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Introduction

In this paper, we investigated problems on orbit categories. The
first one is to give presentations of Grothendieck constructions that
are generalizations of orbit categories, and second one deals with a
derived equivalence classification of algebras that have the form of orbit
categories.

Presentations of Grothendieck constructions. Throughout chap-
ter 1 I is a small category, k is a commutative ring, and k-Cat denotes
the 2-category of all k-categories, k-functors between them and natural
transformations between k-functors.

The Grothendieck construction is a way to form a single category
Gr(X) from a diagram X of small categories indexed by a small cate-
gory I, which first appeared in [8, §8 of Exposé VI]. As is exposed by
Tamaki [19] this construction has been used as a useful tool in homo-
topy theory (e.g., [20]) or topological combinatorics (e.g., [21]). This
can be also regarded as a generalization of orbit category construction
from a category with a group action.

In [5] we defined a notion of derived equivalences of (colax) func-
tors from I to k-Cat, and in [6] we have shown that if (colax) functors
X,X ′ : I → k-Cat are derived equivalent, then so are their Grothendieck
constructions Gr(X) and Gr(X ′). An easy example of a derived equiva-
lent pair of functors is given by using diagonal functors: For a category
C define the diagonal functor ∆(C) : I → k-Cat to be a functor sending
all objects of I to C and all morphisms in I to the identity functor of
C. Then if categories C and C ′ are derived equivalent, then so are their
diagonal functors ∆(C) and ∆(C ′). Therefore, to compute examples of
derived equivalent pairs using this result, it will be useful to present
Grothendieck constructions of functors by quivers with relations. We
already have computations in two special cases. First for a k-algebra
A, which we regard as a k-category with a single object, we noted in
[6] that if I is a semigroup G, a poset S, or the free category PQ of
a quiver Q, then the Grothendieck construction Gr(∆(A)) of the di-
agonal functor ∆(A) is isomorphic to the semigroup algebra AG, the
incidence algebra AS, or the path-algebra AQ, respectively. Second in
[4] we gave a quiver presentation of the orbit category C/G for each
k-category C with an action of a semigroup G in the case that k is a
field, which can be seen as a computation of a quiver presentation of
the Grothendieck construction Gr(X) of each functor X : G→ k-Cat.

In chapter 1 we generalize these two results in the following way:

(1) We compute the Grothendieck construction Gr(∆(A)) of the
diagonal functor ∆(A) for each k-algebra A and each small cat-
egory I.
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(2) We give a quiver presentation of the Grothendieck construction
Gr(X) for each functor X : I → k-Cat and each small category
I when k is a field.

Derived equivalence classification of generalized multifold ex-
tensions of piecewise hereditary algebras of tree type. Through-
out chapter 2 we fix an algebraically closed field k, and assume that
all algebras are basic and finite-dimensional k-algebras and that all
categories are k-categories.

The classification of algebras under derived equivalences seems to
be first explicitly investigated by Rickard in [16], which gave the de-
rived equivalence classification of Brauer tree algebras (implicitly there
exists an earlier work [7] by Assem–Happel giving the classification
of gentle tree algebras). After that the first named author gave the
classification of representation-finite self-injective algebras (see also [1]
and Membrillo-Hernández [14] for type An). The technique used there
(a covering technique for derived equivalences developed in [1]) is ap-
plicable also for representation-infinite algebras; it requires that the
algebras in consideration have the form of orbit categories (usually of
repetitive categories of some algebras having no oriented cycles in their
ordinary quivers). In fact, it was applied in [3] to give the classification
of twisted multifold extensions of piecewise hereditary algebras of tree
type by giving a complete invariant. Here an algebra is called a twisted
multifold extension of an algebra A if it has the form

T nψ (A) := Â/⟨ψ̂νnA⟩ (0.1)

for some positive integer n and some automorphism ψ of A, where Â is
the repetitive algebra of A, νA is the Nakayama automorphism of Â and
ψ̂ is the automorphism of Â naturally induced from ψ (see Definition
2.1 and Lemma 2.2 for details); and an algebra A is called a piecewise
hereditary algebra of tree type if A is an algebra derived equivalent
to a hereditary algebra whose ordinary quiver is an oriented tree. In
chapter 2 we extend this classification to a wider class of algebras. To
state this class of algebras we introduce the following terminologies.
For an integer n we say that an automorphism ϕ of Â has a jump n if
ϕ(A[0]) = A[n]. An algebra of the form

Â/⟨ϕ⟩

for some automorphism ϕ of Â with jump n for some positive integer n
is called a generalized multifold extension of A. Since obviously ψ̂νnA is

an automorphism of Â with jump n in the formula (0.1), twisted mul-
tifold extensions are generalized multifold extensions. We are now able
to state our purpose. In chapter 2 we will give the derived equivalence
classification of generalized multifold extensions of piecewise hereditary
algebras of tree type by giving a complete invariant. Note that most
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algebras in this class are wild and that the tame part of the class has
a big intersection with the class of self-injective algebras of Euclidean
type studied by Skowroński in [17] (see Remark 2.7).

Acknowledgement
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Chapter I.

Presentations of Grothendieck constructions

In section 1 we give necessary definitions and recall the fact that all
categories can be presented by quivers and relations. Sections 2 and
3 are devoted to the computation (1) and a quiver presentation (2)
above, respectively. Finally in section 4 we give some examples.

1. Preliminaries

Throughout this paper Q = (Q0, Q1, t, h) is a quiver, where t(α) ∈
Q0 is the tail and h(α) ∈ Q0 is the head of each arrow α of Q. For each
path µ of Q, the tail and the head of µ is denoted by t(µ) and h(µ),
respectively. For each non-negative integer n the set of all paths of Q
of length at least n is denoted by Q≥n. In particular Q≥0 denotes the
set of all paths of Q.

A category C is called a k-category if for each x, y ∈ C, C(x, y) is a
k-module and the compositions are k-bilinear.

Definition 1.1. Let Q be a quiver.

(1) The free category PQ of Q is the category whose underlying
quiver is (Q0, Q≥0, t, h) with the usual composition of paths.

(2) The path k-category of Q is the k-linearization of PQ and is
denoted by kQ.

Definition 1.2. Let C be a category. We set

Rel(C) :=
∪

(i,j)∈C0×C0

C(i, j)× C(i, j),

elements of which are called relations of C. Let R ⊆ Rel(C). For each
i, j ∈ C0 we set

R(i, j) := R ∩ (C(i, j)× C(i, j)).

