buffer was added into
100	each well at room temperature for 2 hours for a blocking step followed by collection

110	of their serum samples and washing each well using a plate washer (MODEL1575
111	ImmunoWash, Bio-Rad) with PBST. Then, 100 µl of Neospora-positive bovine serum
112	(gifted by Mr. Junichi Noda of Shizuoka Prefecture Tobu Livestock Disease
113	Diagnostic Center) diluted with 1000-fold with PBST was added to each well, and then
114	the ELISA plate was incubated at room temperature for an hour. Each well was washed
115	using a plate washer with PBST, and 100 μ l of goat anti-bovine IgG
116	antibody-conjugated HRP (Jackson ImmunoResearch Lab. Inc.) was added into each
117	well. After incubating the ELISA plate at room temperature for an hour, each well was
118	washed using a plate washer with PBST. One hundred microliters of substrate
119	[0.2-mg/ml 3,3',5,5'-tetramethylbenzidine (TMBZ) in 100-mM sodium acetate (pH
120	6.0), with 0.2% (v/v) of 30% hydrogen peroxide] were added to each well and left at
121	room temperature for blue-color development. The reaction was stopped by the
122	addition of 50 μl of 10% (w/v) H_2SO_4 solution. The developed color was measured at
123	absorbance of 450 nm using a microplate reader (MODEL680, Bio-Rad).
124	2.5. Immunization of purified antigens to mice and collection of their serum samples
125	Purified recombinant N. caninum-antigens were dialyzed against PBS at 4°C
126	overnight and mixed the same volume of Freund's complete adjuvant (Rockland
127	Immunochemicals Inc., Gilbertsville, PA, USA). One hundred microliters of this

- 128 mixture were immunized subcutaneously into a BALB/cCrSlc mouse (Japan SLC Inc.,
- 129 Hamamatsu, Japan). Immunization was performed every two weeks four times, and

 $\overline{7}$

130 $200 \ \mu g$ of purified antigen was used for this immunization to a mouse.

131	After fourth immunization, blood was collected from the heart of the mouse and
132	centrifuged at $3000 \times g$ for 5 min. Sodium azide was added into this supernatant
133	(serum) to 0.1%, and this mixture was kept at -30°C for further analysis.

134 **3. Results and discussion**

SAG1 and SRS2 have a signal peptide at its N-terminus and SAG1 also has a 135transmembrane domain at its C-terminus (Howe et al., 1998; Nishikawa et al., 2002). 136 137To express these antigens, *sag1* gene lacking the sequences of its native signal peptide 138and transmembrane domain region was amplified by PCR. Regarding SRS2, full-length srs2 gene fused with bx signal peptide sequence was amplified by PCR. 139140 Each PCR product was connected with bx signal peptide sequence and FLAG tag sequence at its N-terminus to secrete each protein into hemolymph of silkworm larvae 141 142and make the purification of expressed protein easy. SAG1 and SRS2 were expressed in hemolymph of silkworm larvae (Fig. 1A). 143Hemolymph containing expressed SAG1 and SRS2 had strong reactivity against serum 144 from a N. caninum-infected cow than that from a N. caninum-negative cow (Fig. 1B), 145146 suggesting that SAG1, SRS2 are the major immunodominant antigens of *N. caninum* 147and candidates for effective vaccines against N. caninum-infection. SAG1 was also 148 detected by Western blot using a *N. caninum*-positive serum (data not shown). SAG1 and SRS2, which have antigenicity against a N. caninum-positive serum, 149

