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Chapter 1 General introduction 

1.1 Background 

1.1.1 Remote sensing of biochemical and biophysical parameters 

Vegetation is a fundamental element of the earth’s surface and has a major influence 

on the exchange of energy between the atmosphere and the earth’s surface (Bacour et 

al., 2002). Accurate quantitative estimation of vegetation biochemical and biophysical 

characteristics is necessary for a large variety of agricultural, ecological, and 

meteorological applications (Asner, 1998; Hansen and Schjoerring, 2003; Houborg et 

al., 2007).  Direct measurement of these characteristics is labor-intensive and costly, 

and is thus only practical on experimental plots of limited size (Pu et al., 2003), whilst 

remote sensing, thanks to its global coverage, repetitiveness, non-destructive and 

relatively cheap characterization of land surfaces, has been recognized as a reliable 

method and a practical means of estimating various biophysical and biochemical 

vegetation variables (Cohen et al., 2003; Curran et al., 1994; Weiss and Baret, 1999). 

However, a major drawback of traditional remote sensing products is that they use 

bulk spectral information over broad-band widths, resulting in the loss of crucial 

information available in specific narrow bands (Blackburn, 1998; Thenkabail et al., 

2000). In this regard, the advent of hyperspectral remote sensing (section 1.1.2) has 

offered promising previews with large possibilities to overcome this limitation. 

1.1.2 Hyperspectral remote sensing of vegetation parameters 

Hyperspectral remote sensing, typically has hundreds of narrow, contiguous spectral 

bands between 400 and 2500 nm, has the potential to measure specific vegetation 

variables that are difficult to measure using conventional multi-spectral sensors. There 

are a bunch of successful applications, for example, Zarco-Tejada et al (2002) 

assessed vegetation stress from a derivative chlorophyll index using CASI (Compact 

Airborne Spectrographic Imager) airborne data; Mutanga and Skidmore (2004) 

overcame the saturation problem in estimating biomass by using narrow-band 

vegetation indices; Ferwerda et al (2005) demonstrated that across multiple plant 

species total nitrogen content could be detected by using hyperspectral indices; and 

Cho (2007) used hyperspectral indices to discriminate species at leaf and canopy 

scales. Previous studies have shown that hyperspectral data are crucial in providing 

essential information for quantifying the biochemical (Broge and Leblanc, 2001; 

Ferwerda et al., 2005; Gamon et al., 1992; Gitelson and Merzlyak, 1997; Mutanga et 

al., 2005; Peterson et al., 1988) and the biophysical (Blackburn, 1998; Elvidge and 

Chen , 1995; Gone et al., 1992; Lee et al., 2004; Mutanga and Skidmore, 2004; 

Schlerf et al., 2005) characteristics of vegetation. 

 

In general, current remote sensing approaches to estimating vegetation biochemical 

and biophysical parameters include inversion of physically based model or via 

statistical methods (Skidmore, 2002). The inversion model approaches involve 

various types of leaf and canopy radiative transfer models, which simulate reflectance 
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spectra from several biochemical and biophysical parameters and inversely retrieval 

of parameters from reflectance spectra vice versa (e.g., Feret et al., 2008; Colombo et 

al., 2008; Riano et al., 2005; Ceccato et al., 2001; Jacquemoud et al., 1996). On the 

other hand, the most common  approaches of applications are spectral indices, which 

consist in combining several reflected signals measured in narrow or broad spectral 

bands into mathematical combinations and to correlate them to the target parameters 

(Blackburn, 1998; Broge and Leblanc, 2001; Filella and Penuelas, 1994; Mutanga and 

Skidmore, 2004; Thenkabail et al., 2004). Both approaches (radiative transfer models 

/ spectral indices) have been widely applied. In this study, both approaches were 

investigated in detail for their estimations of typical leaf and canopy properties 

including leaf chlorophyll content, leaf mass per area, leaf water content, and leaf area 

index, which are of prime important among many ecological models. 

1.2 State of the art 

1.2.1 Radiative transfer models 

Leaf scale models 

 

During the last fifty years, various types of radiative transfer models have been 

proposed to explain the leaf optical properties in terms of chlorophyll or water content, 

leaf internal structure or surface properties. For broadleaves, Ustin et al. (1999) 

extensively reviewed leaf models  from the late sixties to the present, which have 

greatly improved our understanding of the interaction of light with plant leaves. They 

can be generally categorized into four classes of models with increasing order of 

complexity: Plate models, N-flux models, Stochastic models and Ray tracing models. 

Among the four classes of models, the plate type of models represents a leaf as one or 

several absorbing plates with rough surfaces giving rise to isotropic diffusion, and is 

easy to be applied to practice. A well-known example of this type is the PROSPECT 

model developed by Jacquemoud and Baret (1990), which is in widespread use in the 

remote sensing community.  

 

Adaption of proposed models to needle-shaped leaves proved to be a difficulty. 

However, Dawson et al. (1998b) developed a new model named LIBERTY (Leaf 

Incorporating Biochemistry Exhibiting Reflectance and Transmittance Yields), has the 

capacity of accurately predicting the spectral response of both dried and fresh stacked 

pine needles. As a comparison, very few attempts were ever on modeling optical 

properties for assimilating branches of typical desert plants, which carry out leaf 

functions, e.g., photosynthesis and transpiration but neither broadleaves nor needle 

leaves. Despite these desert plants being popularity in arid land, few of the existing 

studies have ever addressed their reflectance characteristics.  

 

Models are essential for understanding not only how electromagnetic radiation 

interacts with leaf elements, but also how to directly relate observed optical properties 

with leaf biochemical and biophysical attributes. In the direct mode, sensitivity 

analyses, a crucial step in model verification and validation, ensures that the response 

of the model to the input parameters is the expected one. Recent studies based on 

statistical methods like the Sobol’s method or the Extended Fourier Amplitude 
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Sensitivity Test (EFAST) extend research further by quantifying the relative effects of 

each of the input parameters, as well as their interactions (Ceccato et al., 2001). Such 

information may be helpful in inversion, for instance to detect non-influential optical 

parameters, like the nitrogen (or protein) content in fresh leaves. 

 

To actually use radiative transfer models for retrieving leaf characteristics from 

observed reflectance data, they must be inverted (Kims et al., 1998). Different 

algorithms exist for the inversion of physical models, including numerical 

optimization methods (e.g., Jacquemoud et al., 2000; Meroni et al., 2004), look-up 

table (LUT) approaches (e.g., Combal et al., 2002; 2003), and artificial neural 

network methods (e.g., Fang and Liang, 2005; Schlerf and Atzberger, 2006), each 

having advantages and disadvantages (Kimes et al., 2000; Liang, 2004). A drawback 

in using radiative transfer models is the ill-posed nature of model inversion (Atzberger, 

2004; Combal et al., 2002), meaning that the inversion solution is not always unique 

as various combinations of input parameters may yield almost similar spectra (Weiss 

and Baret, 1999). Several attempts have been made to alleviate the impact of the 

“ill-posed” problem for model inversion, ranging from restricting the ranges of input 

parameters (Danson and Bowyer, 2004), to the removal of simulated spectra derived 

from unlikely combinations of input parameters based on field experience (Yebra and 

Chuvieco, 2009; Yebra et al., 2008), and the use of prior knowledge about model 

parameters (Combal et al., 2002), all of which could restrict the operational utility of 

the inverse modeling approach. Hence, to develop a new model inversion approach to 

alleviate the so-called “ill-posed” problem is needed, especially for those area that 

lack in situ data. 

 

Canopy scale models 

 

Canopy radiative transfer models describe the spectral variation of canopy reflectance 

as a function of canopy, leaf and soil background characteristics based on physical 

laws (Ataberger, 1995; Meroni et al., 2004; Verhoef, 1984). As radiative transfer 

models are able to explain the transfer and interaction of radiation inside the canopy 

based on physical laws, they offer an explicit connection between vegetation 

biophysical and biochemical variables and canopy scale reflectance (Houborg et al., 

2007). Various canopy radiative transfer models have been developed and applied to 

various vegetation canopies (Pinty et al., 2001; 2004; Widlowski et al., 2007), e.g., 

PROSAIL (Jacquemoud et al., 2009), ACRM (Kuusk, 2001) and FRT (Kuusk and 

Nilson, 2000, 2009), as three widely used models. PROSAIL combines the leaf 

optical properties model PROSPECT and the canopy bidirectional reflectance model 

SAIL and has been used for about 16 years to study plant canopy spectral and 

directional reflectance in the solar domain. ACRM is a two-layer canopy reflectance 

(CR) model which describes the vegetation canopy as two layers: a main 

homogeneous layer of vegetation and a geometrically thin layer of vegetation on the 

ground surface. This model is an extension of the homogeneous multispectral CR 

model MSRM (Kuusk, 1994) and the Markov chain CR model MCRM (Kuusk, 1995). 

The FRT model describes a radiative transfer scheme for a forest canopy composed of 

two layers: a discontinuous upper canopy of trees in the overstorey, and a continuous, 

horizontally homogeneous shrub and grass layer in the understorey above the soil 

surface. 

 

Most of the currently available models have been based on radiative transfer theory 
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with analytical approximations for the solution, which make the assumption of either 

a homogeneous one-layer canopy or a structure that is extended to two layers by 

adding a thin weed layer of understorey vegetation (shrubs and/or grass) under the 

homogeneous canopy (e.g. Gobron et al., 1997; Liangrocapart and Petrou, 2002; 

Myneni et al., 1992; Nilson and Kuusk, 1989; Verstraete et al., 1990). However, 

canopy generally exhibits large heterogeneity of both biophysical and optical 

properties (Widlowski et al., 2007). Although there are some 3-D simulation models 

based on true canopy 3-D structures (Cote et al., 2009; Pinty et al., 2004; Widlowski 

et al., 2007) that explain the effects of canopy heterogeneous structure on canopy 

reflectance, these models require some geometrical and structural parameters of trees, 

which are very difficult to measure practically, which reduce their effectiveness. In 

addition, the canopy also exhibits a large heterogeneity of leaf biochemical and 

physiological properties such as chlorophyll, water and dry matter contents (Ciganda 

et al., 2008; Wang and Li, 2012). However, the effects of these heterogeneities on 

canopy reflectance have not yet been fully addressed, to the best of our knowledge. 

 

Vertical profiles of both biophysical and biochemical properties are one of the main 

sources of heterogeneity within a vegetation canopy, which has been well recognized 

and highlighted in many studies (Barton, 2000; Ciganda et al., 2008; Dwyer et al., 

1992; Valentinuz and Tollenaar, 2004). Generally, vertical distribution of the target 

components is a major factor controlling canopy reflectance. Using homogeneous 

canopy reflectance models for calculating directional reflectance from a vertical 

heterogeneous canopy by taking average values of biophysical and biochemical 

properties within the canopy may lead to systematic errors. Hence, accurate modeling 

of canopy reflectance requires taking this factor into consideration. With this in mind, 

to develop a computationally efficiently multiple-layer canopy radiative transfer 

model is needed and will be one main objective of this study. 

1.2.2 Spectral indices 

The radiative transfer models approach generally involves the famous “ill-posed” 

inverse problem (Combal et al.,2003), and this approach is computationally 

demanding and requires a large number of leaf and canopy variables, which may not 

be available, and hence limits its application (Liang, 2004). An alternative approach is 

the use of spectral indices, which are based on the principle of combining reflectance 

measured on several narrow or broad spectral bands into mathematical combinations 

and correlating them to the target parameter. It is generally accepted that spectral 

indices offer convenient and non-intrusive tools for rapidly inferring a number of 

functionally important leaf and canopy properties (Gamon and Surfus, 1999).  

 

The importance of hyperspectral indices for quantifying the biochemical and 

biophysical characteristics of vegetation have been demonstrated by many studies 

(Blackburn, 1998; Broge and Leblanc, 2001; Ferwerda et al., 2005; Gamon et al., 

1992; Mutanga et al., 2005; Schlerf et al., 2005). As a result, a large number of 

spectral indices for retrieval different biochemical and biophysical parameters are 

developed and applied to various vegetation types. At leaf scale, the chlorophyll 

concentrations, water content, and leaf mass area are specifically focused on as they 

are three key leaf biochemical properties affecting a number of major ecological 

processes involved in exchange of matter and energy, like photosynthesis, 
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evapotranspiration, and respiration (Peterson and Hubbard, 1992). As reviewed by le 

Maire et al. (2004), Blackburn (2007) and Ustin et al. (2009), dozens of indices 

ranging from red/NIR ratios, green and red edge types, and derivative types have been 

designed to estimate leaf scale chlorophyll content, e.g., Modified Normalised 

Difference (mND705, Sims and Gamon, 2002), Pigment Specific Simple Ratio (PSSR, 

Blackburn, 1998), Double Difference (DD, le Maire et al., 2004). Similarly, a number 

of indices have been used to estimate leaf water content (e.g., Roberts et al., 1998; 

Gao, 1996; Hardisky et al., 1983; Penuelas et al., 1993) and leaf mass area (le Maire 

et al., 2008; Wang and Li, 2012), e.g.,, Moisture Stress Index (MSI, Hunt and Rock, 

1989), Simple Ratio Water Index (SRWI, Zarco-Tejada and Ustin, 2001), Water index 

(WI, Penuelas et al., 1997). For leaf mass area, Normalised Difference index 

(ND1710,1340, le Maire et al., 2008), Double Difference index (DDn1235,25, Wang and Li, 

2012) were proposed. At canopy scale, a large number of vegetation indices have been 

established for retrieval of leaf area index(LAI), a key canopy biophysical variable 

(Haboudane et al., 2004), e.g. the Normalized difference vegetation index (NDVI, 

Thenkabail et al., 2000), Ratio vegetation index (RVI, Stenberg et al., 2004), Modified 

Simple ratio (MSR, Chen, 1996), Modified Chlorophyll absorption ratio index 

(MCARI, Haboudane et al., 2004), Triangular vegetation index (TVI, Broge and 

Leblanc, 2001), Modified TVI (MTVI, Haboudane et al., 2004), Modified 

soil-adjusted vegetation index (MSAVI, Qi et al., 1994), and DLAI (le Maire et al., 

2008).  

 

Application of hyperspectral indices to estimate vegetation biochemical and 

biophysical parameters is simple but apparently has limitations, since it lack 

robustness and portability. When hyperspectral indices are calibrated to a specific 

database, the relationships elucidated cannot be generalized to other databases (le 

Maire et al., 2008). Unfortunately, most experimental databases used for calibration 

are not broadly representative, especially in the context of ecological concerns. To be 

useful in ecological studies, the relationships should be sufficiently general for 

application across locations, species and plant developmental stages (Sims and 

Gamon, 2002). The ideal way to find efficient and robust indices with broad 

applicability would be to use a large measurement database, with many species and 

site conditions. However, it is usually not feasible to obtain such a large database 

containing thousands of measurements. As an alternative to the use of databases 

derived from field measurement of specific plant communities or ecosystems, 

researchers have proposed the use of artificial databases containing reflectance spectra 

and their corresponding vegetation parameters (le Maire et al., 2004). Such approach 

of using simulated datasets from radiative transfer models is a popular and advanced 

way for allocating effective and general vegetation indices developed in recent years 

(le Marie et al., 2004; 2008; Wang and Li, 2011; 2013b). Since the effect of variation 

in biophysical and biochemical properties on canopy / leaf reflectance are explicitly 

through reflectance models (Asner, 1998), such approach has many advantages. They 

include: most properties can be represented in detail (via thousands of spectra); the 

influence of a specific property can be decoupled from others; and the effect of a 

particular property on the spectra is based on physical and physiological processes. As 

a result, well established indices obtained through such a large simulated database 

may potentially be applied to a wide range of spectra. Nevertheless, it is worth noting 

that the accuracy of the approach relies on the capacity of applied radiative models to 

correctly simulate reflectance under various conditions. Thus, it is essential to validate 

such indices with experimental measurements. 
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1.3 Study sites and measurements 

This study is mainly conducted at the Naeba Site, which is dominated by a typical 

temperate deciduous plant--beech (Fagus crenata). Field measurements including 

reflectance in this site can be dated back to 2007 and been continued until now. In 

addition, in order to test the performance of radiative transfer models and to identify 

general and robust spectral indices, another site was established in Gurbantünggüt 

Desert of China in 2009 (hereafter refers to be Desert Site), which is dominated by a 

typical desert plant -- H. ammodendron. The field measurements in the Desert Site 

were starting from 2009. Detail descriptions of these two sites are given in below. 

1.3.1 Naeba Site 

The primary study site is in the Naeba Mountain of Japan (36º 51' N, 138º 40' E, see 

Fig. 1.1), which has been used since the 1970s by the International Biological 

Program (Kakubari, 1977). It is also an important site of SpecNet (Gamon et al., 

2006). More than 15 plots were delineated along the northern slope of the Naeba 

Mountain where natural beech forests (Fagus crenata) dominated from the elevation 

of 550–1500 m; these plots were used for the long-term monitoring of stand biomass, 

leaf area index (LAI), and other stand structural parameters. Furthermore, four towers 

have been built for four typical stands at 550, 900, and 1500 m; these stands represent 

the lower, middle, and upper limits of F. crenata ecosystems. Two towers were 

located at 900 m (X1 and X5 with different azimuths) where conditions for growth of 

F. crenata are optimum. The towers served as the platform for meteorological sensors 

and also provided canopy access for sampling and measurements. The field 

measurements of this study were mainly conducted in these four tower stands (550-m, 

900-m (X1), 900-m (X5), and 1500-m stands). 

 

The 550-m stand is located on the river terrace of a deep valley, 10 m above the 

current river level. The 900- and 1500-m stands are located on east- and south-facing 

mountain slopes, respectively (Table 1.1). Bedrock in the study area is predominantly 

basalt, on which moderately moist brown forest soil has formed. The upper-canopy 

layer at each elevation consists mainly of F. crenata with sporadic occurrence of other 

species such as Quercus mongolica Fisch. ex Ledeb. var. grosseserrata (Blume) 

Rehder & E.H. Wilson, Magnolia obovata Thunb. and Acanthopanax 

sciadophylloides (Franch. & Sav.) H. Ohashi at the 550- and 900-m stands, and 

Betula grossa Siebold & Zucc. and Betula ermanii Cham. at the 1500-m stand. The 

prevalence of evergreen bamboo (Sasa kurilensis (Rupr.) Makino & Shibata) 

increases with elevation to more than 90% cover at the 1500-m stand.  

 

This region along the Japan Sea coast is characterized by high precipitation (about 

2000 mm year
–1

), much falling as snow, leading to winter snow cover of 3–4 m 

(Table 1). Mean annual (1999) air temperature was 10.0, 9.3 and 5.6 °C at the 550-, 

900- and 1500-m stands, respectively. At the 550- and 900-m stands, snowmelt occurs 

at the beginning of May, whereas at the 1500-m stand, it is delayed until early June. 

Leaf flush begins in late April or early May at the 550- and 900-m stands and in late 

May to early June at the 1500-m stand. Autumn leaf coloring begins in early October 

at all stands.  
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Fig. 1.1 Location of the Naeba site and location of the long-term study stands, black symbols 

indicate the locations of the four tower stands used in this study. 

1.3.2 Desert Site 

The second study site is located in the newly set-up Remote Sensing Experimental 

Site (abbreviated to Desert Site) near Fukang National Field Station of Desert Ecology, 

Chinese Academy of Sciences, in the hinterland of the Eurasian continent (44º 25' N, 

87º 54' E, and 475 m a.s.l.). The Desert Site is located at the southern edge of the 

Gurbantonggut Desert and 82 km north of the highest peak of the eastern Tianshan 

Mountains (see Fig. 1.2). The region has a continental arid temperate climate with a 

hot dry summer and cold winter, where the annual mean temperature is 6.6 
◦
C and 

annual mean precipitation of 160 mm. High pan evaporation (E) can even reach about 

2000 mm (Xu et al. 2007). The soil is highly saline and the groundwater table is more 

than 5 m. The dominant species is Haloxylon ammodendron, with only a few 

companion species found in these plant communities including some short-life 

vegetation in spring under the irrigation of snow melting water. Total amount of 

precipitation of this site during growing season was about 120 mm in 2010, far below 

the atmospheric water demand and this site experiences severe water shortage. 

 

In Desert Site, a preliminary plot inventory was performed during the plot set-up in 

2009. A more detailed inventory was carried out in 2011, with items recorded 

including tree height, canopy projection area, and stem diameter at base height (Table 

1.1). The average H. ammodendron canopy coverage was estimated to be 15%.  

 
Table 1.1 General characteristics of the beech stands and climate at the three sites. 

 

Site  

Dominant 

species 

Plot 

size 

(m
2
) 

Age 

(years) 

Density 

(trees 

ha
-1

) 

Mean 

height 

(m) 

Mean 

annual 

temperature 

(
◦
C) 

Mean 

annual 

precipitation 

(mm) 

Length of 

growth 

season 

(days) 

Naeba 
Site 

550m beech 2400 260 246 34 11.4 1322 193 

900m beech 600 70 1033 21 9.6 1343 161 

1500m beech 1000 300 450 22 6.2 1158 144 

Desert Site haloxylon 10
6
 >300  1.9 6.6 160 170 
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Fig. 1.2 Location of the Desert Site 

 

 
 

Fig 1.3 Overshot of the Naeba Site (left) and Desert Site (right). 

1.3.3 Field Measurements 

Dataset I, II, III from the Naeba site 

 

To evaluate the model performance at different locations and for different species, we 

have compiled three different data sets from synchronous measurements of both leaf 

biochemical parameters and leaf and canopy reflectance in a typical cold-temperate 

mountainous landscape in Japan, on the Naeba Mountain (the Naeba site, see section 

1.3.1 for site detail description). Beech (Fagus crenata) is the dominant species here 

and is widely distributed at altitudes from 550 to 1500 m on the northern slope of the 

mountain. Both leaf properties, e.g., contents of various pigments and nitrogen, 

maximum carboxylation velocity (Vcmax), EWT, leaf thickness, LMA, and leaf 

anatomy, and leaf reflectance have been simultaneously measured using leaf clip 

since 2006. Data set I contains in a total of 222 beech-leaf measurements acquired in 

2007 from Fagus crenata canopies at three difference layers (bottom, middle, and top) 

in four tower plots deployed along the northern slope of Naeba Mountain at different 

altitudes—550, 900 (X1), 900 (X5), and 1500 m—during the growth period, with a 

frequency of once per two weeks during the leaf flushing and shedding periods and 

once per month during the summertime. Data set II is composed of 83 leaf 

measurements acquired in the growth period of 2008 at the 900-m X5 site alone, with 



9 
 

the focus on the vertical profile, in which the beech canopy has been grouped into five 

layers (at 12, 14, 16, 18, and 20 m, respectively). The same variables were measured 

as in 2007 (i.e., leaf properties and reflectance). In 2008, a field campaign was also 

launched in August, and similar measurements were acquired for 15 other common 

species, including Fraxinus lanuginosa, Acer japonicum, Magnolia obovata, 

Acanthopanax sciadophylloides, Lindera umbellata, Hamamelis japonica, Acer 

tschonoskii, Quercus crispula, Viburnum furcatum, Acer shirasawanum Koidz, 

Clethra alnifolia, Prunus grayana Maxim, Sasa spp., Magnolia salicifolia, and Acer 

rufinerve in this region around the 900-m plots. These are the measurements on which 

Data set III is based (45 leaves from 15 species in total). The three data sets together 

include data on hundreds of leaves (350 leaves in total), representing various species, 

canopy heights, growing conditions, and growth stages. In all data sets, canopy 

directional–hemispherical reflectance spectra were measured by use of a field 

spectroradiometer (ASD FR, USA) covering wavelengths from 400 to 2500 nm with a 

5° field of view, view nadir angle and view azimuth angle were both 0°, and sun 

zenith angle was calculated by the measured time. Leaf reflectance spectra were 

measured in the optical range with the field spectroradiometer equipped with a leaf 

clip. For all data sets, we selected four biochemical parameters expressed in the same 

units in each case: chlorophyll a (Chla), chlorophyll b (Chlb), water depth (Cw or 

EWT), and dry matter content (Cm or LMA). For sampling, leaf disks for various 

biochemical measurements were collected using a cork borer immediately after taking 

spectral measurements. The remaining leaf parts were scanned to determine the leaf 

areas, and their fresh weights were measured before placing them in a drying oven at 

85℃ for 48 h and then reweighing them to determine their water content (expressed 

as a percentage), EWT (in centimeters or in grams per square centimeter), and LMA 

(in grams per square centimeter). Pigments were extracted using organic solvents by 

grinding fresh or frozen leaf disks in a chilled mortar with a small amount of quartz 

sand and MgCO3 to prevent acidification (Arnon, 1949). Following centrifugation, the 

absorbance of the supernatant was measured using dual beam scanning UV-Vis 

spectrophotometers (Ultrospec 3300 pro, Biosciences, U.S.). The leaves’ contents of 

chlorophylls a and b, expressed in micrograms per square centimeter, were then 

determined by multi-wavelength analysis (Arnon, 1949). All measurements were 

taken three to five times. Table 1.2 summarizes the main characteristics of these three 

data sets. In addition, Leaf area index (LAI) during the growing season was estimated 

through litter traps. The LAI vertical variation within canopy was obtained in situ in a 

similar way as described in Iio et al. (2011). 

 

Dataset IV from the desert site 

 

To evaluate the models performance on assimilating branches of desert vegetation, 

another data set (data set IV) from synchronous measurements of both leaf 

biochemical parameters and reflectance in a typical desert vegetation (Haloxylon 

ammodendron) on the desert site (see section 1.3.2 for site detail description). 

Haloxylon ammodendron is the only native dominant vegetation in the area. Data set 

IV contains in a total of 120 assimilating branch measurements from H. 

ammodendron crowns at three difference layers (bottom, middle, and top) in the 

desert site. The methods of assimilating branch reflectance (both leaf and canopy) and 

biochemical parameters (CHL, EWT and LMA) are the same with datasets I~III. 

Mean, maximum, minimum and standard deviation of chlorophyll concentrations 

observed for H. ammodendron measurements are reported in Table 1.2.  
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Table 1.2 Main characteristics of the datasets compiled from field measurements 

 

Dataset I II III IV 

Year  2007 2008 2008 2009~2012 

Sample sites 550m, X1, X5, 

1500m 

900 m X5 Near X1 and 

X5 

Desert site 

No. of samples 222 83 45 120 

Sample species 1 1 15 1 

Sample position top, middle, bottom 5 canopy layers top top, middle, bottom 

Chlorophyll (μg/cm
2
)  

Min  7.15+2.09 8.25+3.17 17.40+5.46 4.70 

Max  74.82+24.49 49.18+18.34 45.69+16.64 29.18 

Mean  42.59 +15.15 29.07+10.63 30.25+11.49 14.54 

EWT (g/cm
2
)     

Min  0.0026 0.0033 0.0057 0.0019 

Max  0.0158 0.0127 0.0145 0.0147 

Mean  0.0066 0.0067 0.0086 0.0074 

LMA (g/cm
2
)     

Min  0.0028 0.0026 0.0034 0.0030 

Max  0.0113 0.0109 0.0119 0.0124 

Mean  0.0063 0.0057 0.0062 0.0087 

1.4 Research Objectives  

This study aims to investigate the potential of hyperspectral remote sensing for 

estimating biochemical and biophysical vegetation properties at leaf and canopy scale 

using both radiative transfer model inversion and hyperspectral indices approaches. 