(1) The smallest congruence relation

Rc :=
∪

(i,j)∈C0×C0

{(dac, dbc) | c ∈ C(−, i), d ∈ C(j,−), (a, b) ∈ R(i, j)}

containing R is called the congruence relation generated by R.
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(2) For each i, j ∈ C0 we set

R−1(i, j) := {(g, f) ∈ C(i, j)× C(i, j) | (f, g) ∈ R(i, j)}
1C(i,j) := {(f, f) | f ∈ C(i, j)}
S(i, j) := R(i, j) ∪R−1(i, j) ∪ 1C(i,j)

S(i, j)1 := S(i, j)

S(i, j)n := {(h, f) | ∃g ∈ C(i, j), (g, f) ∈ S(i, j), (h, g) ∈ S(i, j)n−1} (for all n ≥ 2)

S(i, j)∞ :=
∪
n≥1

S(i, j)n, and set

Re :=
∪

(i,j)∈C0×C0

S(i, j)∞.

Re is called the equivalence relation generated by R.
(3) We set R# := (Rc)e (cf. [10]).

Remark 1.3. In the statement (2) above, S(i, j)∞ is the smallest
equivalence relation on C(i, j) containing R(i, j) for each i, j ∈ C0.

Definition 1.4. Let C be a category and R ⊆ Rel(C). Then a category
C/R# is defined as follows:

(i) (C/R#)0 := C0.
(ii) For i, j ∈ (C/R#)0, (C/R#)(i, j) := C(i, j)/R#(i, j).

For each f ∈ (C/R#)(i, j), we set f the equivalence class of f
in R#.

(iii) For i, j, k ∈ (C/R#)0 and f ∈ (C/R#)(i, j), g ∈ (C/R#)(j, k),
g ◦ f := g ◦ f .

(iv) A functor F : C → C/R# is defined as follows:
(a) For i ∈ C0, F (i) = i.
(b) For i, j ∈ C(i, j) and f ∈ C(i, j), F (f) = f .

Remark 1.5. In definition1.4, R# is a congruence relation, therefore
the composition in (iii) is well-defined.

The following is well known (cf. [13]).

Proposition 1.6. Let C be a category, and R ⊆ Rel(C). Then the
category C/R# and the functor F : C → C/R# defined above satisfy the
following conditions.

(i) For each i, j ∈ C0 and each (f, f ′) ∈ R(i, j) we have Ff = Ff ′.
(ii) If a functor G : C → D satisfies Gf = Gf ′ for all f, f ′ ∈ C(i, j)

and all i, j ∈ C0 with (f, f ′) ∈ R(i, j), then there exists a unique
functor G′ : C/R# → D such that G′ ◦ F = G.

Definition 1.7. Let Q be a quiver and R ⊆ Rel(PQ). We set

⟨Q | R⟩ := PQ/R#.

The following is straightforward.
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Proposition 1.8. Let C be a category, Q the underlying quiver of C,
and set

R := {(ei, 1li), (µ, [µ]) | i ∈ Q0, µ ∈ Q≥2} ⊆ Rel(PQ),
where ei is the path of length 0 at each vertex i ∈ Q0, and [µ] :=
αn ◦ · · · ◦α1 (the composite in C) for all paths µ = αn . . . α1 ∈ Q≥2 with
α1, . . . , αn ∈ Q1. Then

C ∼= ⟨Q | R⟩.

By this statement, an arbitrary category is presented by a quiver
and relations. Throughout the rest of this paper I is a small category
with a presentation I = ⟨Q | R⟩.

2. Grothendieck constructions of Diagonal functors

Definition 2.1. Let X : I → k-Cat be a functor. Then a category
Gr(X), called the Grothendieck construction of X, is defined as follows:

(i) (Gr(X))0 :=
∪
i∈I0

{(i, x) | x ∈ X(i)0}

(ii) For (i, x), (j, y) ∈ (Gr(X))0

Gr(X)((i, x), (j, y)) :=
⊕

a∈I(i,j)

X(j)(X(a)x, y)

(iii) For f = (fa)a∈I(i,j) ∈ Gr(X)((i, x), (j, y)) and g = (gb)b∈I(j,k) ∈
Gr(X)((j, y), (k, z))

g ◦ f :=


∑
c=ba

a∈I(i,j)
b∈I(j,k)

gbX(b)fa


c∈I(i,k)

Definition 2.2. Let C ∈ k-Cat0. Then the diagonal functor ∆(C) of
C is a functor from I to k-Cat sending each arrow a : i → j in I to
1lC : C → C in k-Cat.

In this section, we fix a k-algebra A which we regard as a k-category
with a single object ∗ and with A(∗, ∗) = A. The quiver algebra AQ of
Q over A is the A-linearization of PQ, namely AQ := A⊗k kQ.

Definition 2.3. The ideal of AQ generated by the elements g−h with
(g, h) ∈ R is denoted by ⟨R⟩A:

⟨R⟩A := AQ{g − h | (g, h) ∈ R}AQ.

The purpose of this section is to prove the following theorem which
computes the Grothendieck construction Gr(∆(A)) of ∆(A) : I →
k-Cat.

Theorem 2.4. Gr(∆(A)) ∼= AQ/⟨R⟩A.
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To prove this theorem, we use the following two lemmas.

Lemma 2.5. Let S be a set, E ⊆ S × S an equivalence relation on S.
Then

(
⊕
x∈S

Ax)/(
∑

(g,h)∈E

A(g − h)) ∼=
⊕
x∈S/E

Ax

Proof. Let ε :
⊕
x∈S

Ax →
⊕
x∈S/E

Ax be a homomorphism of A-modules

defined by x 7→ x (x ∈ S). Then the sequence

0 →
∑

(g,h)∈E

A(g − h) ↪→
⊕
x∈S

Ax
ε−→
⊕
x∈S/E

Ax→ 0

is exact. Indeed, since ε is obviously a surjection by definition, it is

enough to show that Ker ε =
∑

(g,h)∈E

A(g − h).

For each (g, h) ∈ E we have

ε(g − h) = g − h = g − h = 0,

and hence
∑

(g,h)∈E

A(g − h) ⊆ Ker ε.

To prove the reverse inclusion, let
∑
x∈S

axx ∈ Ker ε (ax ∈ A). Then

since

0 = ε

(∑
x∈S

axx

)
=
∑
x∈S

axx =
∑
x∈S/E

∑
x′∈x

ax′x,

we have
∑

x′∈x ax′ = 0 for each x ∈ S/E, and hence for each x ∈ S we
have

ax = −
∑

x′∈x\{x}

ax′

and ∑
x′∈x

ax′x
′ = axx+

∑
x′∈x\{x}

ax′x
′ =

∑
x′∈x\{x}

ax′(x
′ − x).