150	were purified from hemolymph of silkworm larvae using anti-FLAG M2 antibody
151	agarose. Both SAG1 and SRS2 were purified (Fig. 2A) and its purity was higher than
152	90% when purified proteins were analyzed using Experion system (Bio-Rad).
153	Approximately 1.7 mg of SAG1 and 370 μ g of SRS2 were purified from 10 and 17
154	silkworm larvae, respectively. Protein yield in silkworm larvae is dependent on protein
155	properties, for example, pI, hydrophobicity and structure etc. (Kato et al., 2010), likely
156	to other protein expression system.
157	Purified SAG1 or SRS2 was immunized with Freund's complete adjuvant to mice 4
158	times every two weeks. Their sera were collected, and the production of antibodies
159	against SAG1 or SRS2 was confirmed using indirect ELISA. Absorbance value higher
160	than that in BSA was detected in both proteins, although both sera were diluted by
161	more than 50000-fold (Fig. 2B). It indicates that both proteins induced antibodies
162	against SAG1 and SRS2, respectively, and purified proteins from silkworm larvae have
163	a potential to be used for a vaccine against neosporosis. Up to now, several N.
164	caninum-antigens were expressed heterologously. SAG1 and SRS2 that are major
165	immunodominant surface proteins in tachyzoites of N. caninum were expressed in E.
166	coli as fusion proteins with poly-histidine tag. Purified antigens immunized into mice
167	protected against cerebral N. caninum infection to some extent (Cannas et al., 2003).
168	Several antigens have been expressed in E. coli and cultured insect cells using
169	recombinant baculoviruses and purified antigens have been evaluated as subunit
170	vaccines to cattle. In this study, SAG1 and SRS2 were successfully expressed in

171	silkworm larvae using recombinant BmNPV bacmids. SAG1 and SRS2, expressed in
172	hemolymph of silkworm larvae and showed antigenicity to a N. caninum-positive
173	serum from cow. Purified SAG1 and SRS2 amounts were 1.7 and 0.37 mg from only
174	10-20 silkworm larvae, respectively. To use recombinant antigen for a vaccine to cattle,
175	large-scale antigen production system is needed inevitably. In the point of the
176	large-scale antigen production, silkworm system is advantageous. This point has a
177	tremendous impact on the production cost of subunit vaccines because any purification
178	steps of recombinant subunit vaccines from hemolymph of silkworm larvae are not
179	needed. BmNPV bacmid silkworm expression system for the production of <i>N</i> .
180	caninum-antigens provides its practical application as a recombinant antigen vaccine in
181	the field of livestock industry.

Acknowledgements 182

This work was supported by a Grant-in-Aid for Scientific Research (A) Grant 183

No.22248009 from the Ministry of Education, Culture, Sports, Science and Technology. 184

We thank Mr. Junichi Noda of Shizuoka Prefecture Tobu Livestock Disease Diagnostic 185

- 186 Center (101 Nitta Kannamicho Tagata-gun, Shizuoka Prefecture, Japan) for providing cattle serum samples. 187

188References

Baszler, T.V., Shkap, V., Mwangi, W., Davies, C.J., Mathison, B.A., Mazuz, M., 189

190	Resnikov, D., Fish, L., Leibovitch, B., Staska, L.M., Savitsky, I., 2008. Bovine
191	immune response to inoculation with Neospora caninum surface antigen SRS2
192	lipopeptides mimics immune response to infection with live parasites. Clin
193	Vaccine Immunol 15, 659-667.
194	Cannas, A., Naguleswaran, A., Muller, N., Eperon, S., Gottstein, B., Hemphill, A.,
195	2003. Vaccination of mice against experimental Neospora caninum infection
196	using NcSAG1- and NcSRS2-based recombinant antigens and DNA vaccines.
197	Parasitology 126, 303-312.
198	Dubey, J.P., Schares, G., Ortega-Mora, L.M., 2007. Epidemiology and control of
199	neosporosis and Neospora caninum. Clinical microbiology reviews 20,
200	323-367.
201	Fuchs, N., Sonda, S., Gottstein, B., Hemphill, A., 1998. Differential expression of cell
202	surface- and dense granule-associated Neospora caninum proteins in
203	tachyzoites and bradyzoites. The Journal of parasitology 84, 753-758.

204	Haldorson, G.J., Stanton, J.B., Mathison, B.A., Suarez, C.E., Baszler, T.V., 2006.
205	Neospora caninum: antibodies directed against tachyzoite surface protein
206	NcSRS2 inhibit parasite attachment and invasion of placental trophoblasts in
207	vitro. Experimental parasitology 112, 172-178.
208	Hemphill, A., Gottstein, B., 1996. Identification of a major surface protein on
209	Neospora caninum tachyzoites. Parasitology research 82, 497-504.
210	Howe, D.K., Crawford, A.C., Lindsay, D., Sibley, L.D., 1998. The p29 and p35
211	immunodominant antigens of Neospora caninum tachyzoites are homologous to
212	the family of surface antigens of Toxoplasma gondii. Infection and immunity
213	66, 5322-5328.
214	Kamen, A.A., Aucoin, M.G., Merten, O.W., Alves, P., Hashimoto, Y., Airenne, K., Hu,
215	Y.C., Mezzina, M., van Oers, M.M., 2011. An initiative to manufacture and
216	characterize baculovirus reference material. Journal of invertebrate pathology
217	107 Suppl, S113-117.

