Expression and purification of bioactive hemagglutinin protein of highly pathogenic avian influenza A (H5N1) in silkworm larvae

SURE 静岡大学学術リポジトリ Shizuoka University REpository

| メタデータ | 言語: eng                                             |
|-------|-----------------------------------------------------|
|       | 出版者:                                                |
|       | 公開日: 2013-09-24                                     |
|       | キーワード (Ja):                                         |
|       | キーワード (En):                                         |
|       | 作成者: Dong, Jinhua, Harada, Mizuho, Yoshida,         |
|       | Sawako, Kato, Yuri, Murakawa, Akiko, Ogata, Makoto, |
|       | Kato, Tatsuya, Usui, Taichi, Park, Enoch Y.         |
|       | メールアドレス:                                            |
|       | 所属:                                                 |
| URL   | http://hdl.handle.net/10297/7442                    |

| 1  | Expression and purification of bioactive hemagglutinin protein of                                                                             |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------|
| 2  | highly pathogenic avian influenza A (H5N1) in silkworm larvae                                                                                 |
| 3  |                                                                                                                                               |
| 4  | Jinhua Dong <sup>a#</sup> , Mizuho Harada <sup>b</sup> , Sawako Yoshida <sup>b</sup> , Yuri Kato <sup>b</sup> , Akiko Murakawa <sup>a</sup> , |
| 5  | Makoto Ogata <sup>c</sup> , Tatsuya Kato <sup>b,d</sup> , Taichi Usui <sup>a</sup> , Enoch Y Park <sup>a,b,d*</sup>                           |
| 6  | <sup>a</sup> Department of Bioscience, Graduate School of Science and Technology,                                                             |
| 7  | <sup>b</sup> Department of Applied Biological Chemistry, Faculty of Agriculture, Shizuoka                                                     |
| 8  | University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529 Japan                                                                                     |
| 9  | <sup>c</sup> Department of Chemistry and Biochemistry, Fukushima National College of                                                          |
| 10 | Technology, 30 Nagao, Iwaki, Fukushima, 970-8034 Japan                                                                                        |
| 11 | <sup>d</sup> Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya,                                               |
| 12 | Suruga-ku, Shizuoka, 422-8529 Japan                                                                                                           |
|    |                                                                                                                                               |

<sup>\*</sup> Corresponding author at Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan. Tel. & Fax: +81-54-238-4887, *E-mail address*: acypark@ipc.shizuoka.ac.jp (EY Park)
# Current address: Chemical Resources Laboratory, Tokyo Institute of Technology, 4259-R1-18, Nagatsuta-cho, Yokohama, Kanagawa, 226-8503, Japan

## 14 ABSTRACT

The hemagglutinin (HA) of avian influenza viruses plays a very important role in the 15infection of host cells. In this study, the HA gene of the highly pathogenic avian 1617influenza H5N1 virus was cloned and expressed in silkworm larvae. The expressed recombinant HA (rHA) was purified using fetuin-agarose chromatography and 18 Superdex 200 10/300 GL gel filtration chromatography, and the identity of purified rHA 19 20was confirmed by SDS-PAGE and Western blot. Approximately 500 µg of purified rHA was obtained from a total of 30 silkworm larvae, suggesting the high efficiency of the 2122silkworm expression system. The purified rHA bound to a rabbit polyclonal antibody against influenza A virus H5N1 (avian flu) HA, suggesting its antigenicity and potential 23application in vaccine development. Gel filtration chromatography showed that purified 2425HA was present in the void volume fractions, indicating that rHA may form an oligomer. The rHA bound to poly{Neu5Aca2,3LacNAc $\beta$ -O[(CH<sub>2</sub>)<sub>5</sub>NHCO]<sub>2</sub>(CH<sub>2</sub>)<sub>5</sub>NH-/ $\gamma$ -PGA}, 2627which mimics an avian type receptor, but did not bind to  $\gamma$ -polyglutamic acid or human type receptor mimic, 28poly{Neu5Aca2,6LacNAc $\beta$ -O[(CH<sub>2</sub>)<sub>5</sub>NHCO]<sub>2</sub>(CH<sub>2</sub>)<sub>5</sub>NH-/ $\gamma$ -PGA}, suggesting that it 2930 could be utilized as a blocking agent against infection by highly pathogenic influenza viruses. 31

 $\mathbf{2}$ 

32 Keywords: Hemagglutinin, Influenza virus, *Bombyx mori* nucleopolyhedrovirus,

33 Bacmid, Silkworm

34

# 36 1. Introduction

Influenza is an infectious disease caused by influenza viruses, and may cause nausea 37and vomiting (Eccles, 2005). Currently, 3 types of influenza viruses (A, B, and C) have 3839 been identified, and the type A virus is the strain most likely to cause epidemics and pandemics, because it can undergo antigenic shift and present a new immune target to 40 susceptible individuals. Influenza A viruses have been isolated from many species, 41 including humans, pigs, horses, minks, felids, marine mammals, and a wide variety of 42domestic birds; however, wild fowl and shorebirds are thought to form the virus 43reservoir in nature (Olsen et al., 2006). Influenza viruses are classified on the basis of 2 44proteins present on the surface of virus particles - the hemagglutinin (HA) and 45neuraminidase (NA) (Webster et al., 1992); and currently, influenza viruses representing 46 4716 HA and 9 NA subtypes have been identified (Fouchier et al., 2005). HA is a glycoprotein responsible for binding to a cell's surface and mediating fusion of the viral 48and cellular membranes after endocytosis (Martin et al., 1998; Wiley and Skehel, 1987). 49HA is initially secreted as a precursor, which is called HA0, and displayed on the 50surface of viruses during virus assembly (Kido et al., 1993); it is then cleaved into HA1 5152and HA2 submits by furin-like protease. The cleavage site of HA and the proteases in the host determine the pathogenicity of the virus. The cleavage site of HA 53

