Diffusion coefficients of phenylbutazone in supercritical CO2 and in ethanol

SURE 静岡大学学術リポジトリ Shizuoka University REpository

メタデータ	言語: eng
	出版者:
	公開日: 2014-01-07
	キーワード (Ja):
	キーワード (En):
	作成者: Kong, Chang Yi, Watanabe, Kou, Funazukuri,
	Toshitaka
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10297/7473

- 1 Diffusion coefficients of phenylbutazone in supercritical CO₂ and in 2 ethanol
- 3

4	Chang Yi Kong ^{a,} *,	Kou	Watanabe ^a	and	Toshitaka	Funazukuri ^b
---	--------------------------------	-----	-----------------------	-----	-----------	-------------------------

- $\mathbf{5}$
- ⁶ ^a Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering,
- 7 Shizuoka University, 3-5-1 Johoku Naka-ku, Hamamatsu 432-8561, Japan
- ⁸ ^b Department of Applied Chemistry, Faculty of Science and Engineering , Chuo University,
- 9 Kasuga 1-13-27, Bunkyo-ku, Tokyo, 112-8551, Japan.
- 10
- 11 * Corresponding author. Tel.: +81 53 478 1174; fax: +81-53 478 1174.
- 12 E-mail address: tcykong@ipc.shizuoka.ac.jp (C.Y. Kong).
- 13

14 Abstract

The diffusion coefficients D_{12} of phenylbutazone at infinite dilution in supercritical CO₂ were 1516measured by the chromatographic impulse response (CIR) method. The measurements were carried out over the temperature range from 308.2 to 343.2 K at pressures up to 40.0 MPa. In addition, the 17 D_{12} data of phenylbutazone at infinite dilution in ethanol were also measured by the Taylor 18dispersion method at 298.2 to 333.2 K and at atmospheric pressure. The D_{12} value of 19phenylbutazone increased from 4.45×10^{-10} m² s⁻¹ at 298.2 K and 0.1 MPa in ethanol to about 1.43 20 $imes 10^{-8}$ m² s⁻¹ at 343.2 K and 14.0 MPa in supercritical CO₂. It was found that all diffusion data of 2122phenylbutazone measured in this study in supercritical CO₂ and in ethanol can be satisfactorily represented by the hydrodynamic equation over a wide range of fluid viscosity from supercritical 2324state to liquid state with average absolute relative deviation of 5.4% for 112 data points.

25

26

 $\mathbf{27}$

- 28 Keywords: Supercritical carbon dioxide, Diffusion coefficient, Phenylbutazone, Chromatographic
- 29 impulse response method, Taylor dispersion method, Pharmaceutical

30 1. Introduction

31 Supercritical fluid is a substance whose temperature and pressure are simultaneously above its 32critical point. Processing materials with supercritical fluid is a proven and industrially applicable technology. Supercritical CO₂ is the most widely used in research studies and industrial applications. 33It is non-toxic, non-flammable, chemically inert and inexpensive. Furthermore, it is a green and 34versatile solvent having near ambient critical temperature, and promising alternative to noxious 35organic solvents. The commercial application of combination of pharmaceutical and supercritical 36 37 CO_2 is one of interesting research areas with significant potential [1,2]. To design and improve new supercritical process, it is needed to understand the fundamental information of the supercritical 38system. Estimation of mass transfer properties in supercritical fluid is required the diffusion data. 39 Phenylbutazone, is an active pharmaceutical ingredient, which is used primarily in non-steroidal 40 41anti-inflammatory pharmaceutical that also possesses antipyretic and analgesic effects. 42Unfortunately, the diffusion data [3-7] are few for pharmaceutical in supercritical CO₂, and no data are available in literature for the system of phenylbutazone and CO₂. The objective of this work was 43to measure the diffusion coefficients D_{12} of phenylbutazone at infinite dilution in supercritical CO₂ 44by the chromatographic impulse response (CIR) method. And then, the D_{12} data of phenylbutazone 4546in ethanol were also measured by the Taylor dispersion method. Furthermore, the validity of the hydrodynamic equation D_{12}/T as a function of fluid viscosity was examined for all diffusion data 47measured in this study. 48