Let L be a complete set of representatives in S/E. Then we have∑
x∈S

axx =
∑
x∈L

∑
(x,x′)∈E\{(x,x)}

ax′(x
′ − x).

Hence Ker ε ⊆
∑

(g,h)∈E

A(g−h) and we have Ker ε =
∑

(g,h)∈E

A(g−h). □

We will give an explicit form of ⟨R⟩A as follows.

Lemma 2.6. For each i, j ∈ Q0,

⟨R⟩A(i, j) =
∑

(g,h)∈R#(i,j)

A(g − h)
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Proof. Define J by setting J(i, j) :=
∑

(g,h)∈R#(i,j)

A(g−h) for all i, j ∈ Q0.

First, we prove that J is an ideal of AQ. It is obvious that J(i, j) is
closed under addition. Let a ∈ AQ(i′, i), b ∈ AQ(j, j′), c ∈ J(i, j).
Then there exist aα, bβ, cg,h ∈ A such that

a =
∑

α∈PQ(i′i)

aαα

b =
∑

β∈PQ(j,j′)

bββ

c =
∑

(g,h)∈R#(i,j)

cg,h(g − h)

and

bca =

 ∑
β∈PQ(j,j′)

bββ

 ∑
(g,h)∈R#(i,j)

cg,h(g − h)

 ∑
α∈PQ(i′i)

aαα


=

∑
β∈PQ(j,j′)

∑
(g,h)∈R#(i,j)

∑
α∈PQ(i′,i)

bβcg,haα(βgα− βhα),

where we have (βgα, βhα) ∈ R# for all (g, h) ∈ R#(i, j). Hence bca ∈
J(i′, j′) as desired.

Next, we prove that ⟨R⟩A(i, j) = J(i, j). Since R ⊆ R#, for each
(g, h) ∈ R(i, j) we have

g − h ∈ J(i, j).

Hence ⟨R⟩A(i, j) ⊆ J(i, j) because J is an ideal of AQ. Further for
each (g, h) ∈ Rc(i, j), there exist (g′, h′) ∈ R(i′, j′), e ∈ PQ(i, i′) and
f ∈ PQ(j′, j) such that

(g, h) = (fg′e, fh′e).

Then

g − h = fg′e− fh′e = f(g′ − h′)e ∈ ⟨R⟩A(i, j).
Hence also for each (g, h) ∈ R#(i, j) we have g−h ∈ ⟨R⟩A(i, j) because
⟨R⟩A is an additive subgroup of AQ. Therefore J(i, j) ⊆ ⟨R⟩A(i, j), and
hence ⟨R⟩A(i, j) = J(i, j). □

Proof of Theorem2.4

The object classes and the morphism spaces of Gr(∆(A)) andAQ/⟨R⟩A
are given as follows.

Gr(∆(A)):

(i) Gr(∆(A))0 = {(i, ∗) | i ∈ Q0}.
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(ii) For (i, ∗), (j, ∗) ∈ Gr(∆(A))0

Gr(∆(A))((i, ∗), (j, ∗)) =
⊕

a∈I(i,j)

∆(A)(j)(∆(A)(a)(∗), ∗)

=
⊕

a∈I(i,j)

A(∗, ∗) = A(I(i,j))

AQ/⟨R⟩A:

(i) (AQ/⟨R⟩A)0 = Q0.
(ii) For i, j ∈ (AQ/⟨R⟩A)0

(AQ/⟨R⟩A)(i, j) = (
⊕

a∈PQ(i,j)

Aa)/⟨R⟩A(i, j)

= (
⊕

a∈PQ(i,j)

Aa)/
∑

(g,h)∈R#(i,j)

A(g − h)

=
⊕

a∈I(i,j)

Aa

by Lemma 2.6 and the last equality is given by the isomorphism in
Lemma 2.5. We define a functor F : Gr(∆(A)) → AQ/⟨R⟩A by

(i, ∗) 7→ i

(fa)a∈I(i,j) 7→
∑

a∈I(i,j)

faa

for each (fa)a∈I(i,j) : (i, ∗) → (j, ∗) in Gr(∆(A)). We check that F is
well-defined as a k-linear functor. For each (i, ∗) ∈ Gr(∆(A))0 we have

F (1l(i,∗)) = F ((δ1ia)a∈I(i,i))

=
∑

a∈I(i,i)

δ1iaa

= 1i

For each f ∈ Gr(∆(A))((i, ∗, ), (j, ∗)) and g ∈ Gr(∆(A))((j, ∗, ), (k, ∗)),
there exist fa, gb ∈ A (a ∈ I(i, j), b ∈ I(j, k)) such that

f = (fa)a∈I(i,j)

g = (gb)b∈I(j,k).
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Then

F (g ◦ f) = F



∑
c=ba

a∈I(i,j)
b∈I(j,k)

gbfa


c∈I(i,k)



=
∑

c∈I(i,k)


∑
c=ba

a∈I(i,j)
b∈I(j,k)

gbfa

 c

F (g)F (f) =

 ∑
b∈I(j,k)

gbb

 ∑
a∈I(i,j)

faa



=
∑

c∈I(i,k)


∑
c=ba

a∈I(i,j)
b∈I(j,k)

gbfa

 c

= F (g ◦ f).

Hence F is a functor. Obviously F is k-linear. It is clear that F is
bijective on objects and that for each i, j ∈ Q0, F induces an isomor-
phism

Gr(∆(A))((i, ∗), (j, ∗)) → (AQ/⟨R⟩A)(i, j)
by the definition of F . Therefore Gr(∆(A)) ∼= AQ/⟨R⟩A. □

Remark 2.7. Theorem 2.4 can be written in the form

Gr(∆(A)) ∼= A⊗k (kQ/⟨R⟩k).

3. The quiver presentation of Grothendieck
constructions

In this section we give a quiver presentation of the Grothendieck
construction of an arbitrary functor I → k-Cat. Throughout this
section we assume that k is a field.

Theorem 3.1. Let X : I → k-Cat be a functor, and for each i ∈ I
set X(i) = kQ(i)/⟨R(i)⟩ with Φ(i) : kQ(i) → X(i) the canonical mor-
phism, where R(i) ⊆ kQ(i), ⟨R(i)⟩ ∩ {ex | x ∈ Q(i)0} = ∅. Then the
Grothendieck construction of X is presented by the quiver with relations
(Q,R′) defined as follows.