| 54 | (RERRRKKRG) is conserved in H5N1 viruses, consists of polybasic amino acids, and                 |
|----|--------------------------------------------------------------------------------------------------|
| 55 | has a positive charge. These characteristics make it easy to cleave and facilitates the          |
| 56 | binding of virus particles to host cells.                                                        |
| 57 | H5N1 influenza A viruses have spread to numerous countries in Asia, Europe, and                  |
| 58 | Africa, where they not only infect large numbers of poultry, but also increasing numbers         |
| 59 | of humans, often with a lethal effect (Enserink, 2006; Webster et al., 2006). Generally,         |
| 60 | human and avian influenza A viruses differ regarding their recognition of host cell              |
| 61 | receptors: the former preferentially recognize receptors with saccharides terminating in         |
| 62 | $\alpha$ 2,6-sialylgalactose (SA $\alpha$ 2,6Gal), whereas the latter prefer receptors ending in |
| 63 | α2,3-sialylgalactose (SAα2,3Gal) (Matrosovich et al., 2000; Rogers et al., 1983; Rogers          |
| 64 | and Paulson, 1983; Zambon et al., 2001). Although there is no evidence showing that              |
| 65 | viral mutations enabling H5N1 to infect human cells have occurred in nature, some                |
| 66 | cases of human infection have been reported following close contact with the viruses.            |
| 67 | Also, some experimental adaptation studies of the influenza H5 virus showed that H5              |
| 68 | HA can convert to an HA that supports efficient viral transmission in mammals (Imai et           |
| 69 | al., 2012). Humans lack immunity to influenza viruses possessing an H5 HA, and                   |
| 70 | emergence of a transmissible H5N1 virus would probably cause a pandemic.                         |
| 71 | Escherichia coli, mammalian cells, and animals have all been used to develop                     |

| 72 | antibodies for detection or neutralization of influenza A virus HA protein. Although                    |
|----|---------------------------------------------------------------------------------------------------------|
| 73 | recombinant HA (rHA) has been purified and used for developing antibodies, the sugar                    |
| 74 | binding capacities of most rHAs have not been investigated (Liu et al., 2011; Yousefi et                |
| 75 | al., 2012). In this study, the HA of virus strain H5N1 was expressed in silkworm larvae                 |
| 76 | and then purified. The specificity for binding of rHA to receptors was also investigated.               |
| 77 | 2. Materials and Methods                                                                                |
| 78 | 2.1. Materials                                                                                          |
| 79 | <i>E. coli</i> DH5α was purchased from Agilent Technologies (La Jolla, CA, USA) and used                |
| 80 | for gene cloning. BmDH10Bac CP <sup>-</sup> Chi <sup>-</sup> (Park et al., 2008) was used for preparing |
| 81 | recombinant bacmid for expression in silkworm larvae. Plasmid pFastBact1 was                            |
| 82 | obtained from Invitrogen (Carlsberg, CA, USA).                                                          |
| 83 | 2.2. Cloning of HA gene into a pFastBac1 plasmid                                                        |
| 84 | Plasmid pBluescript II SK(+)-pHA(H5N1) containing the HA gene (Accession number:                        |
| 85 | AY651333) of the avian influenza A H5N1 virus (A/Vietnam/1194/2004) was                                 |
| 86 | synthesized by Operon (Tokyo, Japan) and transformed into E. coli DH5a. The                             |
| 87 | pBluescript II SK(+)-pHA(H5N1) was extracted from <i>E. coli</i> and used as a template for             |
| 88 | amplification of the HA gene. To enable secretion of expressed proteins into the                        |

A 1/1

| 89  | hemolymph of silkworm larvae, the native signal peptide sequence (amino acids 1-16)         |
|-----|---------------------------------------------------------------------------------------------|
| 90  | and transmembrane domain sequence (amino acids 544-568) were deleted from the HA            |
| 91  | gene, and the signal peptide sequence of bombyxin from Bombyx mori (bx signal) was          |
| 92  | added at its N-terminus domain sequence. The bx signal peptide allows expressed             |
| 93  | proteins to be efficiently secreted into the hemolymph of silkworm larvae (Park et al.,     |
| 94  | 2007). For purification of rHA, a 6 $\times$ His tag was added to the carboxyl-terminus of  |
| 95  | rHA; also, a GS linker (GGGSGGGS) was designed between the HA region and the His            |
| 96  | tag region. The bx signal gene was linked by 2 oligonucleotides (Bx-HA Primer-frw and       |
| 97  | -rev) by a polymerase chain reaction (PCR). The PCR was performed as follows: 35            |
| 98  | cycles at 98°C for 10 sec, 55°C for 30 sec, and 68°C for 2 min, after denaturation at       |
| 99  | 94°C for 2 min in a 50 $\mu$ L reaction mixture containing 15 pmol of Bx-HA Primer-frw      |
| 100 | and -rev (Table 1), 75 µmol of MgSO <sub>4</sub> , 10 µmol of dNTPs, 1 unit of KOD-Plus-Neo |
| 101 | (Toyobo, Osaka, Japan), and a 10% volume of a 10 $\times$ reaction buffer. The PCR products |
| 102 | were separated by agarose electrophoresis using a 3% agarose gel, and the target DNA        |
| 103 | fragments were excised and purified with an Illustra GFX PCR Gel Band Purification          |
| 104 | kit (GE Healthcare, Piscataway, NJ, USA).                                                   |
| 105 | A fragment containing the GS linker and a His tag gene was synthesized as follows:          |
| 106 | Three oligonucleotides, HA-GS-Frw, GSlinker, and His-rev, were added to 50 $\mu L$ of a     |

| 107 | reaction mixture similar to that described above, and PCR was also performed using                   |
|-----|------------------------------------------------------------------------------------------------------|
| 108 | conditions similar to those previously described. To amplify the DNA fragment                        |
| 109 | bx-HA-His, the bx signal fragment, GS-His DNA fragment, and pBluescript II                           |
| 110 | SK(+)-pHA(H5N1) HA gene were added to a 50 $\mu$ L reaction mixture containing 15                    |
| 111 | $\mu$ mol of Bx-HA Primer-frw and His-rev, MgSO <sub>4</sub> , dNTPs, and KOD-Plus-Neo. The          |
| 112 | reaction was performed using similar condition as above but annealing at 65°C, and the               |
| 113 | amplified bx-HA-His fragment was separated by agarose electrophoresis with a 1%                      |
| 114 | agarose gel, and purified using an Illustra GFX PCR Gel Band Purification kit. The                   |
| 115 | pFastBac1 fragment was amplified with primer 4120-frw and 4058-rev by PCR using                      |
| 116 | the protocol described above, but the extension time was 3 min and 30 sec. The                       |
| 117 | amplified DNA fragment was separated on a 0.5% agarose gel and purified. The                         |
| 118 | amplified bx-HA-His fragment and pFastBac1 fragment were ligated in a reaction                       |
| 119 | mixture containing 500 ng of bx-HA-His fragment, 500 ng of pFastBac1 fragment, 1 $\mu$ L             |
| 120 | of 5 $\times$ In-Fusion HD Mix (Takara, Shiga, Japan), followed by incubation at 50°C for 15         |
| 121 | min. <i>E. coli</i> DH5 $\alpha$ competent cells were transformed using 2.5 µL of the above reaction |
| 122 | mixture, and a heat shock treatment at 42°C for 45 sec. The cells were then plated on a              |
| 123 | Luria Broth (LB) medium plate containing ampicillin (100 $\mu$ g/mL). Following                      |
| 124 | overnight cultivation at 37°C, colonies grown on the plate were checked by PCR with                  |

