Characterization of human papillomavirus 6b L1 virus-like particles isolated from silkworms using capillary zone electrophoresis

SURE 静岡大学学術リポジトリ Shizuoka University REpository

メタデータ	言語: eng
	出版者:
	公開日: 2014-04-14
	キーワード (Ja):
	キーワード (En):
	作成者: Hahne, Thomas, Palaniyandi, Muthukutty, Kato,
	Tatsuya, Fleischmann, Peter, Wätzig, Hermann, Park,
	Enoch Y.
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10297/7709

1	Characterization of human papillomavirus 6b L1 virus-like
2	particles isolated from silkworms using capillary zone
3	electrophoresis
4	
5	Thomas Hahne, ¹ Muthukutty Palaniyandi, ² Tatsuya Kato, ² Peter Fleischmann, ³ Hermann
6	Wätzig, ¹ and Enoch Y. Park, ^{2,*}
7	
8	Institute of Medicinal and Pharmaceutical chemistry, Technische Universität
9	Braunschweig, Beethovenstr. 55, 38106, Braunschweig, Germany, ¹ Laboratory of
10	Biotechnology, Department of Bioscience, Graduate School of Science and Technology,
11	Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529 Japan, ² Institute of
12	Food Chemistry, Technische Universität Braunschweig, Schleinitzstr. 20, 38106
13	Braunschweig, Germany ³
14	

^{*} Corresponding author. Tel.: +81 54 238 4887; fax: +81 54 238 4887. *E-mail address:* <u>acypark@ipc.shizuoka.ac.jp</u> (E.Y. Park)

15 Abstract

16	Human papillomavirus 6b L1 virus-like particles (VLPs) were successfully
17	expressed using Bombyx mori nucleopolyhedrovirus (BmNPV) bacmid expression
18	system and rapidly purified using size exclusion chromatography (SEC) after
19	ultracentrifugation procedure and characterized by capillary zone electrophoresis
20	(CZE). The average capillary electrophoresis (CE) migration time was 11 min with
21	the relative standard deviation (RSD) of 0.3% of HPV 6b L1 VLPs. After this
22	threefold fractionation, the CZE samples were still further investigated by
23	dynamic light scattering (DLS) and immuno blotting. The versatile technique, CZE
24	not only proved to be a valuable tool for VLP characterization, but was also found
25	to be reliable and precise. Thus CZE will also be an important option for the
26	quality control of VLPs in pharmaceutical research level.
27	[Keywords: Human papillomavirus 6b L1; Virus-like particles; Silkworm; Capillary
28	zone electrophoresis; Fractionation; Size exclusion chromatography]

29 Introduction

30	Subunit vaccines like virus-like particles (VLPs) are potent candidates for
31	immunization, since these VLPs are devoid of genomes but still mimics the shape of the
32	whole virus and they are efficacious to elicit immune response (1). Taking the
33	advantage of capsid protein, their autonomous folding to form structural conformation
34	and potential immune protection has drawn a lot of focuses on studies to improve their
35	ability in various applications like vaccines, drug delivery and protein trafficking
36	analysis (2). Several VLPs has been successfully developed using various expression
37	systems and analyzed by several analytical techniques to prove their conformation and
38	authenticity. Different expression systems like E. coli, yeast, transgenic plants,
39	mammalian cell line and insect cell lines has successively produced various VLPs and
40	several recombinant VLPs have been commercialized (3).
41	One of the contagious sexually transmitted diseases causing from genital warts to
42	cervical cancer is human papillomavirus (HPV), which is a non-enveloped DNA virus
43	with more than 100 different genotypes that infect humans. Ninety percent of HPV
44	infections causing genital infections are from HPV 6 and 11 (4). HPV are icosahedral
45	shaped viruses with 72 pentamers forming the capsid L1 proteins which function is to
46	adhere and enter into the squamous epithelial cells in the genital region forming warts