Quiver: Q′ = (Q′
0, Q

′
1, t

′, h′), where
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(i) Q′
0 :=

∪
i∈I

{ix | x ∈ Q
(i)
0 }.

(ii) Q′
1 :=

∪
i∈I

{{iα | α ∈ Q
(i)
1 } ∪ {(a, ix) : ix → j(ax) | a : i → j ∈

Q1, x ∈ Q
(i)
0 , ax ̸= 0}},

where we set ax := X(a)(x).

(iii) For α ∈ Q
(i)
1 , t′(iα) = t(i)(α) and h′(iα) = h(i)(α).

(iv) For a : i→ j ∈ Q1, x ∈ Q
(i)
0 , t′(a, ix) = ix and h′(a, ix) = j(ax).

Relations: R′ := R′
1 ∪R′

2 ∪R′
3, where

(i) R′
1 := {σ(i)(µ) | i ∈ Q0, µ ∈ R(i)},

where we set σ(i) : kQ(i) ↪→ kQ′.

(ii) R′
2 := {π(g, ix)− π(h, ix) | i, j ∈ Q0, (g, h) ∈ R(i, j), x ∈ Q

(i)
0 },

where for each path a in Q we set

π(a, ix) := (an, in−1(an−1an−2 . . . a1x)) . . . (a2, i1(a1x))(a1, ix)

if a = an . . . a2a1 for some arrows a1, . . . , an in Q, and

π(a, ix) := e
ix

if a = ei for some i ∈ Q0.
(iii) R′

3 := {(a, iy)iα − j(aα)(a, ix) | a : i → j ∈ Q1, α : x →
y ∈ Q

(i)
1 }, where we take aα : ax → ay so that Φ(j)(aα) ∈

X(a)Φ(i)(α):

α ∈ kQ(i) Φ(i)
// X(i)

X(a)

��
aα ∈ kQ(j) Φ(j)

// X(j).

Note that the ideal ⟨R′⟩ is independent of the choice of aα because
R′

1 ⊆ R′.

Proof. We define a k-functor Φ : kQ′ → Gr(X) as follows:

(i) for ix ∈ Q′
0, Φ(ix) = (i, x);

(ii) for iα : ix→ iy ∈ Q
(i)
1 , Φ(iα) = (δ1liaΦ

(i)(α))a∈I(i,i);
(iii) for (a, ix) : ix→ j(ax) ∈ Q′

1, Φ((a, ix)) = (δab1lX(a)(x))b∈I(i,j);
(iv) for αnαn−1 . . . α1 ∈ PQ′ (α1, . . . , αn ∈ Q′)

Φ(αnαn−1 . . . α1) := Φ(αn)Φ(αn−1) . . .Φ(α1); and

(v) for f :=
∑

α∈PQ′(ix,jy)
fαα ∈ kQ′(ix, jy) (fα ∈ k)

Φ(f) :=
∑

α∈PQ′(ix,jy)

fαΦ(α).

Claim 1. Φ is well-defined as a k-functor, and is bijective on objects.
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Indeed, this is clear by noting that for each ix ∈ Q′
0 we have

Φ(e
ix) = (δ1li,aΦ

(i)(ex))a∈I(i,i)

= 1l(i,x).

Claim 2. Φ(R′) = 0.

Indeed, for each i ∈ Q0, α, β ∈ Q
(i)
1 we have

Φ(iβiα) = Φ(iβ)Φ(iα)

= (δ1i,bΦ
(i)(β))b∈I(i,i)(δ1i,aΦ

(i)(α))a∈I(i,i)

=


∑
c=ba
a∈I(i,i)
b∈I(i,i)

δ1i,bΦ
(i)(β)X(b)(δ1i,aΦ

(i)(α))


c∈I(i,i)

= (δ1i,cΦ
(i)(βα))c∈I(i,i),

which shows that Φ(σ(i)(µ)) = (δ1i,cΦ
(i)(µ))c∈I(i,i) for each µ ∈ PQ(i),

and that for each µ ∈ R(i),

Φ(σ(i)(µ)) = (δ1i,aΦ
(i)(µ))a∈I(i,i) = (δ1i,a0)a∈I(i,i) = 0.

Thus Φ(R′
1) = 0.

For each g1 : i→ j, g2 : j → k ∈ Q1, ix ∈ Q′,

Φ(π(g2g1, ix)) = Φ((g2, j(g1x)))Φ((g1, ix))

= (δg2,b1lX(g2)(g1x))b∈I(j,k)(δg1,a1lX(g1)(x))a∈I(i,j)

=


∑
c=ba

a∈I(i,j)
b∈I(j,k)

δg2,b1lX(g2)(g1x)X(b)(δg1,a1lX(g1)(x))


c∈I(i,k)

= (δg2g1,c1lX(g2)(g1x)1lX(g1)(x))c∈I(i,k)

= (δg2g1,c1lX(g2g1)(x))c∈I(i,k),

which shows that Φ(π(g, ix)) = (δg,b1lX(g)(x))b∈I(i,j) for each g ∈ PQ.
Therefore

Φ(π(g, ix)− π(h, ix)) = Φ(π(g, ix))− Φ(π(h, ix))

= (δg,b1lX(g)(x))b∈I(i,j) − (δh,a1lX(h)(x))a∈I(i,j)

= 0

because g = h for each (g, h) ∈ R(i, j). Thus Φ(R′
2) = 0.
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For a : i→ j ∈ Q1, α : x→ y ∈ Q
(i)
1

Φ((a, iy)iα) = Φ((a, iy))Φ(iα)

= (δa,c1lX(a)(y))c∈I(i,j)(δ1i,bΦ
(i)(α))b∈I(i,i)

=


∑
d=cb
b∈I(i,i)
c∈I(i,j)

δa,c1lX(a)(y)X(c)(δ1i,bΦ
(i)(α))


d∈I(i,j)

= (δa,d1lX(a)(y)X(a)(Φ(i)(α)))d∈I(i,j)

= (δa,dX(a)(Φ(i)(α)))d∈I(i,j),

Φ(j(aα)(a, ix)) = Φ(j(aα))Φ((a, ix))

= (δ1j ,cΦ
(j)(aα))c∈I(j,j)(δa,b1lX(a)(x))b∈I(i,j)

=


∑
d=cb
b∈I(i,j)
c∈I(j,j)

δ1j ,cΦ
(j)(aα)X(c)(δa,b1lX(a)(x))


d∈I(i,j)

= (δa,dΦ
(j)(aα)X(1j)(1lX(a)(x)))d∈I(i,j)

= (δa,dΦ
(j)(aα))d∈I(i,j).