| 125 | primers 4001-frw and 4185-rev (Table 1), to confirm that they harbored the HA gene.                         |
|-----|-------------------------------------------------------------------------------------------------------------|
| 126 | The plasmid pFastBac1-bx-HA-His was extracted from recombinant <i>E. coli</i> .                             |
| 127 | 2.3. Construction of recombinant BmNPV bacmid                                                               |
| 128 | The resulting recombinant plasmid pFastBac1-bx-HA-His was transformed into <i>E</i> .                       |
| 129 | coli strain BmDH10Bac CP <sup>-</sup> Chi <sup>-</sup> (Park et al., 2008) and cultivated for 36 h at 37°C, |
| 130 | after which, and a PCR with primers pUC/M13Frw and -Rev (Table 1) was performed                             |
| 131 | for white colonies which were thought to harbor the HA gene. The recombinant <i>Bombyx</i>                  |

132 *mori* nucleopolyhedrovirus (BmNPV) bacmid DNA was extracted from confirmed *E*.

133 *coli* cells, and designated as rBmNPV-bx-HA-His.

134 2.4. Expression of HA in silkworm larvae

135 Fifth instar silkworm larvae (Ehime Sansyu Co. Ltd., Ehime, Japan) were injected with

136 50 µL of a mixture containing 10 µg of rBmNPV-bx-HA-His and a one-tenth volume of

137 DMRIE-C reagent (Life Technologies, Tokyo, Japan). The silkworm larvae were reared

138 on an artificial diet (NOSAN Co., Yokohama, Japan) in a chamber (MLR-351H, Sanyo,

139 Tokyo, Japan) at 27°C and 65% humidity for 6–7 days. Larval hemolymph was

140 collected from silkworm larvae by cutting prolegs, and 1-phenyl-2-thiourea was added

141 into hemolymph at 0.1 mM to prevent melanization of samples. Hemocytes and debris

were removed from hemolymph by centrifugation at  $10000 \times \text{g}$  for 15 min, and the supernatants were stored at -80°C for purification.

# 144 2.5. Purification of recombinant HA

The rHA in hemolymph was purified using fetuin-agarose chromatography followed by 145146gel filtration chromatography, which was carried out as follows. A 20 mL volume of larval hemolymph was dialyzed overnight at 4°C with 50 mM sodium phosphate (pH 1477.4) containing 150 mM NaCl (Buffer 1). The dialyzed hemolymph was then applied to 148149a 2 mL fetuin-agarose (Sigma Aldrich Japan, Tokyo, Japan) column equilibrated with Buffer 1, and the column was washed with 20 mL of Buffer 1. The rHA was eluted with 150100 mM boric acid (pH 10.0) and the pH values of elution fractions were adjusted to 151neutral. Then, a 10 mL of each elution fraction was concentrated to a volume of ~2.0 152mL. The concentrated elution fractions were applied to a Superdex 200 10/300 GL 153154column ( $1.0 \times 24$  cm, GE Healthcare) equilibrated with Buffer 1, and 0.5 mL volumes of column eluent were collected at a flow rate of 0.5 mL/min. Fractions containing the 155target protein were analyzed with SDS-PAGE and Western blot. Protein concentrations 156were determined using a BCA protein assay kit (Sigma, St. Louis, MO, USA). 157

#### 158 2.6. SDS-PAGE and Western blot

| 159 | The purified protein fractions were analyzed by SDS-PAGE as described by Laemmli                                                  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------|
| 160 | (Laemmli, 1970), and Western blot. Protein samples (10 $\mu$ L) were separated by                                                 |
| 161 | SDS-PAGE and blotted onto a polyvinylidene fluoride (PVDF) membrane (Bio-Rad                                                      |
| 162 | Laboratories, Hercules, CA, USA). After blocking the PVDF membrane with PBS                                                       |
| 163 | (KH <sub>2</sub> PO <sub>4</sub> , 1.47 mM; Na <sub>2</sub> HPO <sub>4</sub> , 8.10 mM; NaCl, 136.89 mM; KCl, 2.68 mM) containing |
| 164 | 2% skimmed milk (MPBS) at room temperature for 2 h, a 1 $\mu$ g/mL concentration of                                               |
| 165 | mouse anti-His antibody (GE healthcare) or rabbit polyclonal antibody to influenza A                                              |
| 166 | virus H5N1 (avian flu) HA (Sino Biological Inc., Beijing, China) was added to the                                                 |
| 167 | membrane in an appropriate volume. After incubation for 1 h, the membrane was                                                     |
| 168 | washed 3 times with PBST (PBS containing 0.1% Tween 20) and anti-mouse IgG HRP                                                    |
| 169 | conjugate (Promega, Madison, WI, USA), or in other samples, goat anti-Rabbit                                                      |
| 170 | IgG-HRP (GE healthcare) was added prior to incubation for 1 h. After washing 3 times                                              |
| 171 | with PBST, the bands were developed with ECL Plus reagents (GE Healthcare) and                                                    |
| 172 | detected using a VersaDoc Imaging System (Bio-Rad Laboratories, Hercules, CA,                                                     |
| 173 | USA).                                                                                                                             |

174 2.7. Hemagglutination assay

175 Samples of blood obtained from rabbits, sheep, and chickens were purchased from

| 176 | Japan SLC Inc. (Hamamatsu, Japan). The blood was diluted with PBS (pH 7.4) and                                                                              |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 177 | centrifuged. The supernatant was then removed and erythrocytes were suspended with                                                                          |
| 178 | PBS. This step was performed 4-6 times. Pelleted erythrocytes were suspended with                                                                           |
| 179 | PBS to a final concentration of 4%. Two-fold dilutions of purified HA were prepared in                                                                      |
| 180 | wells of a 96-well plate; then, 25 $\mu L$ of the 4% erythrocyte suspension was added to                                                                    |
| 181 | each well and incubated for 2 h at room temperature, followed by observation of                                                                             |
| 182 | erythrocyte aggregation.                                                                                                                                    |
| 183 | 2.8. Assay for direct binding of rHA to its receptor                                                                                                        |
| 184 | $\gamma$ -Polyglutamic acid ( $\gamma$ -PGA; MW 990,000) from <i>Bacillus subtilis</i> was a kind gift from                                                 |
| 185 | Meiji Food Materia Co. Ltd. (Tokyo, Japan).                                                                                                                 |
| 186 | $Poly\{Neu5Ac\alpha 2, 3LacNAc\beta-O[(CH_2)_5NHCO]_2(CH_2)_5NH-/\gamma-PGA\} and$                                                                          |
| 187 | poly{Neu5Aca2,6LacNAc $\beta$ -O[(CH <sub>2</sub> ) <sub>5</sub> NHCO] <sub>2</sub> (CH <sub>2</sub> ) <sub>5</sub> NH-/ $\gamma$ -PGA} were synthesized as |
| 188 | described previously described method (Ogata et al., 2009). The binding capacity of                                                                         |
| 189 | purified rHA for these poly-sugar chains was tested using a previously described direct                                                                     |
| 190 | binding assay (Ogata et al., 2009). $\gamma$ -PGA and glycopolymers (0.5 nM, 50 $\mu$ L/well) in                                                            |