The main objectives of this study are to: (1) investigate the potential of  leaf scale 

radiative transfer models for inversely estimating biochemical properties (e.g., leaf 

chlorophyll, water and mass content) for both broadleaves of typical temperate 

deciduous species and assimilating branches of typical desert species, and develop a 

new model inversion approach to alleviate the so-called “ill-posed” problem when 

doing the model inversion; (2) identify several efficient and robust hyperspectral 

indices for estimating leaf biochemical parameters (e.g., leaf chlorophyll, water and 

mass content) by combining model simulated and field measured data sets, which  

insensitive to species,  phenological stages, locations, and leaf anatomies; (3) 

develop a multiple-layer canopy radiative transfer model which considers the vertical 

heterogeneity of biochemical and biophysical parameters within the canopy, and 

present scenarios to reveal the effect of vertical variation of each parameter on canopy 

reflectance; (4) identify a potentially general and robust spectral index that insensitive 

to within canopy vertical variations of LAI and biochemical components for 

estimating LAI based on simulated datasets generated from the multiple-layer canopy 

radiative transfer model. 
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1.5 Thesis outline 

This thesis comprises four main chapters, corresponding to two different scales of 

investigation. 

 

1.5.1 Leaf scale 

 

Chapter 2 and 3 investigate the potential of estimating leaf biochemical properties 

using hyperspectral measurements. In brief, chapter 2 investigates two widely used 

leaf scale radiative transfer models (PROSPECT and LIBERTY) for estimating leaf 

biochemical characteristics through model inversion. The investigation involves plant 

species from typical temperate deciduous forests in humid area to typical desert forest 

in arid area. In this chapter, the “ill-posed” model inversion problem has been 

emphasized and a new model inversion approach is developed to alleviate the 

ill-posed problem. 

 

Chapter 3 investigates several types of hyperspectral indices to estimate leaf 

biochemical parameters. The investigation combines various model simulated and 

field measured data sets to identify general and robust spectral indices for each 

parameter. The simulated data sets are generated from the calibrated PROSPECT 

model as in chapter 2, and field measured data sets include various plant species from 

typical temperate deciduous forests in humid area (Naeba Site, see section 1.3.1) to 

typical desert forest in arid area (Desert Site, see section 1.3.2). 

 

1.5.2 Canopy scale 

 

Chapter 4 and 5 investigate the potential of estimating canopy properties using 

hyperspectral remote sensing. In chapter 4, a multiple-layer canopy radiative transfer 

model and its inversion algorithm were developed for studying the vertical 

heterogeneity of both biochemical and biophysical properties within the canopy. 

Chapter 5 investigates several types of hyperspectral indices to estimate canopy LAI. 

The investigation combines various model simulated data sets (based on the canopy 

model developed on Chapter 4) and field measurements to identify the general and 

robust spectral indices for estimating canopy LAI that insensitive to vertical 

heterogeneity of LAI and biochemical properties. 

 

Finally, in chapter 6, the findings of this study are summarized and the contribution of 

the thesis within the context of vegetation biophysical and biochemical parameter 

estimation from hyperspectral remote sensing is discussed, especially the performance 

of the radiative transfer model inversion approach versus the spectral indices 

approach on different forests (typical temperate deciduous forest in humid area and 

typical desert forest in arid area) has been evaluated. 
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Chapter 2 Leaf scale applications: inverse retrieval of leaf 

biochemical properties 

Abstract  

This chapter evaluated inversion of leaf scale radiative transfer models (PROSPECT 

and LIBERTY) for estimating leaf biochemical parameters (leaf chlorophyll, leaf 

water and leaf mass content) in typical temperate deciduous and desert forests. 

Retrieval of leaf biochemical parameters using model inversion generally faces 

“ill-posed” problems, which dramatically decreases the estimation accuracy of an 

inverse model. In this chapter, a new approach was proposed and the results indicate 

that the new approach greatly improves the performance of inversion models. Before 

applying these models to the two typical vegetations, these models were calibrated 

using field-measured reflectance data to make them more accuracy for simulating the 

leaf reflectance curve. This process was especially needed for the desert vegetation, as 

the original LIBERTY and PROSPECT exhibited tangible error for simulating leaf 

reflectance of the desert vegetation. However, their calibrated versions were capable 

of accurately retrieval of biochemical parameters inversely from reflectance spectra. 

As for field-measured datasets of typical temperate deciduous forests, the inversed 

PROSECT estimates of biochemical parameters recorded an RMSE of 8.11 μg/cm
2
, 

0.0012 g/cm
2 

and 0.0008 g/cm
2 

for leaf chlorophyll (CHL), leaf water (EWT) and leaf 

mass content (LMA). For typical desert vegetation, the inversed LIBERTY estimates 

of CHL, EWT and LMA recorded RMSE of 3.43 μg/cm
2
, 0.0012 g/cm

2 
and 0.0008 

g/cm
2
, and the RMSE of 34.76 mg/m

2
, 0.0012 g/cm

2 
and 0.0010 g/cm

2
 for the 

inversed PROSPECT. The results indicated that both LIBERTY and PROSPECT are 

applicable for estimation leaf biochemical parameters inversely for both typical 

temperate deciduous and desert plants after careful calibration, which is a necessary 

when prior coupling with canopy models to make further canopy and stand level 

biochemical properties estimations. 

2.1 Introduction 

A number of attempts have been made to apply this approach by inverting various 

types of physically based models (Ceccato et al., 2001; Colombo et al., 2008; Danson 

and Bowyer, 2004; Dawson et al., 1998; Feret et al., 2008; Ganapol et al., 1998; 

Jacquemoud and Baret, 1990; Jacquemoud et al., 1996; Riaño et al., 2005; Vittorio, 

2009; Yebra et al., 2008; Yebra and Chuvieco, 2009). As a prerequisite, such 

physically based models should be able to simulate reflectance spectra accurately 

while being sufficiently simple for easy inversion. The development of radiative 

transfer models has brought a better understanding of the interactions between light 

and plant leaves (Verdebout et al., 1994).  

 

Currently, the common widely used and validated leaf-level radiative transfer models 

include PROSPECT (Jacquemoud and Baret 1990) and LIBERTY (Dawson et al., 

1998; Moorthy et al. 2004). PROSPECT has been used for broad leaves, and 

describes leaf optical properties as a function of four parameters: a structure 

parameter N, chlorophyll concentration, leaf mass, and water content. On the other 
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hand, LIBERTY is suitable for conifer needles, where Melamed’s radiative transfer 

theory for suspended powders are used (Melamed 1963) and assumes that the needle 

structure is composed of roughly spherical cells. Many studies have inversed either 

PROSPECT or LIBERTY to estimate leaf/needle biochemical parameters including 

chlorophyll content and reported high estimation accuracy after being validated and 

calibrated with real measurements of leaf/needle reflectance (Jacquemoud and Baret 

1990; Jacquemoud et al. 1996; Dawson et al., 1998; Ganapol et al. 1998; Sims and 

Gamon 2002; le Maire et al. 2004; Coops and Stone 2005; Blackburn 2007; Feret et al. 

2008; Moorthy et al. 2008; Vittorio 2009; Li and Wang 2011). However, to the best of 

our knowledge, there are limited studies that have ever applied inversed radiative 

transfer models on desert vegetation in arid land, such as Haloxylon ammodendron. 

 

Haloxylon ammodendron is a stem-succulent shrub and a typical desert plant 

dominant in most areas of Asian deserts (Wu 1995), possesses distinct structural 

features of xeromorphism. Generally, their leaves are extremely degenerated or exist 

as basal leaves. The young green twigs carry out photosynthesis, and these young 

green twigs are universally referred to as ‘assimilating branches’ in biology (Pyankov 

et al. 1999). Despite its popularity in arid land, few of the existing studies have ever 

attempted to test any radiative transfer model to such assimilating branches and to 

retrieve the biochemical properties of these assimilating branches through the model 

inversion.  

 

To actually use radiative transfer models for retrieving leaf biochemical properties 

from observed reflectance data, they must be inverted by assigning to each observed 

spectrum the biochemical content value of the most similar simulated spectrum (Kims 

et al., 1998). However, the estimation of biochemical parameters via models inversion 

is challenging for several reasons, which make its operational application very 

difficult, mainly arising from the uncertainty of the inversion procedure. When 

searching for the most similar simulated spectrum to an observed spectrum, a wide 

range of values can be retrieved, since very similar reflectance spectra can be obtained 

from very different combinations of input parameters, leading to the well-known 

“ill-posed” inverse problem (Combal et al., 2002; Wang et al., 2007; Yebra and 

Chuvieco, 2009). Hence, it is essential to provide simulation conditions as close as 

possible to those expected, to avoid potential errors caused by unrealistic 

combinations of input parameters and thus reduce the “ill-posedness” of the problem. 

Several attempts have been made to alleviate the impact of the “ill-posed” problem 

for model inversion, ranging from restricting the ranges of input parameters (Danson 

and Bowyer, 2004) to the removal of simulated spectra derived from unlikely 

combinations of input parameters based on field experience (Yebra et al., 2008; Yebra 

and Chuvieco, 2009), all of which could restrict the operational utility of the inverse 

modeling approach. 

 

Here, in this chapter, we firstly propose a new approach to alleviate the so-called 

“ill-posed” problem when inverting radiative transfer models to estimate the main 

biochemical parameters, and then we calibrate the radiative transfer models to typical 

temperate deciduous and desert vegetations for estimating leaf biochemical 

parameters. 
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2.2 Material and methods 

2.2.1 Study sites and field measurements 

The field measured dataset has been compiled from synchronous measurements of 

leaf biochemical parameters and reflectance in the Naeba Site. The detail descriptions 

of the Naeba site and methods of each measurement can see chapter 1.3.3. 

2.2.2 Radiative transfer models 

Models description 

 

The first model explored in this study is PROSPECT (Jacquemoud and Baret 1990; 

Feret et al. 2008), which is a general radiative transfer plate model that assumes the 

leaf to be composed of one or a series of transparent plates with rough Lambertian 

reflecting surfaces. Leaf optical properties from 400 to 2500 nm are defined in 

PROSPECT as a function of four parameters: a structure parameter N, chlorophyll 

concentration, dry matter content, and water content (Table 2.1). PROSPECT linearly 

sums the specific absorption coefficients ki of constituents i, scaled by their respective 

concentrations Ci, to calculate a global spectral absorption coefficient Kλ. Although 

the PROSPECT model is preliminary designed for broad leaf species, we nevertheless 

decided to test its potential on assimilating branches for the following reasons: (a) it 

has been widely validated with various species (Jacquemoud et al. 1995; Demarez 

1999; Feret et al. 2008); (b) it has simple inversion capabilities with few input 

parameters (Jacquemoud et al. 1996, 2000; Zhang et al. 2007; Li andWang 2011); and 

(c) it has also a high adaptation to non-flat targets such as conifer needles 

(Zarco-Tejada et al. 2004). The version of the PROSPECT model used in this study is 

PROSPECT-4 developed by Feret et al. (2008).  

 
Table 2.1 LIBERTY and PROSPECT input parameters. 

 

Model Parameters Units Range Calibrated value 

PROSPECT 

Leaf structure parameter (N) / 1~3 1.87 

Chlorophyll a+b content (Cab) mg/m
2
 0~600 need inverse 

Equivalent water thickness (Cw) g/cm
2
 0.004~0.04 0.01 

Dry matter content (Cm) g/cm
2
 0.0019~0.0165 0.004 

LIBERTY 

Average cell diameter (D) mm 30~100 24 

Intercellular air space (xu) / 0.01~0.10 0.077 

Needle thickness (h) / 1~10 1.6 

Baseline absorption (Cbaseline) / 0.004~0.010 0.0006 

Albino absorption (Calbino) / 1~10 2 

Chlorophyll content (Cchl) mg/m
2
 0~600 need inverse 

Water content (Cw) g/m
2
 0~500 100 

Lignin and cellulose content (Clig) g/m
2
 10~80 40 

Nitrogen content (Cn) g/m
2
 0.3~2.0 1 

 

The second model explored in this study is LIBERTY (Dawson et al., 1998), which 

employs nine biophysical/chemical properties to simulate the needle reflected 
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spectrum between 400 and 2500 nm (Table 2.1). Similarly to PROSPECT, this model 

linearly sums specific absorption coefficients that were measured during the 

BOREAS campaigns, scaled by their respective concentrations, to calculate a global 

absorption coefficient Kλ. This global absorption coefficient, in conjunction with the 

structural parameters of average cell diameter, intercellular air gap, and needle 

thickness are used to calculate needle reflectance and transmittance between 400 and 

2500 nm (Moorthy et al. 2004; Moorthy et al. 2008). Since the outward appearance of 

H. ammodendron assimilating branches is similar to conifer needles, a good 

performance of LIBERTY in estimating H. ammodendron assimilating branch 

chlorophyll content was hence anticipated. 

 

Models sensitivity analysis 

 

Sensitivity analysis (SA) estimates the fractional contribution of a given input 

variable Xi to the variance of Y. In order to calculate the sensitivity indices for a set of 

independent Xi’s, the total variance V (Y) of the model output is decomposed as 

k...12

mji

ijm

ji

ij

i

i V...VVVV  


,                    (2-1) 

where 

Vi=V(E(Y|Xi)),                  (2-2) 

Vij=V(E(Y|Xi, Xj))–Vi–Vj ,              (2-3) 

and so on. The generic sensitivity index of order s is defined as: 

V/VS
s21s21 i,...,i,ii,...,i,i  ,              (2-4) 

 

where i1, i2, etc., refer to the input factors. For example, Si for the factor Xi is defined 

as Vi/V , and Sij is the pure interaction effect between Xi and Xj , i.e., that part of the 

variation in Y due to Xi and Xj which cannot be explained by the sum of the individual 

effects of Xi and Xj , and so on. 

 

A number of estimation procedures for Si are available at present, e.g., the method of 

Sobol (Sobol, 1993) and methods listed up in Saltelli et al.(2000), Bowyer and 

Danson (2004). Sobol’s method provides two sets of sensitivity indices, namely, the 

first-order indices and interaction indices. The first-order sensitivity indices give the 

independent effect of the corresponding parameters, while the interaction sensitivity 

indices consider the interaction effects of each parameter with the others.  

 

In this study, we performed the SA using the method of Sobol for the two radiative 

transfer models, which examines the sensitivity of each parameter by suitably 

selecting combinations of parameter values within defined ranges. 

 

Models' calibrations 

 

Radiative transfer models need to be calibrated before they can accurately simulate 

vegetation spectra at the local scale and inversed to estimate input parameters 

(Kobayashi et al. 2001; Feret et al. 2008; Li and Wang 2011), particularly for the 

assimilating branches of H. ammodendron, which are apparently different to normal 

broad leaf and conifer needle.  

 

For typical temperate forests (Datasets I~III), to avoid potential systematic bias and 

error propagation in the inversion process, we have calibrated the PROSPECT model 
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to ensure as much accuracy as possible at the very beginning of the process, according 

to the calibration algorithm of Feret et al. (2008). The data used for calibration were 

selected from Dataset I, as it is the largest one of the three and the only one to include 

leaves with a wide biochemical properties range, from very low to high. Ten percent 

of the total data in the dataset were randomly selected for calibration. 

 

For the desert plant (Dataset IV), we calibrated PROSPECT and LIBERTY models 

also according to the calibration algorithm of Feret et al. (2008), using a randomly 

selected 10% of the total spectra from field measurements (12 out of the total 120 

samples), and the other 90% was used for model validation. For LIBERTY, there are 

nine parameters that contribute to the variation in reflectance between 400 and 2500 

nm. The result of sensitivity analysis (Figure 2.3) indicated that the spectra variation 

in 400–2500 nm is highly sensitive to variations in the five parameters (D, xu, CHL, 

EWT and LMA) in LIBERTY. The other four parameters were therefore kept 

constant, with default values, due to their low impacts on the model simulation and 

inversion. 

 

Models simulation 

 

After the model being calibrated, we then applied the calibrated model to generate the 

simulated data set using the defined range of input parameters. We used the minimum 

and maximum values of each parameter over the three data sets for the defined ranges 

of Cab (CHL), Cw (EWT), and Cm (LMA), and we assigned a reasonable range of one 

to four for N. Logarithmic distributions were assumed for all four parameters, within 

the ranges defined earlier, leading to a total of 10 000 combinations. To ensure 

generalizable results, a uniform distribution was chosen for each varied parameter, so 

that a reflectance spectrum obtained with extreme parameter values has the same 

weight as other spectra on the indices’ calibration procedure. In order to reproduce in 

the simulations the observed radiometric noise of real measured reflectance, a random 

noise has been added to each spectrum of this database. This step is important to 

eliminate noise sensitive indices and indices with artificially close wavelengths (le 

Maire et al., 2004). An additive random Gaussian noise with a standard deviation of 3% 

of reflectance amplitude has been applied on each wavelength of each reflectance 

spectrum of the artificial data set. 

2.2.3 Model inversion Approaches 

Common Model Inversion Method 

 

The standard application of the inverse PROSPECT model for estimating biochemical 

parameters uses the whole optical domain from 400 to 2500 nm during the inversion. 

This determines the water and dry matter contents at the same time as that of 

chlorophyll. In practice, the inversion consists of finding the parameter set, 

symbolized by the vector θ, which minimizes the merit function [(2-5)], using a 

typical optimization algorithm such as the constrained Powell’s search method with 

the merit function  







max

min

2

mod )),(R)(*R()(J ,            (2-5) 

where R* is the measured reflectance and Rmod is the modeled one. 
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New Approach 

 

The standard approach to model inversion, by minimizing the merit function to 

determine the Chl content, EWT, and LMA simultaneously from the whole optical 

domain of 400 to 2500 nm, may be not efficient enough and is faced with a serious 

ill-posed inverse problem if used without any a priori information. We present here a 

new algorithm for model inversion that aims to reduce the “ill-posed” of the problem. 

The general flow of this algorithm is shown in Fig. 2.1, and a detailed description is 

as follows.  

 

Step 1) Wavelength selection. Identify the specifically sensitive wavelength domains 

for each of the four parameters (N, CHL, EWT, and LMA) in the PROSPECT model 

based on the SA results. Each specific wavelength domain should be sensitive to the 

specific parameter only, while being as insensitive to other parameters as possible. 

 

Step 2) N determination. Determine the parameter N by minimizing its merit function 

at its specific wavelength band λN, for fixed values of CHL, EWT, and LMA. The 

optimization algorithm applied in this study is the genetic algorithm (Conn et al., 

1997) since it can greatly reduce computational time and also handle complex 

constraints. This optimization algorithm was also used for Steps 3) and 4). 

 

Step 3) CHL and EWT determination. Determine the parameters CHL and EWT by 

minimizing their merit functions at their specific wavelength bands identified in 

the SA, using the inversely computed value of N and a fixed value of LMA.  

 

Step 4) LMA determination. Determine LMA by minimizing its merit function at the 

specific wavelength domain identified in Step 1), using the inversely computed values 

for N, CHL, and EWT.  

 

Step 5) Parameter stabilization. Repeat Steps 2) to 4) using the computed values of N, 

CHL, EWT, and LMA until the merit function has been minimized. This strategy 

helps to improve the stability and reliability of the retrieved results.  

 

Compared with the standard approach, the proposed new approach retrieves each of 

the four parameters inversely from different runs based on specific merit functions for 

each. Merit functions are based on the SA and utilize only identified sensitive 

wavelengths for each parameter rather than the whole wavelength domain. 

2.2.4 Model Performance and Residual Analysis 

To quantify the performance of PROSPECT and LIBERTY models inversion and 

empirical methods, the estimated values (Y’) and independent reference measurements 

(Y) were calculated for each parameter, and the following statistics were calculated 

(Ceccato et al., 2001; Colombo et al., 2008; Feret et al., 2008; Ganapol et al., 1998; 

Riaño et al., 2005): the root-mean-square error (RMSE) and bias (BIAS), which 

indicate the absolute estimation errors, and the coefficient of determination (R
2
), 

which indicates the goodness of fit of the estimated values to the observed values. 

Since absorption is very sensitive to variations in small amounts of leaf absorbers, the 
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parameters’ retrieval may be more accurate for leaves with rich contents of absorbers. 

The magnitude of the error will consequently be proportional to their contents. In such 

cases, Williams (1987) recommends comparing the Standard Error of Prediction 

Corrected for bias (SEPC) with the mean value of the retrieved parameter to evaluate 

the significance of the error, which is termed as the coefficient of variability (CV).  

 

Figure 2.1 General flowchart of the newly proposed algorithm for model inversion. N, Cab, Cw 

and Cm represent values for parameters of N, CHL, EWT, and LMA, respectively. Rmer denotes 

the measured reflectance, Rmod denotes the modeled reflectance, i represents the ith run, ε 

represents the threshold value for ending the program. 

 

 

In detail, the calculations are as follows. Let yj and y’j be the measured and predicted 

values, respectively, y  be the average of the observed values, and n be the number 

of observations, then 
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In order to evaluate the generality of the proposed approach and also to know the 

extent of the “ill-posed” problem that it can reduce, we have designed a new statistical 

index Pill. The Pill is the probability of retrieving an “ill-posed” value (defined here as 

one with a relative error > 30%) for each parameter  
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where x is the value of the parameter (CHL, EWT, or LMA) in the simulation data set, 

x* is its retrieved value, and n is the number of values in the data set. 

2.3 Results 

2.3.1 Seasonal, vertical, and inter-species variations of leaf biochemical parameters 

and corresponding reflectance spectra  

The three field-based data sets contained reflectance spectra and biochemical 

measurements from leaves that differed in phenology (season collected), position in 

canopy, and plant species. Table 1.2 summarizes the main characteristics of the three 

data sets compiled from measurement of field-collected leaves. The ranges of CHL, 

EWT, and LMA for all three data sets were 9.24–99.31 µg cm
−2

, 0.0026–0.0158 g 

cm
−2

, and 0.0028–0.0119 g cm
−2

, respectively. Among the three data sets, data set I is 

the most comprehensive in that it contained the broadest ranges of CHL, EWT, and 

LMA.  

 

Apparent seasonal variations were noted for leaf biochemical parameters. For the top, 

sunlit leaves in the 900-m X5 plot (in data set I), for example, CHL, LMA, and EWT 

all showed clear phenological patterns (Fig. 2.2a). CHL was highest in September and 

lowest in October of 2007. Both EWT and LMA were lowest in August before 

increasing in the next 2 months. Correspondingly, the spectra in October had the 

largest reflectance in the green band and the lowest in the near-infrared wavelengths 

because the lowest CHL values occurred in October of that year (Fig. 2.2b). Spectra 

within water absorption bands, as expected, exhibited clear troughs throughout the 

growing season. Moreover, the spectral troughs were shallowest and EWT was lowest 

in August.  

 

Data set II, which was focused on vertical effects, contained bio-chemical parameters 

and reflectance spectra from leaves collected at 2-m intervals along the vertical axis 
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of trees in the 900-m X5 plot in 2008. Vertical changes in leaf biochemical parameters 

were evident (Fig. 2.2c). Values for CHL, LMA, and EWT were large for the sunlit 

leaves high in the canopy (>18 m), but values decreased sharply in the middle layers 

(14–16 m). The bottom leaves had the lowest values for CHL, LMA, and EWT, but 

these values did not differ very much from those of the middle layers. As a result, the 

leaf spectra of the bottom and middle, shaded layers had high reflectance in the green 

and near-infrared bands, and shallow troughs within water absorption bands (Fig. 

2.2d). In contrast, the spectra of top, sunlit leaves had low values in the green and 

near-infrared bands and had the deepest troughs within the water-absorption bands.  

 

 

  

   
 
Fig. 2.2 Seasonal, vertical, and inter-species variations of leaf biochemical parameters and 

corresponding spectra contained in data sets compiled from measurements of field-collected 

leaves. Panels a and b, c and d, and e and f are from data sets I, II, and III, respectively. 

 

Based on data set III, leaf biochemical parameters were dramat-ically different among 

different species even in the same region (Fig. 2.2e). H. japonica had the largest 

values of all three leaf bio-chemical parameters among the 15 species. The lowest 

CHL values were in Fraxinus lanuginosa, while the lowest LMA and EWT values 

were in A. shirasawanum Koidz. Spectra from the different species differed 

substantially, especially within the near-infrared domains (Fig. 2.2f). For the 

near-infrared domains, A. shirasawanum Koidz had the lower limit of reflectance and 

a b 

d c 

f e 
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H. japonica had the upper limit. Other clear differences in spectra were found in the 

domains of 1600–1800 nm and 2100–2300 nm. The differences of spectra in water 

absorption bands, however, were not as large as those in the wavelength domains 

noted above.  

2.3.2 Models sensitivity analysis 

PROSPECT  

 

Sensitivity analysis showed that the sum of the first-order sensitivity indices (Cab, Cw, 

Cm, and N) averaged 96.1% from 400 to 2500 nm, indicating a minor contribution 

from interactions in the whole domain. This suggests that the uncertainty in the 

PROSPECT output is not driven by interactions among the parameters, but rather by 

the four parameters independently. The remaining uncertainty of 4% can be explained 

by interactions among the parameters. For the reflectance within the domain 400 to 

760 nm, Cab had the greatest influence (90%), followed by N, and their interaction 

also contributed to the uncertainty of the outputs. As for the wavelengths from 760 to 

1300 nm, N was found to have the greatest influence (94%) and Cm accounted for the 

remaining 6% in the uncertainty; no interaction effect between N and Cm was found to 

contribute in this domain. For longer wavelengths, Cw had great influence, accounting 

for 50 to 70% of contributions in the absorption peaks. However, unlike at the shorter 

wavelengths, the other two parameters, N and Cm, also significantly affected the 

behavior. Despite this, we could still identify three specific wavelength domains 

(1400-1600 nm, 1880-2100 nm, and 2300-2500 nm) at which Cw had a predominant 

or important influence and two at which Cm (1600-1800 nm and 2100-2400 nm) had 

an important influence (Fig. 2.3). The identified specific wavelength domains for a 

given parameter were then used to inversely retrieve it in the next step. 

 

 
 

Figure 2.3 Sensitivity analyses of the input parameters for PROSPECT to spectra 
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LIBERTY 

 

Sensitivity analysis (SA) of LIBERTY showed that the sum of the first-order 

sensitivity indices (D, xu, thickness, baseline, albino absorption, CHL) averaged 85% 

from 400 to 800 nm, indicating there was only a minor contribution from interactions 

for the whole domain. This suggests that the uncertainty in LIBERTY output is not 

driven by interactions among the parameters, but rather by the six parameters 

independently. Less than 20% of the remaining uncertainty can be explained by 

interactions among the parameters. For the reflectance within 400 to 750 nm domain, 

CHL had the greatest influence (50%), followed by xu and D, and their interaction 

may have also contributed to the uncertainty of the outputs. As for the wavelengths 

from 750 to 800 nm, xu were found to have the greatest influence (50%) and D 

accounted for 20% in the uncertainty., Three parameters (thickness, baseline, albino 

absorption) had little influence in the whole 400 to 800 nm wavelengths, accounting 

for 3 to 14% of contributions in uncertainty (Fig. 2.4). 