49

50 **2. Theory**

The theories for the CIR and the Taylor dispersion methods have been described in detail previously [8-10], in here, briefly described. When a tracer species is pulse-injected into a fully developed laminar flow in a cylindrical column, the cross-sectional average concentration C(t) can be described as follows:

55
$$\begin{cases} C(t) = \left(\frac{m}{\pi R^2}\right) \frac{1}{(1+k)(4\pi Kt)^{1/2}} \exp\left\{-\frac{(L-u_0t/(1+k))^2}{4Kt}\right\} \\ K = \frac{D_{12}}{1+k} + \frac{1+6k+11k^2}{(1+k)^3} \frac{R^2 u_0^2}{48D_{12}} \\ k = \frac{u_0}{u} - 1 \end{cases}$$
(1)

where *t* is the time, *m* the amount of solute injected $(=\pi R^2 u_0 \int_0^\infty C(t) dt = \pi R^2 u_0 \times (\text{peak area}))$, *R* the radius of diffusion column, *L* the distance, u_0 the average velocity of fluid, and D_{12} the infinite dilution binary diffusion coefficient of the solute. The D_{12} value can be determined by minimizing the root-mean-square (rms) fitting error ε , defined by Eq. (2).

$$60 \qquad \mathcal{E} = \left(\frac{\int_{t_1}^{t_2} (C_{\text{meas}}(t) - C(t))^2 dt}{\int_{t_1}^{t_2} (C_{\text{meas}}(t))^2 dt} \right)^{1/2}$$
(2)

61 where t_1 and t_2 correspond to the times at the front and latter 10% peak heights, respectively, of the 62 measured response curve $C_{\text{meas}}(t)$. The authors [9] evaluated that the ε values less than 1% were a 63 good fit, and those less than 3% were an acceptably good fit. Note that u_0 is needed to obtain 64 experimentally for the CIR method, while it is not required for the Taylor dispersion method.

65

66 **3. Experimental**

67 *3.1. Apparatus and procedure*

The diffusion coefficients of phenylbutazone were measured by the CIR and Taylor dispersion methods similar to that in the previous study [10]. A polymer-coated capillary open column (UACW-15W-1.0F, the Frontier Laboratories Ltd., Japan, polymer thickness of 1 μ m, R = 0.265mm, L = 16.218 m, and $R_{coil} = 310$ mm, where R_{coil} is the coil radius of diffusion column) and a non-coated capillary open column (bright annealed 316 Stainless-steel, GL Sciences Inc., Japan, R =0.416 mm, L = 16.634 m, and $R_{coil} = 315$ mm) were employed as diffusion column in the CIR

method and the Taylor dispersion method, respectively. The diffusion column was immersed 7475horizontally in the water bath (T-105, Thomas Kagaku Co., Ltd., Japan). The pressure of the system 76was controlled by a syringe pump (260D, ISCO, USA) and a back pressure regulator (Model 77SCF-Bpg/M, JASCO, Japan). A packed column was installed upstream at the regulator to stabilize 78the pressure. After the prescribed measurement conditions such as temperature, pressure, and flow 79rate of fluid had become constant, the system was held under the same conditions for at least a further two hours. Then, a pulse of phenylbutazone predissolved in ethanol was loaded through an 80 81 injector (Model 7520, 0.5 µL, Rheodyne, USA) into the fluid flowing. The response curves were monitored with a UV-Vis multi-detector (Model MD-1510, JASCO, Japan). Only a single pulse 82 83 was injected for each measurement in this study.

84

85 3.2. Experimental conditions

Phenylbutazone (molecular formula: $C_{19}H_{20}N_2O_2$, molecular weight: 308.37) with purity 99% and ethanol with 99.5% were purchased from Wako, Japan. CO₂ with purity higher than 99.95% was obtained from Air Gases Tokai Ltd., Japan.