- 191 50 mM sodium acetate buffer (pH 4.0) were briefly immobilized on polystyrene
- 192 Universal-Bind microplates (Corning Incorporated, New York, NY, USA) using an

193 ultraviolet irradiation method.

| 194 | Plates were blocked with 2% skim milk (Nakalai Tesque, Kyoto, Japan) in PBS                      |
|-----|--------------------------------------------------------------------------------------------------|
| 195 | (MPBS) at 25°C for 2 h, washed 3 times with PBST (0.2% Tween 20 in PBS), and then                |
| 196 | incubated with MPBS (50 $\mu L/well$ ) containing 0.2 mg/ml of purified proteins at 25°C         |
| 197 | for 1 h. The plates were then washed 3 times with PBST and incubated with 50 $\mu L/\text{well}$ |
| 198 | of 1000-fold diluted rabbit polyclonal antibody to influenza A virus H5N1 (avian flu)            |
| 199 | HA in MPBS at 25°C for 1 h. The wells were washed again and incubated with 50                    |
| 200 | $\mu$ L/well of 5000-fold diluted goat anti-Rabbit IgG-HRP (GE healthcare) in MPBS. The          |
| 201 | plates were then washed 3 times with PBST and developed with TMBZ solution [100                  |
| 202 | $\mu g/mL$ 3,3',5,5'-tetramethylbenzidine (Sigma) and 0.04 $\mu L/mL$ H_2O_2, in 100 mM          |
| 203 | NaOAc, pH 6.0; 50 $\mu$ L/well]. After incubation for 5–30 min, the reaction was stopped         |
| 204 | by addition of 10% sulfuric acid (50 $\mu L/\text{well}),$ and absorbance was read using a Model |
| 205 | 680 microplate reader (Bio-Rad, Tokyo, Japan) at 450 nm, with 655 nm used as a                   |
| 206 | control.                                                                                         |

# 207 **3. Results**

208 3.1. Construction of recombinant Bacmid, BmNPV-bx-HA-His

209 The bx signal peptide gene was amplified by PCR with 2 oligonucleotides,

| 210 | Bx-HAPrimer-frw and -rev. A DNA fragment with a size of 102 bp was confirmed by                        |
|-----|--------------------------------------------------------------------------------------------------------|
| 211 | agarose electrophoresis, and another DNA fragment with a size of 106 bp and                            |
| 212 | containing the GS linker and $6 \times$ His gene was also successfully synthesized. An                 |
| 213 | overlap PCR was performed by using a mixture containing the bx signal peptide gene,                    |
| 214 | the GS-His tag gene, a plasmid containing the HA gene as a template, and primers                       |
| 215 | Bx-HA Primer-frw and His-rev (Table 1). This reaction produced a DNA fragment with                     |
| 216 | a size of 1.7 kbp, which was amplified and purified, and confirmed to code for the gene                |
| 217 | bx-HA-His. The pFastBac1 fragment was amplified with 4120-frw and 4058-rev. A                          |
| 218 | DNA fragment with size of $\sim$ 4.7 kbp was observed following agarose electrophoresis                |
| 219 | and considered to be the pFastBac1 fragment. The pFastBac1 fragment and bx-HA-His                      |
| 220 | were linked by an In-Fusion reaction to form pFastBac1-bx-HA-His. The presence of                      |
| 221 | the HA gene in the resulting plasmid was checked with a colony PCR, and a band of                      |
| 222 | $\sim$ 1.7 kbp was confirmed in the PCR product, suggesting that the plasmid had been                  |
| 223 | successfully constructed. The pFastBac1-bx-HA-His plasmid was transformed in the <i>E</i> .            |
| 224 | coli BmDH10Bac CP <sup>-</sup> Chi <sup>-</sup> strain, which harbored the helper plasmid pMON7124 and |
| 225 | BmNPV bacmid DNA. In the E. coli BmDH10Bac strain, the bx-HA-His gene was                              |
| 226 | transposed into the BmNPV bacmid DNA by using the transposase derived from                             |
| 227 | pMON7124. After overnight culture on an LB Plate containing antibiotics, 5 colonies                    |

were checked by PCR with the primers pUC/M13Frw and –Rev, and some clones were
confirmed to contain insert DNA of the right size. The inserts in these clones were
analyzed on a CEQ 8000 sequencer (Beckman Coulter Inc.) and confirmed to be the HA
gene, suggesting that the recombinant BmNPV bacmid, rBmNPV-bx-HA-His, was
successfully prepared.

# *3.2. Expression of recombinant HA in silkworm larvae*

| 234 | BmNPV-bx-HA-His was injected into silkworm larvae and these larvae were reared for                 |
|-----|----------------------------------------------------------------------------------------------------|
| 235 | 5–7 days, followed by collection of hemolymph. The presence of recombinant HA was                  |
| 236 | confirmed with Western blot (Figure 1). The presence of the split site (RRRKKRR), in               |
| 237 | rHA (also rHA0) made it very easy to digest rHA into fragments of rHA1 and rHA2.                   |
| 238 | Based on the DNA construction used in this study, it was predicted that rHA0 would be              |
| 239 | split at amino acid 366. The theoretical sizes of rHA0, rHA1, and rHA2 were calculated             |
| 240 | to be 61.6 kDa, 37.5 kDa, and 24 kDa, respectively. As shown in Figure 1, when an                  |
| 241 | anti-His <sub>6</sub> polyclonal antibody was used to detect expressed protein, only 2 bands at 65 |
| 242 | kDa, and 25 kDa were detected, because rHA1 does not have a His-tag sequence. rHA                  |
| 243 | was observed in hemolymph at both 6 and 7 days after injection of BmNPV bacmid                     |
| 244 | DNA, indicating rHA was preferentially secreted, rather than being accumulated in a fat            |

body. The detected band for rHA0 showed a molecular weight of ~ 65 kDa, which was
slightly larger than the theoretical molecular weight; this may be due to glycosylation of
the protein. These results suggest that recombinant HA was successfully expressed in
the silkworm larval hemolymph.