 

 
 

Figure 2.4 Sensitivity analyses of the input parameters for LIBERTY to spectra 

2.3.3 Models simulation and calibration 

PROSPECT for temperate deciduous vegetations 

 

The PROSPECT model needs to be calibrated before its inversion to estimate leaf 

biochemical parameters, especially the refractive index n(λ) (Feret et al., 2008). In 

this study, we used the algorithm in Feret et al. (2008) to calibrate n(λ). Ten percent of 

the total data in the dataset I were randomly selected for calibration. Fig. 2.2 shows 

the calibrated refractive index using Dataset I and the original provided by 

PROSPECT-4. The calibrated refractive indices are clearly higher than the original 

values for most of the wavelengths, especially in the red edge and 1900-2500 nm 

domains. While the remaining 90% of dataset I is used to check the calibration 

accuracy. The calibration accuracy is high, as the RMSE of the modeled reflectance is 

very low for all wavelengths, indicating that the PROSPECT model can simulate the 
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reflectance very accurately using the calibrated refractive index (see Fig. 2.5).  

 

 

 

 
 

Figure 2.5 Calibrated refractive indices and the performance of PROSPECT based on the 

calibrated refractive indices 

 

PROSPECT and LIBERTY for desert vegetation 

 

Fig. 2.6a shows the chlorophyll absorption coefficients that originally provided by 

PROSPECT and calibrated using measured dataset. The calibrated chlorophyll 

absorption coefficients exhibited a little lower than the original values for most of the 

wavelengths, especially in the 400-500 and 650-700 nm domains. Reflectance 

simulations have been carried out using both original and calibrated PROSPECT (Fig. 

2.6b). The simulation accuracy is apparently high after model calibration, as the 

RMSE of the modeled reflectance is very low for the whole 400-800 wavelengths, 

indicating that the PROSPECT model can simulate the reflectance very accurately 

after being calibrated. In comparison, the reflectance simulated by the original model 

had very big errors within the 400-800 nm range.  

 

Similar procedures have been applied for LIBERTY. Fig. 2.6c shows the calibrated 

chlorophyll absorption coefficient using measured dataset and the original one 

provided by the LIEBERTY. The calibrated chlorophyll absorption coefficients are a 
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little lower than the original values for most of the wavelengths, especially in the 

650-700 nm domains. The calibration accuracy is also high, as the RMSE of the 

modeled reflectance is very low for all 400-800 wavelengths, indicating accurate 

simulation of reflectance through LIBERTY model using the calibrated parameters. 

For comparison, the origin LIBERTY was found to be able to simulate accurately at 

most of the wavelengths except 650-700 nm and 750-800 nm range (Fig. 2.6d).  

 

 

 
 
Figure 2.6 Calibrated chlorophyll absorption coefficients (fchl) and the performance of reflectance 

simulation for the origin and calibrated models. 

2.3.4 Performance of the models inversion 

For data set I~III (temperate deciduous vegetations) 

 

Leaf biochemical parameters (N, CHL, EWT, and LMA) were retrieved based on the 

proposed algorithm illustrated in Fig. 2.1. The performance of inverse PROSPECT 

using the new designed algorithm (Fig. 2.1) was then validated with the three datasets 

composed of in situ field measurements. Fig. 2.7 shows the predicted versus measured 

values of CHL, EWT and LMA. The values are clustered around the 1:1 line in all 

three cases, which indicates very good overall performance of the approach. Table 2.2 

further summarizes the results of the inversion model in terms of the RMSE, R
2
, CV 

and BIAS for each parameter. The RMSEs for CHL for all three datasets are low 

(RMSE < 9 μg/cm
2
), with an overall RMSE of 8.11 μg/cm

2
 when all three datasets are 

pooled. However, the coefficient of determination (R
2
) for CHL for Datasets II and III 

is not high (R
2 
= 0.40 and 0.37 for Datasets II and III, respectively), possibly due to 

the limited ranges of CHL contained in these two datasets. Similarly, low RMSEs of 

EWT were obtained for all three datasets (RMSE ≤ 0.0013 g/cm
2
), and high R

2
 values, 

from 0.56 to 0.67, were also obtained for the three datasets. Encouraging results for 

LMA, with RMSE ≤ 0.0013 g/cm
2
 and high R

2
 values from 0.75 to 0.94 across all 

three datasets, were obtained from the inversion model using the proposed algorithm. 
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When pooling all three datasets together, high performance of the inversion model 

based on the newly proposed algorithm on estimating all three parameters is evident. 

Among the three parameters, CHL is estimated better than EWT and LMA, using the 

CV as the criterion for judgment, although the RMSE and R
2
 of CHL are lower than 

those of EWT and LMA. CHL estimation had a small negative bias for Dateset I but 

had positive biases for both Datasets II and III. On the contrary, the inversion model 

produced a positive bias for Dataset I while negative biases for Datasets II and III for 

EWT retrieval. And it generally had negative biases for LMA retrieval.  

 
Table 2.2 Performance of PROSPECT inversion for retrieving CHL, EWT, and LMA using the 

proposed algorithm and the standard approach 

 

  Data set I II III All 

new 

algorithm 

CHL RMSE  8.69 7.41 5.85 8.11 

CV(%) 14.99 17.65 13.81 15.43 

R
2
 0.73 0.40 0.37 0.56 

BIAS  -6.85 3.29 4.89 -3.18 

Pill 0.10 0.14 0.18 0.12 

EWT RMSE  0.0013 0.0011 0.0012 0.0012 

CV(%) 20.30 19.88 19.27 20.10 

R
2
 0.67 0.71 0.56 0.63 

BIAS  0.0008 -0.0006 -0.0010 0.0005 

Pill 0.16 0.20 0.17 0.17 

LMA RMSE  0.0006 0.0013 0.0010 0.0008 

CV(%) 9.20 22.12 16.19 13.75 

R
2
 0.94 0.75 0.75 0.84 

BIAS  -0.0004 -0.0012 -0.0015 -0.0007 

Pill 0.014 0.31 0.35 0.13 

standard 

method 

CHL RMSE  11.17 13.48 11.90 11.84 

CV(%) 15.21 31.09 25.32 22.43 

R
2
 0.67 0.28 0.31 0.54 

BIAS  -7.15 8.62 10.87 -6.18 

Pill 0.15 0.34 0.38 0.21 

EWT RMSE  0.0021 0.0019 0.0018 0.0020 

CV(%) 19.53 25.13 20.31 15.83 

R
2
 0.59 0.61 0.60 0.60 

BIAS  0.0007 -0.0007 -0.0013 0.0011 

Pill 0.19 0.27 0.18 0.21 

LMA RMSE  0.0028 0.0024 0.0029 0.0027 

CV(%) 35.62 33.32 25.32 38.61 

R
2
 0.54 0.64 0.52 0.44 

BIAS  0.0015 -0.0018 -0.0019 -0.0015 

Pill 0.30 0.45 0.42 0.34 

 

For comparison, we performed the model inversion using the standard approach and 

the results are also presented in Table 2.2. The RMSEs of CHL, EWT and LMA 

(11.17-13.48 μg/cm
2
, 0.0018-0.0021 g/cm

2
, 0.0024-0.0029 g/cm

2
, respectively, over 

the three datasets) are much higher than those obtained using the approach proposed 

in this study. The most dramatic improvement was noted for LMA retrieval, for which 

the RMSE is reduced from 0.0027 g/cm
2 
using the standard approach to less than one 

third of this value (0.0008 g/cm
2
) using the proposed algorithm, when pooling all 

datasets for validation. Correspondingly, the R
2
 nearly doubles, increased from 0.44 

to 0.84, with the BIAS reduced from -0.0015 to -0.0007 g/cm
2 
and the Pill decreased 

from 0.34 to 0.13 as well. 
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Figure 2.7 Scatter diagrams of measured and estimated CHL, LMA and EWT obtained by model 

inversion using the proposed approach 

 

For data set IV(desert vegetation) 

 

Three biochemical parameters (CHL, EWT and LMA) of assimilating branches were 

retrieved based on the two inversion models. Performances of inversion were then 

validated with in situ field measurements, and the results are listed in Table 2.3. For 

estimating CHL, the RMSE is 34.33 mg/m
2
, the coefficient of determination (R

2
) is 

0.55, the bias is 7.16 mg/m
2
 and the CV is 23.09% for the calibrated LIBERTY model 

inversion. For calibrated PROSPECT, the results indicated a little dropped R
2
 (0.53) 

and a little increased RMSE and nearly identical CV with that of calibrated LIBERTY. 

However, the bias shifted from the positive of calibrated LIBERTY to negative 

(-10.03 mg/m
2
). For estimating EWT, the RMSE is 0.0012 g/cm

2
, R

2
 is 0.63, the bias 

is 0.0009 g/cm
2
 and the CV is 20.10% for the calibrated LIBERTY model inversion. 

For calibrated PROSPECT, the RMSE is 0.0012 g/cm
2
, R

2
 is 0.67, the bias is -0.0008 

g/cm
2
 and the CV is 19.27%. For estimating LMA, the RMSE is 0.0008 g/cm

2
, R

2
 is 

0.76, the bias is -0.0012 g/cm
2
 and the CV is 13.75% for the calibrated LIBERTY 

model inversion. For calibrated PROSPECT, the RMSE is 0.0010 g/cm
2
, R

2
 is 0.73, 

the bias is -0.0015 g/cm
2
 and the CV is 16.19%. Fig. 2.8 shows the diagrams of 

predicted versus measured values of CHL, EWT and LMA. For both models, the 

values are clustered around the 1:1 line, indicating overall good performance of both 

model inversions. 
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Table 2.3 Results of the CHL, EWT and LMA inversion by the original and calibrated models. 

 

Biochemicals Models R
2
 RMSE  Bias  CV (%) 

CHL  

PROSPECT  
origin  0.19*  9.13 -4.79 78.23  

calibrated  0.53***  3.47 -1.00 23.28  

LIBERTY  
origin  0.32**  6.54 2.86 59.45  

calibrated  0.55***  3.43 0.71 23.09  

EWT  

PROSPECT  
origin  0.27**  0.0018  -0.0013  20.31  

calibrated  0.67***  0.0012  -0.0008  19.27  

LIBERTY  
origin  0.21**  0.0020  0.0011  21.15  

calibrated  0.63***  0.0012  0.0009  20.10  

LMA  

PROSPECT  
origin  0.44**  0.0029  -0.0019  28.61  

calibrated  0.73***  0.0010  -0.0015  16.19  

LIBERTY  
origin  0.52***  0.0027  -0.0016  25.32  

calibrated  0.76***  0.0008  -0.0012  13.75  

Notes: *: p<0.05; **: p<0.01; ***: p<0.001 

 

  

 
 

Fig. 2.8 Scatter diagrams of measured and estimated CHL, EWT and LMA obtained by 

recalibrated PROSPECT and LIBERTY model inversion  

 

Comparative performance of the two original models was also list in Table 2.3. The 

results shows that both the LIBERTY and PROSPECT original models perform not 

satisfied in the CHL inversion (R
2
 is 0.32 and 0.19, RMSE is 6.54 and 9.13 µg/cm

2
, 

CV is 59.45% and 78.23% for LIBERTY and PROSPECT, respectively), EWT 
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inversion (R
2
 is 0.21 and 0.27, RMSE is 0.0018 and 0.0020 g/cm

2
, CV is 20.31% and 

21.15% for LIBERTY and PROSPECT, respectively) and LMA inversion (R
2
 is 0.44 

and 0.52, RMSE is 0.0029 and 0.0027 g/cm
2
, CV is 28.61% and 25.32% for 

LIBERTY and PROSPECT, respectively). For comparison the two radiative transfer 

models, the LIBERTY performs a little better than the PROSPECT (both for origin 

and calibrated versions). 

 

In order to further validate the reliability of the two calibrated models, independent 

data sets collected in July 2010 and 2011 (total 60 samples, using the same 

measurements, process and inversion approach) were used for validation of the two 

calibrated models. The results expressed similar high CHL estimation accuracy with 

an R
2
 of 0.52 and RMSE of 3.49 µg cm

−2
 for LIBERTY calibrated, and with an R

2
 of 

0.51 and RMSE of 3.51 µg cm
−2

 for PROSPECT-4 calibrated. For estimating EWT 

and LMA, the results also expressed similar high estimation accuracy. This implies 

that the calibrated models are reliable and robust for estimating chlorophyll content 

for assimilating branches of the local desert plant. 

2.4 Discussion 

2.4.1 Highlights of the new model inversion approach 

It is evident that the performance of the inverse model has been improved by using 

the proposed approach and the “ill-posed” problem has been greatly reduced 

compared with using the standard approach. This is primarily due to the separate 

application of merit functions to parameter-specific wavebands. Rather than inversely 

estimating all biochemical parameters simultaneously using one merit function as in 

the standard approach, the proposed approach retrieves different biochemical 

parameters in steps, at each of which a merit function is assigned for a specific 

parameter. This greatly eliminates unexpected combinations of parameters and thus 

alleviates the “ill-posed” problem. In order to know the extent of the “ill-posed” 

problem that it can reduce, we examined the new approach with the simulated dataset 

(see section 2.2.2). CHL, EWT and LMA were retrieved from the simulated 

reflectance dataset using both the proposed approach and the standard approach. Table 

2.4 summarizes the result of these inversions in terms of RMSE, CV, R
2
, BIAS and 

Pill obtained for each parameter. As shown in Table 2.4, the RMSEs of CHL, EWT 

and LMA when using the newly proposed approach are 7.12 μg/cm
2
, 0.0012 g/cm

2
 

and 0.0019 μg/cm
2
, respectively, much lower than those obtained with the standard 

approach (11.36 μg/cm
2
, 0.0032 g/cm

2
, and 0.0040 g/cm

2
 for CHL, EWT and LMA, 

respectively). When considering the CV, R
2
, and BIAS, the results obtained using the 

new approach are also much better than those obtained using the standard approach. 

The Pill of CHL, EWT and LMA when using the new inversion algorithm are 13%, 15% 

and 9%, respectively, compared with 19%, 25% and 33% when using the standard 

approach, an average reduction of about 10% in the frequency of ill-posed inversion 

values overall. 

 

It is worthy of notice that the alleviations by using the newly proposed approach are 

apparently different with distinctive parameter retrieving. Validation results from the 

datasets composed of field measurements, as well as the artificial dataset from the 
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PROSPECT-simulated spectra, indicate that the improvement for LMA retrieval is 

larger than for the other two, with the smallest improvement for CHL retrieval. This 

may be primarily due to the fact that CHL only has predominant control in the 

shortwave domain and does not affect the spectra in the near infrared or longer 

domains, and thus has fewer unexpected combinations with other parameters (Fig. 

2.3). In contrast, LMA does not predominantly influence any specific wavelength 

domains, instead its effects on spectra are largely mixed with those of other 

parameters, leading to more possibilities for “ill-posedness”. EWT is intermediate in 

terms of its contributions to specific wavelength domains, compared to CHL and 

LMA, and the improvement observed with the new approach is also intermediate. 

 
Table 2.4 Validation of the retrieval results from PROSPECT inversion using the proposed 

approach and the standard approach based on the artificial dataset 

 

  RMSE CV R
2
 BIAS Pill 

new 

approach 

CHL  7.12 11.26 0.76 -3.45 0.13 

EWT  0.0012 10.61 0.80 0.0006 0.15 

LMA 0.0019 12.79 0.91 -0.0008 0.09 

standard 

approach 

CHL  11.36 16.32 0.66 -7.02 0.19 

EWT  0.0032 27.92 0.60 0.0012 0.25 

LMA  0.0040 40.71 0.47 -0.0019 0.33 

2.4.2 Evaluation of the radiative transfer model inversion approach 

To date, many authors have applied the inverse PROSPECT model using the standard 

approach to retrieve broadleaves biochemical contents, e.g. Baret and Fourty (1997), 

Colombo et al. (2008), Feret et al. (2008), Jacquemoud et al. (2000), Newnham and 

Burt (2001), Riaño et al. (2005). We have collated their results in Table 2.5. Their 

studies show that the RMSEs of CHL, EWT and LMA are in the ranges of 5.17-32.35 

μg/cm
2
, 0.0017-0.0057 g/cm

2
, and 0.0016-0.0049 g/cm

2
, respectively. The retrieval 

accuracies of these studies are lower than the results obtained in datasets I~III of this 

chapter (typical temperate deciduous forests) using the proposed new inversion 

approach. Again the greatest improvement was found for LMA retrieval, for which the 

R
2
 was in the range 0.75 to 0.94, compared with R

2
 values of 0.009 to 0.65 from the 

earlier studies. This may be primarily due to the fact that the effects of EWT and 

LMA are not decoupled in the standard approach, a shortcoming that has been 

specifically addressed in the new approach. Hence, we believe the approach applied in 

this study is promising for solving the “ill-posed” problems that model inversion 

generally faces and can provide an efficient method for quantifying biochemical 

parameters from leaf reflectance spectra. 

 

Datasets I~III were obtained from the Naeba site, dataset I contained data from four 

different stands with the same species (Fagus crenata), Dataset II contained data from 

one stand and also one species (Fagus crenata) with leaf samples from different 

canopy vertical layers, and Dataset III contained data from the same area with 15 

different species (they are all temperate deciduous forests). The results of estimating 

biochemical parameters using PROSPECT model inversion for these three datasets 

were similar but had slight difference. For estimating CHL, the performance based on 

RMSE is Dataset III > Dataset II > Dataset I, for estimating EWT, the performance is 

Dataset II > Dataset III > Dataset I, and for estimating LMA, the performance is 
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Dataset I > Dataset III > Dataset II (Table 2.2). One potential reason is that the No. of 

samples were different between the three datasets (No. of samples is Dataset I > 

Dataset II > Dataset III), and another potential reason is that some factors such as the 

different stands, vertical positions and different species will affect the samples 

reflectance and cause the slight difference of the model inversion accuracies between 

the three datasets, although the model inversion is a physical-based approach.     

 
Table 2.5 Leaf biochemical parameters retrieved by the models inversion in previous studies 

 

Models Source Parameter RMSE R
2
 CV BIAS 

PROSPECT 

Baret and 

Fourty (1997) 

EWT 0.0025 × × × 

LMA 0.0016 × × × 

Jacquemoud et 

al. (2000) 

CHL 9.1 0.67 × × 

EWT 0.0018 0.95 × × 

LMA 0.0022 0.65 × × 

Newnham and 

Burt (2001) 

CHL × 0.78 × × 

EWT × 0.93 × × 

Riaño et al. 

(2005) 

EWT × 0.94 × × 

LMA × 0.38 × × 

Colombo et al. 

(2008) 

EWT × 0.65 × × 

LMA × 0.009 × × 

Feret et al. 

(2008) 

CHL 5.17~32.35 × 14.7~60.1 -1.42~30.07 

EWT 0.0017~0.0057 × 15.1~19.8 -0.0001~-0.0015 

LMA 0.0026~0.0049 × 27.5~51.1 -0.0035~0.0021 

LIBERTY 
Moorthy et al. 

(2004) 
CHL 22.9 0.08 × × 

 

Comparing the widely used of PROSPECT to a wide range of species and locations in 

many studies, the LIBERTY model had only been used to conifer forests in several 

studies (Kobayashi et al., 2001; Moorthy et al., 2004), as LIBERTY was developed 

specifically to needles, and its structure was more complex and its input parameters 

were more than that of PROSPECT. Moorthy et al. (2004) compared LIBERTY and 

PROSPECT to retrieval CHL for Pine needles and results indicated the PROSPECT 

obtained much more accuracy of estimating CHL than LIBERTY (the RMSE is 12.7 

μg/cm
2
 for PROSPECT and 22.9 μg/cm

2
 for LIBERTY).  

 

In this chapter, we used both PROSPECT and LIBERTY to a typical desert plant 

Haloxylon ammodendron assimilating branches, as the assimilating branches of such 

desert plant are not broadleaves or needles. This was among the few that ever 

attempted to retrieve biochemical parameters of assimilating branches of typical 

desert plant from common leaf scale radiative transfer models. The results showed 

that both LIBERTY and PROSPECT models after calibrated by local measured 

dataset can simulate Haloxylon ammodendron assimilating branches reflectance and 

retrieve their biochemical parameters successfully and have similar fairly good 

retrieval accuracy. As for comparison, the original versions of LIBERTYorigin and 

PROSPECTorigin produced rather bad performances, with a much bigger RMSE error 

and a much lower R
2
 (see Table 2.3). There were several potential reasons for original 

models’ inability to properly invert the measured assimilating branch spectral 

measurements. Firstly, the Haloxylon ammodendron assimilating branches are not real 

needles or leaves (Pyankov et al., 1999), while the original PROSPECT and 

LIBERTY model were either oriented for  broadleaf or conifer needles. Therefore, 

these models had some inconsistency when applied for describing the spectra of 
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assimilating branches. These were proved from the results where the simulated 

spectra by the two original models did not match the field measured spectra 

accurately (Fig. 2.6), and this will inevitably have great impact on the accuracy of 

inversion. The secondly potential reason for poor original models estimation is that 

the high-sensitive parameters (such as D and xu in LIBERTY, and N in PROSPECT) 

for the spectrally measured assimilating branches were unknown. Consequently, the 

inversion process can generate significant errors without such prior information, as 

previously studied with simulated spectra (Combal et al., 2002; Moorthy et al., 2008; 

Li and Wang, 2011). In addition, another possible limitation includes the 

discrepancies between original models specific chlorophyll, water and dry mass 

absorption coefficients and the coefficients embedded in calibrated models (Fig. 2.6). 

Upon examination of the different matters absorption coefficients in conjunction with 

measured spectra, it can be deduced that the calibrated models coefficients are more 

representative of measured assimilating branch spectra. These inconsistencies 

inhibited inversion capabilities of the original models to accurately estimate 

assimilating branch biochemical parameters from measured spectra. 

 

In order to further validate the reliability of the two calibrated models, independent 

datasets collected in 2010 and 2011, were used for the two calibrated models, using 

the same inversion approach. The results expressed similar high CHL, EWT and LMA 

estimation accuracy for both LIBERTYcalibrated and PROSPECTcalibrated. This implies 

that the calibrated models are reliable and robust for use in estimating biochemical 

parameters from assimilating braches of the local desert plant. 

 

It is worthy of notice that LIBETY model was slightly accurate in comparison with 

PORSPECT model. Compared to broadleaves, the outward appearance of Haloxylon 

ammodendron assimilating branches is more similar to conifer needles; hence 

LIBERTY model was expected to be more suitable than PROSPECT model. This was 

confirmed from both simulation and biochemical parameters inversion results of the 

origin LIBERTY model which were more accurate than results from origin 

PROSPECT model (Table 2.4). Astonishingly, we also obtained very similar 

performance from PROSPECT, which was originally oriented for broadleaves. These 

results proved that we can calibrate the models input parameters to extend the models’ 

application range, which was in agreement with some previous studies, e.g. 

(Malenovsky et al., 2006) where PROSPECT was applied to Norway spruce needles. 

Direct comparison of the measured and simulated reflectance revealed the 

requirement to calibrate the PROSPECT chlorophyll specific absorption coefficients, 

and the subsequent validation of the calibrated PROSPECT, hence showed close 

agreement with the spectral measurements. Zarco-Tejada et al. (2004) showed that the 

PROSPECT plate model in principle could be adapted to non-flat targets such as 

conifer needles. Moorthy et al. (2004) had compared the PROSPECT and LIBERTY 

model on needle chlorophyll content estimation, and the results showed that even the 

calibrated PROSPECT model had higher accuracy of needle chlorophyll content 

estimation than the LIBERTY model. Zhang et al. (2008) used the modified 

PROSPECT model to simulate and inversely retrieve for the conifer needles of black 

spruce forest in Canada, and the results showed that the retrieval of needle chlorophyll 

content with the modified PROSPECT was improved with an accuracy of R
2
 = 0.59 

compared with the original PROSPECT model only of R
2
 = 0.31.  
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2.5 Conclusion 

The chapter examined two radiative transfer models (PROSPECT and LIBERTY) to 

inversely retrieve biochemical parameters (CHL, EWT and LMA) of typical 

temperate deciduous and desert forests. As retrieval of leaf biochemical parameters 

using model inversion generally faces “ill-posed” problems, which dramatically 

decreases the estimation accuracy of an inverse model. This chapter proposed a new 

model inversion approach and the results indicate that the new approach greatly 

improves the performance of inversion models. After calibrated with field 

measurements, the models inversely using the new approach performed well and were 

in good agreement between estimates and measurements for both temperate deciduous 

and desert forests, thus we believe that this proposed approach could be widely 

applicable as a faster, efficient, robust and non-destructive method for retrieving 

biochemical properties from broadleaves of temperate deciduous forests to 

assimilating braches of desert forests through reflectance spectra. This avails a 

potential opportunity of coupling them with canopy models to estimate foliar 

biochemical parameters of different vegetations from airborne and satellite data. 
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Chapter 3 Leaf scale applications: hyperspectral indices 

Abstract  

This chapter aims at identifying efficient hyperspectral indices for estimating three 

leaf biochemical parameters: chlorophyll content (CHL, µg cm
−2

), leaf water 

thickness (EWT, g cm
−2

), and leaf mass per area (LMA, g cm
−2

) in typical temperate 

forests. These parameters are required by most biogeochemical models to describe 

ecosystem functions. We have identified the most efficient hyperspectral indices (both 

the index types and the wavelength domains) based on both a simulated data set 

(produced with the calibrated leaf reflectance model PROSPECT) and with data sets 

(I, II, and III) from measurement of field-collected leaves. Results indicated that CHL, 

EWT, and LMA can be estimated with high precision using a two-waveband 

vegetation index (Double Deference index, DDn) for all parameters, with an over-all 

root mean square error (RMSE) of 6.87 µg cm
−2

 for CHL, 0.0011 g cm
−2

 for EWT, 

and 0.0015 g cm
−2

 for LMA. The best overall indices for temperate deciduous forests 

were DDn(715, 185) for CHL, DDn(1530, 525) for EWT, and DDn(1235, 25) for 

LMA, although these indices were not necessarily the best for every specific data set 

(especially for the simulated data set). Moreover, discrepancies were obvious when 

the identified indices were applied to different data sets. Even if the wavelengths of 

calibrated indices have been accurately determined through the simulated data set, the 

regressions between the indices and the biochemical parameters must be calibrated 

with field-based measurements. The indices identified in this study are applicable to 

various species (data set III), various phenological stages and locations (data set I), 

and various leaf anatomies (data set II) and may therefore be widely applicable for 

temperate deciduous forests and possibly for other plant communities. 

3.1 Introduction 

Leaf biochemical properties (e.g., chlorophyll concentrations, water content, and leaf 

mass area) affect a number of major ecological processes involved in exchange of 

matter and energy, like photosynthesis, evapotranspiration, and respiration (Peterson 

and Hubbard, 1992). Chlorophyll concentrations affect photosynthesis, which can be 

considered the major driving force for life on Earth (Nelson and Yocum, 2006). Leaf 

biochemical properties especially foliar lignin and cellulose concentrations 

(represented by leaf mass area) affect litter decomposition, which is fundamental to 

the cycling of carbon, nitrogen, and other important elements (Melillo et al., 1982). 