47	(5–6). Protection against HPV infection using vaccine has been successful to some
48	extent, commercially available vaccines like Cervarix [®] (Glaxosmithkline) and Gardasil [®]
49	(Merck), but these vaccines are not cost-effective to third world countries. A simple and
50	high-throughput production system from upstream and downstream processing of the
51	VLPs will be effective to reduce the cost burden of vaccines (7).
52	Baculovirus based expression system using silkworm has been competitively able
53	to express and produce recombinant proteins and VLPs. Much advancement has been
54	achieved in this system; especially, Bombyx mori nucleopolyhedrovirus (BmNPV)
55	bacmid-based expression is fast, inexpensive and non-laborious using silkworm larva
56	(8). Recently, we have expressed HPV 6b L1 capsid protein in silkworm expression
57	system, which successfully formed VLPs and manipulation of their epitopes (9–10).
58	However it is relatively difficult to purify VLPs from silkworm for pharmaceutical
59	research purpose, which is the key hindering step in downstream processing. The
60	method of its elimination should not pose a risk to the structure and integrity of the
61	target protein. Traditionally, protein isolation methods use combinations of filtrations
62	and chromatography-based purifications. Purifying and analyzing those recombinant
63	VLPs involves multiple steps, which in turn decreases the recovery ratio.
64	Though gel based electrophoresis is the widely used technique in laboratories

65	around the world to analyze proteins, the most common approach is sodium dodecyl
66	sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Recently capillary
67	electrophoresis (CE) replaces traditional gel electrophoresis, because this technique has
68	been standardized to evaluate organic drug compounds, pharmaceutically important
69	proteins and peptides (11). In the CE, electrophoretic separations of analytes are
70	performed in a fused silica capillary tube of particular length. It is a very efficient
71	separation technique, also available for quantifying several viruses and VLPs (12). CE
72	replaces traditional gel electrophoresis step by step, as it is particularly non-laborious
73	and provides excellent separation capabilities for proteins. This flexibility makes CE a
74	very effectual alternative over the 1D-SDS-PAGE (13). Various proteins, peptides and
75	viruses were analyzed using CE as efficient electrophoretic technique (14, 21-23).
76	Improvements of capillary zone electrophoresis (CZE) as an analytical tool, are made
77	based by the prevention of denaturing or binding of analytes to the fused silica
78	capillaries using detergents and/or suitable buffers.
79	In this study, we tried to purify VLPs employing size exclusion chromatography
80	(SEC) and characterizing them by CZE, which could be a corroborated method in future
81	for high-throughput analysis of VLPs.