# 249 3.3. Purification of recombinant HA

| 250 | Fetuin-agarose and gel filtration chromatography steps were used for purification of             |
|-----|--------------------------------------------------------------------------------------------------|
| 251 | rHA. In mammals, fetuin is an N-glycosylated protein and has both $\alpha$ 2,3- and              |
| 252 | $\alpha$ 2,6-linked sialoside in its N-glycan residues (Baenziger et al., 1979). When functional |
| 253 | rHA is expressed, it can be purified using fetuin-agarose chromatography.                        |
| 254 | Fetuin-agarose from Sigma Aldrich has fetuin from fetal bovine serum. Hemolymph                  |
| 255 | was dialyzed with 50 mM sodium phosphate buffer (pH 7.5) containing 150 mM NaCl                  |
| 256 | to remove low molecular weight contaminants, which can inhibit rHA binding to                    |
| 257 | fetuin-agarose. The dialyzed hemolymph was then subjected to fetuin-agarose                      |
| 258 | chromatography. Figure 2 shows SDS-PAGE and Western blot results produced by                     |
| 259 | analyzing various elution fractions obtained from fetuin-agarose chromatography. The             |
| 260 | results showed that expressed rHA bound to fetuin from fetal bovine serum and that               |
| 261 | functional rHA was purified using fetuin-agarose chromatography. Also, rHA0, rHA1,               |

| 262 | and rHA2 were observed in all elution fractions. To confirm which form of rHA could       |
|-----|-------------------------------------------------------------------------------------------|
| 263 | bind to sialic acid, purified total rHA was subjected to size exclusion chromatography to |
| 264 | separate bioactive form of rHA (Figure 3). This analysis produced 2 peaks, and all 3      |
| 265 | types of rHA (rHA0, rHA1, and rHA2) were detected in the large first peak (Peak 1),       |
| 266 | observed in the void volume fractions, but no HA band was detected in the second small    |
| 267 | peak (Peak2) judging by SDS-PAGE analysis. However, by employing Western blot, all        |
| 268 | three rHA was detected in Peak 2, suggesting small amount of rHA exist in this peak as    |
| 269 | a monomer rather than oligomer. HA from influenza A virus normally forms trimers          |
| 270 | (~200 kDa); however, Figure 3 shows that the molecular weight of the first peak where     |
| 271 | all rHA bands were detected was > 669 kDa. This result suggests that rHAs expressed in    |
| 272 | silkworm larvae form oligomers, even if rHA0, rHA1, and rHA2 are present                  |
| 273 | simultaneously. The proteins in each step were measured by BCA. Collected                 |
| 274 | hymolymph of 30 silkworm larvae contained about 650 mg protein. After                     |
| 275 | Fetuin-agarose chromatograph, 3.05 mg of proteins was purified partly. Finally, about     |
| 276 | 500 $\mu$ g of oligomeric rHA with bioactivity was obtained in gel filtration             |
| 277 | chromatography.                                                                           |

*3.4.* Binding assay of rHA to its receptor

| 279 | A hemagglutination assay using erythrocytes obtained from sheep, rabbits and chickens,                                                                      |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 280 | was performed for functional analysis of purified HA. Erythrocytes from sheep and                                                                           |
| 281 | chickens have numerous types of $\alpha 2,3$ -sialylated glycans, but some $\alpha 2,3$ -sialylated                                                         |
| 282 | glycans are not found on erythrocytes from rabbits (Takemae et al., 2010). Erythrocytes                                                                     |
| 283 | from sheep and chickens were aggregated by purified HA, but erythrocytes from rabbits                                                                       |
| 284 | were not aggregated (Figure 4A). These results indicated that purified rHA could bind to                                                                    |
| 285 | $\alpha$ 2,3-sialylated glycans, but not to $\alpha$ 2,6-sialylated glycans.                                                                                |
| 286 | The binding capacity of rHA in hemolymph and the binding of purified rHA to                                                                                 |
| 287 | poly-γ-glutamic acid (γPGA),                                                                                                                                |
| 288 | poly{Neu5Aca2,3LacNAc $\beta$ -O[(CH <sub>2</sub> ) <sub>5</sub> NHCO] <sub>2</sub> (CH <sub>2</sub> ) <sub>5</sub> NH-/ $\gamma$ -PGA}, and                |
| 289 | poly{Neu5Aca2,6LacNAc $\beta$ -O[(CH <sub>2</sub> ) <sub>5</sub> NHCO] <sub>2</sub> (CH <sub>2</sub> ) <sub>5</sub> NH-/ $\gamma$ -PGA} were tested using   |
| 290 | ELISA. yPGA bears no sugar chains, however,                                                                                                                 |
| 291 | poly{Neu5Aca2,3LacNAc $\beta$ -O[(CH <sub>2</sub> ) <sub>5</sub> NHCO] <sub>2</sub> (CH <sub>2</sub> ) <sub>5</sub> NH-/ $\gamma$ -PGA} with an a2,3 linked |
| 292 | Neu5Ac mimics the avian type receptor of influenza virus, and                                                                                               |
| 293 | Neu5Ac $\alpha$ 2,6LN-LNnT/ $\gamma$ PGA with a $\alpha$ 2,6 linked Neu5Ac mimics the human type                                                            |
| 294 | receptor of influenza virus (Figure 4B). As show in Figure 4B, prior to purification,                                                                       |
| 295 | hemolymph only slightly bound to $\alpha 2,3$ -sialoglycopolypeptide, and purified rHA                                                                      |
| 296 | showed significant binding to $\alpha 2,3$ -sialoglycopolypeptide. However hemolymph and                                                                    |

| 297 | purified rHA were not able to bind $\alpha$ 2,6-sialoglycopolypeptide. This result corresponds    |
|-----|---------------------------------------------------------------------------------------------------|
| 298 | with the substrate specificity of HA obtained when using avian influenza A virus, where           |
| 299 | binds to $\alpha$ 2,3-sialylated glycans, but not to $\alpha$ 2,6-sialylated glycans. A hemolymph |
| 300 | sample from silkworm transfected with bacmid without HA gene was also tested, but it              |
| 301 | did not bind to any of the above sugar chains (data not shown).                                   |