The measurements for D_{12} were carried out by the CIR method for phenylbutazone at 308.15, 313.15, 318.15, 323.15, 333.15, 343.15 K and pressures from 8.50 to 40.00 MPa in supercritical CO₂. In addition the D_{12} values of phenylbutazone in ethanol were also measured by the Taylor dispersion method at 298.15, 303.15 308.15, 313.15, 318.15, 323.15, 328.15, 333.15 K and at atmospheric pressure. At least three measurements were carried out for a given temperature and pressure, and the average value of the measurements was considered to be the D_{12} .

95

96 4. Results and Discussion

97 4.1. Effects of wavelength, secondary flow and injected amount

Fig. 1 shows the effects of absorption wavelength on (a) absorbance of the peak top of a response curve A_{max} , (b) $A_{\text{max}}/(u_0 \times \text{peak} \text{ area})$, (c) D_{12} and (d) ε for phenylbutazone in supercritical

100 CO₂ at 313.15 K and 11.00 MPa measured by the CIR method. The response curves were measured 101at wavelengths from 200 to 300 nm at increments of 1 nm for each run. It was found that the 102absorbance intensities measured were lower than 0.2 AU. And the values of $A_{\text{max}}/(u_0 \times \text{peak area})$ for the whole wavelength were constant, which evidences the linearity of the detector used in this study. 103Furthermore, the determined D_{12} values were almost constant except for the longer wavelengths 104(>290 nm) with lower A_{max} values. And the ε values showed lower values with less than 1% when 105wavelengths were lower than 290 nm. In this study all D_{12} values were determined from the 106 107response curves measured at 240 nm.

108 Fig. 2 represents the effects of CO_2 flow rate on D_{12} of phenylbutazone in supercritical CO_2 at 240 nm, 313.15 K and 11.00 MPa measured by the CIR method, together with the ε . The ε values 109for all data are lower than 1%, however the D_{12} values are affected by the flow rate due to the 110secondary flow caused by column coiling when $DeSc^{1/2} > 10$, where the Dean number De =111 $(2Ru_0\rho/\eta)(R/R_{\rm coil})^{1/2}$, the Schmidt number $Sc = \eta/(\rho D_{12})$, the CO₂ density ρ was obtained from the 112literature [11,12], and the CO₂ viscosity η was from Fenghour et al. [13]. The leveled off value in 113Fig. 2(a) is adjudged to be the intrinsic D_{12} value. Note that the effect of the secondary flow was 114evaluated to be less than 1% in terms of the value of the moment when $DeSc^{1/2} < 8 \sim 9.5$ for the 115measurements by the CIR method [14] and when $DeSc^{1/2} < 8$ for the measurements by the Taylor 116dispersion method [8]. All measurements were made at $DeSc^{1/2} < 8$ in this study. 117

Fig. 3 plots the effects of the injected amounts m of phenylbutazone on (a) A_{max} , (b) $u_0 \times (\text{peak})$ 118area), (c) D_{12} and (d) ε measured by the CIR method in supercritical CO₂ at 240 nm, 313.15 K and 11911.00 MPa. Six difference solutions of phenylbutazone in ethanol over the wide range of the solute 120concentrations $(3.48 \times 10^{-5}, 3.48 \times 10^{-4}, 2.00 \times 10^{-3}, 3.48 \times 10^{-3}, 1.00 \times 10^{-2} \text{ and } 3.48 \times 10^{-2} \text{ g mL}^{-1})$ were 121used. Correspondingly the injected amounts of phenylbutazone were 5.64×10^{-5} , 5.64×10^{-4} , 122 3.24×10^{-3} , 5.64×10^{-3} , 1.62×10^{-2} and 5.64×10^{-2} µmol, respectively. As shown in Fig. 3(b), the 123values of $u_0 \times$ (peak area) are proportional to m with the slope of about 1. For the injected amounts 124from 5.64×10^{-5} to 5.64×10^{-2} µmol, all D_{12} values are nearly constant, as observed from Fig. 3(c), 125

and the ε values are lower than 3%. In this study all measurements were carried out with 3.48×10^{-3} g mL⁻¹ ethanol solution of phenylbutazone.