Foliar water content and associated water potential is a primary limiting factor for 

plant transpiration and carbon gain (Stimson et al., 2005) and is particularly important 

in dryland ecosystems where water is usually limiting (Ludwig et al., 1997). Hence, 

leaf biochemical properties substantially affect the growth and decomposition 

processes of ecosystems and are closely linked with carbon and nitrogen cycling 

(Aber and Federer, 1992).  

 

Traditional methods of leaf biochemistry analysis (e.g., measurement of pigments by 

extraction and spectrophotometric or HPLC analysis, measurement of water status by 

weight loss with drying or with pressure chamber methods) are all destructive, time 

consuming, and expensive. In contrast, measurement of spectral reflectance is 
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nondestructive and rapid (Gamon and Qiu, 1999). In fact, remote estimation of leaf 

biochemical properties from various platforms has been the subject of many studies 

aimed at increasing our understanding of terrestrial ecosystem functioning.  

 

One widespread approach to retrieve leaf biochemical information from reflectance 

measurements is the use of indices, which are based on the principle of combining 

reflectance measured on several narrow or broad spectral bands into mathematical 

combinations and correlating them to a particular biochemical property of the 

observed leaf. It is becoming clear that reflectance indices offer convenient and 

non-intrusive tools for rapidly inferring a number of functionally important leaf and 

canopy properties (Gamon and Surfus, 1999). Although both narrowband (based on 

hyperspectral information) and broadband indices have been applied to estimate leaf 

biochemical properties, the hyperspectral-based narrowband indices have several 

advantages over broadband indices. The most important advantage is that 

hyperspectral-based narrowband indices utilize wavelengths in the whole 400–2500 

nm domain (le Maire et al., 2008), and it is these narrow-spectrum wavelengths that 

are most useful for assessing vegetation biochemical properties (Broge and Mortensen, 

2002), as narrowband information located in specific portions of the spectrum can 

dramatically improve discrimination capabilities and classification accuracies 

compared with their broadband counterparts (Thenkabail et al., 2004). Consequently, 

hyperspectral indices are now preferred over broadband indices for estimating foliar 

biochemistry.  

 

Application of hyperspectral indices to estimate leaf biochemistry is simple but 

apparently has limitations. When hyperspectral indices are calibrated to a specific 

database, the relationships elucidated cannot be generalized to other databases (le 

Maire et al., 2008). Unfortunately, most of the experimental databases used for 

calibration are not broadly representative, especially in the context of ecological 

concerns. To be useful in ecological studies, the relationships should be sufficiently 

general for application across species and leaf developmental stages (Sims and 

Gamon, 2002). Currently, most relationships have been developed and tested for only 

one or at most a few closely related species (e.g., le Maire et al., 2004; Gamon and 

Surfus, 1999; Datt, 1999; Blackburn, 1998), and few investigations of hyperspectral 

indices and leaf biochemistry have considered structural differences between leaves. 

Some currently available databases, e.g., LOPEX (Hosgood et al., 1994) and 

ANGERS (Feret et al., 2008), have composed spectra from various species but have 

ignored developmental stages. Sims and Gamon (2002) used a relatively large 

experimental database of nearly 400 leaves composed of a vast range of functional 

types, leaf structures, and development stages. For developmental stage, however, 

they used mainly three large categories: young, mature, and senescent leaves. 

Moreover, leaf anatomy and function differ depending on vertical position in the 

canopy; for example, leaf position within the canopy affects parameters like leaf mass 

area and leaf thickness (Ourcival et al., 1999). These changes are related to important 

photosynthetic and/or stomatal conductance modifications (Ashton and Berlyn, 1994). 

To date, no study has examined the relationship between hyperspectral indices and 

biochemical properties of leaves that differ in both developmental stage and location 

in the canopy.  

 

Furthermore, indices are sensitive to spatial resolution and may be sensitive to more 

than one biochemical parameter (le Maire et al., 2008). It follows that indices are 
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usually calibrated for each database. The best way to find efficient indices with broad 

applicability would be to use a large measurement database, with many species and 

site conditions. Unfortunately, it is usually not feasible to obtain such a large database 

containing thousands of measurements.  

 

As an alternative to the use of databases derived from field measurement of specific 

plant communities or ecosystems, researchers have proposed the use of artificial 

databases containing reflectance spectra and their corresponding leaf biochemistries 

(le Maire et al., 2004). Such databases have important advantages such as: many leaf 

biochemicals are represented (thousands of spectra); the influence of each 

biochemical can be totally decoupled from that of others; and the effect of a particular 

biochemical on the spectra is based on physical processes that are modeled at a small 

scale. Therefore, well-established indices obtained on such a large simulated database 

may potentially be applied to a wide range of spectra. However, the use of a model 

relies on its capacity to correctly simulate the reflectance of a wide range of leaves, 

which generally requires specific calibrations based on local measurements. Thus, it is 

essential to test these indices with field measurements.  

 

In this chapter, we have identified the best hyperspectral indices for estimating three 

typical leaf biochemical parameters – chlorophyll (CHL), equivalent water thickness 

(EWT), and leaf mass area (LMA) – based on data from field-collected leaves 

(field-based data sets hereafter) and from a simulated data set generated with the 

PROSPECT model. The field-based data sets contained extensive spectra from 

different leaf developmental stages and different positions within canopies (a total of 

348 spectra), as well as from 16 species in typical temperate forest stands. The 

simulated data set was generated using an improved and newly calibrated version of 

the PROSPECT model (Feret et al., 2008) and contained over 10,000 spectra. The 

best hyperspectral indices were determined through regression analysis via the 

trade-off between the simulated and field-based data sets. 

3.2 Material and methods 

3.2.1 Simulated data set  

An improved (1-nm resolution) and recalibrated version of the leaf reflectance model 

PROSPECT was used in this study (Feret et al., 2008). The PROSPECT model 

(Jacquemoud et al., 2000, 1996; Jacquemoud and Baret, 1990) considers the leaf as a 

succession of absorbing layers. The new version calculates the leaf hemispherical 

reflectance and transmittance between 400 and 2500 nm with a 1-nm step as a 

function of leaf structure index (N), leaf chlorophyll content (CHL,  µg cm
−2

), leaf 

water content (EWT, g cm
−2

), and leaf mass area (LMA, g cm
−2

). We calibrated the 

PROSPECT model according to the calibration algorithm of Feret et al. (2008), using 

randomly selected spectra from field-based data set I in the following (about 10% of 

the total spectra in data set I). We then used the newly calibrated PROSPECT model 

to generate the reflectance data set using a range of input parameters, which had been 

computed for every combination of these parameters (Table 3.1). To ensure 

generalizable results, a uniform distribution was chosen for each varied parameter, so 

that a reflectance spectrum obtained with an extreme parameter value had the same 
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weight as other spectra on the indices’ selecting procedure. To reproduce in the 

simulations the observed radiometric noise of real, measured reflectance, random 

noise was added to each spectrum of this data set. This step is important because it 

eliminates noise-sensitive indices and indices with artificially close wavelengths (le 

Maire et al., 2004). An additive random Gaussian noise with a standard deviation of 3% 

of reflectance amplitude was applied to each wavelength of each reflectance spectrum 

of the PROSPECT data set  

 
Table 3.1 Parameters and parameter values used to build the 10000 spectra of PROSPECT dataset. 

 

Parameter Minimum Step  Maximum 

CHL (μg cm
-2

) 5 1 120 

EWT (g cm
-2

) 0.001 0.0001 0.025 

LMA (g cm
-2

) 0.001 0.0001 0.025 

N 1 0.1 3 

3.2.2 Measured data sets  

To evaluate the indices for different sites and different species, we composited three 

datasets from the synchronous measurements on leaf biochemical parameters and 

reflectance in Naeba site. Detail description of the three datasets can see chapter 1.3.3. 

3.2.3 Determination of best indices  

This study used seven types of indices, ranging from the very simple (reflectance, R) 

to sophisticated (Double Difference index, DDn) (see Table 3.3 in Section 3). These 

types of indices are currently the most commonly used, as reviewed by le Maire et al. 

(2008). The DDn index was designed by le Maire et al. (2008) based on the finding of 

a double-peak of derivatives near the red-edge. Although le Maire et al. (2008) used 

DDn only for CHL estimation, the current study used the DDn index for estimations 

of CHL, EWT, and LMA.  

 

Determination and evaluation of indices in this study followed two steps. First, we 

determined the best combination for a given type of index by regressing the index on 

the given biochemical parameter to determine how well the index described the 

biochemical parameter in the whole wavelength domain. Second, we compared the 

performance of different types of index. In comparing indices for each biochemical 

parameter, we considered the regression of the index on both simulated and measured 

data sets. A weight of 50% was assigned to the simulated data set and to the 

field-based data set; this implies that evaluation of the index was based on the average 

of the root mean square error (see next paragraph) for the regression with the 

simulated and the field-based data sets.  

 

Regression analysis was performed for all possible combinations of wavelengths for a 

given index type with a wavelength step of 5 nm. For each combination, index values 

were calculated from each spectrum contained in the data set, and polynomial 

regressions (linear to the second order) were fit between index values and the 

biochemical parameter to be predicted (CHL, EWT, or LMA). Higher order 

polynomials were also tested but did not result in significant improvement. The root 



37 
 

mean square error (RMSE) is the common criterion used to compare different indices 

and was used in this study (Eq. (1)). For a given type of index of all possible 

combinations of wavelengths, the best index should have the lowest RMSE:  

n

)y-y(

RMSE

n

j

j

'

j∑
1=

2

=                                           (1)  

with yj indicating the predicted value, y’j indicating the observation for the ith 

spectrum, and n indicating the number of spectra. 

3.3 Results 

3.3.1 CHL indices  

Seven types of indices for deriving leaf CHL were examined (Tables 3.2 and 3.3). For 

each type of index, the one giving the least RMSE for the simulated and field-based 

data sets (Table 3.2) and for the simulated data set alone (Table 3.3) is listed. The best 

indices all had the central wavelengths (λ1) within the red edge domain. Judging from 

RMSEs (Table 3.2), the best index for estimating CHL was DDn(715, 185).  

 

The double difference (DD) type of index was designed to solve the “peak jump” of 

the first derivative of the reflectance in deriving CHL (le Maire et al., 2004). The 

identified DDn(715,185) index had an RMSE of 6.78 µg cm
−2

 and was not the best 

index if performance was determined solely with the simulated data set (Table 3.3). 

DDn(715,185) was inferior to SR(780,830) and ND(780,830), both of which had 

RMSEs of 4.09 µg cm
−2

 based on the simulated data set (Table 3.3). However, it 

performed best for all three field-based data sets (RMSE of 6.55, 8.30, and 6.82 µg 

cm
−2

 for data sets I, II, and III, respectively). In fact, it was the most robust index for 

CHL prediction and was the only one efficient for both the simulated data set and the 

field-based data sets. The normalized difference (ND) type and simple ratio (SR) type 

of index, both with the central wavelengths of 735 nm and 755 nm, performed 

similarly based on both the simulated and field-based data sets (Table 3.2).  

 

The modified normalized difference (mND) and modified normalized difference 

(mSR) type of index also performed similarly, although they had an additional 

waveband at 405 nm. The best difference (D) type of index used two wavelengths 

near or within the red edge domain and its RMSE was nearly 30% larger (8.82 µg 

cm
−2

) than that of the best DDn type of index. The reflectance (R) type of index uses a 

single wavelength and is the simplest type among those examined. The best R type of 

index, R705, performed poorly compared to the other types of index examined; the 

RMSE of the R type of index was nearly twice as large as that of the best DDn type of 

index. 

 
Table 3.2 Evaluation of the general types of indices for estimating CHL, EWT, and LMA based on 

both the PROSPECT simulated data set and field-based data sets. RMSE values are the means of 

RMSE values from the simulated data set (50% weight) and the field-based data sets (50% 

weight). 
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Note: R: reflectance at a given wavelength; D: reflectance difference; SR: simple ratios; ND: 

normalized differences; mND: modified normalized differences; mSR: modified simple ratios; 

DDn: double difference. 

 

 
Table 3.3 Evaluation of the general types of indices for estimating CHL, EWT, and LMA based 

solely based on the PROSPECT simulated data set. 

 

 

 

Parameter Index type Formulation λ1 (nm) λ2 / Δ (nm) λ3 (nm) RMSE 

CHL 

(μg cm
-2

) 

R Rλ1 705   13.70 

D Rλ1−Rλ2 745 750  8.82 

SR Rλ1/Rλ2 735 755  7.63 

ND (Rλ1−Rλ2)/(Rλ1+Rλ2) 735 755  7.62 

mND (Rλ1−Rλ2)/(Rλ1+Rλ2−2Rλ3) 735 755 405 7.66 

mSR (Rλ1−Rλ3)/(Rλ2−Rλ3) 735 755 405 7.65 

DDn 2Rλ−Rλ−Δ −Rλ+Δ 715 185  6.87 

EWT 

(g cm
-2

) 

R Rλ1 1890   0.0028 

D Rλ1−Rλ2 1065 1310  0.0015 

SR Rλ1/Rλ2 1020 1025  0.0013 

ND (Rλ1−Rλ2)/(Rλ1+Rλ2) 1020 1025  0.0013 

mND (Rλ1−Rλ2)/(Rλ1+Rλ2−2Rλ3) 1020 1025 405 0.0013 

mSR (Rλ1−Rλ3)/(Rλ2−Rλ3) 1020 1025 405 0.0013 

DDn 2Rλ−Rλ−Δ −Rλ+Δ 1530 525  0.0011 

LMA 

(g cm
-2

) 

R Rλ1 2295   0.0035 

D Rλ1−Rλ2 1185 1300  0.0017 

SR Rλ1/Rλ2 2190 2210  0.0016 

ND (Rλ1−Rλ2)/(Rλ1+Rλ2) 2190 2210  0.0016 

mND (Rλ1−Rλ2)/(Rλ1+Rλ2−2Rλ3) 2190 2210 405 0.0016 

mSR (Rλ1−Rλ3)/(Rλ2−Rλ3) 2190 2210 405 0.0016 

DDn 2Rλ−Rλ−Δ −Rλ+Δ 1235 25  0.0015 

Parameter Index type Formulation λ1 (nm) λ2 / Δ (nm) λ3 (nm) RMSE 

CHL 

(μg cm
-2

) 

R Rλ1 705   18.37 

D Rλ1−Rλ2 780 835  7.63 

SR Rλ1/Rλ2 780 830  4.09 

ND (Rλ1−Rλ2)/(Rλ1+Rλ2) 780 830  4.09 

mND (Rλ1−Rλ2)/(Rλ1+Rλ2−2Rλ3) 780 830 405 4.38 

mSR (Rλ1−Rλ3)/(Rλ2−Rλ3) 780 830 405 4.38 

DDn 2Rλ−Rλ−Δ −Rλ+Δ 715 185  6.78 

EWT 

(g cm
-2

) 

R Rλ1 1890   0.0043 

D Rλ1−Rλ2 945 1275  0.0016 

SR Rλ1/Rλ2 980 990  0.0010 

ND (Rλ1−Rλ2)/(Rλ1+Rλ2) 980 990  0.0010 

mND (Rλ1−Rλ2)/(Rλ1+Rλ2−2Rλ3) 980 990 405 0.0010 

mSR (Rλ1−Rλ3)/(Rλ2−Rλ3) 980 990 405 0.0010 

DDn 2Rλ−Rλ−Δ −Rλ+Δ 1525 600  0.0010 

LMA 

(g cm
-2

) 

R Rλ1 2285   0.0059 

D Rλ1−Rλ2 1155 1270  0.0017 

SR Rλ1/Rλ2 1525 1865  0.0019 

ND (Rλ1−Rλ2)/(Rλ1+Rλ2) 1525 1865  0.0019 

mND (Rλ1−Rλ2)/(Rλ1+Rλ2−2Rλ3) 1525 1865 405 0.0024 

mSR (Rλ1−Rλ3)/(Rλ2−Rλ3) 1525 1865 405 0.0023 

DDn 2Rλ−Rλ−Δ −Rλ+Δ 1240 10  0.0019 
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Measured and simulated CHL values were regressed against the DDn(715,185) index 

from all data sets (simulated and field-based) (Fig. 3.1a). Although most points were 

located near the regression line, the regression coefficients apparently differed among 

the data sets because the values from any one data set were usually located on only 

one side of the regression line. A scatter diagram of estimated CHL values (from the 

linear regression) and measured CHL values in the field-based data sets indicated that 

the regression based on the DDn index performed well such that the data were 

distributed along the 1:1 line (Fig. 3.1b). 

  

   
 
Fig. 3.1 Regressions of estimated parameter values on spectral values (a, c, e) based on the best 
DDn index for estimating the parameters CHL, EWT, and LMA, and plots of estimated parameter 

values on measured parameter values (b, d, and f). 

b 

e 

c d 

f 

a 
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3.3.2 EWT indices  

The seven types of index were also investigated for estimating EWT (Tables 3.2 and 

3.3). As was the case for CHL, the DDn type of index was the best because it 

produced the lowest RMSE (0.0011 g cm
−2

) for the simulated and field-based data 

sets (Table 3.2). Furthermore, the best DDn type of index, DDn(1530, 525), 

performed best among all indices for the simulated data set (RMSE of 0.0010 g cm
−2

) 

and the field-based data sets (RMSE of 0.0014, 0.0013, and 0.0013 g cm
−2

 for data 

sets I, II, and III, respectively).  

 

Performance was similar for the SR, ND, mSR, and mND types of index, all of which 

had an RMSE of 0.0013 g cm
−2

 for the simulated and field-based data sets (Table 3.2). 

Moreover, the best indices for all these types were confined to two nearby wavebands 

of 1020 nm and 1025 nm, with an additional wavelength of 405 nm for the mSR and 

mND types. The simple R type of index performed poorly (Tables 3.2 and 3.3). 

Performance of the best D type of index, which utilized two wavelengths (1065 and 

1310 nm), was similar to that of SR, ND, mSR, and mND types of index (Table 3.2).  

 

Measured and simulated EWT values were regressed against the DDn1530,525 index 

for all data sets (Fig. 3.1c). Although some differences among the slopes were noted 

for the simulated data set and field-based data sets, the regression parameters for 

field-based data sets were generally consistent. A scatter diagram of EWT values 

estimated by the linear regression and measured values from the field-based data sets 

indicated that the regression performed well in that most values were located along 

the 1:1 line, except for several that were mainly from data set I (Fig. 3.1d).  

3.3.3 LMA indices  

The seven types of index were examined for their potential to estimate leaf LMA 

(Tables 3.2 and 3.3). As was the case for CHL and EWT, the DDn type of index was 

the best because it produced the lowest RMSE for the simulated and field-based data 

sets (Table 3.2). The best DDn type of index for LMA, which used the central 

wave-length of 1235 nm and a narrow distance Δ of 25 nm, had an overall RMSE of 

0.0015 g cm
−2

 (Table 3.2). The SR, ND, mSR, and mND types of index, which used 

the central wavelengths of 2190 and 2210 nm, all had a larger RMSE of 0.0016 g 

cm
−2

 (Table 3.2). The D type of index, R1185 − R1300, had an RMSE of 0.0017 g cm
−2

, 

which was less than half of the RMSE of the best index of the R type (0.0035 g cm
−2

). 

Further analysis revealed that DDn type of index performed consistently for the 

simulated data set and the field-based data sets (data not shown).  

 

Measured and simulated LMA values were regressed against the DDn(1235,25) index 

for all data sets, and the regression fit the measured values much better than it fit the 

simulated values (Fig. 3.1e). In addition, the fitted coefficients also differed among 

the field-based data sets. However, the scatter diagram indicated excellent agreement 

between estimated and measured LMA values (Fig. 3.1f). 
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3.4 Discussion 

3.4.1 Hyperspectral indices for estimating leaf biochemical parameters  

Researchers have commonly used the empirical relationships between hyperspectral 

indices and leaf biochemical parameters to estimate leaf biochemical properties at the 

leaf scale. As reviewed by le Maire et al. (2004), Blackburn (2007) and Ustin et al. 

(2009), dozens of indices ranging from red/NIR ratios, green and red edge types, and 

derivative types have been designed to estimate leaf-scale CHL content. Similarly, a 

number of indices have been used to estimate EWT (e.g., Roberts et al., 1998; Gao, 

1996; Hardisky et al., 1983; Penuelas et al., 1993). Relatively few indices, however, 

have been used to estimate LMA. Most of indices types can be grouped into four 

general categories, as indicated by le Maire et al. (2004): (1) indices that use a single 

reflectance or a difference between two wavelengths; (2) indices that use a simple 

ratio (SR); (3) indices that use normalized ratios of differences (ND); and (4) indices 

based on reflectance derivatives. The seven types examined in this study covered all 

four categories and therefore provided a relatively comprehensive comparison of 

commonly applied indices.  

 

As noted, the selected wavelengths were similar for the normalized indices (ND, 

mND) or their simple counterparts (SR, mSR), and their performances based on 

RMSE values were comparable. The normalized indices were introduced to avoid the 

effects of differences in background constant terms for normalized reflectance-based 

indices (e.g., different atmosphere conditions or soil moisture in the case of canopy 

measurements). No improvement for any biochemical parameter estimation was 

observed with these normalized indices because all reflectance spectra were measured 

with a leaf clip. When calibrated and used with canopy-level data, the normalized 

indices should perform better than their simple counterparts.  

 

On the other hand, the “modified” indices mSR and mND did not perform better than 

their simple counterparts (SR and ND) even at the leaf level in this study (see Table 

3.2). The modified indices use a “base wavelength” (here 405 nm), originally 

introduced to avoid the effects of differences in leaf surface reflectance (specular 

effect as opposed to effects from internal component) (Sims and Gamon, 2002). This 

modification might have failed to improve the results at the leaf level as the inclusion 

of a supplementary wavelength might increase the sensitivity to noise in the 

reflectance spectra and thereby increase subsequent scattering.  

 

The best indices for CHL estimation identified in this study, all used wavelengths 

within the red edge domain, indicating the close relationship between the red edge 

reflectance information and CHL content, as reported by numerous former studies 

(e.g., Sims et al., 2006; le Maire et al., 2004; Gitelson and Merzlyak, 1996). The 

performances of the best indices for each index type in this study lie in the middle of 

all CHL estimation indices reviewed by le Maire et al. (2004). However, it should be 

noted that our results were validated with both simulated and field-based data sets, 

rather than with only a simulated data set, as in le Maire et al. (2004). For a 

comparison, the best indices for CHL estimation in the current study based only on 

the simulated data set, SR780,830 and ND780,830, both had an RMSE of 4.09  µg 
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cm
−2

 (Table 3.3), which was only slightly higher than the RMSEs of (R734 − 

R747)/(R715 + R720) and (R734 − R747)/(R715 + R726) from Vogelman et al. (1993) and of 

BR754/BR704 from Datt (1999) among all CHL indices examined by le Maire et al. 

(2004).  

 

Numerous indices have been designed to detect water status because of the critical 

role of water in ecosystem functions. These include the water index (WI, R895/R972) 

(Penuelas et al., 1993); the Normalized Difference Water Index (NDWI, (R860 − 

R1240)/(R860 + R1240) (Gao, 1996); the Moisture Stress Index (R1599/R819) (Hunt and 

Rock, 1989); the Normalized Difference Infrared Index (NDII, (R819 − R1649)/(R819 + 

R1649) (Hardisky et al., 1983); and the integrated reflectance from R867 through R1068 

(Roberts et al., 1998). Although a number of parameters have been used to indicate 

water status (Seelig et al., 2008), EWT is commonly used (Colombo et al., 2008), 

which can be traced back to Allen et al. (1971). The popularly of EWT is increasing 

with increasing application of the leaf PROSPECT model (Jacquemoud et al., 1996) 

because EWT can be inversely derived from the model. Our results, how-ever, 

demonstrated that the above indices perform less well than the newly identified 

indices with our data sets. The best indices identified in this study, except the R and D 

type of indices, all had a normalized RMSE lower than 10%; the results were 

comparable with those of Colombo et al. (2008), even though the EWT range was 

much greater in the current study.  

 

Leaf spectral information has been used relatively infrequently to predict LMA. 

Ourcival et al. (1999) reported that spectral information can be used to accurately 

predict LMA in Quercus ilex leaves. Their research, however, was based on partial 

least squares (PLS) analysis, which used the whole wavelength domains from 400 to 

2500 nm, rather than index approaches emphasized here. le Maire et al. (2008) 

provided various indices to estimate LMA at the leaf scale; based on field-observed 

data, they obtained an RMSE of 0.00164 g cm
−2

 for the best ND type of index, a value 

very similar to that in the current study. However, the central wavelengths determined 

for the best ND type of index were longer in the current study than in le Maire et al. 

(2008) (2190 and 2210 nm vs. 1710 and 1340 nm). The DDn type of index, which 

was not been included in le Maire et al. (2008), performed best (RMSE = 0.0015 g 

cm
−2

) among all indices examined in the current study.  

3.4.2 DDn type of index  

The DDn type of index was designed by le Maire et al. (2008) and is a simplification 

of the DD index of le Maire et al. (2004) but follows the same underlying principle in 

that it is based on the double-peak of derivatives near the red edge for estimating CHL. 

This type of index was the most robust and best one among all seven types of indices 

examined to estimate CHL in the current study, which tested the indices with both 

simulated and field-based data sets. The RMSEs for CHL estimation were nearly 

identical for all data sets, whether simulated or field-based. This suggests the DDn 

type of index might be universally applicable. However, it was also obvious that the 

fitted parameters, especially the intercept for the best DDn index for CHL estimation, 

DDn(715, 185), varied among the data sets (Fig. 3.1a). Hence, a much larger 

calibration data set is needed before a general regression to calculate CHL from the 

identified DDn index can be determined. The identified DDn index in this study 
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performed similarly to that given by le Maire et al. (2008); the RMSE for a simulated 

data set was 6.78 µg cm
−2

 in the current study and 6.53 µg cm
−2

 in le Maire et al. 

(2008). In addition, we found that simple linear regression, instead of the higher order 

polynomial regressions like those used in le Maire et al. (2008), is sufficient for 

estimating CHL, as indicated by the scatter diagram (Fig. 3.1b).  

 

In addition to using the DDn type of index to estimate CHL, we have applied this 

concept to estimate EWT and LMA, although the underlying principle of the index 

has not been clarified for these two parameters. The DDn type of index was 

unexpectedly among the best indices for estimating EWT and LMA. Moreover, DDn 

pro-vided nearly identical RMSEs for both simulated and field-based data sets (Tables 

3.2 and 3.3), suggesting that the identified indices may have broad application. This is 

further illustrated in Fig. 3.1c for EWT estimation, in which the regression parameters 

nearly kept fixed for all field based data sets. Compared with EWT, the regression 

coefficients (especially the slope) of the identified DDn type index with LMA varied 

among the field-based data sets (Fig. 3.1e), suggesting that a larger calibration data set 

is needed before a general relationship can be described.  