302 4. **Discussion** 

| 303 | HA is a very important protein in the study of influenza viruses, and exhibits very high    |
|-----|---------------------------------------------------------------------------------------------|
| 304 | antigenicity. Therefore, when a host becomes infected with influenza virus, antibodies      |
| 305 | will be produced in the body to neutralize viruses and enhance resistance of the host.      |
| 306 | HA protein is a candidate for use in the production of vaccines, and has been expressed     |
| 307 | in numerous hosts, including E. coli, mammalian cells, and insect cells. In this study,     |
| 308 | HA from influenza A H5N1 virus (A/Vietnam/1194/2004), which is devoid of its                |
| 309 | transmembrane domain, was expressed with a $6 \times$ His tag at its C-terminus in silkworm |
| 310 | larvae, and we investigated its antigenicity and receptor binding capacity. During the      |
| 311 | purification process, the binding of fractions from each purification step to a rabbit      |
| 312 | polyclonal antibody to influenza A virus H5N1 (avian flu) HA was confirmed.                 |
| 313 | Therefore, rHA expressed in silkworm larvae retained a high degree of antigenicity,         |

315

similar to that of the native protein. This result indicates that rHA could be used in

vaccines to protect animals from infection with influenza viruses.

| 316 | Western blot analyses of expressed rHA under reducing conditions showed a band at              |
|-----|------------------------------------------------------------------------------------------------|
| 317 | $\sim 65$ kDa, which was $\sim 4$ kDa higher than the expected molecular weight. These results |
| 318 | are in agreement with a previous report showing that hemagglutinin was expressed at ca.        |
| 319 | 65 kDa in Trichoplusia ni larvae when using a baculovirus system (Gomez-Casado et al.,         |
| 320 | 2011), and also indicate that rHA expressed in silkworm larvae is modified with glycans        |
| 321 | in a manner similar to modification of HA proteins produced in Trichoplusia ni.                |
| 322 | The total rHA from influenza A H5N1 virus (A/Vietnam/1194/2004) was expressed                  |
| 323 | in silkworm larvae as 3 different forms: rHA0, rHA1, and rHA2. These forms were                |
|     |                                                                                                |

324 found in purified fractions even after fetuin-agarose chromatography. In addition, these

325 HA proteins were observed in only the first peak (> 669 kDa) produced in size

326 exclusion chromatography. These results indicate that rHAs form oligomers with a

327 molecular weight bigger than 669 kDa. In a previous report (Santiago et al., 2012), HA

328 from influenza virus A/Brisbane/59/70 expressed in Sf-9 cells mainly formed high

329 molecular weight oligomers, and was suggested to be composed of at least 3 HA trimers.

- 330 Results of size exclusion chromatography in this study corresponded to results in a
- 331 previous report. However, while HA from influenza virus A/Brisbane/59/70 was mainly

| 332 | expressed as HA0, in our study, HA from influenza A/Vietnam/1194/2004 was                             |
|-----|-------------------------------------------------------------------------------------------------------|
| 333 | expressed and purified as rHA0, rHA1, and rHA2. This may be due to the fact that HA                   |
| 334 | from influenza A/Vietnam/1194/2004 has a polybasic region between HA1 and HA2,                        |
| 335 | but HA from influenza virus A/Brisbane/59/70 lacks this region. This polybasic region                 |
| 336 | can be easily cleaved by a furin-like protease. Regarding the rHA in this study, some                 |
| 337 | HAs were purified as cleaved forms (rHA1 and rHA2), while others remained as rHA0.                    |
| 338 | This finding suggests that cleaved rHA (rHA1 and rHA2) and HA0 combined with each                     |
| 339 | other to form oligomers. Also, in the case of an inactivated influenza H5N1 vaccine,                  |
| 340 | most HA was processed to produce HA1 and HA2, which then combined to form                             |
| 341 | oligomers (Santiago et al., 2012). In addition, inactivated influenza H5N1 vaccine was                |
| 342 | able to bind fetuin, and HA oligomers in our study bound to fetuin and                                |
| 343 | $\alpha$ 2,3-sialoglycopolypeptide, not $\alpha$ 2,6-sialoglycopolypeptide. Purified HA also bound to |
| 344 | erythrocytes from sheep and chickens, which have $\alpha 2,3$ -sialylated glycans, but not to         |
| 345 | erythrocytes from rabbits, which have few $\alpha 2,3$ -sialylated glycans (Takemae et al.,           |
| 346 | 2010). These results indicate that functional HA oligomers can be expressed in                        |
| 347 | silkworm larvae and be purified to near homogeneity using 2 chromatography steps.                     |
| 348 | This HA could be used to develop product which may protect animals from influenza                     |
| 349 | viruses by blocking the receptor with recombinant HA.                                                 |

| 350 | The silkworm is an excellent living biofactory that has attributes of high          |
|-----|-------------------------------------------------------------------------------------|
| 351 | productivity, scalability, and cost efficiency. The silkworm can be used to produce |
| 352 | recombinant proteins of seasonal or pandemic influenza for use in vaccines and the  |
| 353 | development of diagnostic methods or proteins for neutralization purposes.          |
|     |                                                                                     |

355 References

354

| 356 | Baenziger, J. | .U., Fiete, | D., 1979. | Structure of t | the complex | oligosaccharid | es of fetuin. J. |
|-----|---------------|-------------|-----------|----------------|-------------|----------------|------------------|
|-----|---------------|-------------|-----------|----------------|-------------|----------------|------------------|

357 Biol. Chem. 254, 789-795.

Eccles, R., 2005. Understanding the symptoms of the common cold and influenza.

359 Lancet Infect. Dis. 5, 718-725.

360 Enserink, M., 2006. Avian influenza. H5N1 moves into Africa, European Union,

- deepening global crisis. Science, 311, 932.
- 362 Fouchier, R.A., Munster, V., Wallensten, A., Bestebroer, T.M., Herfst, S., Smith, D.,
- 363 Rimmelzwaan, G.F., Olsen, B., Osterhaus, A.D., 2005. Characterization of a
- 364 novel influenza A virus hemagglutinin subtype (H16) obtained from
- 365 black-headed gulls. J. Virol. 79, 2814-2822.
- 366 Gomez-Casado, E., Gomez-Sebastian, S., Nunez, M.C., Lasa-Covarrubias, R.,