MATERIALS AND METHODS

83	Reagents and materials Sodium chloride, potassium chloride, disodium
84	hydrogen phosphate, potassium dihydrogen phosphate, sodium hydroxide, acetanilide
85	and Thesit [®] were obtained from Sigma-Aldrich (Steinheim, Germany) sodium borate
86	was purchased from Merck (Darmstadt, Germany). All samples and buffers were
87	prepared using double distilled water. Fifth-instar silkworm larva (Ehime Sansyu Co.
88	Ltd., Yahatahama, Ehime, Japan) was used for the expression of HPV L1VLPs. Fused
89	silica capillaries of 50- μ m internal diameter were purchased from Polymicro
90	Technologies (Phoenix, AZ, USA).
91	Preparation of samples and buffers Phosphate buffered saline (PBS, pH 7.4)
92	was used as lysis and elution buffer. This buffer solution was prepared by dissolving
92 93	was used as lysis and elution buffer. This buffer solution was prepared by dissolving 137 mM of NaCl, 2.7 mM of KCl, 10 mM of NaH ₂ PO ₄ , 2 mM of KH ₂ PO ₄ in 1000 ml
92 93 94	was used as lysis and elution buffer. This buffer solution was prepared by dissolving 137 mM of NaCl, 2.7 mM of KCl, 10 mM of NaH ₂ PO ₄ , 2 mM of KH ₂ PO ₄ in 1000 ml doubly distilled water. The background electrolyte (BGE) used for separation is 100
92 93 94 95	was used as lysis and elution buffer. This buffer solution was prepared by dissolving 137 mM of NaCl, 2.7 mM of KCl, 10 mM of NaH ₂ PO ₄ , 2 mM of KH ₂ PO ₄ in 1000 ml doubly distilled water. The background electrolyte (BGE) used for separation is 100 mM sodium borate which was adjusted to pH 8.3 with HCl, later 10 mM Thesit [®] was
92 93 94 95 96	 was used as lysis and elution buffer. This buffer solution was prepared by dissolving 137 mM of NaCl, 2.7 mM of KCl, 10 mM of NaH₂PO₄, 2 mM of KH₂PO₄ in 1000 ml doubly distilled water. The background electrolyte (BGE) used for separation is 100 mM sodium borate which was adjusted to pH 8.3 with HCl, later 10 mM Thesit[®] was added (15). Acetanilide as electro-osmotic flow marker was added into the SEC
 92 93 94 95 96 97 	was used as lysis and elution buffer. This buffer solution was prepared by dissolving 137 mM of NaCl, 2.7 mM of KCl, 10 mM of NaH ₂ PO ₄ , 2 mM of KH ₂ PO ₄ in 1000 ml doubly distilled water. The background electrolyte (BGE) used for separation is 100 mM sodium borate which was adjusted to pH 8.3 with HCl, later 10 mM Thesit [®] was added (15). Acetanilide as electro-osmotic flow marker was added into the SEC fractions containing VLPs to a final concentration of 0.5 μ g/ml. All buffers and samples

99	Expression and purification of HPV 6b L1 VLPs The VLPs were produced
100	from silkworm larvae using BmNPV bacmid-based expression system (9). In brief,
101	using standard molecular techniques the HPV 6b L1 gene was transformed into BmNPV
102	bacmid and the DNA of recombinant BmNPV bacmid was injected into silkworm.
103	Post-injection time of 7 days the fat body of silkworm larvae was collected and
104	sonicated.
105	Success and instances tion and size exclusion shows to market. Five
105	Sucrose gradient separation and size exclusion chromatography Five
106	hundred microliters of fat body lysates were applied on to the 25-60% sucrose gradient
107	prepared in PBS (pH 7.4). Separation of contaminants was achieved by centrifugation at
108	120,000 \times g for 3 hrs at 4°C. Centrifuged sample were aliquoted into 500-µl fractions.
109	Fractions containing HPV 6b L1 VLPs were filtered through 0.45-µm filters. Primary
110	purified HPV 6b L1 VLP fraction was applied to size exclusion chromatography (SEC).
111	Proteema 300 A column (PSS, Mainz, Germany) packed with 5 μ m particle size of
112	porosity 300 Å (300 \times 8 mm), was equilibrated with 10 column volume of PBS (pH 7.4).
113	One hundred microliters of purified HPV L1 fractions of sucrose gradient separation
114	were injected and separated. Elution was carried out with PBS (eluent A) and PBS
115	containing 1 M sodium chloride (eluent B) using a linear gradient over 30 minutes

116 (0–100% B in 30 min) starting the gradient with the beginning of the separation. The
117 used flow rate during separation was 0.5 ml/min (16). The collected 1 ml size exclusion
118 fractions including the target protein were confirmed using western blot. The HPV 6b
119 L1 VLPs were further analyzed using CZE.