Since X(a)(Φ(i)(α)) = Φ(j)(aα) by the choice of aα, we have

Φ((a, iy)iα) = Φ(j(aα)(a, ix)).

Hence Φ(R′
3) = 0, and finally Φ(R′) = 0.

By the claim above we see that Φ induces a functor Φ : kQ′/⟨R′⟩ →
Gr(X). We prove that Φ is an isomorphism. To this end, we first
consider a basis of (kQ′/⟨R′⟩)(ix, jy) for each ix, jy ∈ Q′

0.

Claim 3. For each (g, h) ∈ R#(i, j) and x ∈ Q(i), π(g, ix) = π(h, ix).

Indeed, there exist some (a, b) ∈ R(i′, j′), c ∈ PQ(i, i′) and d ∈
PQ(j′, j) such that

(g, h) = (dac, dbc).

Then

π(g, ix)− π(h, ix) = π(dac, ix)− π(dbc, ix)

= π(d, j′(acx))π(a, i′(cx))π(c, ix)− π(d, j′(bcx))π(b, i′(cx))π(c, ix)

= π(d, j′(acx))(π(a, i′(cx))− π(b, i′(cx)))π(c, ix).

Therefore since π(a, i′(cx))−π(b, i′(cx)) ∈ R′, we have π(g, ix)−π(h, ix) ∈
R′. Hence π(g, ix) = π(h, ix).
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For each a : i → j in I we define a functor X̃(a) : kQ(i) → kQ(j) as
follows:

• For each x ∈ Q
(i)
0 , X̃(a)(x) := X(a)(x).

• For each arrow α : x→ y in Q(i), X̃(a)(α) := aα.
• For each path µ := αn . . . α1 (n ≥ 2) in Q(i), X̃(a)(µ) :=
X̃(a)(αn) . . . X̃(a)(α1).

Claim 4. For each ix, jy ∈ Q′
0 and µ ∈ PQ′(ix, jy), there exist some

a ∈ I(i, j) and ν ∈ kQ(j)(j(ax), jy) such that µ = νπ(a, ix).

Indeed, since (b, kv)kα − l(bα)(b, ku) ∈ R′ for each b : k → l in Q1

and α : u→ v in Q
(k)
1 , we have

(b, kv)kα = l(bα)(b, ku),

which implies

(b, kv)σ(k)(λ) = σ(l)X̃(b)(λ)(b, ku)

for each λ ∈ kQ(k)(ku, kv). By using this formula in the path µ we can

move factors of the form (b, kv) to the right, and finally we have

µ = ν(at, xt) · · · (a1, x1)

for some 0 ≤ t ∈ Z, ν ∈ kQ(j), x1, · · · , xt ∈ Q′
0, a1, · · · , at ∈ Q1,

where (at, xt) · · · (a1, x1) is a path of length t in Q′, and hence we
have (at, xt) · · · (a1, x1) = π(a, x1) (a := at · · · a1). Hence we have

ν ∈ kQ(j)(j(ax), jy) and µ = νπ(a, ix).

Claim 5. M := {απ(a, ix)|a ∈ I(i, j), α ∈ Mj(ax, y)} is a basis of
(kQ′/⟨R′⟩)(ix, jy), where Mj(ax, y) is a basis of (kQ(j)/⟨R(j)⟩)(ax, y).
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Indeed, assume
∑

a∈I(i,j)
α∈PQ(j)(ax,y)

ka,ααπ(a, ix) = 0. Then

Φ

 ∑
a∈I(i,j)

α∈PQ(j)(ax,y)

ka,ααπ(a, ix)


=

∑
a∈I(i,j)

α∈PQ(j)(ax,y)

ka,αΦ(α)Φ(π(a, ix))

=
∑

a∈I(i,j)
α∈PQ(j)(ax,y)

ka,α(δ1j ,cΦ
(j)(α))c∈I(j,j)(δa,b1lX(a)(x))b∈I(i,j)

=
∑

a∈I(i,j)
α∈PQ(j)(ax,y)

ka,α(
∑
d=cb
b∈I(i,j)
c∈I(j,j)

δ1j ,cΦ
(j)(α)X(c)(δa,b1lX(a)(x)))d∈I(i,j)

=
∑

a∈I(i,j)
α∈PQ(j)(ax,y)

ka,α(δa,dΦ
(j)(α)X(1j)(1lX(a)(x)))d∈I(i,j)

=
∑

a∈I(i,j)
α∈PQ(j)(ax,y)

ka,α(δa,dΦ
(j)(α))d∈I(i,j)

=

Φ(j)

 ∑
α∈PQ(j)(ax,y)

kd,αα


d∈I(i,j)

= 0

Since α ∈ Mj(ax, y), we have kd,α = 0. Therefore M is a basis of
(kQ′/⟨R′⟩)(ix, jy).

Here we define σa : X(j)(X(a)(x), y) ↪→
⊕

a∈I(i,j)

X(j)(X(a)(x), y) by

µ 7→ (δb,aµ)b∈I(i,j) for each µ ∈ X(j)(X(a)(x), y). Then a basis of

Gr(X)((i, x), (j, y)) is written by
∪

a∈I(i,j)

σa(Φ
(j)(Mj(ax, y))), and for

each απ(a, ix) ∈ M we have

Φ(απ(a, ix)) = (δa,dΦ
(j)(α))d∈I(i,j)

= σaΦ
(j)(α).

Hence Φ induces an isomorphism (kQ′/⟨R′⟩)(ix, jy)
∼
→ Gr(X)((i, x), (j, y)).

Therefore Φ is an isomorphism. □
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Remark 3.2. The description of the proof of Claim 5 in the proof of
Theorem 8.1 in [4] is not complete. This corresponds to Claim 4 above,
and the formula (8.4) in [4] should be replaced by a linear combination

η =
∑

ty,αs,...eyαs . . . α1(gt, xt) . . . (g1, x1)

with ty,αs,... ∈ k. Correspondingly, we must remove “η =” in the last
formula in Claim 5 there. The earlier version arXiv:0807.4706v6 of the
paper records the correct proof.

4. Examples

In this section, we illustrate Theorems 2.4 and 3.1 by some examples.

Example 4.1. Let Q be the quiver

2

1 3 5

4

a
@@�������

b

��=
==

==
==

c // d //

e
��=

==
==

==

f

@@�������

and let R = {(ba, dc)}. Then the category I := ⟨Q | R⟩ is not given
as a semigroup, as a poset or as the free category of a quiver. For any
algebra A consider the diagonal functor ∆(A) : I → k-Cat. Then by
Theorem 2.4 the category Gr(∆(A)) is given by

AQ/⟨ba− dc⟩.