| 367 | Martinez-Pulgarin, S., Escribano, J.M., 2011. Insect larvae biofactories as a            |
|-----|------------------------------------------------------------------------------------------|
| 368 | platform for influenza vaccine production. Protein Expr. Purif. 79, 35-43.               |
| 369 | Imai, M., Watanabe, T., Hatta, M., Das, S.C., Ozawa, M., Shinya, K., Zhong, G., Hanson,  |
| 370 | A., Katsura, H., Watanabe, S., Li, C., Kawakami, E., Yamada, S., Kiso, M.,               |
| 371 | Suzuki, Y., Maher, E.A., Neumann, G., Kawaoka, Y., 2012, Experimental                    |
| 372 | adaptation of an influenza H5 HA confers respiratory droplet transmission to a           |
| 373 | reassortant H5 HA/H1N1 virus in ferrets. Nature, 486(7403): 420-428.                     |
| 374 | Kido, H., Sakai, K., Kishino, Y., Tashiro, M., 1993. Pulmonary surfactant is a potential |
| 375 | endogenous inhibitor of proteolytic activation of sendai virus and influenza-A           |
| 376 | virus. FEBS Lett. 322, 115-119.                                                          |
| 377 | Laemmli, U.K., 1970. Cleavage of structural proteins during the assembly of the head     |
| 378 | of bacteriophage T4. Nature 227, 680-685.                                                |
| 379 | Liu, D., Si, B., Li, C., Mi, Z., An, X., Qin, C., Liu, W., Tong, Y., 2011. Prokaryotic   |
| 380 | expression and purification of HA1 and HA2 polypeptides for serological                  |
| 381 | analysis of the 2009 pandemic H1N1 influenza virus. J. Virol. Mehthods 172               |
| 382 | (1-2), 16-21.                                                                            |
| 383 | Martin, J., Wharton, S.A., Lin, Y.P., Takemoto, D.K., Skehel, J.J., Wiley, D.C.,         |
| 384 | Steinhauer, D.A., 1998. Studies of the binding properties of influenza                   |

| 385 | hemagglutinin receptor-site mutants. Virology 241, 101-111.                           |
|-----|---------------------------------------------------------------------------------------|
| 386 | Matrosovich, M., Tuzikov, A., Bovin, N., Gambaryan, A., Klimov, A., Castrucci, M.R.,  |
| 387 | Donatelli, I., Kawaoka, Y., 2000. Early alterations of the receptor-binding           |
| 388 | properties of H1, H2, and H3 avian influenza virus hemagglutinins after their         |
| 389 | introduction into mammals. Journal of virology 74(18):8502-8512.                      |
| 390 | Motohashi, T., Shimojima, T., Fukagawa, T., Maenaka, K., Park, E.Y., 2005. Efficient  |
| 391 | large-scale protein production of larvae and pupae of silkworm by Bombyx mori         |
| 392 | nuclear polyhedrosis virus bacmid system. Biochem. Biophys. Res. Commun.              |
| 393 | 326, 564-569.                                                                         |
| 394 | Ogata, M., Hidari, K.I., Murata, T., Shimada, S., Kozaki, W., Park, E.Y., Suzuki, T., |
| 395 | Usui, T. 2009. Chemoenzymatic synthesis of sialoglycopolypeptides as                  |
| 396 | glycomimetics to block infection by avian and human influenza viruses. Bioconj.       |
| 397 | Chem. 20, 538-549.                                                                    |
| 398 | Olsen, B., Munster, V.J., Wallensten, A., Waldenstrom, J., Osterhaus, A.D., Fouchier, |
| 399 | R.A., 2006. Global patterns of influenza a virus in wild birds. Science 312,          |
| 400 | 384-388.                                                                              |
| 401 | Park, E.Y., Abe, T., Kato, T., 2008. Improved expression of fusion protein using a    |
| 402 | cysteine- protease- and chitinase-deficient Bombyx mori (silkworm) multiple           |

| 403 | nucleopolyhedrovirus bacmid in silkworm larvae. Biotechnol. Appl. Biochem.                  |
|-----|---------------------------------------------------------------------------------------------|
| 404 | 49, 135-140.                                                                                |
| 405 | Park, E.Y., Kageshima, A., Kwon, M.S., Kato, T., 2007. Enhanced production of               |
| 406 | secretory beta1,3-N-acetylglucosaminyltransferase 2 fusion protein into                     |
| 407 | hemolymph of Bombyx mori larvae using recombinant BmNPV bacmid                              |
| 408 | integrated signal sequence. J. Biotechnol. 129, 681-688.                                    |
| 409 | Rogers, G.N., Paulson, J.C., 1983. Receptor determinants of human and animal                |
| 410 | influenza virus isolates: differences in receptor specificity of the H3                     |
| 411 | hemagglutinin based on species of origin. Virology, 127, 361-373.                           |
| 412 | Rogers, G.N., Pritchett, T.J., Lane, J.L., Paulson, J.C., 1983. Differential sensitivity of |
| 413 | human, avian, and equine influenza A viruses to a glycoprotein inhibitor of                 |
| 414 | infection: selection of receptor specific variants. Virology 131, 394-408.                  |
| 415 | Santiago, F.W., Lambert Emo, K., Fitzgerald, T., Treanor, J.J., Topham, D.J., 2012.         |
| 416 | Antigenic and immunogenic properties of recombinant hemagglutinin proteins                  |
| 417 | from H1N1 A/Brisbane/56/07 and B/Florida/04/06 when produced in various                     |
| 418 | protein expression systems. Vaccine 30, 4606-4016                                           |
| 419 | Takemae, N., Ruttanapumma, R., Parchariyanon, S., Yoneyama, S., Hayashi, T.,                |
| 420 | Hiramatsu, H., Sriwilaijaroen, N., Uchida, Y., Kondo, S., Yagi, H., Kato, K.,               |

| 421 | Suzuki, Y., Saito, T., 2010. Alterations in receptor-binding properties of swine        |
|-----|-----------------------------------------------------------------------------------------|
| 422 | influenza viruses of the H1 subtypes after isolation in embryonated chicken eggs.       |
| 423 | J. Gen. Virol. 91, 938-948.                                                             |
| 424 | Webster, R.G., Bean, W.J., Gorman, O.T., Chambers, T.M., Kawaoka, Y., 1992.             |
| 425 | Evolution and ecology of influenza A viruses. Microbiol. rev. 56, 152-179.              |
| 426 | Webster, R.G., Peiris, M., Chen, H., Guan, Y., 2006. H5N1 outbreaks and enzootic        |
| 427 | influenza. Emerg. infect. dis. 12, 3-8.                                                 |
| 428 | Wiley, D.C., Skehel, J.J., 1987. The structure and function of the hemagglutinin        |
| 429 | membrane glycoprotein of influenza virus. Annu. Rev. Biochem. 56, 365-394.              |
| 430 | Yamada, S., Suzuki, Y., Suzuki, T., Le, M.Q., Nidom, C.A., Sakai-Tagawa, Y.,            |
| 431 | Muramoto, Y., Ito, M., Kiso, M., Horimoto, T. Shinya, K., Sawada, T., Kiso, M.,         |
| 432 | Usui, T., Murata, T., Lin, Y., Hay, A., Haire, L.F., Stevens, D.J., Russell, R.J.,      |
| 433 | Gramblin, S.J., Skehel, J.J., Kawaoka, Y., 2006. Haemagglutinin mutations               |
| 434 | responsible for the binding of H5N1 influenza A viruses to human-type receptors.        |
| 435 | Nature 444, 378-382.                                                                    |
| 436 | Yousefi, A., Fotouhi, F., Hosseinzadeh, S., Kheiri, M.T., Farahmand, B., Montazeri, S., |
| 437 | 2012. Mousavi F.Expression of antigenic determinants of the haemagglutinin              |
| 438 | large subunit of novel influenza virus in insect cells. Folia. Biol. (Praha) 58(4),     |

439 151-156.