128

129 4.2. Diffusion measured by the CIR method

The effect of pressure on D_{12} of phenylbutazone measured by the CIR method in supercritical 130 CO_2 is presented in Fig. 4 and the D_{12} data are listed in Table 1. The D_{12} data were measured 131isothermally as a function of pressure from 8.50 to 40.00 MPa at 308.15, 313.15, 318.15, 323.15, 132333.15 and 343.15 K. Note that only the D_{12} data whose ε values were less than 1% were adopted 133for all measurements in this study. It was observed that the D_{12} values simply decreased with 134increasing pressure and decreasing temperature, and then the slopes gradually decreased. The 135influence of pressure on D_{12} was less significant at higher pressures. This behavior has been 136137reported in recent studies [15-31]. On the other hand, the higher pressure sensitivity of D_{12} in the 138low pressure range can be found, which is probably due to significantly changes in density and 139viscosity in this region. As has been seen, the D_{12} data can be represented by a simple empirical correlation with temperature and pressure (Eq. (3)) with the average absolute relative deviation 140(AARD) of 2.8% for 104 data points, while the correlation depends on the system studied. 141

142
$$D_{12} = 5.92 \times 10^{-9} - 7.51 \times 10^{-12}T - \frac{8.49 \times 10^{-7}}{P} + 2.89 \times 10^{-9}\frac{T}{P}$$
 (3)

143
$$AARD = \frac{1}{N} \sum_{i=1}^{N} \left| \frac{D_{12,i,cml} - D_{12,i,meas}}{D_{12,i,meas}} \right| \times 100\%$$
(4)

where D_{12} , T and P are in m² s⁻¹, K and MPa, respectively, N is the number of experimental points, and $D_{12, i,crrl}$ and $D_{12, i,meas}$ are the correlated and measured data, respectively. Although the Eq. (3) is in excellent agreement with the D_{12} data in the higher pressure region, which also can be seen in literature [24,26-29], there is a significant deviation from the experimental data in the lower pressure region at each constant temperature.

150 4.3. Diffusion measured by the Taylor dispersion method

The effect of temperature on D_{12} of phenylbutazone measured by the Taylor dispersion method in ethanol at 298.15, 303.15, 308.15, 313.15, 318.15, 323.15, 328.15 and 333.15 K is presented in Fig. 5 and the D_{12} data are shown in Table 2. The D_{12} data were measured isobarically as a function of temperature at atmospheric pressure. The D_{12} values increased with increasing temperature at constant pressure. And a high temperature dependence on D_{12} can be observed.

156

157 4.4. Predicting all data

Fig. 6 shows D_{12}/T as a function of fluid viscosity η for all D_{12} data of phenylbutazone in supercritical CO₂ measured by the CIR method and in ethanol measured by the Taylor dispersion method in this study. Note that the ethanol viscosities were obtained from the literature [32]. The data can be represented with straight lines given by Eq. (5).

$$162 \qquad \frac{D_{12}}{T} = \alpha \eta^{\beta} \tag{5}$$

where α and β are parameters, which are specific to the system of a solute and a fluid. The validity of the correlation in Eq. (5) on the basis of the hydrodynamic approach has been demonstrated for various compounds in supercritical CO₂ [15-23,25,30,31], in organic solvents [33,34] and mixture [35] of supercritical CO₂ and hexane. It was found that all data for the two studied systems of phenylbutazone in CO₂ and phenylbutazone in ethanol also can be represented by Eq. (5). We obtain $D_{12}/T=2.346 \times 10^{-15} \eta^{-0.955}$ with AARD of 5.4% for 112 data points, where D_{12} , *T* and η are in m² s⁻¹, K and Pa s, respectively.