Remark 4.2. Let Q and Q′ be quivers having neither double arrows
nor loops, and let f : Q0 → Q′

0 be a map (a vertex map between Q
and Q′). If Q(x, y) ̸= ∅ (x, y ∈ Q0) implies Q′(f(x), f(y)) ̸= ∅ or

f(x) = f(y), then f induces a k-functor f̂ : kP → kP ′ defined by the

following correspondence: For each x ∈ Q0, f̂(ex) := ef(x), and for
each arrow a : x→ y in Q, f(a) is the unique arrow f(x) → f(y) (resp.
ef(x)) if f(x) ̸= f(y) (resp. if f(x) = f(y)).

Example 4.3. Let I = ⟨Q | R⟩ be as in the previous example. Define a
functor X : I → k-Cat by the k-linearizations of the following quivers
in frames and the k-functors induced by the vertex maps expressed by
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broken arrows between them:

1

2

1 1

2 1 2

1

2

α

��

α

��

α

��

α

��

X(a)

44

r
q

p
p

o
o

n m m l l k k j i

X(a)

44

r
q

p
p

o
o

n m m l l k k j i

X(c)

))

\ [ [ Z Y Y X X W W V V U T TX(c)
//_________________

X(e)

**

L
M

N
N

O
O

P Q Q R R S T T U

X(e)

**

L
M

N
N

O
O

P Q Q R R S T T U

X(b)

&&

U T T S R R Q Q P O
O

N
N

M
L

X(b)

))

\ [ [ Z Y Y X X W W V V U T T

X(d)

33fffffffffffffffff

X(f)

44

r
q

p
p

o
o

n m m l l k k j i

X(f)

99

i j k k l l m m n o
o

p
p

q
r

X(2)

X(1)

X(3)

X(5)

X(4)

Then by Theorem 3.1 Gr(X) is presented by the quiver

Q′ =



21

22

11 51

12 31 52

41

42

1α

��

2α

��

4α

��

5α

��

(a,11)

44

r
q

q
p

o
o

n
n m m l k k j j

(a,12)

44

r
q

q
p

o
o

n
n m m l k k j j

(c,11)

))

[ [ Z Z Y Y X X W W V U U T T(c,12) //_________________

(e,11)

**

L
M

M
N

O
O

P
P Q R R S S T T

(e,12)

**

L
M

M
N

O
O

P
P Q R R S S T T

(b,21)

%%

T T S S R R Q P
P

O
O

N
M

M
L

(b,22)

))

[ [ Z Z Y Y X X W W V U U T T

(d,31)

33fffffffffffffffff

(f,41)

44

r
q

q
p

o
o

n
n m m l k k j j

(f,42)

99

j j k k l m m n
n

o
o

p
q

q
r


with relations

R′ = {π(ba, 11)− π(dc, 11), π(ba, 12)− π(dc, 12)}
∪{(a, iy)iα− j(aα)(a, ix) | a : i→ j ∈ Q1, α : x→ y ∈ Q

(i)
1 },

where the new arrows are presented by broken arrows.

Example 4.4 (Semigroup case). Define a category I = ⟨Q | R⟩ by
setting

Q =
(
1 gff

)
, R = {(g2, g3)}.



19

Then I can be regarded as a semigroup with the presentation ⟨g | g2 =
g3⟩. We define a functor X : G → k-Cat as follows. Let Q(1) be the
quiver

1
α // 2

β // 3 .

and set X(1) := kQ(1), and define an endofunctor X(g) of X(1) as
the k-functor induced by the vertex map X(g)(1) = 2, X(g)(2) =
3, X(g)(3) = 3. Then by Theorem 3.1 Gr(X) is presented by the
quiver

Q′ = ( 1 2 3
α //

(g,1)
//

β //

(g,2)
// (g,3)ff )

with relations

R′ = {(g, 3)(g, 2)(g, 1)− (g, 2)(g, 1), (g, 3)(g, 3)(g, 2)− (g, 3)(g, 2),

(g, 3)(g, 3)(g, 3)− (g, 3)(g, 3), (g, 2)α− β(g, 1), (g, 3)β − (g, 2)}.

Example 4.5. Let Q = ( 1
a // 2 ) and I := PQ. Define functors

X,X ′ : I → k-Cat by the k-linearizations of the following quivers in
frames and the k-functors induced by the vertex maps expressed by
dotted arrows between them:

X :

1 2

3

1

α

��7
77

77
77

77

β

����
��

��
��

�

X(a)

��

X(a)

		

X(a)

��

X(1)

X(2),

X ′ :

1

2 3

1

α

����
��

��
��

�
β

��7
77

77
77

77

X′(a)

��
X′(a)

��
X′(a)

��

X ′(1)

X ′(2).

Then by Theorem 3.1 Gr(X) is given by the following quiver with no
relations

11 12

13

21

1α

��@
@@

@@
@@

1β

��~~
~~

~~
~

(a,11)

��

(a,12)

��
(a,13)

��

,

{
(a, 13)1α− (a, 11),
(a, 13)1β − (a, 12)

}


∼=



11 12

13

21

1α

��@
@@

@@
@@

1β

��~~
~~

~~
~

(a,13)

��


,
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and Gr(X ′) is given by the following quiver with a commutativity re-
lation

11

12 13

21

1α

��~~
~~

~~
~

1β

��@
@@

@@
@@

(a,11)

��(a,12) �� (a,13)��

,

{
(a, 12)1α− (a, 11),
(a, 13)1β − (a, 11)

}


∼=



11

12 ⟳ 13

21

1α

��~~
~~

~~
~

1β

��@
@@

@@
@@

(a,12) �� (a,13)��


.

By using the main theorem in [6] derived equivalences between X(1)
and X ′(1) and between X(2) and X ′(2) are glued together to have a
derived equivalence between Gr(X) and Gr(X ′).
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Chapter II.

Derived equivalence classification of generalized
multifold extensions of piecewise hereditary
algebras of tree type

After preparations in section 1 we first reduce the problem to the case
of hereditary tree algebras in section 2. Then we investigate scalar mul-
tiples in the repetitive category of a hereditary tree algebras in section
3, which is a central part of the proof of the main result. In section 4
we show that any generalized multifold extension of a piecewise hered-
itary algebra of tree type is derived equivalent to a twisted multifold
extension of the same type, which immediately yields the desired clas-
sification result.