120	Capillary zone electrophoresis Agilent 7100 capillary electrophoresis system
121	with inbuilt diode array detector was used for the analysis (Agilent Technologies,
122	Waldbronn, Germany). Peaks were detected at 214 nm with a reference wavelength of
123	360 nm. Integration was done using in-house integration software corrected integration
124	software system (CISS, Würzburg, Germany) and data processing using Microsoft
125	EXCEL [™] . Before use, conditioning of fused capillaries was done by flushing at 1000
126	mbar of 1 M sodium hydroxide and subsequent with background electrolyte (BGE) for
127	15 min each. Preconditioning before each run was done using BGE for 2 min and
128	post-conditioning carried out using 1 M sodium hydroxide solution and rinsing with
129	double distilled water for 2 min. During preconditioning as well as post-conditioning a
130	pressure of 1.0 up to 2.0 bar was applied. The size exclusion fractions were injected
131	hydrodynamically with 100 mbar for 25 seconds into the capillary. Separation of
132	analytes was carried out at 25 kV and a mean current of 23 μ A using BGE in the inlet

133	and PBS in the outlet. Temperature was maintained at 25°C throughout the run. Samples
134	and running electrolytes were filtered and sonicated for 3 min before analyzing the
135	sample in CE system. The volumes of fifteen consecutive injections were collected in
136	one vial during the separations. During preconditioning and post-conditioning other
137	vials were used, which leads to separation from other components of the SEC fractions
138	which migrates slower than the VLP's
139	Characterization of VLPs Dynamic light scattering (DLS) and
140	immuno-analysis were carried out using Zetasizer nano ZS DLS analyzer fitted with
141	532 nm laser lamps (Malvern Instruments, UK), to prove that CE based separation and
142	analysis were authentic VLPs. Fractions (1 ml) of SEC and CZE were subjected to DLS
143	analysis at 25°C with 10 consecutive measurements. Western blot were carried out for
144	both SEC and CZE fractions, to confirm the presence of VLPs, the fractions were
145	subjected for SDS-PAGE and transferred to PVDF membrane using trans-blot [®] semi
146	electrophoretic transfer cell (Bio-Rad Laboratories, Hercules, CA, USA). Blots were
147	developed by immuno staining with H6.J54 HPV L1 primary antibody (a kind gift from
148	Neil Christensen, Pennsylvania State University College of Medicine, USA) and
149	anti-mouse secondary antibody conjugated with HRP (GE Healthcare, Tokyo, Japan)

were used against VLPs. ECL plus detection reagents were used to detect HPV 6b L1
protein using Versa Doc Imager and analyzed using Quantity-One software (Bio-Rad).

152

RESULTS AND DISCUSSION

Sample preparation To achieve partial purity of the VLPs from cell lysates sucrose
gradient ultracentrifugation and SEC were performed. Sucrose gradient centrifugation
has been chosen for preliminary purification to obtain formed VLPs from lysates.
Fractionated sucrose gradient separated samples were re-clarified using SEC. The
separation was achieved by 1M NaCl, and the elution was approximately when 60–80%
of the NaCl gradient were performed (data not shown), which was later confirmed by
DLS and immunoblot detection.

160 **Characterization of VLPs using CZE** In order to perform an efficient CE 161 analysis the rinsing was initially done with the 1 M sodium hydroxide in combination 162 with the anionic surfactant SDS (17). However, even though the protein adsorption to 163 the capillary walls was reduced, the obtained relative standard deviation (RSD) 164 remained unsatisfactory. Weiss et al. employed non-ionic surfactants such as Thesit[®] 165 (15) which neutralize the anionic silanolate group on the inner capillary surface, 166 minimizing the protein adsorption to the capillary wall. Pressures from 1.0 bar up to 2.0