170

171 **5. Conclusion**

Infinite dilution binary diffusion coefficients of phenylbutazone in supercritical CO₂ at 308.15, 313.15, 318.15, 323.15, 333.15, 343.15 K and 8.50 to 40.00 MPa were measured by the CIR method. In addition the D_{12} data of phenylbutazone in ethanol were measured at 298.15, 303.15,

308.15, 313.15, 318.15, 323.15, 328.15, 333.15 K and atmospheric pressure by the Taylor 175dispersion method. The values of D_{12} for phenylbutazone were determined by fitting the response 176curve calculated to that measured experimentally. It was found that the D_{12} increased from 4.447 \times 177 10^{-10} m² s⁻¹ at 298.15 K and 0.1 MPa in ethanol to 1.434×10^{-8} m² s⁻¹ at 343.15 K and 14.00 MPa in 178supercritical CO₂. All experimental data were able to be correlated with the hydrodynamic equation 179 D_{12}/T as a function of fluid viscosity with a wide viscosity range (3.232×10^{-5} to 1.113×10^{-3} Pa s) 180from supercritical to liquid state, and the results showed a good agreement between the correlated 181 182results and the experimental data with AARD of 5.4% for 112 data points.

- 183
- 184
- 185
- 186

187 Acknowledgements

The authors are grateful to the Ministry of Education, Sports, Culture, Science and Technology
of Japan (#22360325) for financially supporting this work.

190

191 **References**

- 192 [1] I. Pasquali, R. Bettini, F. Giordano, Adv. Drug Delivery Rev. 60 (2008) 399-410.
- 193 [2] A. Tabernero, E.M. Martín del Valle, M.A. Galán, Chem. Eng. Processing 60 (2012) 9-25.
- 194 [3] K.K. Liong, P.A. Wells, N.R. Foster, J. Supercrit. Fluids 4 (1991) 91-108.
- 195 [4] J.J. Suárez, I. Medina, J.L. Bueno, Fluid Phase Equilib. 153 (1998) 167-212.
- 196 [5] T. Funazukuri, C.Y. Kong, S. Kagei, J. Chromatogr. A 1037 (2004) 411-429.
- 197 [6] I. Medina, J. Chromatogr. A 1250 (2012) 124-140.
- [7] C.Y. Kong, T. Funazukuri, S. Kagei, G. Wang, F. Lu, T. Sako, J. Chromatogr. A 1250 (2012)
 141-156.
- 200 [8] A. Alizadeh, C.A. Nieto de Castro, C.A. Wakeham, Int. J. Thermophys. 1 (1980) 243-284.