1. Preliminaries

For a category R we denote by R0 and R1 the class of objects and
morphisms of R, respectively. A category R is said to be locally bounded
if it satisfies the following:

• Distinct objects of R are not isomorphic;
• R(x, x) is a local algebra for all x ∈ R0;
• R(x, y) is finite-dimensional for all x, y ∈ R0; and
• The set {y ∈ R0 | R(x, y) ̸= 0 or R(y, x) ̸= 0} is finite for all
x ∈ R0.

A category is called finite if it has only a finite number of objects.
A pair (A,E) of an algebra A and a complete set E := {e1, . . . , en} of

orthogonal primitive idempotents of A can be identified with a locally
bounded and finite category R by the following correspondences. Such
a pair (A,E) defines a category R(A,E) := R as follows: R0 := E,
R(x, y) := yAx for all x, y ∈ E, and the composition of R is defined
by the multiplication of A. Then the category R is locally bounded
and finite. Conversely, a locally bounded and finite category R defines
such a pair (AR, ER) as follows: AR :=

⊕
x,y∈R0

R(x, y) with the usual

matrix multiplication (regard each element of A as a matrix indexed
by R0), and ER := {(1lxδ(i,j),(x,x))i,j∈R0 | x ∈ R0}. We always regard an
algebra A as a locally bounded and finite category by fixing a complete
set A0 of orthogonal primitive idempotents of A.

For a locally bounded category A, we denote by ModA the cate-
gory of all (right) A-modules (= contravariant functors from A to the
category Mod k of k-vector spaces); by modA the full subcategory of
ModA consisting of finitely presented objects; and by prjA the full
subcategory of ModA consisting of finitely generated projective ob-
jects. Kb(A) denotes the bounded homotopy category of an additive
category A.
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2. Repetitive categories

Definition 2.1. Let A be a locally bounded category.
(1) The repetitive category Â of A is a k-category defined as follows

(Â turns out to be locally bounded again):

• Â0 := A0 × Z = {x[i] := (x, i) | x ∈ A0, i ∈ Z}.

• Â(x[i], y[j]) :=


{f [i] | f ∈ A(x, y)} if j = i,

{ϕ[i] | ϕ ∈ DA(y, x)} if j = i+ 1,

0 otherwise,

for all x[i], y[j] ∈ Â0.

• For each x[i], y[j], z[k] ∈ Â0 the composition Â(y[j], z[k])×Â(x[i], y[j]) →
Â(x[i], z[k]) is given as follows.
(i) If i = j, j = k, then this is the composition of A A(y, z)×

A(x, y) → A(x, z).
(ii) If i = j, j+1 = k, then this is given by the right A-module

structure of DA: DA(z, y)× A(x, y) → DA(z, x).
(iii) If i+ 1 = j, j = k, then this is given by the left A-module

structure of DA: A(y, z)×DA(y, x) → DA(z, x).
(iv) Otherwise, the composition is zero .

(2) We define an automorphism νA of Â, called the Nakayama auto-

morphism of Â, by νA(x
[i]) := x[i+1], νA(f

[i]) := f [i+1], νA(ϕ
[i]) := ϕ[i+1]

for all i ∈ Z, x ∈ A0, f ∈ A1, ϕ ∈
∪
x,y∈A0

DA(y, x).

(3) For each n ∈ Z, we denote by A[n] the full subcategory of Â

formed by x[n] with x ∈ A, and by 1l[n] : A
∼
→ A[n] ↪→ Â, x 7→ x[n], the

embedding functor.

We cite the following from [3, Lemma 2.3].

Lemma 2.2. Let ψ : A→ B be an isomorphism of locally bounded cat-
egories. Denote by ψyx : A(y, x) → B(ψy, ψx) the isomorphism defined

by ψ for all x, y ∈ A. Define ψ̂ : Â→ B̂ as follows.

• For each x[i] ∈ Â, ψ̂(x[i]) := (ψx)[i];

• For each f [i] ∈ Â(x[i], y[i]), ψ̂(f [i]) := (ψf)[i]; and

• For each ϕ[i] ∈ Â(x[i], y[i+1]), ψ̂(ϕ[i]) := (D((ψyx)
−1)(ϕ))[i] = (ϕ ◦

(ψyx)
−1)[i].

Then

(1) ψ̂ is an isomorphism.

(2) Given an isomorphism ρ : Â→ B̂, the following are equivalent.

(a) ρ = ψ̂;
(b) ρ satisfies the following.

(i) ρνA = νBρ;
(ii) ρ(A[0]) = A[0];
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(iii) The diagram

A
ψ−−−→ B

1l[0]

y y1l[0]

A[0] −−−→
ρ

B[0]

is commutative; and
(iv) ρ(ϕ[0]) = (ϕ ◦ (ψyx)−1)[0] for all x, y ∈ A and all ϕ ∈

DA(y, x).

Let R be a locally bounded category with the Jacobson radical
J and with the ordinary quiver Q. Then by definition of Q there
is a bijection f : Q0 → R0, x 7→ fx and injections āy,x : Q1(x, y) →
J(fx, fy)/J

2(fx, fy) such that āy,x(Q1(x, y)) forms a basis of J(fx, fy)/J
2(fx, fy),

where Q1(x, y) is the set of arrows from x to y in Q for all x, y ∈ Q0.
For each α ∈ Q1(x, y) choose ay,x(α) ∈ J(fx, fy) such that a(α) +
J2(fx, fy) = āy,x(α). Then the pair (f, a) of the bijection f and the
family a of injections ay,x : Q1(x, y) → J(fx, fy) (x, y ∈ Q0) uniquely
extends to a full functor Φ: kQ→ R, which is called a display functor
for R.

A path µ from y to x in a quiver with relations (Q, I) is called
maximal if µ ̸∈ I but αµ, µβ ∈ I for all arrows α, β ∈ Q1. For a k-
vector space V with a basis {v1, . . . , vn} we denote by {v∗1, . . . , v∗n} the
basis of DV dual to the basis {v1, . . . , vn}. In particular if dimk V = 1,
v∗ ∈ DV is defined for all v ∈ V \{0}.

An algebra is called a tree algebra if its ordinary quiver is an oriented
tree.

Lemma 2.3. Let A be a tree algebra and Φ : kQ→ A a display functor
with I := KerΦ. Then
(1) Φ uniquely induces the display functor Φ̂ : kQ̂→ Â for Â, where

(i) Q̂ = (Q̂0, Q̂1, ŝ, t̂) is defined as follows:

• Q̂0 := Q0 × Z = {x[i] := (x, i) | x ∈ Q0, i ∈ Z},
• Q1 × Z := {α[i] := (α, i) | α ∈ Q1, i ∈ Z},
Q̂1 := (Q1 ×Z)⊔ {µ∗[i] | µ is a maximal path in (Q, I), i ∈
Z},

• ŝ(α[i]) := s(α)[i], t̂(α[i]) := t(α)[i] for all α[i] ∈ Q1 × Z,
and if µ is a maximal path from y to x in (Q, I) then,
ŝ(µ∗[i]) := x[i], t̂(µ∗[i]) := y[i+1].