218	Li, X.H., Wang, D., Zhou, F., Yang, H.J., Bhaskar, R., Hu, J.B., Sun, C.G., Miao, Y.G.,
219	2010. Cloning and expression of a cellulase gene in the silkworm, Bombyx
220	mori by improved Bac-to-Bac/BmNPV baculovirus expression system.
221	Molecular biology reports 37, 3721-3728.
222	Li, Z., Yi, Y., Yin, X., Zhang, Z., Liu, J., 2008. Expression of foot-and-mouth disease
223	virus capsid proteins in silkworm-baculovirus expression system and its
224	utilization as a subunit vaccine. PloS one 3, e2273.
225	Li, Z., Yin, X., Yi, Y., Li, X., Li, B., Lan, X., Zhang, Z., Liu, J., 2011. FMD subunit
226	vaccine produced using a silkworm-baculovirus expression system: protective
227	efficacy against two type Asia1 isolates in cattle. Veterinary microbiology 149,
228	99-103.
229	Nishikawa, Y., Tragoolpua, K., Makala, L., Xuan, X., Nagasawa, H., 2002. Neospora
230	caninum NcSRS2 is a transmembrane protein that contains a
231	glycosylphosphatidylinositol anchor in insect cells. Veterinary parasitology 109
232	191-201.

233	Nishikawa, Y., Xuan, X., Nagasawa, H., Igarashi, I., Fujisaki, K., Otsuka, H., Mikami,
234	T., 2000. Monoclonal antibody inhibition of Neospora caninum tachyzoite
235	invasion into host cells. International journal for parasitology 30, 51-58.
236	Park, E.Y., Kageshima, A., Kwon, M.S., Kato, T., 2007. Enhanced production of
237	secretory beta1,3-N-acetylglucosaminyltransferase 2 fusion protein into
238	hemolymph of Bombyx mori larvae using recombinant BmNPV bacmid
239	integrated signal sequence. Journal of biotechnology 129, 681-688.
240	Reichel, M.P., Ellis, J.T., 2006. If control of Neospora caninum infection is technically
241	feasible does it make economic sense? Veterinary parasitology 142, 23-34.
242	Tsuji, Y., Deo, V.K., Kato, T., Park, E.Y., 2011. Production of Rous sarcoma virus-like
243	particles displaying human transmembrane protein in silkworm larvae and its
244	application to ligand-receptor binding assay. Journal of biotechnology 155,
245	185-192.

Usami, A., Suzuki, T., Nagaya, H., Kaki, H., Ishiyama, S., 2010. Silkworm as a host of

247	baculovirus expression. Current pharmaceutical biotechnology 11, 246-250.
248	Zhou, Y., Chen, H., Li, X., Wang, Y., Chen, K., Zhang, S., Meng, X., Lee, E.Y., Lee,
249	M.Y., 2011. Production of recombinant human DNA polymerase delta in a
250	Bombyx mori bioreactor. PloS one 6, e22224.
251	

253 Figure legends

- **Fig. 1.** (A) Expression of SAG1 and SRS2 in hemolymph of silkworm larvae. Protein
- expression was analyzed by Western blot using mouse anti-FLAG M2 antibody. (B)
- 256 Antigenicity of SAG1 and SRS2 expressed in hemolymph of silkworm larvae against a
- 257 *N. caninum*-positive serum. Antigenicity of each antigen was analyzed using indirect
- ELISA as described in Materials and methods. Closed and open bars indicate
- 259 *Neospora*-positive and negative sera, respectively.
- **Fig. 2.** (A) Purification of SAG1 and SRS2 from hemolymph of silkworm larvae using
- anti-FLAG M2 antibody agarose. Lanes of CBB and WB show SDS-PAGE with
- 262 Coomassie Brilliant Blue (CBB) staining and Western blot analysis of each purified
- antigen using mouse anti-FLAG M2 antibody, respectively. (B) Indirect ELISA
- analysis of serum from mice immunized with purified SAG1 (I) or SRS2 (II). Indirect
- ELISA method was described in Materials and methods in detail.