 

As expected, the identified DDn index for estimating CHL had the central wavelength 

of 715 nm, the red edge point of our data sets. However, the distance (185 nm in our 

case) was much larger than that reported by le Maire et al. (2008). We obtained the 

central wavelengths of 1530 nm for EWT and 1235 nm for LMA, respectively. The 

distances were 525 nm for EWT and a very narrow 25 nm for LMA.  

 

To further illustrate the performance of different combinations of central wavelengths 

and distances of the DDn type of index for estimating leaf biochemical properties, we 

constructed 2D matrix representations of RMSEs for the DDn indices (Fig. 3.2). The 

RMSE for each DDn index from the different combinations of central wavelengths 

and distances is visualized based on a color legend so that wavelength combinations 

producing small and large RMSE values can rapidly be determined. Fig. 3.2a clearly 

shows that the brown to red colors (low RMSEs) were centered at λ = 715 nm for 

CHL estimation, with the distance (Δ) varied from 0 to ca. 300 nm. Another area of 

low RMSEs occurred along the line of λ = 780 + Δ (Δ < 300 nm). In other regions of 

the plot, RMSEs were large (usually > 20 µg cm
−2

).  

 

RMSE matrices using DDn indices to estimate EWT are shown in Fig. 3.2b. 

Apparently more DDn indices can be applied to estimate EWT accurately than to 

estimate CHL accurately because the brown to red colors (low RMSEs) occupied 

large areas. The low-est RMSEs occurred in the region below the line of λ = 800 + Δ 

(800 nm < λ <1200 nm, Δ < 300 nm) and in the region with a central wavelength λ 

from 1400 to 1600 nm and the distance Δ within [400 nm, 800 nm].  

 

The RMSE matrices using the DDn indices to estimate LMA produced only small and 

scattered areas with low RMSEs (Fig. 3.2c). The lowest RMSE area occurred with the 

central wavelength λ of 1235 nm and the distance Δ < 50 nm. Another low RMSE area 

occurred with a central wavelength around 2100 nm and the distance around 380 nm. 

Hence, only a few DDn indices can be applied to estimate LMA accurately. 

 

Overall, the DDn type of index was identified as the best indices for estimating CHL, 

EWT and LMA. However, as a derivative hyper-spectral index, the DDn type index is 



44 
 

inherently sensitive to noise and requires profound smoothing before analysis. Hence, 

as the result obtained by le Maire et al. (2004), its performance may somehow depend 

on the applied smoothing methods. Sophomoric smoothing methods may enhance its 

performance, although algorithms based on least-square fits are most commonly 

selected. However, this deserves further investigations in the future.  

 

 

 

 
 
Fig. 3.2 RMSE matrices of CHL, EWT, and LMA estimations using DDn indices with different 

combinations of the central wavelength (λ) and the distance (∆) based on the simulated data set. 

The legends on the right indicate RMSE values (blue indicates large values and red indicates small 

values). 

3.4.3 Simulated data set vs. field-based data sets  

A large data set for calibration is essential for obtaining general indices. Because of 

cost limitations, field-measured and field-based data sets are always confined to a 

given species, region, and growth stages, making it nearly impossible to provide a 

comprehensive measured data set for calibration. This limitation explains the cur-rent 

situation in which researchers have identified many diverse indices that are only 

applicable to specific conditions.  

 

On the other hand, a simulated data set generated from a mechanistic reflectance 

a 

b 

c 
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model like PROSPECT can represent a vast range of leaf reflectance spectra, which 

may provide an alternative resource for identifying general indices. Furthermore, as 

claimed by le Maire et al. (2008), the use of a simulated data set can reduce problems 

of covariance that often occur with field-measured data sets where some of the 

measured characteristics may have significant covariance. As a consequence, an index 

calibrated for a particular biophysical characteristic could in reality be linked to 

another characteristic if the index is based only on field-measured or field-based data 

sets, such as EWT and LMA at different phenological stages. This decreases the 

generic application of such empirically based indices. Using a simulated data set will 

prevent such problems because each simulated characteristic can be varied 

independently of other characteristics.  

 

In using a simulated data set, however, the researcher assumes that the reflectance 

model can accurately simulate the actual reflectance spectra. In most cases, depending 

on the reflectance wavelengths used, the agreement between simulated and actual 

reflectance spectra is often imperfect, as illustrated in Fig. 3.3, which presents an 

overview of how well simulated and field-based reflectance spectra match. The lower 

and upper bounds of the simulated reflectance spectra are superimposed on the 348 

field-based spectra. Some discrepancies can be easily identified in several wavelength 

domains, e.g., in the 400–520, 600–700, and 720–1320 nm domains. Hence, the 

underlying assumption, that the reflectance model accurately matches the actual 

reflectance spectra, could often be incorrect, and using a simulated data set alone may 

lead to incorrect answers.  

 

 
 
Fig. 3.3 Reflectance spectra of the simulated data set and 348 spectra from field-based data sets I, 

II, and III. 

 

The current study demonstrates the problems of basing a study entirely on a simulated 

data set. We have also attempted to deter-mine the best indices by first examining all 

types of indices based on the PROSPECT simulated data set for CHL, EWT, and 

LMA and then by applying these indices to individual field-based data sets. However, 

based only on the simulated data set, the best D, SR, ND, mND, and mSR indices all 

had the smallest RMSE values at the wavelengths of 780 and 830 nm (835 nm for the 

D type), i.e., the wavelengths were all within near-infrared domains. Not unexpectedly, 

these indices all performed poorly with field-based data sets (data not shown) because 

such wavelengths are not sup-ported by physiological or physical mechanisms. 
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Interestingly, both approaches determined exactly the same DDn type of index (DDn 

(715, 185)) for CHL estimation. This could be due to the fact that only a limited 

number of wavelengths provide useful estimations for this type of index (see Fig. 

3.2a). It may be difficult to identify an index with general applicability when many 

combinations of wave-bands for a given type of index produce similar RMSEs, as was 

the case with the DDn type of index for EWT estimation (Fig. 3.2b). Thus, a 

simulated data set may augment actual data sets but will not be sufficient by itself for 

identifying an index with general applicability. For comprehensive calibration and 

validation, both simulated and measured data sets should be used. 

3.5 Conclusion 

To obtain generic and widely applicable hyperspectral indices for leaf biochemical 

properties, we tested seven types of indices using every possible combination of 

wavelength based on both simulated and field-based data sets. The results indicated 

that certain indices can be generally used to estimate leaf biochemical parameters. The 

best indices identified in this study are DDn(715, 185) for leaf CHL, DDn(1530, 525) 

for EWT, and DDn(1235, 25) for LMA. These indices performed well, with an overall 

RMSE of 6.87 µg cm
−2

 for CHL, 0.0011 g cm
−2

 for EWT, and 0.0015 g cm
−2

 for 

LMA. Moreover, they performed consistently well with different field-based data sets. 

Because the field-based data sets included in this study encompass measurements 

under various conditions (i.e., different locations, different stands, different species, 

different canopy levels, and different phenological stages), we infer that the newly 

identified indices will have general applicability, at least for temperate deciduous 

forests. The regressions (biochemical parameter values regressed against spectral 

values), however, differed somewhat among the data sets, indicating the need for a 

further calibration before the indices can be applied to other sites. A synthetic data set 

can be of great help in searching for indices with general applicability but can provide 

misleading results if used alone. Simulated data should be used with measured data to 

identify indices that are supported by physiological or physical mechanisms and that 

have wide application. 
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Chapter 4 Canopy scale applications: developing of MRTM 

Abstract  

A multiple-layer canopy radiative transfer model (MRTM) has been developed in this 

chapter. The model is based on radiative transfer theory which has specifically treated 

the vertical heterogeneity of biophysical and biochemical parameters within the 

canopy. This model was validated with field measurements from a deciduous forest 

canopy. The results presented that the model could reproduce the measured 

reflectance quite well. In addition, the performance of MRTM was found to be 

superior in comparison to other canopy models such as PROSAIL, ACRM and FRT. 

The significant effect of vertical heterogeneity on the canopy reflectance was clearly 

identified by different scenarios, which indicates that the influence of vertical 

variation in leaf area density and leaf chlorophyll, water, and dry matter contents 

cannot be neglected, especially when the total LAI is large. If such influences are 

ignored, significant biases in the estimated canopy reflectance can be expected. Since 

this multiple-layer model is a hybrid one that offers efficient calculation, it could 

serve as a primary model to develop more accurate reflectance models for 

inhomogeneous forests at plot and regional scales in future studies. 

4.1 Introduction 

Remotely sensed data in the reflective optical domain function as a unique 

cost-effective source for providing spatially and temporally distributed information on 

key biophysical and biochemical parameters of land surface vegetation. Remote 

sensing techniques for estimating vegetation characteristics from reflective optical 

measurements have been based either on the empirical–statistical approach that links 

vegetation indices (VI) and vegetation properties using experimental data, or on the 

inversion of a physical canopy reflectance (CR) model. Empirical approach is simple 

and computationally efficient, and the potential of empirical VI relationships for the 

determination of plant properties has been demonstrated in numerous studies (e.g. 

Broge and Mortensen, 2002; Colombo et al., 2003; Gitelson et al., 2005). However, a 

fundamental problem with the VI approach is its lack of generality. The shape and 

form of canopy reflectance spectra depend on a complex interaction of several 

internal (e.g. vegetation structure, leaf biochemical composition, soil background) and 

external (e.g. view-sun-target geometry, atmospheric state) factors (Baret, 1991; 

Houborg et al., 2009) that may vary significantly in time and space, and from one 

canopy type to another. As a consequence, there is no unique relationship between a 

sought vegetation parameter and a VI of choice, but rather a family of relationships, 

each a function of canopy characteristics, soil background effects and external 

conditions (Baret and Guyot, 1991; Colombo et al., 2003; Gobron et al., 1997; 

Haboudane et al., 2004; Houborg et al., 2007; Zarco-Tejada et al., 2003). 

 

Physically-based models have proven to be a promising alternative as they describe 

the transfer and interaction of radiation inside the canopy based on physical laws and 

hence provide an explicit connection between the biophysical variables and the 

canopy reflectance. Various CR models have been developed and applied to various 

vegetation canopies (Pinty et al., 2001; 2004; Widlowski et al., 2007). Most of current 
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available models have been based on radiative transfer theory with analytical 

approximations for the solution, which either make the assumption of homogeneous 

one layer canopy or two layers by adding a thin weed layer of understory vegetation 

(shrubs and/or grass) under the homogeneous canopy (e.g., Gobron, et al., 1997; 

Liangrocapart and Petrou, 2002; Myneni, et al., 1992; Nilson and Kuusk, 1989; 

Verstraete et al., 1990). However, canopy generally exhibits large heterogeneity on 

both biophysical and optical properties (Widlowski et al., 2007). Although there are 

some 3-D simulation models based on true canopy 3D structures (Cote et al., 2009; 

Pinty et al., 2004; Widlowski et al., 2007) that explain the effects of canopy 

heterogeneous structure on canopy reflectance, these models requires some 

geometrical and structural parameters of trees, which are very difficult to be measured 

practically, and hence there is likely to be a reduction in their effectiveness. In 

addition, the canopy also exhibits large heterogeneity on leaf biochemical and 

physiological properties such as chlorophyll, water, and dry matter content (Ciganda 

et al., 2008; Wang and Li, 2011). However, the effects of these heterogeneities on 

canopy reflectance have not been fully addressed, to the best of our knowledge.  

 

Vertical profiles of both biophysical and biochemical properties are one of the main 

heterogeneities within a vegetation canopy, which has been well recognized and 

highlighted in many studies (Barton, 2000; Ciganda et al., 2008; Dwyer et al., 1992; 

Valentinuz and Tollenaar, 2004). Generally, vertical distribution of the target 

components is a major factor controlling canopy reflectance. If using homogeneous 

canopy reflectance models for calculating directional reflectance from a vertical 

heterogeneous canopy using average values of biophysical and biochemical properties 

within the canopy may lead to systematic errors. Hence, accurate modeling of canopy 

reflectance requires taking this factor into consideration.  

 

With this in mind, a computationally efficient radiative transfer model, multiple-layer 

canopy reflectance model (hereafter called MRTM), has been developed with focus 

on canopy vertical heterogeneity to canopy reflectance. Similarly to the approaches of 

ACRM (Kuusk, 2001), FRT (Kuusk and Nilson, 2000) and PROSAIL (Jacquemoud et 

al., 1995; 2009), it is a hybrid-type model, including the properties of both 

geometrical and radiative transfer equation-based models. However, the uniqueness of 

this model lies in the fact that it has grouped a canopy into discrete multiple layers 

from bottom to the top over a horizontal bottom soil surface. The bidirectional 

reflectance distribution function (BRDF) of each layer in the canopy are realistically 

simulated through the consideration of leaf area density, leaf inclination angle, major 

leaf biochemical parameters such as chlorophyll, water and dry matter. Moreover, this 

model aims at allowing one to use multi-angular, multispectral and hyperspectral 

remote sensing data. 

 

In this chapter, we have first given the mathematical description of the model, which 

was validated with field-measured data sets, then presented a preliminary comparison 

between this model and other canopy models such as ACRM, FRT and PROSAIL. 

Finally, we have presented scenario simulations to reveal the effect of vertical 

variation of each parameter on canopy reflectance. 
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4.2 Material and methods 

4.2.1 Description of the MRTM 

Vegetation canopy is treated as a constituent of discrete multiple layers from canopy 

above a horizontal bottom soil surface. All layers are characterized by the following 

set of phytometric parameters: leaf area density (LAD), leaf angle distribution (LA) 

parameter, and leaf size (LS); and biochemical parameters, which control the optical 

properties of leaves: the amount of chlorophyll (CHL), water (EWT), and dry matter 

(represented by dry leaf mass per area, LMA). A leaf optics model, PROSPECT 

(Jacquemoud and Baret 1990; Jacquemoud et al., 1996) or LIBERTY (Dawson, et al., 

1998) is applied for calculation of leaf reflectance and transmittance, while weights of 

Price’s functions are used for the calculation of the soil reflectance spectrum (Price, 

1990). 

 

In this model, other canopy models such as SAIL, ACRM and FRT are referenced for 

calculating directional and diffuse radiations, single-scattering and diffuse fluxes for 

each single layer, and for calculating non-Lambertian soil reflectance, the specular 

reflection of direct sun rays on leaves, the hot spot effect, and a two-parameter leaf 

angle distribution (LA). The main mathematical formulations of this model are shown 

below: 

 

The canopy hemispherical–directional reflectance ρ is calculated as a sum of 

directional and diffuse components,  

d1λ

'

λ ρρ)Q/S(ρ +=                                             (4-1) 

Where 
1ρ  is the single-scattering component of the bidirectional reflectance factor, 

dρ  is the share of diffuse fluxes in hemispherical–directional reflectance factor, and 

'

λS  and λQ  are the direct solar and total spectral irradiances in a horizontal plane 

above the plant canopy. 

 

Single scattering of radiation 

 

Single scattering of direct radiation from an N-layer (NL) canopy can be represented 

as the sum of NL+1 components: 
soilcncc ρρρρρ 11

2

1

1
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Here 
1c

1ρ , 
2c

1ρ , … 
cnρ1  are the N single scattering contributions from bottom to top 

of the NL canopy layers, respectively, while 
soil

1ρ  is the component of single 

scattering from the soil layer. The single scattering of the top of the n layer (the top 

layer) is calculated as for the one-layer canopy in ACRM (Kuusk, 1991), 
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where 
( )

)r,r(Γ n

21  is the phase function, r1 and r2 are unit vectors in the sun and view 

directions, respectively, 
( )n

Lu  is the leaf area density (m
2
/m

3
) in the top layer,
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)θcos(μ ii = , i = 1, 2 are the polar angles of vectors r1 and r2, Q
(n)

( r1, r2, z) is the 

bidirectional gap probability in the layer n at level z, and H(n) is the depth of layer n. 

 

Similarly, the single scattering from the n-1, n-2 … 1 layer is calculated as:  
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The single scattering from soil is obtained by: 
( )
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Where )r,r(ρsoil 21  is the soil bidirectional reflectance factor,
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 is 

the depth of the layer j. Here
( )j

ip  is the gap probability in the layer j in direction ri. 

Calculation of 
( )j

ip  can be found in Kuusk (1991). 

 

Expressions for the single scattering in all layers are similar, except the bidirectional 

reflectance of the j layer is multiplied by the bidirectional gap probability in the upper 

layers j+1, j+2 … NL.  

 

Diffuse fluxes 

 

Calculation of diffuse fluxes for a given layer is similar to that in the SAIL model 

(Verhoef, 1984; 2002). In the SAIL model, diffuse fluxes of multiple scattering and of 

the sky are considered together in a four-stream approximation (Verhoef, 1984, 2002; 

Verhoef and Bach, 2007). Detail description of the SAIL model can be seen in 

Verhoef (1984), Verhoef (2002) and Verhoef and Bach (2007).  

 

A series of reflection and transmission coefficients (operators) is introduced for the 

calculation of the diffuse component dρ  for a single layer, 

sol

d

plants

dd ρρρ +=                                               (4-8) 
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and  

2-1+= pr)r)SQ(SQt(ρ soil
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d                                 (4-10) 

Here λ

'

λ Q/SSQ =  is the share of direct flux in the total irradiance, pi = p(ri) is the 

gap probability in direction ri, 
soil

sdr  is the soil directional–hemispherical reflectance, 

soil

dsr  is the soil hemispherical–directional reflectance, and 
soil

ddr  is the soil 

hemispherical–hemispherical reflectance. The defining of rso, rdo, tdo, tsd, and tdd can be 

seen in Kuusk (2001). 
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In a multiple-layer canopy the diffuse components 
plants

dρ  and 
soil

dρ  are also 

computed with Eqs. (4-9) and (4-10), where the scattering operators for the composite 

leaf layers are calculated using the adding method (Liu and Weng, 2006; Sobolev, 

1956; Verhoef, 1985). The strategy of adding method is to reduce the reflectance and 

transmittance of the combined layer by calculating the successive reflectances and 

transmittances between these two layers. Consider two layers with reflection R i and 

Ri+1 and transmission Ti and Ti+1; then the combined reflectance Ri,i+1 and 

transmittance Ti,i+1 can be calculated as (Fig. 4.1):  
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Fig. 4.1 Diagram of radiative transfers between layer i and layer i+1. 

 

The numerical procedure of the adding method can be described as follows: at the 

starting point, one may calculate the reflectance and transmittance functions of the 

layer i using the single-scattering approximation. Then Eqs. (4-11) and (4-12) are 

used to compute the reflectance and transmittance functions of the layer i+1. The 

desired optical layer is achieved by repeating Eqs. (4-11) and (4-12) for each newly 

added layer. 

 

The scattering operators of the layer i, 
i

ddr , 
i

sor , 
i

dor , 
i

ddt , 
i

sdt  and 
i

dot  can be 

updated by the loop program (i = 2 to NL) as below: 
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4.2.2 Field measurements and dataset 

Field measured dataset for model validation 

 

To evaluate the model’s performance, we have compiled a field measured data set 

from synchronous measurements of both leaf biophysical and biochemical parameters 

and reflectance in Naeba site. The Dataset was compiled from the data acquired in the 

growth period of August 2008 at the 900 m site, with special focus on vertical profiles 

of properties, for which the beech canopy has been grouped into five layers 

(boundaries at 12, 14, 16, 18, and 20 m). Both leaf and canopy properties, for example, 

contents of various pigments, leaf water, leaf dry matter, leaf thickness, leaf angle, 

leaf size and leaf area density of each layer, and leaf and canopy reflectance have been 

measured simultaneously. Detail methods of each measurements can see chapter 1.3.3. 

The mean values of all measurements are given in Table 4.1. 

 
Table 4.1 Values of model parameters in scenario simulations and the measured dataset. 

 

Parameter Abbr. in model Unit Synthetic dataset Measured dataset 

Sun zenith angle  degree 50 30.54 

view nadir angle  degree 30 0 

view azimuth angle  degree 0 0 

Canopy layers NL - 1~7 5 

Leaf area index LAI m
2
/m

2
 1,3,6 5.88 

Leaf size parameter SL cm
2
 40 25.14 

Mean leaf angle  thm degree 90 60 

Chlorophyll content Cab µg/cm
2
 64 45.74 

Leaf water thickness Cw g/cm
2
 0.024 0.0063 

Leaf dry matter Cm g/cm
2
 0.016 0.0051 

Leaf structure parameter N - 1.12 1.88 

Ratio of refraction indices 

of leaf wax and air 

cn - 0.9 0.9 

Soil parameters s1 - 0.22 0.01 

 

Synthetic dataset for sensitively analysis 

 

As the field measured dataset has limited ranges for the parameters, a synthetic 

dataset was generated from different combinations of the main biophysical parameter 

LAI and main biochemical parameters (CHL, EWT, and LMA) with their vertical 

profile scenarios. This dataset was used for studying the effect of different vertical 

profiles of each parameter on the canopy reflectance. Detailed configuration of the 

synthetic dataset is described in Table 4.2. Except those vertically varied parameters, 
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most of the model parameters were fixed for generating the synthetic dataset. A full 

list of model parameters, the values of fixed parameters and the “standard” values of 

varied parameters is also given in Table 4.1. 

4.2.3 Model validation  

The MRTM has been validated with the field-measured dataset. Before validation of 

the canopy reflectance, the leaf reflectance had been validated using the measured leaf 

biochemical parameters and the leaf structure parameter N fitted by using the 

measured leaf reflectance. As field measurements had grouped the canopy into five 

layers, the model was operated in two modes, the first having one homogeneous layer 

and the second having five vertical layers. Averaged values of measured parameters 

(LAD, LA, LS, CHL, EWT, and LMA) of all the five layers were used for the model 

simulation in the one-layer mode.  

 
Table 4.2 Vertical profile of biophysical and biochemical parameters for the synthetic dataset, 

LAI=3 and canopy layers NL=7, layer depth = 1 m. 

 

 1 2 3 

Vertical profile curves for 

model parameters 

 

 

 

  

 Max Min Mean 

LAD of each layer (m
2
/m

3
) 6/7 0 3/7 

Leaf Size (cm
2
) 70 10 40 

CHL (µg/cm
2
) 100 20 60 

EWT (g/cm
2
) 0.04 0.01 0.025 

LMA (g/cm
2
) 0.04 0.01 0.025 

 

To quantify the performance of the model simulations, the estimated values (Y’) and 

independent reference measurements (Y ) were calculated for each parameter and the 

following statistics were calculated (Eqs. (4-14) - (4-16)): the root mean square error 

(RMSE) and bias (BIAS), which indicate the absolute estimation errors, and the 

relative error (RE), which indicates the relative estimation errors. In detail, the 

calculations are as follows: 

 

∑
1=

2-=

n

j

j

'

j n/)yy(RMSE                                       (4-14) 

∑
1=

-=

n

j

j

'

j n/)yy(BIAS                                          (4-15) 

y/RMSERE ×100=                                            (4-16) 

where jy  and 
'

jy  are the measured and predicted reflectance, respectively, y  is 

the average of the measured values, and n is the number of wavelengths. 

 

In addition, MRTM has been compared with three widely used canopy models 

PROSAIL (Jacquemoud et al., 2009), ACRM (Kuusk, 2001) and FRT (Kuusk and 
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Nilson, 2000; 2009). The PROSAIL combined the leaf optical properties model 

PROSPECT and the canopy bidirectional reflectance model SAIL and has been used 

for about 16 years to study plant canopy spectral and directional reflectance in the 

solar domain. ACRM is a two-layer canopy reflectance (CR) model which describes 

the vegetation canopy as two layers: a main homogeneous layer of vegetation and a 

geometrically thin layer of vegetation on the ground surface. This model is an 

extension of the homogeneous multispectral CR model MSRM (Kuusk, 1994) and the 

Markov chain CR model MCRM (Kuusk, 1995). The FRT model describes a radiative 

transfer scheme for a forest canopy composed of two layers: a discontinuous upper 

canopy of trees in the overstory, and a continuous, horizontally homogeneous shrub 

and grass layer in the understory above the soil surface.  

 

All three models were parameterized and validated using the same field measured 

dataset in this study. The values of main model parameters for PROSAIL, ACRM and 

FRT are list in Table 4.3. The performance for the three canopy reflectance models 

was evaluated using in situ hyperspectral canopy reflectance measurements. 
 

Table 4.3 Values of main model parameters of PROSAIL, ACRM and FRT in the measured dataset 

 

Models Parameter Unit Value 

Common 

parameters 

Chlorophyll content µg/cm
2
 45.74 

Leaf water thickness g/cm
2
 0.0063 

Leaf dry matter g/cm
2
 0.0051 

Leaf structure parameter - 1.88 

Sun zenith angle degree 30.54 

view nadir angle degree 0 

view azimuth angle degree 0 

Leaf area index m
2
/m

2
 5.88 

PROSAIL 

Hot spot parameter - 0.2 

Soil coefficient - 0.01 

Ratio of diffuse to total incident radiation - 0.1 

average leaf angle - 60 

FRT 

Tree height m 23 

Crown length m 10 

Crown radius m 5 

Cylindrical part of crown m 1 

Stem DBH cm 22 

Branch area/leaf area - 0.1 

Tree distribution parameter - 1.49 

Shoot shading coefficient - 0.7 

Refraction index ratio - 0.9 

Shoot length m 0.1 

Soil parameters (Price’s functions) - 0.01 

ACRM 

The Markov parameter - 1 

Leaf size parameter - 25.14 

Mean leaf angle  degree 60 

Refraction index ratio - 0.9 

soil parameters (Price’s functions) - 0.01 

4.2.4 Scenario simulation 

Validated MRTM has been applied to simulate canopy reflectance scenarios with 

different vertical layers (from one to seven layers) of three different total LAI levels 
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(LAI=1, 3, 6). A full list of model parameters, values for those fixed parameters, and 

the “standard” values of varying parameters were given in Table 1. If not otherwise 

stated, the parameter values were kept the same in different layers. Some scenarios 

were included in the synthetic dataset described above to study the influences of the 

main biophysical and biochemical parameters (LAD, CHL, EWT and LMA) on 

canopy reflectance and angular distribution in the different vertical profiles. Among 

them, three simple artificial vertical profiles were applied, in which the LAI vertical 

profile decreased linearly from top to bottom, increased linearly from top to bottom, 

or was kept constant through the canopy (Table 4.2). For instance, the total canopy 

LAI was kept at 3 in some scenarios and the canopy layers NL at 7 in all simulations. 

4.3 Results 

4.3.1 Canopy vertical profiles of vegetation properties  

Vertical changes in the biophysical and biochemical parameters LAD, LA, LS, LT, 

and leaf CHL, LMA, and EWT contents were apparent in the beech canopy (Fig. 4.2). 