440 Zambon, M.C. 2001. The pathogenesis of influenza in humans. Rev. Med. Virol. 11,

441 227-241.

| Primer      | Sequence (5'-3')                            |
|-------------|---------------------------------------------|
| Bx-HA       | GAAGCGCGCGGAATTATGAAGATACTCCTTGCTATTGCATTA  |
| Primer-frw  | ATGTTGTCAACAGTAATGTGGGTGTC                  |
| Bx-HA       | GTTTGCATGGTAACCAATGCAAATCTGATCTGTTGACACCCA  |
| Primer-rev  | CATTACTGTTGAC                               |
| HAGS-frw    | CCAAATATTGTCAATTTATTCTACAGTGGCGAGCTCCCTAGGT |
|             | GGCGGTGGCTCT                                |
| GSlinker    | GGTGGCGGTGGCTCTGGAGGCGGAGGCTCACATCATCACCA   |
|             | TCACCACTAA                                  |
| His-rev     | TACCGCATGCCTCGATTAGTGGTGATGGTGATGATGTG      |
| 4120-frw    | TCGAGGCATGCGGTACCAAGCTTGTCGAG               |
| 4058-rev    | AATTCCGCGCGCTTCGGACCGGGATC                  |
| 4001-frw    | GGATTATTCATACCGTCCCACCATCG                  |
| 4185-rev    | CAAATGTGGTATGGCTGATTATGATCC                 |
| pUC/M13 frw | CCCAGTCACGACGTTGTAAAACG                     |
| pUC/M13 rev | AGCGGATAACAATTTCACACAGG                     |

# **Table 1. Primers used in this study**

## 445 **Figure legends**

446 **Figure 1.** Expression of rHA in silkworm larvae. Recombinant BmNPV bacmid DNA

- 447 mixture was injected into silkworm larvae and reared for 7 days. At 5, 6, and 7 days
- 448 after injection, silkworm larvae were removed and their hemolymph and fat bodies were
- 449 collected. Expressed rHA in each sample was detected by Western blot using mouse
- 450 anti-His tag antibody as a primary antibody. M: MagicMark XP Western Protein
- 451 Standard.

## 452 Figure 2. SDS-PAGE (A) and Western blot analyses (B) of fractions from

453 **fetuin-agarose chromatography.** Lanes M1, M2, H, FT, and W denote the Precision

- 454 Plus Dual Standard, MagicMark XP Western Protein Standard, hemolymph sample,
- 455 flow though fraction, and wash fraction, respectively. Lanes 1- 6, 7-8, and 9-10 denote
- elution fractions at 150 mM, 500 mM, and 1 M NaCl, respectively. Rabbit polyclonal
- antibody to influenza A virus H5N1 (avian flu) HA was used as the primary antibody,
- and a goat anti-Rabbit IgG-HRP was used as the secondary antibody in Western blot
- 459 analysis.

# 460 Figure 3. Purification of recombinant hemagglutinin by gel filtration

461 **chromatography.** (A) Purification profile of gel filtration chromatograph for pooled

| 462 | elution fractions in affinity chromatography. Molecular weights of 669 kDa and 75 kDa                                                              |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------|
| 463 | were indicated by arrows, respectively. P1 and P2 denote 2 large peaks. (B) SDS-PAGE                                                               |
| 464 | analysis of Peak 1 obtained by gel filtration chromatography. Lane M1 denotes                                                                      |
| 465 | Precision Plus Dual Standard. Lane 1-7, collected fractions. (C) Western blot analysis of                                                          |
| 466 | peak 1. A rabbit polyclonal antibody to influenza A virus H5N1 (avian flu) HA was used                                                             |
| 467 | as the primary antibody, and a goat anti-Rabbit IgG-HRP was used as the secondary                                                                  |
| 468 | antibody. Lane M2: MagicMark XP Western Protein Standard; Lane 1-7: collected                                                                      |
| 469 | fractions.                                                                                                                                         |
| 470 | Figure 4 Homogenetization again of THA (A) and direct hinding again of THA to its                                                                  |
| 470 | rigure 4. memaggiutination assay of rmA (A) and unrect binding assay of rmA to its                                                                 |
| 471 | <b>receptor</b> ( <b>B</b> ). (A) Erythrocytes from sheep, rabbits and chickens were prepared and the                                              |
| 472 | hemagglutination assay using rHA was performed according to the protocol described in                                                              |
| 473 | Materials and Methods. (B) γ-Polyglutamic acid (γPGA),                                                                                             |
| 474 | poly{Neu5Aca2,3LacNAc $\beta$ -O[(CH <sub>2</sub> ) <sub>5</sub> NHCO] <sub>2</sub> (CH <sub>2</sub> ) <sub>5</sub> NH-/ $\gamma$ -PGA}(a2,3), and |
| 475 | poly{Neu5Aca2,6LacNAc $\beta$ -O[(CH <sub>2</sub> ) <sub>5</sub> NHCO] <sub>2</sub> (CH <sub>2</sub> ) <sub>5</sub> NH-/ $\gamma$ -PGA}(a2,3) were |
| 476 | immobilized on microplates, and the protein solution containing hemolymph and                                                                      |
| 477 | fractions obtained by affinity and gel filtration chromatography were added to wells of a                                                          |
|     |                                                                                                                                                    |
| 478 | microplate. After washing, rabbit polyclonal antibody to influenza A virus H5N1 (avian                                                             |

- 480 a secondary antibody. The signal was detected by addition of TMBZ substrate. The error
- 481 bars indicate the standard deviation of absorbance values (n = 3) and (\*) p < 0.01.



Dong et al., Fig. 1.



Dong et al., Fig. 2.



Β

# С



Dong et al., Fig. 3.