167	bar and further rinses with water and BGE containing Thesit [®] were employed (2 mins
168	each), which subsequently reduced the drift of the migration times to an RSD of less
169	than 1% (17–18). Note that the addition of non-ionic detergent pose a serious stability
170	problem with enveloped viruses which have lipid bilayer. However, HPV L1 is a
171	non-enveloped virus, which allows for analyzing and prevention of aggregation of VLPs
172	under the running conditions.
173	Analyzing the electropherogram of HPV 6b L1 VLPs using CISS, the migration
174	times of acetanilide and the HPV L1 VLPs were 2.5 and 11.0 min, n=10, with RSD of
175	0.3 and 0.6%, respectively (Fig. 1A), which was better than the generally accepted level
176	of 2%, proving the employed CZE method is precise. The corresponding RSD of the
177	peak areas was 6.2% (Fig. 1B). This remaining variability could be due to a still
178	persisting adsorption at the inner capillary surface. The signal to noise ratio (S/N) of
179	HPV L1 VLPs was calculated as 147 (mean of five consecutive runs) using the Agilent
180	chemstation software. This value is greater than 100, which is accepted as sufficient for
181	optimal precision of CE systems (19). If a scale up analysis to commercial scale of CZE
182	fractionation was desirable, the methods described here could be transferred to free flow
183	zone electrophoresis (FFZE), which provides very similar selectivity with much higher

185	Hydrodynamic radius of HPV 6b L1 VLPs and immune analysis
186	Hydrodynamic radius of VLPs in series purification of SEC and CZE was measured
187	(Fig. 2). In both samples, a peak at around 7 nm was mainly detected. This size
188	corresponds to HPV L1 capsomeres (11-12 nm) (20), indicating these peaks have HPV
189	6b L1 capsomeres and most of the purified L1 protein formed these ones. HPV 6b L1
190	proteins expressed in silkworm larvae formed various sizes of L1 VLPs (10 - over 100
191	nm) (9). In this study, samples of SEC contained mainly capsomeres and also VLPs
192	whose size ranged between 100 and 300 nm. Samples of CZE fractionation also mainly
193	show capsomeres and several sizes of VLPs, with additional species with sizes of
194	approximately 20, 50 and 700 nm. HPV 16 L1 protein purified from yeasts can be
195	disassembled into the L1 capsomeres under the low ionic strength and high pH in the
196	presence of a reducing agent (24). In addition, they formed in complete HPV VLPs and
197	uniform VLPs were obtained by dis- and re-assembling (25). This suggests that HPV 6b
198	L1 protein from silkworm formed or disassembled into some particles (the sizes of 20
199	and 50 nm) under the CZE condition. Particles with the size of 700 nm might be
200	aggregated forms because its size was too large compared to the HPV L1 particles.

201	L1 proteins purified by SEC and CZE were also detected by western blot (Fig. 3).
202	In both samples, two bands appeared. Based on the molecular weight of L1 protein, the
203	upper and lower bands correspond to full-length of L1 protein and partially degraded L1
204	protein, respectively, indicating that the main peak in CZE contains purified HPV L1
205	protein. This HPV L1 protein is prone to be degraded in the fat body of silkworm larvae
206	(9). Sometimes recombinant HPV 6b L1 proteins are detected in the fat body of
207	silkworm larvae by western blotting as several bands. Full-length of L1 protein can not
208	be separated from degraded L1 protein because full-length of L1 protein might form
209	into capsomeres and VLPs with degraded L1 protein (26).
210	CZE can also be applied to the investigation of the quality of purified
211	recombinant protein due to its reproducibility and reliability. However, individual CZE
212	condition has to be investigated in detail. For example, degraded L1 protein was not
213	completely separated from full-length L1 protein by CZE in this study, because fraction
214	collection was the main goal in the present work. It seems that several peaks in DLS
215	results might be caused by partial degradation of L1 proteins.
216	In this work we demonstrated the feasibility of CZE to analyze and quantify
217	VLPs, including fraction collection. CZE analysis fulfills the requirement of fewer
218	amounts of sample and high throughput. The achieved precision of CZE analysis is