- 201 [9] C.Y. Kong, T. Funazukuri, S. Kagei, J. Chromatogr. A 1035 (2004) 177-193.
- 202 [10] C.Y. Kong, T. Funazukuri, S. Kagei, J. Supercrit. Fluids 44 (2008) 294-300.
- 203 [11] K.S. Pitzer, D.R. Schreiber, Fluid Phase Equilib. 41 (1988) 1-17.
- 204 [12] R. Span, W. Wagner, J. Phys. Chem. Ref. Data 25 (1996) 1509-1595.
- 205 [13] A. Fenghour, W.A. Wakeham, V. Vesovic, J. Phys. Chem. Ref. Data 27 (1998) 31-44.
- 206 [14] T. Funazukuri, C.Y. Kong, S. Kagei, Fluid Phase Equilib. 59 (2004) 3029-3036.
- 207 [15] T. Funazukuri, C.Y. Kong, N. Murooka, S. Kagei, Ind. Eng. Chem. Res. 39 (2000) 4462-4469.
- 208 [16] T. Funazukuri, C.Y. Kong, S. Kagei, Ind. Eng. Chem. Res. 41 (2002) 2812-2818.
- 209 [17] T. Funazukuri, C.Y. Kong, S. Kagei, Fluid Phase Equilib. 206 (2003) 163-178.
- 210 [18] T. Funazukuri, C.Y. Kong, S. Kagei, J. Supercrit. Fluids 27 (2003) 85-96.
- 211 [19] T. Funazukuri, C.Y. Kong, T. Kikuchi, S. Kagei, J. Chem. Eng. Data 48 (2003) 684-688.
- 212 [20] T. Funazukuri, C.Y. Kong, S. Kagei, Fluid Phase Equilib. 219 (2004) 67-73.
- [21] C.Y. Kong, N.R.W. Withanage, T. Funazukuri, S. Kagei, J. Chem. Eng. Data 50 (2005)
 1635-1640.
- [22] C.Y. Kong, N.R.W. Withanage, T. Funazukuri, S. Kagei, J. Supercrit. Fluids 37 (2006) 63-71.
- 216 [23] C.Y. Kong, M. Mori, T. Funazukuri, S. Kagei, Anal. Sci. 22 (2006) 1431-1436.
- 217 [24] C. Pizarro, O. Suárez-Iglesias, I. Medina, J.L. Bueno, J. Chromatogr. A 1167 (2007) 202-209.
- 218 [25] T. Funazukuri, C.Y. Kong, S. Kagei, J. Supercrit. Fluids 46 (2008) 280-284.
- [26] C. Pizarro, O. Suárez-Iglesias, I. Medina, J.L. Bueno, J. Supercrit. Fluids 43 (2008) 469-476.
- 220 [27] O. Suárez-Iglesias, I. Medina, C. Pizarro, J.L. Bueno, J. Chem. Eng. Data 53 (2008) 779-784.
- [28] C. Pizarro, O. Suárez-Iglesias, I. Medina, J.L. Bueno, J. Supercrit. Fluids 48 (2009) 1-8.
- [29] C. Pizarro, O. Suárez-Iglesias, I. Medina, J.L. Bueno, J. Chem. Eng. Data 54 (2009)
 1467-1471.
- [30] C.Y. Kong, M. Nakamura, K. Sone, T. Funazukuri, S. Kagei, J. Chem. Eng. Data 55 (2010)
 3095-3100.
- [31] C.Y. Kong, Y.Y. Gu, M. Nakamura, T. Funazukuri, S. Kagei, Fluid Phase Equilib. 297 (2010)

- 162-167.
- [32] S.B. Kiselev, J.F. Ely, I.M. Abdulagatov, M.L. Huber, Ind. Eng. Chem. Res. 44 (2005)
 6916-6927.
- 230 [33] T. Funazukuri, N. Nishimoto, N. Wakao, J. Chem. Eng. Data 39 (1994) 911-915.
- [34] M. Toriumi, R. Katooka, K. Yui, T. Funazukuri, C.Y. Kong, S. Kagei, Fluid Phase Equilib. 297
 (2010) 62-66.
- 233 [35] T. Funazukuri, Y. Ishiwata, Fluid Phase Equilib. 164 (1999) 117-129.

235 Figure captions

- Fig. 1. Wavelength dependence on (a) absorbance of the peak top of a response curve A_{max} , (b) $A_{\text{max}}/(u_0 \times \text{peak area})$, (c) D_{12} and (d) ε for phenylbutazone in supercritical CO₂ at 313.15 K and 11.00 MPa measured by the CIR method.
- Fig. 2. Effects of the secondary flow on (a) D_{12} and (b) ε measured at 240 nm, 313.15 K and 11.00 MPa for phenylbutazone in supercritical CO₂ by the CIR method.
- Fig. 3. Effects of the injected amount *m* of phenylbutazone in supercritical CO₂ at 240 nm, 313.15 K and 11.00 MPa on (a) absorbance of the peak top of a response curve A_{max} , (b) $u_0 \times$ (peak area), (c) D_{12} and (d) ε measured by the CIR method.
- Fig. 4. Pressure dependence on D_{12} of phenylbutazone measured by the CIR method in supercritical CO₂ at 308.15 K ($^{\circ}$), 313.15 K ($^{\triangle}$), 318.15 K ($^{\blacktriangle}$), 323.15 K ($^{\Box}$), 333.15 K ($^{\bigtriangledown}$), 343.15 K
- (\diamond) and at 8.50 to 40.00 MPa and together with the predicted values by Eq. (3) (solid line)
- Fig. 5. Temperature dependence on D_{12} of phenylbutazone measured by the Taylor dispersion method in ethanol at 298.15 K ($^{\circ}$), 303.15 K ($^{\circ}$), 308.15 K ($^{\diamond}$), 313.15 K ($^{\circ}$), 318.15 K ($^{\diamond}$), 323.15 K ($^{\circ}$), 328.15 K ($^{\circ}$), 333.15 K ($^{\diamond}$) and at atmospheric pressure.
- Fig. 6. D_{12}/T vs. fluid viscosity η for all D_{12} data of phenylbutazone measured by the CIR method in supercritical CO₂ and by the Taylor dispersion method in ethanol. The key is the same as in Fig. 4 and Fig. 5, and (—) represented by Eq. (5).
- 253