In order to address them, all the parameters and leaf and canopy reflectance spectra 

were collected from five vertical layers (at intervals of 2 m along the canopy depth) at 

the Naeba site in August 2008. As shown in Fig. 4.2(a)–(c), the LAI was smallest in 

the top layer but increased sharply toward the 18 m and 16 m layers before dropping 

in the 14 m layer. However, the LAI in the bottom layer (12 m) increased again 

compared to the 14 m layer. LA, LT, CHL, EWT and LMA had similar vertical 

distributions, where large values were found for the top sunlit leaves (the top two 

layers), but decreased sharply toward the middle layers (14–16 m) and the bottom 

leaves, which had the lowest values. On the other hand, leaf size was smallest in the 

top sunlit leaves (the top two layers) but increased sharply in the 16 m layer before 

decreasing toward the bottom two layers (14–12 m).  

 

Leaf reflectance spectra of the 14 m layer had the highest values in almost all wave 

bands. The bottom layer (12 m) had the lowest reflectance in near-infrared bands, 

while the spectra of the top two layers (sunlit leaves) depicted the lowest values in the 

SWIR (short wave infrared range) bands (Fig. 4.2(d)). In comparison to leaf 

reflectance, canopy reflectance had similar patterns but with much lower values at 

almost all wavelengths. 

4.3.2 Model validation 

As the leaf scale reflectance of MRTM was based on the PROSPECT model, it was 

first calibrated and validated by measured leaf reflectance data. The PROSPECT 

model can simulate the beech leaf reflectance accurately at most wavelengths except 

in the NIR domain (800–1000 nm), in which the simulated reflectance was apparently 

higher than the measured one (Table 4.4). RMSE, BIAS and RE of the simulated 

reflectance in the entire domain of wavelengths were 0.0315, 0.0174 and 11.22%, 

respectively. By comparison, they were 0.0512, 0.0502 and 11.06%, respectively, 

within the domain of NIR (Table 4.4). 
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Fig. 4.2 Vertical variation of biophysical and biochemical parameters and the corresponding leaf 

and canopy reflectance 

 

Validation of MRTM was carried out in two modes: the first mode grouped the 

canopy into only one layer (treated the canopy as being homogeneous), while the 

second mode separated the canopy into five layers. The results showed that simulated 

canopy reflectance was much higher than measured reflectance within entire 

wavebands with the one-layer model, where its RE reached 26.80% and 25.19% for 

the entire wavelength domain (400–2400 nm) and the NIR domain (800–1000 nm), 

respectively. However, canopy reflectance can be accurately simulated with five layer 

models, and the results indicated that there were obvious deviations only at 800–1000 

nm. The relative error was only 10.16% for the entire wavelength domain and 10.46% 

in the NIR domain (800–1000 nm) (Table 4.4). 

 
Table 4.4 Evaluation of the errors of the modeled reflectance with different models based on the 

field measured dataset 

 

  400~2400 nm 800~1000 nm 

 Model RMSE BIAS RE (%) RMSE BIAS RE (%) 

Canopy 

MRTM5 0.0209 0.0084 10.16 0.0404 0.0385 10.46 

MRTM1 0.0551 0.0439 26.80 0.0973 0.0869 25.19 

PROSAIL 0.0445 0.0335 21.64 0.0776 0.0759 20.09 

ACRM 0.0314 0.0201 15.27 0.0517 0.0503 13.38 

FRT 0.0277 0.0157 13.47 0.0448 0.0432 11.60 

Leaf PROSPECT 0.0315 0.0174 11.22 0.0512 0.0502 11.06 

 

Additionally, three widely used canopy models (PROSAIL, ACRM and FRT) were 

also validated using the same dataset (Fig. 4.3). The result clearly showed that MRTM 

in the five-layer mode gave the best simulation accuracy among all validated models. 

(a) (b) 

(c) (d) 
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Performances of the other three models were within those of MRTM in the five-layer 

mode and one-layer mode, as the RE was estimated to be 21.64%, 15.27% and 13.47% 

for PROSAIL, ACRM and FRT, respectively. 

 

 
 

Fig. 4.3 Measured and simulated canopy reflectance using two modes (NL=1 and 5) MRTM, 

PROSAIL, ACRM, and FRT 

4.3.3 Sensitivity analysis of canopy reflectance with biophysical and biochemical 

properties 

The performance of MRTM was tested when the canopy was divided into different 

vertical layers (from one to seven layers) under three different total LAI levels (LAI = 

1, 3 and 6, respectively). The simulated directional reflectance of the entire optical 

domain and the angular distribution of the NIR reflectance are plotted in Fig. 

4.4(a)–(f). As shown in Fig. 4.4, discrepancies of simulated reflectance using different 

canopy layers were found mostly in the NIR and SWIR domains, especially within the 

domain from 800 to 1400 nm. Homogeneous canopy (NL = 1) had the highest 

simulated reflectance, and reflectance values decreased gradually as the number of 

layers increased. Meanwhile, as the number of layers increased, the difference in 

reflectance between neighboring layers (the n and n + 1 layer) decreased gradually. 

When the canopy LAI was small (e.g. LAI = 1), the difference in reflectance 

simulated by different layers was small (there was a minor change in simulated 

reflectance when the number layers was greater than three), whilst there were large 

discrepancies with larger LAI, where the number of the layers had to range between 

five and seven for the difference in simulated reflectance to be non-significant. 

 

For angular distribution of canopy reflectance, the hot spot was sharpest in all the 

simulated angular distributions of NIR reflectance. This was apparent, as more shade 

was visible and fewer photons could escape from the canopy if the view direction did 

not coincide with the sun’s rays. Similar to directional reflectance, the angular 

distribution of NIR reflectance simulated by MRTM with different numbers of 

canopy layers was also different, especially when the view angle was on the left side 

of the hot spot. And when LAI was larger, the difference was also larger (Fig. 4.4). 
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Fig. 4.4 (a)-(c) Simulated reflectance in the optical domain and (d)-(f) angular distribution at the 

NIR reflectance with LAI of 1, 3, 6, respectively. The canopy layers NL was varied from 1 to 7. 

 

Fig. 4.5 shows simulated scenarios of reflectance and angular distribution with three 

exemplary vertical profiles of the main biophysical and biochemical parameters (LAD, 

CHL, EWT and LMA) within a canopy. For scenarios with three different LAD 

vertical profiles (termed LAD1, LAD2 and LAD3, respectively), LAD1 (the canopy 

top with the largest LAD) had the largest reflectance and LAD2 had the lowest 

reflectance, while the reflectance of LAD3 (the LAD was constant for all vertical 

layers) was in the middle. Reflectance discrepancies between the three LAD vertical 

profiles were significant in the NIR and SWIR domains, especially at 800–1400 nm. 

The reflectance of LAD3 was closer to the reflectance of LAD2 than that of LAD1. 

 

For three exemplary CHL vertical profiles, averaged CHL values of the entire canopy 

were set to be the same (60 µg cm
−2

). However, simulated canopy reflectance showed 

large differences in VIS domain. Especially for CHL2, simulated reflectance values 

were much higher than those of the other two CHL vertical profiles, with CHL1 

having the lowest reflectance values. Similar tendencies were found for the simulated 

canopy reflectance for the three LMA and EWT vertical profiles, except that the 

largest difference in reflectance was found in 800–1400 nm domain for different 

LMA vertical profiles and in 1400–1900 nm domain for EWT vertical profiles. 

(b) (a) 

LAI=1 
LAI=1 

LAI=3 
(c) 

LAI=3 
(d) 

(e) (f) 
LAI=6 

LAI=6 
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All simulated angular distributions for different vertical profiles of LAD, CHL, LMA, 

and EWT exhibited similar patterns, with apparent effects of different vertical profiles. 

The angular distribution of reflectance at 550 nm changed tremendously between the 

three different vertical profiles for the case of CHL especially, followed by EWT and 

LMA. As a comparison, different LAD vertical profiles had the least effect on the 

angular distribution among the four parameters, although the effects were different for 

different wavebands. 

 

 

 

 

 
 
Fig. 4.5 Simulated reflectance and angular distribution with different vertical profile of 

biophysical and biochemical parameters (LAD, CHL, EWT, LMA) in the canopy. The model 

parameters LAI=3, and canopy layers NL=7. 
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4.4 Discussion 

4.4.1 Multiple-layer canopy radiative transfer model 

Field measurements indicated that apparent large vertical variations of most 

biophysical and biochemical properties existed, which has been well recognized and 

highlighted in many studies (e.g. Barton, 2000; Ciganda et al., 2008; Dwyer et al., 

1992; Valentinuz and Tollenaar, 2004; Wang and Li, 2012; 2013a; 2013b). This is 

one of the main reasons why we developed the MRTM in order to cover the natural 

phenomena. On the other hand, such a model may help to effectively retrieve the 

vertical distribution of biophysical and biochemical parameters inversely. 

 

MRTM rooted from ACRM or otherwise can be called a multiple-layer ACRM. 

However, it is more than a simple loop for accumulating reflectance from infinite n 

homogeneous layers, since it contains explicit descriptions of variations in both 

biophysical and biochemical properties within a canopy. Besides MRTM5 (five 

layers), three other canopy models (PROSAIL, ACRM and FRT) and MRTM1 (one 

layer) were also validated using the same measured dataset. The results showed that 

the other three models (PROSAIL, ACRM and FRT) had similar levels of estimation 

accuracy and performed better than MRTM1, indicating an inferior performance of 

the newly developed MRTM1 when using the mean values of the biophysical and 

biochemical parameters within a canopy for simulating canopy reflectance. Simulated 

canopy reflectance was generally above that of MRTM5 and field measurement data 

when using other canopy reflectance models (Fig. 4.5). An apparent reason was that 

they applied mean values of the biophysical and biochemical parameters within a 

canopy for simulation. MRTM5 not only performed better than MRTM1 but also 

performed better than the other three models, clearly indicating that large vertical 

variations in the biophysical and biochemical properties of vegetation had 

non-negligible influences on the canopy’s optical properties. Therefore, the 

multiple-layer canopy model proposed in this study has gone further to a certain 

extent than the other canopy models with homogeneous canopy such as PROSAIL, 

ACRM and FRT.  

 

When validated with the field measurement dataset, the canopy reflectance simulated 

by MRTM in the five-layer mode was found to be of the same order as measured data 

in the entire waveband. However, it was also apparent that simulated reflectance 

values in the NIR domain (800–1000 nm) were systematically above the measured 

reflectance, with an RE of 10.46%. Similar gaps were found in other canopy 

reflectance models as well (Kuusk et al., 2010; Widlowski et al., 2007). This 

deviation may have partially resulted from the simulated leaf reflectance of the leaf 

reflectance sub-model (PROSPECT), which was systematically higher than the 

measured data within the NIR region. The other most probable reason is that the 

measured spectrum shows the influence of woody material (Asner, 1998). However, 

none of these models have described the influence of woody material on the canopy 

spectrum very well, which, as pointed out by Verhoef and Bach (2007), should be 

addressed in the radiative transfer models. This deficiency will be enhanced in future 

with both spectral measurements of woody elements in situ and corresponding model 

simulations. 
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Alternatively, there are some 3-D simulation models based on true 3-D canopy 

structures (Cote et al., 2009; Pinty et al., 2004; Widlowski et al., 2006, 2007) 

available to simulate canopy reflectance, which are supposed to have greater strength 

in explaining the heterogeneity of the canopy. Even so, the multiple-layer model has 

several advantages over these 3-D models: one is that the 3-D simulation models are 

much more complex and require the input of many geometrical and structural 

parameters which are very difficult to measure and obtain, and consequently these 

models are ineffective for wide application. The multiple-layer model is much simpler 

than the 3-D models, as it only requires vertical profiles of the main biophysical and 

biochemical parameters within a canopy, which are generally widely monitored in 

ecophysiological studies. In addition, such a multiple-layer reflectance model may 

generally be applied not only for canopy reflectance simulation but also for 

effectively retrieving parameters and their vertical distributions inversely. Moreover, 

the MRTM proposed in this study considered not only the heterogeneity of 

biophysical parameters but also the heterogeneity of biochemical parameters within a 

canopy, an aspect that is usually lacking in most current 3-D models. As a result, 

MRTM obtained a simulation accuracy that was similar to that of 3-D models but 

with a calculation speed close to those of the SAIL and ACRM models. This 

improvement is crucial especially in real-time calculations and in solving inverse 

problems when numerous calculations by the model are necessary. 

4.4.2 Effects of vertical profiles of vegetation properties on canopy reflectance 

Leaf scale reflectance exhibited tremendous variations within a canopy, which 

corresponded to the vertical changes of biophysical and biochemical parameters. As 

noted from the field measurement dataset, leaf scale reflectance spectra reached the 

highest reflectance values in almost all wavebands. In addition, the leaves in the 14 m 

layer had relatively low LAD and biochemical properties (CHL, EWT and LMA) 

compared with other layers. The bottom layer (12 m) had the lowest reflectance 

values in the near-infrared bands since it had the largest LAD. The spectra of the top 

two layers (sunlit leaves) showed the lowest values in the SWIR bands as they had the 

largest LMA and EWT contents (Fig. 4.2(d)). Since canopy reflectance contains all 

contributions from leaves within the canopy, it was expected to be sensitive to the 

variations in biophysical and biochemical parameters but in a very complex way 

because the contributions from different layers differed from the overall reflectance. 

 

The performance of MRTM with different numbers of layers is clearly illustrated in 

Fig. 4.4. The results suggest that it is essential to consider vertical changes in 

parameters across several layers in canopy reflectance simulation, especially with 

large canopy LAI, which may otherwise result in large deviations. As a rough 

estimation, when the total canopy LAI is small (<1), grouping the canopy into three 

vertical layers is sufficient; if the total LAI is larger than that, it should be set at five 

to seven layers. 

 

Under the same total canopy LAI, simulated reflectance was different with different 

LAD vertical profiles. The results showed that simulated reflectance values were 

largest in the case of the vertical distribution of LAD at LAD1, which was followed 

by LAD3, while the lowest value was found in the case of LAD2. This is primarily 

because when the leaves are mostly in the upper layers (LAD1), less radiation goes 
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through to the lower layers, and hence less energy is absorbed, resulting in higher 

reflectance. The opposite reason can explain why LAD2 had the lowest reflectance 

value. The simulated reflectance of LAD3 was closer to the reflectance of LAD2 than 

that of LAD1. 

 

For three biochemical parameters (CHL, EWT and LMA), similar tendencies of 

simulated canopy reflectance were obtained for three vertical profiles. The simulated 

reflectance values of the vertical profiles were found to follow the order (from high to 

low) CHL2 > CHL3 > CHL1 in the VIS bands, while EWT2 > EWT3 > EWT1 

mostly in the SWIR bands, and LMA2 > LMA3 > LMA1 in both the NIR and SWIR 

bands. This was primarily because canopy reflectance contains more information on 

upper layers than lower layers, since CHL2 for leaves in the top had the lowest CHL 

content and hence led to the highest reflectance in the VIS bands, and the same reason 

applied to EWT and LMA. 

 

Generally, vertical profiles of almost all the biophysical and biochemical properties 

will affect canopy directional reflectance and its angular distribution. The effect of the 

CHL vertical profile on canopy reflectance is in the VIS domain, while the effect of 

EWT is mainly in the SWIR domain, the effect of LMA is mainly in the NIR and 

SWIR domains, and the effect of LAD is mainly in the NIR domain. On the other 

hand, the same canopy reflectance curve may have resulted from different 

combinations of these parameters with different vertical profiles even with the same 

averaged values within the canopy. Fig. 4.6 presents examples of some very close 

reflectance curves simulated by the model with different total values and different 

vertical profiles of LAI, CHL, LMA or EWT parameters. This indicated that if canopy 

parameters are retrieved without considering the vertical variations, large errors might 

be presented in the results. Thus, investigating the vertical variations of the main 

biophysical and biochemical parameters and including such information in the canopy 

scale reflectance model is critical.  

 

Application of radiative transfer models involves using these models to retrieve 

biophysical and biochemical parameters inversely. For the MRTM, it can be used to 

inversely retrieve the vertical profiles of such parameters at a scale closer to that of a 

real canopy. The model inversion process generally faces the well known “ill-posed” 

problem: when searching for the most similar simulated spectrum to an observed 

spectrum, a wide range of values can be retrieved, since very similar reflectance 

spectra can be obtained from very different combinations of input parameters 

(Combal et al., 2002; Li and Wang, 2011; Wang et al., 2007; Yebra and Chuvieco, 

2009). Inversion of MRTM not only faces the “ill-posed” problem caused by different 

parameters (e.g. LMA and EWT) but may also result from the same parameter with 

different vertical profiles (e.g. in Fig. 4.6, different vertical variations of fixed 

parameters can result in similar outputs of canopy reflectance). One approach to 

solving the “ill-posed” problem is to use prior information obtained from in situ 

measurements (Combal et al., 2002). However, for those areas that lack in situ data it 

may be necessary to develop a new inversion algorithm for the canopy scale as in Li 

and Wang (2011) for leaf scale, in order to alleviate the “ill-posed” problem caused 

by the vertical variations of parameters. This will be explicitly addressed in future 

studies. 
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Fig. 4.6. Examples of close reflectances simulated with different total (mean) contents and vertical 

profiles of LAD, CHL, EWT, and LMA. Number of canopy layers NL = 5, layer depth H = 2 m. 

LAD4 = {0.25, 0.75, 0.75, 0.75, 0.25}, total LAI = 5.5 m
2
 m

−2
; LAD5 = {0.9, 0.5, 0.25, 0.2, 0.05}, 

total LAI = 3.8 m
2
 m

−2
; LAD6 = {0.5, 0.5, 0.5, 0.5, 0.5}, total LAI = 5 m

2
 m

−2
; CHL4 = {40, 60, 

60, 40, 30}, mean CHL = 46 µg cm
−2

; CHL5 = {80, 40, 20, 20, 10}, mean CHL = 34 µg cm
−2

; 

CHL6 = {50, 50, 50, 50, 50}; mean CHL = 50 µg cm
−2

; EWT4 = {0.006, 0.01, 0.007, 0.005, 

0.005}, mean EWT = 0.007 g cm
−2

; EWT5 = {0.01, 0.007, 0.004, 0.003, 0.001}, mean EWT = 

0.005 g cm
−2

; EWT6 = {0.0085, 0.0085, 0.0085, 0.0085, 0.0085}, mean EWT = 0.0085 g cm
−2

; 

LMA4 = {0.005, 0.008, 0.008, 0.005, 0.004}, mean LMA = 0.006 g cm
−2

; LMA5 = {0.01, 0.008, 

0.004, 0.002, 0.001}, mean LMA = 0.005 g cm
−2

; LMA6 = {0.007, 0.007, 0.007, 0.007, 0.007}; 

mean LMA = 0.007 g cm
−2

. 

4.5 Conclusion 

A canopy scale radiative transfer model (MRTM) that addresses vertical 

heterogeneity of biophysical and biochemical parameters within the canopy has been 

proposed. Model simulations indicated that accounting for the multiple-layer structure 

of canopy is a prerequisite for canopy scale reflectance simulations. If the optical 

properties of plants within different layers are different, substitution of the 

multiple-layer canopy by a homogeneous canopy of effective optical properties may 

lead to significant biases in estimated directional reflectance. Validation of MRTM 

based on field data proved that it reproduced the measured reflectance more 

“truthfully” when five layers were used instead of one layer in this model and several 

other CR models. More field measurement datasets with long-term series, various 

species, and varying canopy structures with numerous vertical profiles as well as 

properties may be needed to validate the new model in future. 
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Chapter 5 Canopy scale applications: hyperspectral indices for LAI 

estimation 

Abstract  

Leaf area index (LAI) is one of the key biophysical parameters for understanding land 

surface photosynthesis, transpiration, and energy balance processes. Estimation of 

LAI from remote sensing data has been a premier method for large scale in recent 

years. Recent studies have revealed that the within-canopy vertical variations in LAI 

and biochemical properties greatly affects canopy reflectance and significantly 

complicates the retrieval of LAI inversely from reflectance based vegetation indices, 

which has never been explicitly addressed. In this study, we have used both simulated 

datasets (dataset I with constant vertical profiles of LAI and biochemical properties, 

dataset II with varied vertical profile of LAI but constant vertical biochemical 

properties, and dataset III with both varied vertical profiles) generated from the 

multiple-layer canopy radiative transfer model (MRTM) and a ground-measured 

dataset to identify robust spectral indices that are insensitive to such within canopy 

vertical variations for LAI prediction. The results clearly indicated that published 

indices such as normalized difference vegetation index (NDVI) had obvious 

discrepancies when applied to canopies with different vertical variations, while the 

new indices identified in this study performed much better. The best index for 

estimating canopy LAI under various conditions was D(920,1080), with overall 

RMSEs of 0.62~0.96 m
2
/m

2
 for all three simulated datasets and 1.22 m

2
/m

2
 with the 

field-measured dataset. This index responded mostly to the quantity of LAI but was 

insensitive to within-canopy variations, allowing it to aid the retrieval LAI from 

remote sensing data without prior information of within-canopy vertical variations of 

LAI and biochemical properties.  

5.1 Introduction 

Leaf area index (LAI) is a critical parameter for understanding biological and physical 

processes associated with vegetation, and a premier-required input in ecosystem 

productivity models (Bonan, 1993; Colombo et al., 2003; Liu et al., 1997). Generally, 

it is defined as one half of the total surface leaf area of the vegetation per unit area of 

soil (background) surfaces (Chen and Black, 1992). In-situ measurements of LAI can 

be time-consuming, expensive and often unfeasible, which leads to the striking 

possibility of using remote sensing data to estimate LAI (Wang et al., 2005). Recent 

developments in hyperspectral remote sensing and imaging spectrometry fields have 

allowed new ways for quick estimation of vegetation LAI. 

 

A common approach of estimating LAI from remote sensing data has been the 

reliance on vegetation indices based on the relationship between field-measured LAI 

and spectral reflectance. As a result, a large number of vegetation indices have been 

established (Haboudane et al., 2004), e.g. the Normalized Difference Vegetation Index 

(NDVI, Thenkabail et al., 2000), Ratio Vegetation Index (RVI, Stenberg et al., 2004), 

Modified Simple Ratio (MSR, Chen, 1996), Modified Chlorophyll Absorption Ratio 

Index (MCARI, Haboudane et al., 2004), Triangular Vegetation Index (TVI, Broge 
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and Leblanc, 2001), Modified TVI (MTVI, Haboudane et al., 2004), Modified 

Soil-Adjusted Vegetation Index (MSAVI, Qi et al., 1994), and DLAI (le Maire et al., 

2008). These indices can be parameterized easily and have a known precision in 

certain studies. However, they all have apparent shortcomings since their calibration 

depends on particular experimental datasets. Whatever the index, its success depends 

preliminarily on the quality of the training dataset, the selection of the wavelengths 

and the availability of independent datasets for validation (le Maire et al., 2008). 

Various factors such as atmospheric quality, vegetation types, leaf biochemical 

properties, understory vegetation, and background soil reflectance, will all affect 

canopy scale reflectance and thus blur the generality and significance of the 

vegetation indices relationships with LAI, making them difficult for generalized 

application to large areas. Among them, some factors have been demonstrated in 

numerous studies already (e.g. Broge and Leblanc, 2001; Chen and Cihlar, 1996; 

Colombo et al., 2003; Gitelson et al., 2005), while others have yet to be addressed and 

studied sufficiently. These unaddressed factors include vertical variations of LAI and 

biochemical properties within the canopy, which presented large impacts on canopy 

scale reflectance as revealed in a recent study (Wang and Li, 2013a).  

 

The main reason for the lack of studies on the effects of vertical variations of LAI and 

biochemical properties within canopy is due to the scarce availability of field 

measurements as well as lack of radiative transfer modeling that deals with such 

within canopy variations. In recent past, a multiple-layer canopy reflectance model 

(MRTM) has been developed to embrace such within canopy variations of biophysical 

and biochemical properties (Wang and Li, 2013a). Based on this model, the vertical 

variations of LAI and leaf biochemical properties have been clearly demonstrated to 

greatly affect canopy scale reflectance, e.g. canopy reflectance changed greatly with 

the same amount of total LAI but under different vertical distributions, which was 

also true with other biochemical components (e.g. leaf chlorophyll, equivalent water 

thickness, leaf mass per area). Therefore, in this study we will challenge the effect of 

within canopy vertical variations of LAI and biochemical components on their 

effectiveness, robustness and estimating accuracy of LAI with various vegetation 

indices.  

 

We based the current study on three simulated datasets generated from the 

multiple-layer canopy reflectance model (MRTM) as well as one field-measured 

dataset. In this study, simulated datasets were used to identify potential robust indices 

for LAI, which were then validated against the field-measured dataset containing 

seasonal change of LAI in four sites of a typical cold-temperate mountainous 

landscape in Japan. Such approach of using simulated datasets from radiative transfer 

models is a popular and advanced way of allocating effective and general vegetation 

indices developed in recent years (le Marie et al., 2004; 2008; Wang and Li, 2012). 

Since the effect of variation in biophysical and biochemical properties on canopy 

reflectance are explicitly through canopy reflectance models (Asner, 1998), such 

approach has many advantages. They include: most canopy properties can be 

represented in detail (via thousands of spectra); the influence of a specific property 

can be decoupled from others; and the effect of a particular property on the spectra is 

based on physical and physiological processes. As a result, well established indices 

obtained through such a large simulated database may potentially be applied to a wide 

range of spectra. However, it is worth noting that the accuracy of the approach relies 

on the capacity of applied radiative models to correctly simulate canopy reflectance 
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under various conditions. Thus, it is essential to validate such indices with 

experimental measurements.  

 

The objective of this chapter is to develop a potentially general and robust vegetation 

index that is insensitive to within canopy vertical variations of LAI and biochemical 

components for estimating LAI. We described the multiple-layer canopy radiative 

transfer model (MRTM) simply at first for generating simulated datasets as well as 

experimental protocols for field measurements. Then, we validated reported spectral 

indices from precious studies and proposed the method of designing and 

determination of new types of indices. The newly identified indices were then 

validated with simulated and measured datasets. 

5.2 Material and methods 

5.2.1 Simulated datasets 

Three simulated datasets have been generated via the multiple-layer model MRTM 

using the 5 vertical-layer mode, as previous studies revealed that 5-layer mode can 

cover large LAI for accurate reflectance simulation (Wang and Li, 2012a). A detailed 

description of this model can be referred to Wang and Li (2012a). Among the three 

datasets, dataset I was generated with the model when both LAI and biochemical 

properties distributions were treated identically along canopy vertical profile, while 

dataset II was generated from simulations with various vertical profiles of LAI but 

with constant vertical distribution of biochemical properties along the canopy. For 

comparison, dataset III was generated with considerations of vertical changes of LAI 

and biochemical properties along the canopy. Parameter settings for generating these 

datasets are presented in Table 5.1, where reflected spectra were simulated for every 

combination of these parameters within the input ranges. To ensure that representative 

results are obtained, a uniform distribution was set for each varying parameter, so that 

a reflectance spectrum obtained with extreme parameter values had the same weight 

as other spectra on the indices' calibration procedure. However, some parameters have 

been treated as constants (see Table 5.1 legend). In order to reproduce the observed 

radiometric noise of real measured reflectance in the simulations, a random noise was 

added to each spectrum of both databases (leaf and canopy). This step is important for 

eliminating noise sensitive indices and indices with artificially close wavelengths (le 

Maire et al., 2004). An additive random Gaussian noise with a standard deviation of 3% 

of reflectance amplitude has been applied on all wavelengths of each reflectance 

spectrum of the simulated datasets in this study.  