219	essential, since VLPs e.g. for vaccines intended for human use require a high standard
220	for their quality and quantity. Even without a sophisticated protocol, analysis of CZE
221	fractions allows for further characterization by DLS and SDS-PAGE and subsequent
222	western blotting with sufficiently high sensitivity. A more elaborated fraction collection
223	protocol could further improve sensitivity and selectivity of this approach. Modifying
224	and even scaling up of this approach using other free zone and capillary
225	electromigration techniques will pave the way for new quality control standards of
226	pharmaceutical bioproducts.
227	ACKNOWLEDGMENTS
228	The authors are grateful to Prof. Rustenbeck for making it possible to use the
229	ultracentrifuge at the institute of pharmacology, toxicology and clinical pharmacy in
230	Technische Universität Braunschweig. We also thank Prof. Neil Christensen for
231	generously the providing antibodies. Furthermore the authors thank Polymicro
000	

233 by a grant from the German academic exchange services (DAAD).

234 **References**

- 235 1. Vogel, F.R.: Improving vaccine performance with adjuvants. Clin. Infect. Dis.,
- 236 **30(Suppl 3)**, S266–270 (2000).
- 237 2. Palucha, A., Loniewska, A., Satheshkumar, S., Boguszewska-Chachulska,
- A.M., Umashankar, M., Milner, M., Haenni, A.L., and Savithri, H.S.:
- 239 Virus-like particles: models for assembly studies and foreign epitope carriers. Prog.
- 240 Nucleic Acid Res. Mol. Biol., **80**, 135–168 (2005).
- 3. **Plummer, E.M. and Manchester, M.:** Viral nanoparticles and virus-like particles:
- 242 platforms for contemporary vaccine design, Wiley Interdisciplinary Reviews:
- 243 Nanomed. Nanobiotechnol., **3**, 174–196 (2011).
- 4. Greer, C.E., Wheeler, C.M., Ladner, M.B., Beutner, K., Coyne, M.Y., Liang, H.,
- Langenberg, A., Yen, T.S., and Ralston, R.: Human papillomavirus (HPV) type
- distribution and serological response to HPV type 6 virus-like particles in patients
- 247 with genital warts. J. Clin. Microbiol., **33**, 2058–2063 (1995).
- Modis, Y., Trus, B.L., and Harrison, S.C.: Atomic model of the papillomavirus
 capsid. EMBO J., 21, 4754–4762 (2002).
- 250 6. Conway, M.J. and Meyers, C.: Replication and assembly of human
- 251 papillomaviruses. J. Dent. Res., **88**, 307–317 (2009).
- 252 7. Vicente, T., Roldão, A., Peixoto, C., Carrondo, M.J.T., and Alves, P.M.:
- 253 Large-scale production and purification of VLP-based vaccines. J. Invertebr.
- 254 Pathol., **107** Suppl, S42–48 (2011).
- 8. Kato, T., Kajikawa, M., Maenaka, K., and Park, E.Y.: Silkworm expression
- system as a platform technology in life science. Appl. Microbiol. Biotechnol., 85,
 459–470 (2010).
- 258 9. Palaniyandi, M., Kato, T., and Park, E.Y.: Expression of human papillomavirus