301 Fig. 3

254	List of the Tables
255	
256	Table 1
257	Diffusion coefficients D_{12} of phenylbutazone in supercritical CO ₂ measured by the CIR method at
258	308.15 to 343.15 K
259	
260	
261	Table 2
262	Diffusion coefficients D_{12} of phenylbutazone in ethanol measured by the Taylor dispersion method
263	at atmospheric pressure

267

Table 1

Diffusion coefficients D_{12} of phenylbutazone in supercritical

 CO_2 measured by the CIR method at 308.15 to 343.15 K

308.15 K			
P (MPa)	$\rho(\text{kg m}^{-3})$	$\eta(10^{-6} \operatorname{Pa s})$	$D_{12} (10^{-8} \text{ m}^2 \text{ s}^{-1})$
8.50	612.12	45.87	0.905
8.60	625.37	47.26	0.897
8.70	636.50	48.46	0.870
8.80	646.10	49.52	0.824
8.90	654.56	50.48	0.817
9.00	662.13	51.36	0.801
9.10	668.99	52.17	0.804
9.20	675.28	52.92	0.800
9.30	681.07	53.63	0.799
9.40	686.46	54.29	0.815
9.50	691.50	54.92	0.797
9.60	696.24	55.52	0.796
9.70	700.71	56.10	0.792
9.80	704.95	56.65	0.794
9.90	708.97	57.17	0.786
10.00	712.81	57.68	0.777
10.10	716.48	58.18	0.764
10.50	729.76	60.00	0.756
11.00	743.95	62.03	0.753
12.00	767.07	65.51	0.710

13.00	785.70	68.50	0.680
15.00	815.06	73.57	0.659
17.00	838.09	77.90	0.619
19.00	857.21	81.76	0.594
20.00	865.72	83.56	0.605
21.00	873.67	85.29	0.573
25.00	901.23	91.69	0.524
25.00	901.23	91.69	0.523
30.00	929.11	98.86	0.505
35.00	952.29	105.42	0.475
40.00	972.26	111.57	0.452

P (MPa)	$ ho(\mathrm{kg m}^{-3})$	$\eta(10^{-6} \operatorname{Pa s})$	$D_{12} (10^{-8} \text{ m}^2 \text{ s}^{-1})$
8.90	458.03	32.72	1.248
9.00	485.50	34.77	1.190
9.10	510.38	36.75	1.118
9.20	532.04	38.56	1.071
9.30	550.54	40.17	1.050
9.50	580.01	42.90	0.993
9.60	591.97	44.05	0.979
10.00	628.61	47.81	0.930
10.50	660.15	51.33	0.879
11.00	683.52	54.11	0.866
12.00	717.76	58.52	0.792
12.50	731.20	60.37	0.776

13.00	743.04	62.05	0.768
14.00	763.27	65.06	0.745
15.00	780.23	67.73	0.711
16.00	794.90	70.16	0.699
18.00	819.51	74.48	0.676
19.00	830.09	76.45	0.654
20.00	839.81	78.32	0.637
22.00	857.20	81.82	0.615
23.00	865.07	83.47	0.599
25.00	879.49	86.62	0.587
28.00	898.53	91.04	0.556
30.00	909.89	93.83	0.544
35.00	934.81	100.37	0.519
38.00	947.93	104.07	0.502