5.2.2 Field-measured dataset 

The field measured dataset has been compiled from synchronous measurements of 

leaf biophysical and biochemical parameters, as well as leaf and canopy reflectance in 

the Naeba site. Detail description of the measured dataset can see chapter 1.3.3. The 

sampling number, corresponding means and the range of the measurements in the 

dataset are listed in Table 5.1. The measurements on contents of pigments, leaf water, 
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leaf dry matter, leaf thickness, leaf angle, and leaf size were used (1) as reference for 

determine the ranges of these parameters for simulated datasets and (2) to prove the 

big vertical variation exist within canopy. The canopy reflectance measurement was 

used to calculate spectral indices for estimating LAI, and LAI measurement was used 

to evaluate the estimating accuracy. 

 

Table 5.1 Main Characteristics of the measured dataset and parameters used to build the three 

simulated datasets (other parameters are constant in the model: Canopy layers=5; mean leaf 

angle=60˚; leaf size=40 cm2; view nadir angle=0˚; Ratio of refraction indices of leaf wax and 

air=0.9). 

 

Dataset Measured Simulated I Simulated II Simulated III 

Number of samples 83 9800 102900 1190700 

Vertical layers 5 5 5 5 

Spectroradiometer ASD FieldSpec MRTM MRTM MRTM 

CHL 

(µg/cm
2
) 

Mean 41.40 60 60 60 

Min 13.94 10 10 10 

Max 69.10 110 110 110 

Vertical 

variation 

32% vertical 

variation 

Vertical 

constant 

Vertical 

constant 

Various vertical 

profiles 

LMA (g/cm
2
) 

Mean 0.007 0.011 0.011 0.011 

Min 0.002 0.002 0.002 0.002 

Max 0.012 0.02 0.02 0.02 

Vertical 

variation 
38% 

Vertical 

constant 

Vertical 

constant 

Various vertical 

profiles 

EWT (g/cm
2
) 

Mean 0.008 0.014 0.014 0.014 

Min 0.002 0.004 0.004 0.004 

Max 0.016 0.024 0.024 0.024 

Vertical 

variation 

36% vertical 

variation 

Vertical 

constant 

Vertical 

constant 

Various vertical 

profiles 

Nstuc 

Mean - 1.7 1.7 1.7 

Min - 1.1 1.1 1.1 

Max - 2.3 2.3 2.3 

Vertical 

variation 
- 

Vertical 

constant 

Vertical 

constant 

Various vertical 

profiles 

LAI (m
2
/m

2
) 

Mean 2.84 4 4 4 

Min 0.60 0.3 0.3 0.3 

Max 5.03 7 7 7 

Vertical 

variation 

42% vertical 

variation 

Vertical 

constant 

Various vertical 

profiles 

Various vertical 

profiles 

5.2.3 Published indices for estimating LAI 

A wide range of vegetation indices has been reported to estimate vegetation LAI 

where most of them are based on ratios or normalized ratios. In this study, eight 

reported indices from a literature review were selected and validated with our 

simulated and experimental datasets. The selected indices are listed in Table 5.2. For 

each index, an exponential regression is fitted between index values and LAI to be 

predicted. 
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Table 5.2 Published spectral indices for retrieval LAI 

 

Spectral index Acronym Formula Reference 

Normalized difference 

vegetation index 
NDVI 

         

         
 

Thenkabail et al., 

2000 

Ratio vegetation index RVI           
Stenberg et al., 

2004 

Modified Simple ratio MSR  
    

    
     

    

    
   Chen, 1996 

Modified soil-adjusted 

vegetation index 
MSAVI 

 

 
          

                           
Qi et al., 1994 

Modified Chlorophyll 

absorption ratio index 
MCARI 1.2[2.5(R800−R670)−1.3(R800+ R550)] 

Haboudane et al., 

2004 

Triangular vegetation 

index 
TVI 0.5[120(R750− R550)−200(R670+ R550)] 

Broge and 

Leblanc, 2001 

Modified TVI MTVI 1.2[1.2(R800−R550)−2.5(R670+ R550)] 
Haboudane et al., 

2004 

D type LAI index DLAI            
le Maire et al., 

2008 

5.2.4 New indices 

Four common types of indices based on spectrum reflectance have been designed for 

this study, ranging from very simple (R) to more sophisticate ones (ND) as given 

below:  

              

                     

                      

                                  

Where R is reflectance, D is the difference of reflectance, SR is the simple ratio of 

reflectance, ND is the normalized difference of reflectance, and λ1 and λ2 are 

wavelengths.  

 

The determination of specific wavelengths (λ1, λ2) of the four indices is performed by 

examining all possible combinations of wavelengths (λ1, λ2) from 400 ~ 2500 nm. For 

each combination, index values are calculated for each spectrum of datasets. An 

exponential regression is fit between index values and LAI to be predicted. The root 

mean square error (RMSE) used in this study is commonly applied to compare indices 

with different wavebands. For a given type of index, the best combination of 

wavelengths should have the lowest RMSE. 

 

Further revelation of the sensitivity of each identified index to spectral bands was 

carried out by constructing a 2-D graphical representation of RMSE for indices using 

two reflectance values in two wavelengths (Rλ1 and Rλ2). The RMSE calculated for 

each index is represented by a two dimensional contour plot with axes λ1 and λ2. This 

representation has several advantages, one being that the absolute minimum be seen 

directly, and also that the extent of the local minimum area can be easily evaluated. In 

addition, all local low RMSE zones are visible, with their respective RMSE values. 

Other studies have also applied such representations where the R-squared of the fitted 
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relationship is used instead of the RMSE (Hansen and Schjoerring, 2003). RMSE is 

specifically fitted within our purpose because it shows the precision of the index 

directly, and it is the best statistic to evaluate the error associated with the index 

model (le Maire et al., 2008). 

 

Summarily, the determination of best indices consisted of four steps: (1) 

determination of the best wavelength for a given type of index, (2) determination of 

the index vs. LAI regression curve, (3) validation of each index using the 

field-measured dataset, and (4) trade-off results of simulated and measured datasets 

before final outputting the best index for estimating LAI.  

5.2.5 Evaluation of spectral indices 

About 30% of the total spectra randomly selected from each dataset were used to 

determine the best new spectral indices as described in 2.4, and the other 70% were 

used to evaluate these spectral indices on LAI estimating. The root mean square error 

(RMSE) and bias (BIAS) were chosen to evaluate the performance of each spectral 

index.  

 

To find the spectral index that insensitive to vertical variation of LAI and biochemical 

properties within canopy is the ultimate purpose of this study. In order to evaluate the 

effects of these vertical variations on reflectance and corresponding indices, nine 

different scenarios of reflectance and corresponding new spectral indices and typical 

published index NDVI with three exemplary vertical profiles (LAI, CHL, EWT, and 

LMA) were examined. Three types of vertical profiles (termed as vertical profile I, II, 

and III, respectively, hereafter), which were constantly distributed within canopy 

(Profile I), or increased from top to bottom of the canopy (Profile II), or decreased 

from top to bottom (Profile III) were included for simulations. The detailed settings 

for all nine simulated scenarios (S1~S9) are listed below. S1 was a part of simulated 

dataset I, S1~S3 were contained in simulated dataset II, and S1~S9 were all contained 

in simulated dataset III. 

 

S1: LAI with vertical profile I; CHL, EWT, and LMA all with vertical profile I;  

S2: LAI with vertical profile II; CHL, EWT, and LMA all with vertical profile I; 

S3: LAI with vertical profile III; CHL, EWT, and LMA all with vertical profile I; 

S4: LAI with vertical profile I; CHL, EWT, and LMA all with vertical profile II; 

S5: LAI with vertical profile I; CHL, EWT, and LMA all with vertical profile III; 

S6: LAI with vertical profile II; CHL, EWT, and LMA all with vertical profile II; 

S7: LAI with vertical profile II; CHL, EWT, and LMA all with vertical profile III; 

S8: LAI with vertical profile III; CHL, EWT, and LMA all with vertical profile II; 

S9: LAI with vertical profile III; CHL, EWT, and LMA all with vertical profile III. 
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5.3 Results 

5.3.1 Published indices 

Eight reported indices were examined with both simulated and field measured 

datasets in this chapter (Table 5.3). Results based on simulated datasets revealed that 

the Triangular Vegetation Index (TVI) and modified TVI (MTVI) had the worst 

performance among the eight indices, both with RMSEs of 1.82~1.84 m
2
/m

2
 and 

BIASs of 1.55~1.57 m
2
/m

2
 for all three simulated datasets. The Normalized 

Difference Vegetation Index (NDVI), Ratio Vegetation Index (RVI), Modified Simple 

Ratio (MSR), and Modified Chlorophyll Absorption Ratio Index (MCARI) performed 

similarly, with RMSEs in the range of 1.53~1.63 m
2
/m

2
 and BIASs of 1.27~1.38 

m
2
/m

2
 for all three simulated datasets. The Modified Soil-adjusted Vegetation Index 

(MSAVI) performed better than the above six indices, with RMSEs of 1.20~1.24 

m
2
/m

2
 and BIASs of 1.06~1.09 m

2
/m

2
 for the three simulated datasets. The best index 

among the eight indices was found to be DLAI, a D type index devised by le Maire et 

al. (2008). The RMSEs of DLAI were 0.80, 0.94 and 1.09 m
2
/m

2
 and BIASs were 0.66, 

0.69 and 0.72 m
2
/m

2
 for the simulated datasets (I, II, and III), respectively. When the 

eight indices were validated against the measured dataset, they all had similar 

performance (with RMSEs of 1.42~1.47 and BIASs of 1.00~1.07 m
2
/m

2
) except the 

DLAI index (with an RMSE of 1.36 and BIASs of 0.87 m
2
/m

2
). 

 
Table 5.3 Results of the eight published vegetation indices calibrated to the three simulated 

datasets and measured dataset.  

 

Index 

type 

Regression 

y=e
a+bx

 

Simulated dataset Measured 

dataset I II III 

a b RMSE BIAS RMSE BIAS RMSE BIAS RMSE BIAS 

NDVI 2.06 0.12 1.61 1.37 1.62 1.37 1.63 1.38 1.42 1.00 

RVI -4.40 10.16 1.59 1.33 1.59 1.33 1.61 1.35 1.47 1.07 

MSR 1.04 0.86 1.57 1.31 1.58 1.32 1.59 1.33 1.45 1.05 

MSAVI -3.56 3.44 1.20 1.06 1.22 1.07 1.24 1.09 1.45 1.03 

MCARI 1.63 6.70 1.53 1.27 1.54 1.28 1.56 1.30 1.46 1.05 

TVI 3.59 0.10 1.82 1.56 1.82 1.56 1.84 1.57 1.47 1.06 

MTVI 3.65 3.03 1.82 1.55 1.82 1.55 1.83 1.56 1.47 1.07 

DLAI -0.88 -25.59 0.80 0.66 0.94 0.69 1.09 0.72 1.36 0.87 

 
Table 5.4 Results of the four types of spectral indices calibrated to the simulated dataset and 

measured dataset.  

 

Index 

type 

λ1 

(nm) 

λ2 

(nm) 

Regression 

y=e
a+bx

 

Simulated dataset 
Measured dataset 

I II III 

a b RMSE BIAS RMSE BIAS RMSE BIAS RMSE BIAS 

R 940  -1.21 5.45 1.56 1.14 1.63 1.16 1.86 1.20 1.49 1.11 

D 920 1080 1.05 53.24 0.62 0.42 0.85 0.47 0.96 0.55 1.22 1.01 

SR 900 1080 -19.32 20.68 0.75 0.54 0.87 0.58 1.01 0.63 1.29 1.04 

ND 900 1080 1.37 40.27 0.76 0.55 0.86 0.58 1.02 0.63 1.28 1.03 
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5.3.2 New types of indices 

Four types of indices for deriving canopy LAI were examined (Table 5.4). For each 

type of index, the index of wavelength combination with the least RMSE among all 

the three simulated datasets and for the field-based dataset was identified (Table 5.4). 

The results revealed that all the identified best indices had the wavelength 

combinations (λ1 and λ2) within the 900~1100 nm domain. Based on the results of 

RMSE (Table 5.4), the best among all indices for estimating LAI was found to be 

D(920,1080), a D type index (reflectance difference between two wavelengths). It had 

an RMSE of 0.62, 0.85, 0.96, and 1.22 m
2
/m

2
, and a BIAS of 0.42, 0.47, 0.55, and 

1.01 m
2
/m

2
 for simulated datasets I, II, III and the field measured dataset, respectively. 

In fact, it was the most robust index for LAI prediction and was the only one that was 

efficient for both simulated and field measured datasets. This was surprising, since 

most former studies applied the ND type of indices, especially the NDVI (ND800, 680). 

 

 
 
Fig. 5.1 Matrices representing the RMSE of leaf area index (LAI) prediction with D type indices, 
calculations are done on the three simulated datasets and the measured dataset.  
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RMSE matrices were calculated for D type indices for all three simulated datasets and 

measured dataset (Fig. 5.1). Both RMSE matrices of MRTM simulated and measured 

datasets showed similar patterns. D type indices had a minimum zone of RMSE with 

λ1 centered in [900nm, 1000 nm] and λ2 within [1000nm, 1100 nm] for all three 

simulated datasets and field measured dataset. The difference between the four 

datasets laid in that the minimum RMSE zone of the simulated dataset I had the 

largest area with the smallest RMSE values. As a comparison, the measured dataset 

had the smallest area of minimum RMSE zone and with larger RMSE values. In 

addition, the simulated dataset I had two additional minimum RMSE zones, in which 

one had λ1 centered in [900nm, 1300 nm] and λ2 in [1700nm 1800 nm] while the other 

had λ1 centered in [900nm, 1300 nm] and λ2 in [2200nm, 2400 nm], respectively. 

However, these two minimum zones largely vanished in simulated dataset II and III, 

and even disappeared in the measured dataset. On the contrary, RMSE metrics of 

NDVI revealed that this type of indices (i.e. ND800, 680) did not appear as efficient for 

both simulated and measured datasets.  

 

Field measured and set LAI values for reflectance simulations were regressed against 

the D (920, 1080) index (Fig. 5.2). Although most points were distributed near the 

regression line, the regression coefficients apparently differed among the simulated 

and measured datasets since the values from measured dataset were usually located 

above those of the simulated datasets. As noted, the index performed better with 

simulated datasets than with field measured data but remained statistically significant 

(Fig.5. 2).  

 

 
 

Fig. 5.2 Best LAI index calibrated to canopy in situ measurements. 

 

The normalized difference (ND) type and simple ratio (SR) type of indices performed 

similarly both for simulated and field measured datasets with two selected 

wavelengths of 900 nm and 1080 nm. Their RMSEs were nearly 10% larger than 

those of the best D type index (Table 5.4). The reflectance (R) type of index had only 

a single wavelength and was the simplest type among all index types examined. The 
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best R type index, R940, performed rather poorly compared with other types of indices 

examined which had the RMSE nearly twice as large as that of the best D type of 

index. 

5.3.3 Effects of vertical variations on spectral indices 

In order to show the effects of vertical variations of LAI and biochemical properties 

within canopy on reflectance and corresponding indices, nine different scenarios of 

reflectance and corresponding new spectral indices and typical published index NDVI 

with three exemplary vertical profiles (LAI, CHL, EWT, and LMA) were examined. 

As shown in Fig. 5.3, the reflectance spectra of S1~S9 had big difference in the entire 

wavelength domain (400~2400 nm) even though the mean values of three 

biochemical properties and bulk amount of LAI were all kept same for all nine 

scenarios. Results confirmed that the difference of the new spectral indices derived in 

this study D(920,1080), SR(920,1080) and ND(920,1080) among the nine simulated 

scenarios were small (difference among 0.98~1.02), while the variation of the R-type 

index R(940) and the typical published index NDVI(=ND(680,800)) among all 

scenarios were much more apparent. This result was consistent with the accuracy of 

LAI estimation by these spectral indices as shown in Table 5.3 and 5.4. 

 

 
 
Figure 5.3 Nine simulated reflectance samples (above) and their corresponding D(920,1080) and 

NDVI values (below). The model parameters LAI=3 m2/m2, mean CHL=60 µg/cm2, mean 

LMA=0.025 g/cm2, mean EWT=0.025 g/cm2, and canopy layers NL=5. The nine samples 

contained different vertical profiles of LAI and biochemical properties as shown in section 2.5. 

5.4 Discussion 

5.4.1 Effects of vertical variations of LAI and biochemical properties for LAI 

estimation from vegetation indices 

Vertical profiles of both biophysical and biochemical properties are part of the main 

heterogeneities within a vegetation canopy that have been well recognized and 

highlighted in many studies (Barton, 2000; Ciganda et al., 2008; Dwyer et al., 1992; 

Valentinuz and Tollenaar, 2004). Generally, vertical distribution of the target 

components is a major factor controlling canopy reflectance (Wang and Li, 2013a). As 
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vertical variations of LAI and biochemical properties will impact both canopy 

reflectance and vegetation indices largely, thus will affect the LAI prediction from 

spectral indices in return. Unfortunately, this dilemma has not been fully addressed 

yet. In this study, we used three synthetic datasets generated from the MRTM model 

with different treatments of vertical changes of LAI and biochemical properties. The 

results clearly indicated that the accuracy of LAI prediction was in the series of 

dataset I > II > III for all the four types of indices (Table 5.4), suggesting that vertical 

variations of different properties within canopy will greatly affect the retrieval of LAI 

via vegetation indices. Although NDVI probably is the most popular index used for 

LAI estimation, the D(920,1080) index developed in this study performed best when 

compared with the NDVI index, indicating the conservative behavior of the new 

index to the vertical variations within canopy.  

 

Fig. 5.1 clearly shows that dataset I has three obvious big minimum zones of RMSE 

for LAI estimation. All the three areas are big and have very red color (corresponding 

to small RMSE values). For dataset II, the RMSE matrix had similar pattern with that 

of dataset I, but the three corresponding zones became smaller and the color became 

more yellowish (RMSE values become larger), especially for the second and third 

minimum zones. For dataset III, the color of second and third minimum zones became 

cyan, with almost no red and yellow colors within these two zones; and the first zone 

became more yellowish than those of dataset I and II. These results indicated that 

there are more proper wavelengths that can be selected for the D type indices for LAI 

estimation if no vertical variations of LAI and other properties within a canopy. 

However, when considering vertical variations of LAI and biochemical properties 

within canopies, some wavelengths were dismissed for LAI estimation. le Maire et al. 

(2008) used the PROSAIL model to create a synthetic dataset for finding the best 

indices for LAI prediction, but without considering the canopy vertical variations. 

Their results also proved that the D-type indices was the best among some other 

indices (R, SR, ND, mSR, and mND), and the selected wavelengths (λ1 and λ2) were 

970 and 1750 nm. These wavelengths were just in the center of the second minimum 

zone of our study. However, when we considered the vertical variations of canopies, 

this area did not perform as well as of that for dataset I. 

5.4.2 Reported indices vs. newly proposed indices for LAI estimation 

Researchers have commonly used empirical relationships between hyperspectral 

indices and leaf area index (LAI). Numerous published indices have been designed to 

detect LAI because of the critical role of LAI in ecosystem functions. As reviewed by 

Haboudane et al. (2004), dozens of indices ranging from simple ratios and normalized 

difference types have been designed to estimate LAI. As summarized by le Maire et al. 

(2008), the D-type is insensitive to additive changes of the reflectance, and the simple 

ratio (SR) and normalized difference (ND) types are insensitive to proportional effects. 

However, our results demonstrated that the above indices perform less well than the 

newly identified indices with our datasets. The best indices identified in this study, 

except the R and D type of indices, all had a normalized RMSE of lower than 50%; 

the results were comparable with those of le Maire et al. (2008), even though the 

datasets contained canopy vertical variations in this study. 

 

Furthermore, the results showed that the efficiency of the index was improved when 
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additive effects was considered, since D-type indices gave better results than R, SR, 

and ND-type indices. This result may declare that the vertical variations within 

canopy showed more likely additive effects than proportional effects. Even though 

most of the time ND type indices are used, especially the NDVI (=ND800,680), the 

NDVI zone did not turn out to be efficient for both simulated and field measured 

datasets as shown in this study. Hence, when applying NDVI data for estimating LAI, 

more caution along with full calibration and validation are needed before application, 

especially for the canopy with large vertical variations. 

 

As noted, the selected wavelengths were similar for the D, SR, and ND-type indices, 

and their performances based on RMSE values were comparable (RMSE for SR and 

ND-type indices is almost the same, while D-type indices is about 10% smaller than 

SR and ND-type indices). The best indices for LAI estimation identified in this study, 

all used wavelengths within the 900~1100 domain, indicating the close relationship 

between reflectance information of these wavebands and LAI quantity, as reported by 

le Maire et al. (2008). The wavelengths we found are generally consistent with the 

findings of le Maire et al. (2008), who indicated these selected wavelengths 

correspond to a region of high scattering effects inside the canopy and had high 

correlation with LAI.  

 

Although vegetation indices with the specific wavelengths were determined via 

synthetic databases, it is necessary to calibrate and validate with real field 

measurements. Deviations from simulation-based regressions may be due to either 

errors in the MRTM model and biases in the inputs for simulated databases, or from 

both. Generally, the real field measurements at canopy scale may not be broad enough 

to represent the ranges as in synthetic databases, or the simulation database may be 

too broad compared to measurements, which will also attribute to biases. 

 

In general, estimation discrepancies were larger for higher values of LAI than smaller 

values of LAI. These results again confirmed that predicting high values of LAI from 

vegetation indices remains a problem, even with this type of index, as its saturation 

appeared for cases of LAI greater than 3 – 4. This is a well known problem, as shown 

in previous studies (Anderson et al., 2004; Birky, 2001; Fassnacht et al., 1997; Qi et 

al., 2000; Soudani et al., 2006; Wang et al., 2005).  

5.4.3 Simulated dataset vs. measured dataset 

A large dataset for calibration is essential to obtain general indices (Wang and Li, 

2012). A simulated dataset generated from a mechanistic reflectance model like 

MRTM can represent a vast range of canopy reflectance spectra, which may provide 

an important resource for identifying general indices. Furthermore, as claimed by le 

Maire et al. (2008), the use of a simulated dataset can reduce problems of covariance 

that often occur with field-measured datasets where some of the measured 

characteristics may have significant covariance, such as LAI and LMA at different 

phenological stages, which decreases the generic application of such empirically 

based indices. However, using simulated datasets alone is not enough for identifying 

practical and general indices, as pointed out by Wang and Li (2012). The underlying 

hypothesis for applying simulated datasets is that the reflectance model can accurately 

simulate the actual reflectance spectra. However, for most cases this criterion cannot 
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be cleared. Concerning the model, the MRTM model has proven to be efficient in the 

finding of indices (see RMSE matrices). However, it is possible that the relatively 

simple MRTM model does not accurately simulate the absolute value of the 

reflectance of a tree canopy because canopies not only have vertical heterogeneity but 

also horizontal heterogeneity, even with high values of LAI. Zarco-Tejada et al. (2001) 

have shown that there was practically no shadow effect when pigment sensitive 

indices rather than entire canopy reflectance spectra were simulated with models for 

closed canopies of deciduous stands with LAI greater than 3. For LAI < 3, some 

particular effects of clumping and shadows are included in other radiative transfer 

models (Gastellu-Etchegorry et al., 1996; Huemmrich, 2000) that may be used instead 

of MRTM to generate another database.  

 

In addition, it may be difficult to identify an index with general applicability when 

many combinations of wavebands for a given type of index produce similar RMSEs, 

as was the case with the D type of index for LAI estimation in simulated dataset I (Fig. 

5.1). Thus, a simulated dataset under certain conditions will not be sufficient for 

identifying an index with general applicability. The database used for identifying an 

index should contain various simulated datasets under various conditions as well as 

various in situ measured datasets with different conditions, such as vertical and 

horizontal variations within canopy, more types of soils, understory information, and 

variation of other parameters like leaf angle or sun and view angles. To identify a 

robust index for general applicability, a large number of simulated and measured 

datasets should be used for comprehensive calibration and validation, even though 

field-measured and field-based data sets are always confined to a given species, 

growth stages, and region, because of cost limitations. 

5.5 Conclusion 

To obtain generic and widely applicable hyperspectral indices for leaf area index 

prediction with vertical heterogeneous canopy, we examined four types of indices 

using every possible combination of wavelength based on three simulated datasets 

generated by the multiple-layer radiative transfer model (MRTM) and a field in situ 

measured dataset. The results indicated that certain indices can be generally used to 

estimate leaf area index and still remain resistant to canopy vertical variations. The 

best index identified in this study is D (920, 1080), which performed well for all 

datasets, with an overall RMSE of 0.62~0.96 m
2
/m

2
 for all three simulated datasets 

and with an RMSE of 1.22 m
2
/m

2
 when validated against the field measured dataset. 

Since consistent performance prevailed with different vertical variations of LAI and 

biochemical properties within canopy, we infer that the newly identified indices will 

have general applicability, especially for vegetation canopies, which have large LAI 

and biochemical vertical heterogeneities. 
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Chapter 6 Synthesis—Estimating biochemical and biophysical 

parameters with hyperspectral remote sensing  

6.1 Introduction 

Accurate quantitative estimation of vegetation biochemical and biophysical 

characteristics is necessary for a large variety of agricultural, ecological, and 

meteorological applications (Asner, 1998). Remote sensing, because of its global 

coverage, repetitiveness, and non-destructive and relatively cheap characterization of 

land surface, has been recognized as a reliable method and a practical means of 

estimating various biochemical and biophysical vegetation variables (Cohen et al., 

2003). In general, current remote sensing approaches for estimating vegetation 

biochemical and biophysical parameters include physically based models (such as 

radiative transfer models) and statistical (such as spectral indcies) (Skidmore, 2002); 

each having advantages and disadvantages (Kimes et al., 2000; Liang, 2004). Both 

models (physical / statistical) have been used widely for estimating biochemical and 

biophysical parameters in agricultural and forestry environments. Nevertheless, the 

estimation of vegetation characteristics for structurally different vegetations and 

vertical heterogeneous canopies with different vegetation communities using either of 

the approaches has not been widely addressed in the literature.  

 

The main objective of this study are (1) to investigate the potential of inversely leaf 

scale radiative transfer models for estimating biochemical properties for both 

broadleaves of typical temperate deciduous species and assimilating branches of 

typical desert species; (2) to find several efficient and robust hyperspectral indices for 

estimating leaf biochemical parameters which insensitive to various species, various 

phenological stages, different sites, and various leaf anatomies; (3) to develop a 

multiple-layer canopy radiative transfer model which considers the vertical 

heterogeneity of biochemical and biophysical parameters within the canopy; (4) to 

identify a potentially general and robust spectral index for estimating LAI that 

insensitive to within canopy vertical variations of LAI and biochemical components. 

The study consists of two scales of investigation: leaf scale (6.2) and canopy scale 

(6.3). Two different sites (Naeba site in Japan and Desert site in China) were used as 

study sites for field measurements. 