259		6b L1 protein in silkworm larvae and enhanced green fluorescent protein
260		displaying on its virus-like particles. SpringerPlus, 1, 29 (2012).
261	10.	Palaniyandi, M., Kato, T., and Park, E.Y.: Production of human papillomavirus
262		6b L1 virus-like particles incorporated with enhanced green fluorescent whole
263		protein in silkworm larvae. Biotechnol. Bioproc. Eng., 18, 514–519 (2013).
264	11.	Dalmora, S.L., D'Avila, F.B., da Silva, L.M., Bergamo, A.C., and
265		Zimmermann, E.S.: Development and validation of a capillary zone
266		electrophoresis method for assessment of recombinant human granulocyte
267		colony-stimulating factor in pharmaceutical formulations and its correlation with
268		liquid chromatography methods and bioassay. J. Chromatogr. B Analyt. Technol.
269		Biomed. Life Sci. 877, 2471–2476 (2009).
270	12.	Subirats, X., Blaas, D., and Kenndler, E.: Recent developments in capillary and
271		chip electrophoresis of bioparticles: Viruses, organelles, and cells. Electrophoresis,
272		32 , 1579–1590 (2011).
273	13.	Deng, X., Schröder, S., Redweik, S., and Wätzig, H.: Quantitative gel
274		1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / /
		electrophoresis: new records in precision by elaborated staining and detection
275		protocols. Electrophoresis, 32 , 1667–1674 (2011).
275 276	14.	 electrophoresis: new records in precision by elaborated staining and detection protocols. Electrophoresis, 32, 1667–1674 (2011). Espinosa-de la Garza, C.E., Perdomo-Abúndez, F.C., Padilla-Calderón, J.,
275 276 277	14.	 electrophoresis: new records in precision by elaborated staining and detection protocols. Electrophoresis, 32, 1667–1674 (2011). Espinosa-de la Garza, C.E., Perdomo-Abúndez, F.C., Padilla-Calderón, J., Uribe-Wiechers, J.M., Pérez, N.O., Flores-Ortiz, L.F., and Medina-Rivero, E.:
275 276 277 278	14.	 electrophoresis: new records in precision by elaborated staining and detection protocols. Electrophoresis, 32, 1667–1674 (2011). Espinosa-de la Garza, C.E., Perdomo-Abúndez, F.C., Padilla-Calderón, J., Uribe-Wiechers, J.M., Pérez, N.O., Flores-Ortiz, L.F., and Medina-Rivero, E.: Analysis of recombinant monoclonal antibodies by capillary zone electrophoresis.
275 276 277 278 279	14.	electrophoresis: new records in precision by elaborated staining and detection protocols. Electrophoresis, 32 , 1667–1674 (2011). Espinosa-de la Garza, C.E., Perdomo-Abúndez, F.C., Padilla-Calderón, J., Uribe-Wiechers, J.M., Pérez, N.O., Flores-Ortiz, L.F., and Medina-Rivero, E.: Analysis of recombinant monoclonal antibodies by capillary zone electrophoresis. Electrophoresis, 34 , 1133–1140 (2013).
275 276 277 278 279 280	14. 15.	 electrophoresis: new records in precision by elaborated staining and detection protocols. Electrophoresis, 32, 1667–1674 (2011). Espinosa-de la Garza, C.E., Perdomo-Abúndez, F.C., Padilla-Calderón, J., Uribe-Wiechers, J.M., Pérez, N.O., Flores-Ortiz, L.F., and Medina-Rivero, E.: Analysis of recombinant monoclonal antibodies by capillary zone electrophoresis. Electrophoresis, 34, 1133–1140 (2013). Weiss, V.U., Subirats, X., Pickl-Herk, A., Bilek, G., Winkler, W., Kumar, M.,
275 276 277 278 279 280 281	14. 15.	electrophoresis: new records in precision by elaborated staining and detection protocols. Electrophoresis, 32 , 1667–1674 (2011). Espinosa-de la Garza, C.E., Perdomo-Abúndez, F.C., Padilla-Calderón, J., Uribe-Wiechers, J.M., Pérez, N.O., Flores-Ortiz, L.F., and Medina-Rivero, E.: Analysis of recombinant monoclonal antibodies by capillary zone electrophoresis. Electrophoresis, 34 , 1133–1140 (2013). Weiss, V.U., Subirats, X., Pickl-Herk, A., Bilek, G., Winkler, W., Kumar, M., Allmaier G, Blaas D, and Kenndler E.: Characterization of rhinovirus subviral A

electrophoretic mobility molecular analysis: Part I, Electrophoresis, **33**, 1833–1841
(2012).