P (MPa)	$\rho(\text{kg m}^{-3})$	$\eta(10^{-6} \operatorname{Pas})$	$D_{12} (10^{-8} \text{ m}^2 \text{ s}^{-1})$
10.00	498.25	36.01	1.207
12.00	657.74	51.25	0.919
14.00	720.47	59.06	0.824
16.00	759.98	64.71	0.760
18.00	789.24	69.34	0.704
20.00	812.69	73.36	0.679
22.00	832.36	76.97	0.661

323.15 K

P (MPa)	$\rho(\text{kg m}^{-3})$	$\eta(10^{-6} \operatorname{Pa s})$	$D_{12} (10^{-8} \text{ m}^2 \text{ s}^{-1})$
10.50	445.55	32.32	1.366
11.00	502.64	36.59	1.227
12.00	584.71	43.79	1.079
14.00	672.17	53.13	0.933
15.00	699.75	56.52	0.891
16.00	722.09	59.46	0.844
20.00	784.29	68.67	0.760
25.00	834.19	77.42	0.695
30.00	870.43	84.75	0.641
35.00	899.23	91.27	0.601
38.00	914.14	94.92	0.578

P (MPa)	$\rho(\text{kg m}^{-3})$	$\eta(10^{-6} \operatorname{Pas})$	$D_{12} (10^{-8} \text{ m}^2 \text{ s}^{-1})$
12.50	471.52	34.66	1.354
13.00	505.35	37.27	1.265
14.00	561.37	42.05	1.173
15.00	604.09	46.13	1.095
16.00	637.50	49.61	1.038
17.00	664.59	52.65	0.986
18.00	687.25	55.35	0.958
19.00	706.68	57.79	0.931
20.00	723.68	60.04	0.890
22.00	752.38	64.07	0.854
25.00	786.55	69.33	0.814

30.00	829.71	76.82	0.719
35.00	862.94	83.34	0.681
38.00	879.83	86.96	0.652

P (MPa)	$ ho(\mathrm{kg}~\mathrm{m}^{-3})$	$\eta(10^{-6} \operatorname{Pa s})$	$D_{12} (10^{-8} \text{ m}^2 \text{ s}^{-1})$
14.00	456.62	34.04	1.434
14.50	482.13	35.92	1.399
15.00	505.87	37.77	1.311
16.00	547.75	41.29	1.248
17.00	582.79	44.49	1.153
18.00	612.24	47.39	1.133
19.00	637.33	50.02	1.073
20.00	659.05	52.42	1.052
21.00	678.13	54.64	0.992
22.00	695.10	56.71	0.980
23.00	710.37	58.65	0.954
25.00	736.92	62.22	0.913
28.00	769.58	66.99	0.838
30.00	787.97	69.88	0.788
35.00	826.10	76.42	0.741

270

Table 2

Diffusion coefficients D_{12} of phenylbutazone in ethanol

1	1	.1	m 1	1	.1 1		
maggirad	htt	tha	loulor	diamoral	on mothod	of ofmounharia	produiro
measmen	111	THE.		UINDEINI		at attitiospheric.	DIESSILE
mousurea	υ,	unc	1 4 1 101	andperore	/ mictilou	at atmospherie	probute
	~		2	1		1	1

<i>T</i> (K)	$\rho(\text{kg m}^{-3})$	$\eta(10^{-6} \operatorname{Pas})$	$D_{12} (10^{-10} \text{ m}^2 \text{ s}^{-1})$
298.15	785.48	1112.51	4.447
303.15	781.23	1012.64	4.966
308.15	776.93	923.93	5.300
313.15	772.56	844.89	5.713
318.15	768.13	774.28	6.512
323.15	763.62	711.01	7.057
328.15	759.03	654.18	8.152
333.15	754.36	602.99	8.878