6.2 Leaf scale 

To date, much of the present researches linking vegetation parameters such as leaf 

chlorophyll to spectral data has focused on single plant species (or structurally similar 

plant types). Hence, the leaf scale study was designed to further investigate the 

relationship between spectral data and the biochemical parameters (CHL, EWT and 

LMA), involving plant species widely different in terms of leaf structure (broadleaves 

of typical temperate deciduous vegetations and assimilate branches of typical desert 

vegetation), various phenological stages and various locations. The utility of 

hyperspectral remote sensing in predicting biochemical parameters was then 

investigated by the means of radiative transfer models inversion (section 6.2.1) and 

spectral indices (section 6.2.2). 
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6.2.1 Estimating of biochemical parameters from radiative transfer models inversion  

Many studies have investigated the radiative transfer model inversion for estimating 

leaf biochemical variables (such as CHL, EWT and LMA). However, most of these 

studies were for broadleaves and several for needles at the same leaf develop stages 

and the same locations, no attempt to investigate the assimilate branches of desert 

vegetations, and few studies have collected data set from different leaf develop stages 

and different locations. The leaf scale study was designed to test the common leaf 

radiative transfer models PROSPECT and LIBERTY on both broadleaves of typical 

temperate deciduous vegetations and assimilate branches of typical desert vegetation 

for retrieval biochemical parameters. The results indicated that: 

 

(1) Retrieval of biochemical parameters using model inversion generally faces 

“ill-posed” problems, which dramatically decreases the estimation accuracy of an 

inverse model. This problem can be much improved by designed new model inversion 

algorithm and make the model inversion obtaining a better estimating accuracy. 

However, the new model inversion algorithm cannot solve the problem thoroughly. 

 

(2) The models need calibration using the local in situ measurements before inversely 

the models to retrieval biochemical parameters, otherwise big errors may appear. This 

process was especially needed for the desert vegetation, as the original LIBERTY and 

PROSPECT exhibited tangible error for simulating leaf reflectance of the desert 

vegetation. However, the calibration will cause this approach being less general and 

make it hard to be used widely, especially in the area with absent of in situ measured 

data. The reason of the models without calibration performing lower estimating 

accuracy may some factors that affect the leaf spectra but have not been considered in 

the models, such as the physiological process in the leaves, which need further 

investigate. 

 

(3) Both LIBERTY and PROSPECT are applicable for estimation leaf biochemical 

parameters inversely for all datasets collected from both temperate deciduous and 

desert forests after careful calibration. For field-measured datasets of typical 

temperate deciduous forests, the inversed PROSECT estimates of biochemical 

parameters recorded an RMSE of 8.11 μg/cm
2
, 0.0012 g/cm

2 
and 0.0008 g/cm

2 
for leaf 

chlorophyll (CHL), leaf water (EWT) and leaf mass content (LMA). For typical desert 

vegetation, the inversed LIBERTY estimates of CHL, EWT and LMA recorded 

RMSE of 3.43 μg/cm
2
, 0.0012 g/cm

2 
and 0.0008 g/cm

2
, and the RMSE of 34.76 

mg/m
2
, 0.0012 g/cm

2 
and 0.0010 g/cm

2
 for the inversed PROSPECT.  

6.2.2 Estimating of biochemical parameters from hyperspectral indices 

Many studies have investigated the relationships between spectral indices and leaf 

biochemical parameters (such as CHL, EWT and LMA). However, the conclusions 

drawn are contradictory, even for similar vegetation types. For this reason, we used a 

new approach to identify the spectral indices for estimating leaf biochemical 

parameters based on both a simulated data set (produced with the calibrated leaf 

reflectance model PROSPECT) and with data sets from measurement of 

field-collected leaves. The results indicated that: 
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(1) The spectral indices approach requires extensive field survey to collect sufficient 

field data, however, this is very difficult to exploit in practice. Hence, using a 

simulated data set generated from a mechanistic reflectance model like PROSPECT 

which can represent a vast range of leaf reflectance spectra to identify general spectral 

indices for estimating biochemical parameters is the best method in present. However, 

the spectral indices indentified from simulated data set should be calibrated and 

validated using field measured data sets. The results from simulated data set and field 

measured data set are not always consistent, thus the best efficient spectral indices 

should be trade-off between simulated and measured data sets. Simulated data should 

be used with measured data to identify indices that are supported by physiological or 

physical mechanisms and that have wide application. 

 

(2) The Double Deference index (DDn) performed the best among other types of 

indices (such as ND and SR, which are the common spectral indices types in previous 

studies) for all the three parameters (CHL, EWT and LMA). The best indices 

identified in this study are DDn(715, 185) for leaf CHL, DDn(1530, 525) for EWT, 

and DDn(1235, 25) for LMA. These indices performed well, with an overall RMSE of 

6.87 µg cm
−2

 for CHL, 0.0011 g cm
−2

 for EWT, and 0.0015 g cm
−2

 for LMA. 

Moreover, they performed consistently well with different field-based data sets. The 

regressions (biochemical parameter values regressed against spectral values), however, 

differed somewhat among the data sets, indicating the need for a further calibration 

before the indices can be applied to other sites. 

 

(3) When applying the best indices indentified from datasets of temperate deciduous 

forests to a typical desert forest, all the indices for CHL, EWT and LMA performed 

failure, with very high estimating error (RMSE of 12.58 µg cm
−2

 for CHL, 0.0032 g 

cm
−2

 for EWT and 0.0036 g cm
−2

 for LMA). One of the potential reason is that these 

indices were indentified based on the PROSPECT model (calibrated for temperate 

deciduous forests data sets), but this calibrated version did not suit for the desert 

forest, thus these indices performed failure when using the data set from the desert 

forest. To indentify the best spectral indices for the desert forest should use the 

simulated data set from PROSPECT model which calibrated using the field measured 

data set from desert forest. Thus, how to identify generic and robust spectral indices 

which suit to all vegetation types (e.g. both temperate deciduous and desert 

vegetations) is still a challenge and need further investigate.  

6.3 Canopy scale 

Vertical heterogeneous canopies present a challenge for remote sensing applications 

because the reflectance is often a mixture of different vertical layers materials. 

Therefore, more investigation is required to assess the capability of remote sensing 

models when it comes to natural vertical heterogeneous canopies with a combination 

of different vertical layers in varying proportions. Canopy spectral measurements 

were made in the field using a field spectroradiometer (ASD FR, USA), along with 

concomitant in situ measurements of LAI and leaf biochemical properties of each 

layer within the canopy. The spectral reflectance of vertical heterogeneous canopy 

was simulated by developing a multiple-layer radiative transfer model (section 6.3.1) 

and the utility of hyperspectral remote sensing in predicting canopy characteristics 



80 
 

such as LAI in a vertical heterogeneous canopy by means of spectral indices derivate 

from the multiple-layer canopy radiative transfer model simulated data sets was 

investigated (section 6.3.2).    

6.3.1 Develop a multiple-layer radiative transfer model for vertical heterogeneous 

canopies 

Vertical profiles of both biophysical and biochemical properties are one of the main 

sources of heterogeneity within a vegetation canopy, which has been well recognized 

and highlighted in many studies (Barton, 2000; Ciganda et al., 2008; Dwyer et al., 

1992; Valentinuz and Tollenaar, 2004). Generally, vertical distribution of the target 

components is a major factor controlling canopy reflectance. Using homogeneous 

canopy reflectance models for calculating directional reflectance from a vertical 

heterogeneous canopy by taking average values of biophysical and biochemical 

properties within the canopy may lead to systematic errors. Hence, accurate modeling 

of canopy reflectance requires taking this factor into consideration. With this in mind, 

a computationally efficient model, the multiple-layer canopy radiative transfer model 

(MRTM), has been developed with the focus on the effect of canopy vertical 

heterogeneity on canopy reflectance. The results indicated that: 

 

(1) MRTM considered the canopy to multiple layers (e.g. 5 vertical layers), the idea 

of mathematical modeling of MRTM is coupling the homogeneous canopy models 

(considering the canopy to a single layer) with the adding method (which is to deduce 

the reflectance and transmittance of the combined layer by calculating the successive 

reflectances and transmittances between these two layers, and the desired optical layer 

is achieved by repeating the adding method). As the field measurements showed that 

apparent large vertical variations of most biophysical and biochemical properties 

existed. The MRTM can cover such natural phenomena, and such a model may help 

to effectively retrieve the vertical distribution of biophysical and biochemical 

parameters inversely. 

 

(2) MRTM with 5 layers not only performed better than MRTM with 1 layer but also 

performed better than the other three models (PROSAIL, ACRM and FRT), clearly 

indicating that large vertical variations in the biophysical and biochemical properties 

of vegetation had non-negligible influences on the canopy’s optical properties. 

Therefore, the multiple-layer canopy model proposed in this study has gone further to 

a certain extent than the other canopy models with homogeneous canopy such as 

PROSAIL, ACRM and FRT. 

 

(3) Results of sensitivity analysis and scenario simulation of MRTM showed that 

vertical profiles of almost all the biophysical and biochemical properties will affect 

canopy directional reflectance and its angular distribution. The effect of the CHL 

vertical profile on canopy reflectance is in the VIS domain, while the effect of EWT is 

mainly in the SWIR domain, the effect of LMA is mainly in the NIR and SWIR 

domains, and the effect of LAD is mainly in the NIR domain. On the other hand, the 

same canopy reflectance curve may have resulted from different combinations of 

these parameters with different vertical profiles even with the same averaged values 

within the canopy. This indicated that if canopy parameters are retrieved without 

considering the vertical variations, large errors might be presented in the results. Thus, 

investigating the vertical variations of the main biophysical and biochemical 
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parameters and including such information in the canopy scale reflectance model is 

critical.  

6.3.2 Develop a new spectral index for estimating LAI in vertical heterogeneous 

canopies 

The estimation of canopy characteristics such as LAI using hyperspectral remote 

sensing, for vertical heterogeneous canopies has not, to our knowledge, been 

addressed by researchers yet. Therefore, the effectiveness of hyperspectral remote 

sensing in estimating LAI in a vertical heterogeneous canopy using spectral indices 

approach was examined. Similar to the approach of identifying the best indices for 

leaf biochemical parameters, the best spectral indices for estimating LAI also used 

simulated data sets based on the multiple-layer radiative transfer model (MRTM) and 

validated with field measure data set. The results indicated that: 

 

(1) The within-canopy vertical variations in LAI and biochemical properties 

significantly complicates the retrieval of LAI inversely from reflectance based 

vegetation indices which has not been addressed in previous studies and been proved 

in this study. The accuracy of LAI prediction was in the series of simulated dataset I > 

II > III (see Table 5.4) for all the four types of indices, suggesting that vertical 

variations of different properties within canopy will greatly affect the retrieval of LAI 

via vegetation indices. Thus, it is critical to identify a new spectral index for 

estimating LAI that insensitive to the vertical heterogeneous within the canopy.  

 

(2) The MRTM model has proven to be efficient in the finding of indices that 

insensitive to the vertical heterogeneous within the canopy. The best index for 

estimating canopy LAI under various conditions was D(920,1080), with overall 

RMSEs of 0.62~0.96 m
2
/m

2
 for all three simulated datasets and 1.22 m

2
/m

2
 with the 

field-measured dataset. This index responded mostly to the quantity of LAI but was 

insensitive to within-canopy variations, allowing it to aid the retrieval LAI from 

remote sensing data without prior information of within-canopy vertical variations of 

LAI and biochemical properties. 

 

(3) The index D(920,1080) for estimating LAI performed much worse when applying 

in a typical desert forest (with RMSE if 1.57 m
2
/m

2
) than in temperate deciduous 

forests. One of the potential reasons is that the MRTM can suit to temperate 

deciduous forests very well but not suit to the desert vegetation canopies, as the desert 

vegetation canopy has very low LAI value and the soil information has a large 

proportion in the canopy spectra. To indentify an efficient spectral index for 

estimating LAI for desert vegetations need first improved and calibrated the MRTM 

with field measured data set from desert forests, which need further investigate. 

 
The intention was to investigate the potential of hyperspectral remote sensing for 

estimating biochemical and biophysical vegetation characteristics such as leaf 

chlorophyll, leaf water, leaf mass content and canopy leaf area index (LAI) with focus 

on physical and statistical models (radiative transfer model and spectral indices). We 

have examined the performance of both physical and statistical models for predicting 

biochemical and biophysical vegetation properties from leaf to canopy scale in two 

typical vegetation types (temperate deciduous and desert forests). We have shown in 

this thesis that the information contained in hyperspectral data can accomplish these 
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tasks. To summarize, the study not only contributes to the field of information 

extraction from hyperspectral measurements but also enhances our understanding of 

vegetation biochemical and biophysical characteristics estimation. A number of 

achievements have been registered in exploiting spectral information for the retrieval 

of vegetation parameters using radiative transfer models and spectral indices 

approaches. These concern the successful implementation of radiative transfer models 

inversion (with extensive validation) and the derivation of new vegetation indices, 

which involved the development of a new model inversion algorithm, a new canopy 

multiple-layer model, and a new spectral indices developed method based on both 

simulated and field measured data sets. 

6.4 Future studies 

An apparent direction in the future is to extend the methods used and developed in 

this study to hyperspectral space-borne sensors such as MERIS, MODIS and 

HYPERION for the prediction and mapping of vegetation biochemical and 

biophysical characteristics of large areas. 

 

Research such as studying vegetation through the use of remote sensing and 

biophysical modeling is usually confronted with the problem of unknown input 

parameters. On the other hand, statistical modeling (such as spectral indices) requires 

extensive field survey to collect sufficient field data. In an operational project, 

however, a compromise can be made that includes achieving the research aim and 

meeting the constraints of time and data availability. 

 

The research presented here illustrates some of the possibilities for estimating 

biochemical parameters (such as chlorophyll, water and dry mass content) at leaf 

scale and biophysical parameter (such as LAI) at canopy scale in two different types 

of forests (temperate deciduous and desert forests). However, the applications of the 

developed methods to other vegetation types and larger scales not considered in this 

study needs to be evaluated using different data sets. In this way scale and senor 

effects as well as phenological influences and physiological effects can be studied. 

For this, proper ground sampling measurements for obtaining biochemical and 

biophysical variables are required. 

 

Furthermore, a practical extension of the present work would be on the use of 

information obtained from statistical models to parameterize the physical models. 

This information may help in choosing the initial parameter values for model 

inversion and may probably improve the regularization of the model inversion, thus 

overcoming the ill-posed problem. However, the possibility of integrating statistical 

models with physical models needs to be further explored. A more accurate estimation 

of the biochemical and biophysical parameters for a variety of vegetation types can be 

expected from such an integrated approach, which may meet the requirements of 

ecological and technology-enhanced decision making processes and policies. 

 

 

 

  



83 
 

Acknowledgements 

Gratitude is owed to many individuals who have helped me in one way or another 

over the past three years, often without knowing they were doing so. 

 

My deepest appreciation goes to my supervisor, Prof. Wang Quan, for his confidence, 

advice, encouragement, commitment and unsparing support during the period of my 

study. He taught me how to be an independent scientist by letting me make my own 

choices at decisive points along the way. And I am grateful for the many inspiring 

scientific discussions we shared. It was easy for me to communicate with him because 

of his friendly and sincere attitude. This work would not have been possible without 

the invaluable contribution and help I received from him. Further I would like to 

express my gratitude to Prof. Suzuki Yoshimi, Prof. Casareto B.E., Imamura-san, 

Masumto-san, and all the other professors, staffs and students in the “Environmental 

Leadership Program, Shizuoka University (ELSU)”. Without the financial support of 

the ELSU program, I would not have the chance to be here doing this research.  

 

Special thank all members of Institute of Silviculture, Shizuoka University for their 

helps on field works, lab analysis, discussions and let me feel very comfortable and 

easy to live in Japan. Special thanks to Prof. Kakubari, Prof. Mizunaga, Prof. 

Naramoto, Mochizuki-san, and all the other students. 

 

I would like to thank my good friends in Japan, Dr. Zheng Chaolei, Liu Gang, Lu 

Shuang, Cao Zhengxing, and others. They always give me happy time when out of 

work. 

 

Finally, it would have been impossible without the devout support of my entire family. 

The love and practical support I got and continue to enjoy from my wife Huang Xiaoli 

have always given me reason to strive for higher heights. It would difficult to ever 

understand and even to find words to describe the sacrifices my beloved child; Li 

Xingyue has had to endure in my absence.  

 

Last but not least, to my farther Li Songlin, I say thank you for your presence, support 

and encouragement.  

 

  

  



84 
 

List of Figures 

Fig. 1.1 Location of the Naeba site and location of the long-term study stands, black symbols 

indicate the locations of the four tower stands used in this study. 

 

Fig. 1.2 Location of the Desert Site 

 

Fig 1.3 Overshot of the Naeba Site (left) and Desert Site (right). 

 

Figure 2.1 General flowchart of the newly proposed algorithm for model inversion. N, Cab, Cw 

and Cm represent values for parameters of N, CHL, EWT, and LMA, respectively. Rmer denotes 

the measured reflectance, Rmod denotes the modeled reflectance, i represents the ith run, ε 

represents the threshold value for ending the program. 

 

Fig. 2.2 Seasonal, vertical, and inter-species variations of leaf biochemical parameters and 

corresponding spectra contained in data sets compiled from measurements of field-collected 

leaves. Panels a and b, c and d, and e and f are from data sets I, II, and III, respectively. 

 

Figure 2.3 Sensitivity analyses of the input parameters for PROSPECT to spectra 

 

Figure 2.4 Sensitivity analyses of the input parameters for LIBERTY to spectra 

 

Figure 2.5 Calibrated refractive indices and the performance of PROSPECT based on the 

calibrated refractive indices 

 

Figure 2.6 Calibrated chlorophyll absorption coefficients (fchl) and the performance of reflectance 

simulation for the origin and calibrated models. 

 

Figure 2.7 Scatter diagrams of measured and estimated CHL, LMA and EWT obtained by model 

inversion using the proposed approach 

 

Fig. 2.8 Scatter diagrams of measured and estimated CHL, EWT and LMA obtained by 

recalibrated PROSPECT and LIBERTY model inversion  

 

 

Fig. 3.1 Regressions of estimated parameter values on spectral values (a, c, e) based on the best 

DDn index for estimating the parameters CHL, EWT, and LMA, and plots of estimated parameter 

values on measured parameter values (b, d, and f). 

 

Fig. 3.2 RMSE matrices of CHL, EWT, and LMA estimations using DDn indices with different 

combinations of the central wavelength (λ) and the distance (∆) based on the simulated data set. 

The legends on the right indicate RMSE values (blue indicates large values and red indicates small 

values). 

 

Fig. 3.3 Reflectance spectra of the simulated data set and 348 spectra from field-based data sets I, 

II, and III. 

 

Fig. 4.1 Diagram of radiative transfers between layer i and layer i+1. 

 

Fig. 4.2 Vertical variation of biophysical and biochemical parameters and the corresponding leaf 



85 
 

and canopy reflectance 

 

Fig. 4.3 Measured and simulated canopy reflectance using two modes (NL=1 and 5) MRTM, 

PROSAIL, ACRM, and FRT 

 

Fig. 4.4 (a)-(c) Simulated reflectance in the optical domain and (d)-(f) angular distribution at the 

NIR reflectance with LAI of 1, 3, 6, respectively. The canopy layers NL was varied from 1 to 7. 

 

Fig. 4.5 Simulated reflectance and angular distribution with different vertical profile of 

biophysical and biochemical parameters (LAD, CHL, EWT, LMA) in the canopy. The model 

parameters LAI=3, and canopy layers NL=7. 

 

Fig. 4.6. Examples of close reflectances simulated with different total (mean) contents and vertical 

profiles of LAD, CHL, EWT, and LMA. Number of canopy layers NL = 5, layer depth H = 2 m. 

 

Fig. 5.1 Matrices representing the RMSE of leaf area index (LAI) prediction with D type indices, 

calculations are done on the three simulated datasets and the measured dataset.  

 

Fig. 5.2 Best LAI index calibrated to canopy in situ measurements. 

 

Figure 5.3 Nine simulated reflectance samples (above) and their corresponding D(920,1080) and 

NDVI values (below). The model parameters LAI=3 m2/m2, mean CHL=60 µg/cm2, mean 

LMA=0.025 g/cm2, mean EWT=0.025 g/cm2, and canopy layers NL=5. The nine samples 

contained different vertical profiles of LAI and biochemical properties as shown in section 2.5. 

 

 

 

  



86 
 

List of Tables 

Table 1.1 General characteristics of the beech stands and climate at the three sites. 

 

Table 1.2 Main characteristics of the datasets compiled from field measurements 

 

Table 2.1 LIBERTY and PROSPECT input parameters. 

 
Table 2.2 Performance of PROSPECT inversion for retrieving CHL, EWT, and LMA using the 

proposed algorithm and the standard approach 

 

Table 2.3 Results of the CHL, EWT and LMA inversion by the original and calibrated models. 

 

Table 2.4 Validation of the retrieval results from PROSPECT inversion using the proposed 

approach and the standard approach based on the artificial dataset 

 

Table 2.5 Leaf biochemical parameters retrieved by the models inversion in previous studies 

 

Table 3.1 Parameters and parameter values used to build the 10000 spectra of PROSPECT dataset. 

 

Table 3.2 Evaluation of the general types of indices for estimating CHL, EWT, and LMA based on 

both the PROSPECT simulated data set and field-based data sets. RMSE values are the means of 

RMSE values from the simulated data set (50% weight) and the field-based data sets (50% 

weight). 

 

Table 3.3 Evaluation of the general types of indices for estimating CHL, EWT, and LMA based 

solely based on the PROSPECT simulated data set. 

 

Table 4.1 Values of model parameters in scenario simulations and the measured dataset. 

 

Table 4.2 Vertical profile of biophysical and biochemical parameters for the synthetic dataset, 

LAI=3 and canopy layers NL=7, layer depth = 1 m. 

 

Table 4.3 Values of main model parameters of PROSAIL, ACRM and FRT in the measured dataset 

 

Table 4.4 Evaluation of the errors of the modeled reflectance with different models based on the 

field measured dataset 

 

Table 5.1 Main Characteristics of the measured dataset and parameters used to build the three 

simulated datasets (other parameters are constant in the model: Canopy layers=5; mean leaf 

angle=60˚; leaf size=40 cm2; view nadir angle=0˚; Ratio of refraction indices of leaf wax and 

air=0.9). 

 

Table 5.2 Published spectral indices for retrieval LAI 

 

Table 5.3 Results of the eight published vegetation indices calibrated to the three simulated 

datasets and measured dataset.  

 

Table 5.4 Results of the four types of spectral indices calibrated to the simulated dataset and 
measured dataset. 
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Summary 

Accurate quantitative estimation of vegetation biochemical and biophysical 

characteristics is necessary for a large variety of agriculture, ecological, and 

meteorological applications. Remote sensing, because of its global coverage, 

repetitiveness, and non-destructive and relatively cheap characterization of land 

surface, has been recognized as a reliable method and a practical means of estimating 

various biophysical and biochemical vegetation variables. The advent of hyperspectral 

remote sensing has offered possibilities for measuring specific vegetation variables 

that were difficult to measure using conventional multi-spectral sensors. 

 

Utilizing hyperspectral measurements, we examined the performance of radiative 

transfer models inversion techniques versus spectral indices approaches for predicting 

biochemical and biophysical vegetation properties such as chlorophyll, leaf water, leaf 

mass content and leaf area index (LAI) from leaf to canopy scale in two typical 

vegetation types (temperate deciduous and desert forests). It was concluded that, at 

leaf scale, for transfer model inversion approaches, retrieval of biochemical 

parameters generally faces “ill-posed” problems, which dramatically decreases the 

estimation accuracy of an inverse model, and this problem can be much improved by 

designed new model inversion algorithm and make the model inversion obtaining a 

better estimating accuracy. The models need calibration using the local in situ 

measurements before inversely the models to retrieval biochemical parameters, 

especially for the desert vegetation. After careful calibration, both LIBERTY and 

PROSPECT are applicable for estimation leaf biochemical parameters inversely for 

all datasets collected from both temperate deciduous and desert forests. For spectral 

indices approaches, using a simulated data set generated from a mechanistic 

reflectance model like PROSPECT which can represent a vast range of leaf 

reflectance spectra to identify general spectral indices for estimating biochemical 

parameters is the best method in present. However, the spectral indices indentified 

from simulated dataset should be calibrated and validated using field measured 

datasets. The results from simulated dataset and field measured dataset are not always 

consistent, so the best efficient spectral indices should be trade-off between simulated 

and measured data sets.  

 

At canopy scale, vertical profiles of both biophysical and biochemical properties are 

one of the main sources of heterogeneity within a vegetation canopy, and these 

vertical variations are the major factors controlling canopy reflectance. Using 

homogeneous canopy reflectance models for calculating reflectance from a vertical 

heterogeneous canopy may lead to systematic errors. Hence, a computationally 

efficient model, the multiple-layer canopy radiative transfer model (MRTM), has been 

developed with the focus on the effect of canopy vertical heterogeneity on canopy 

reflectance. The results of validation with field measured datasets indicated that the 

MRTM performed better than the other homogeneous canopy models. The MRTM 

may help to effectively retrieve the vertical distribution of biophysical and 

biochemical parameters inversely. In addition, the estimation of canopy 

characteristics such as LAI using hyperspectral remote sensing, for vertical 

heterogeneous canopies has not been addressed by researchers yet. Therefore, the 

effectiveness of hyperspectral remote sensing in estimating LAI in a vertical 
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heterogeneous canopy using spectral indices approach was examined in this study. 

The results indicated that the within-canopy vertical variations in LAI and 

biochemical properties significantly complicate the retrieval of LAI inversely from 

published spectral indices. Thus, it is critical to identify a new spectral index for 

estimating LAI that insensitive to the vertical heterogeneous within the canopy. The 

method of finding the best spectral indices for estimating LAI is using simulated 

datasets based on the multiple-layer radiative transfer model (MRTM) and validating 

with field measure dataset. The MRTM model has proven to be efficient in the finding 

of indices that insensitive to the vertical heterogeneous within the canopy. The best 

index for estimating canopy LAI under various conditions was D(920,1080). This 

index responded mostly to the quantity of LAI but was insensitive to within-canopy 

variations, allowing it to aid the retrieval LAI from remote sensing data without prior 

information of within-canopy vertical variations of LAI and biochemical properties. 

 

In summary, the study contributes to the field of information extraction from 

hyperspectral measurements and enhances our understanding of vegetation 

biochemical and biophysical characteristics estimation. Several achievements have 

been registered in exploiting spectral information for the retrieval of vegetation 

parameters using physical (radiative transfer models) and statistical (spectral indices) 

approaches. These concern the successful implementation of radiative transfer models 

inversion (with extensive validation) and the derivation of new vegetation indices, 

which involved the development of a new model inversion algorithm, a new canopy 

multiple-layer model, and a new spectral indices developed method based on both 

simulated and field measured datasets. The future of hyperspectral remote sensing 

could hinge on enhancing the link between statistical and physically based 

approaches. 

 

 

 