- 16. Grotefend, S., Kaminski, L., Wroblewitz, S., Deeb, S.E., Kühn, N., Reichl, S.,
 Limberger M, Watt S, and Wätzig H.: Protein quantitation using various modes
 of high performance liquid chromatography. J. Pharm. Biomed. Anal., 71, 127–138
 (2012).
- 17. El-Hady, D., Kühne, S., El-Maali, N., and Wätzig, H.: Precision in affinity
- capillary electrophoresis for drug-protein binding studies. J. Pharm. Biomed. Anal.,
 52, 232–241 (2010).
- 18. Towns, J.K. and Regnier, F.E.: Capillary electrophoretic separations of proteins
 using nonionic surfactant coatings. Anal. Chem., 63, 1126–1132 (1991).
- 19. Meyer, C., Seiler, P., Bies, C. Cianciulli, C., Wätzig, H., and Meyer, V.R.:
- 295 Minimum required signal-to-noise ratio for optimal precision in HPLC and CE.
- Electrophoresis, **33**, 1509–1516 (2012).
- 297 20. Belnep, D.M., Olson, N.H., Cladel, N.M., Newcomb, W.W., Brown, J.C.,
- 298 Kreider, J.W., and Christensen, N.D.: Conserved features in papillomavirus and
- 299 polyomavirus capsids. J. Mol. Biol., **259**, 249-263 (1996)
- 300 21. Wätzig, H., Degenhardt, M., Kunkel, A.: Strategies for method development and
- 301 validation in CE related to pharmaceutical and biological applications.
- 302 Electrophoresis, **19**, 2695-2752 (1998)
- 303 22. El Deeb, S., Wätzig, H., El-Hady, D.: Capillary electrophoresis to investigate
- 304 biopharmaceuticals and pharmaceutically-relevant binding properties. Trends
- 305 Analyt. Chem., **48**, 112-131 (2013)
- 306 23. El Deeb, S., Wätzig, H., El-Hady, D., Albishri, H. M., Sänger-van de Griend,

307		C., Scriba, G. K. E.: Recent advances in capillary electrophoretic migration
308		techniques for pharmaceutical analysis. Electrophoresis, DOI
309		10.1002/elps.201300411
310	24.	Mach, H., Volkin, D.B., Troutman, R.D., Wang, B., Luo, Z., Jansen, K.U., Shi,
311		L.: Disassembly and reassembly of yeast-derived recombinant human
312		papillomavirus virus-like prticles (HPV VLPs). J. Pharm. Sci., 95, 2195-2206
313		(2006)
314	25.	Zhao, Q., Allen, M.J., Wang, Y., Wang, B., Wang, N., Shi, L., Sitrin, R.D.:
315		Disassembly and reassembly improves morphology and thermal stability of human
316		papillomavirus type 16 virus-like particles. Nanomedicine, 8 , 1182-1189 (2012)
317	26.	Cook, J.C., Joyce, J.G., George, H.A., Schultz, L.D., Hurni, W.M., Jansen,
318		K.U., Hepler, R.W., Ip, C., Lowe, R.S., Keller, P.M., Lehman, E.D.: Purification
319		of virus-like particles of recombinant human papillomavirus type 11 major capsid
320		protein L1 from Saccharomyces cerevisiae. Protein Expr. Purif. 17, 477-484 (1999)
321		
322		
323		

324 Figure legends

- 325 FIG. 1. Electropherogram of the HPV 6b L1 VLPs analyzed by CZE using acetanilide
- as electroosmotic flow marker (A) and its stability during 10 CE runs (B).
- 327 FIG. 2. Dynamic light scattering analysis of HPV L1 VLPs. (A) Partially purified VLPs
- after SEC. (B) Injected SEC fraction, further fractionated by CZE of HPV L1 VLPs.
- 329 Fraction (1 ml) was analyzed at 25°C.
- 330 FIG. 3. Immuno blot of HPV L1 VLPs. Lane M: Molecular weight marker, Lane 1:
- 331 Partially purified fraction after SEC, Lane 2: Fraction of capillary zone electrophoretic
- analysis of HPV L1 VLPs. HPV L1 VLPs were detected against HPV L1 primary
- antibody. Arrow indicates full-length of HPV L1 protein.