(ii) Φ̂ is defined by Φ̂(x[i]) := (Φx)[i], Φ̂(α[i]) := (Φα)[i], and Φ̂(µ∗[i]) :=
(Φ(µ)∗)[i] for all i ∈ Z, x ∈ Q0, α ∈ Q1 and maximal paths µ
in (Q, I).

(2) We define an automorphism νQ of Q̂ by νQ(x
[i]) := x[i+1], νQ(α

[i]) :=
α[i+1], νQ(µ

∗[i]) := µ∗[i+1] for all i ∈ Z, x ∈ Q0, α ∈ Q1, and maximal
paths µ in (Q, I).
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(3) Ker Φ̂ is equal to the ideal Î defined by the full commutativity re-

lations on Q̂ and the zero relations µ = 0 for those paths µ of Q̂ for
which there is no path t̂(µ)⇝ νQ(ŝ(µ)). (Therefore note that if a path

αn · · ·α1 is in I, then α
[i]
n · · ·α[i]

1 is in Î for all i ∈ Z.)

Let R be a locally bounded category. A morphism f : x → y in R1

is called a maximal nonzero morphism if f ̸= 0 and fg = 0, hf = 0 for
all g ∈ radR(z, x), h ∈ radR(y, z), z ∈ R0.

Lemma 2.4. Let A be an algebra and x[i], y[j] ∈ Â0. Then there exists a
maximal nonzero morphism in Â(x[i], y[j]) if and only if y[j] = νA(x

[i]).

Proof. This follows from the fact that Â(-, x[i+1]) ∼= DÂ(x[i], -) for all
i ∈ Z, x ∈ A0. □

Lemma 2.5. Let A be an algebra. Then the actions of ϕνA and νAϕ
coincide on the objects of Â for all ϕ ∈ Aut(Â).

Proof. Let x[i] ∈ Â0. Then there is a maximal nonzero morphism
in Â(x[i], νA(x

[i])) by Lemma 2.4. Since ϕ is an automorphism of Â,

there is a maximal nonzero morphism in Â(ϕ(x[i]), ϕ(νA(x
[i]))). Hence

ϕ(νA(x
[i])) = νA(ϕ(x

[i])) by the same lemma. □

The following is immediate by the lemma above.

Proposition 2.6. Let A be an algebra, n an integer, and ϕ an auto-
morphism of Â. Then the following are equivalent:

(1) ϕ is an automorphism with jump n;
(2) ϕ(Ai) = A[i+n] for some integer i;
(3) ϕ(Aj) = A[j+n] for all integers j; and

(4) ϕ = σνnA for some automorphism σ of Â with jump 0.

Remark 2.7. Let A be an algebra.

(1) In Skowroński [17, 18] an automorphism ϕ of Â is called rigid
if ϕ(A[j]) = A[j] for all j ∈ Z. Hence ϕ is rigid if and only if
it is an automorphism with jump 0 by the proposition above.
Therefore for an integer n, ϕ is an automorphism with jump n
if and only if ϕ = σνnA for some rigid automorphism σ of Â.

(2) Noting this fact we see by [18, Theorem 4.7] that the class of
self-injective algebras of Euclidean type contains a lot of gener-
alized multifold extensions of piecewise hereditary algebras of
tree type.

In the sequel, we always assume that n is a positive integer when we
consider a morphism with jump n.
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3. Derived equivalences and tilting subcategories

Let R be a locally bounded category and ϕ ∈ Aut(R). Then ϕ
induces an equivalence ϕ(-) : modR → modR defined by ϕM := M ◦
ϕ−1 : R → mod k for all M ∈ modR. In particular for R(-, x) with
x ∈ R, we have ϕ(R(-, x)) = R(ϕ−1(-), x) ∼= R(-, ϕx), and the last
isomorphism is given by ϕ itself. Thus the identification ϕ(R(-, x)) =
R(-, ϕx) depends on ϕ, and the subset {R(-, x) | x ∈ R} of prjR is not
⟨ϕ(-)⟩-stable in a strict sense. This makes it difficult to give explicitly a
complete set of representatives of isoclasses of indecomposable objects
of Kb(prjR) which is ⟨Kb(ϕ(-))⟩-stable. To avoid this difficulty we used
in [2] the formal additive hull addR ([9, 2.1 Example 8]) of R defined
below instead of prjR.

Definition 3.1. Let R be a locally bounded category. The formal
additive hull addR of R is a category defined as follows.

• (addR)0 := {
⊕n

i=1 xi := (x1, . . . , xn) | n ∈ N, x1, . . . , xn ∈
R0};

• For each x =
⊕m

i=1 xi, y =
⊕m

j=1 yi ∈ (addR)0,

(addR)(x, y) := {(µj,i)j,i | µj,i ∈ R(xi, yj) for all i = 1, . . . ,m, j = 1, . . . , n}; and
• The composition is given by the matrix multiplication.

We regard that R is contained in addR by the embedding (f : x →
y) 7→ ((f) : (x) → (y)) for all f in R.

Remark 3.2. Let R and ϕ be as above.

(1) Define a functor ηR : addR → prjR by (x1, . . . , xn) 7→ R(-, x1)⊕
· · · ⊕ R(-, xn) and (µji)j,i 7→ (R(-, µji))j,i. Then ηR is an equiv-
alence, called the Yoneda equivalence.

(2) Let F : R → S be a functor of locally bounded categories.
Then F naturally induces functors addF : addR → addS and
F̃ := Kb(addF ) : Kb(addR) → Kb(addS), which are isomor-
phisms if F is an isomorphism. Namely, addF is defined by
(x1, . . . , xn) 7→ (Fx1, . . . , Fxn) and (µji) 7→ (Fµji) for all ob-

jects (x1, . . . , xn) and all morphisms (µji) in addR; and F̃ is de-
fined by addF componentwise. Further if G : S → T is a func-
tor of locally bounded categories, then we have (GF )̃ = G̃F̃ .

(3) The automorphism ϕ acts onKb(addR) as ϕ̃, and ϕKb(ηR)(X
�) ∼=

Kb(ηR)(ϕ̃(X
�)) for all X � ∈ Kb(addR).

We cite the following from [2, Proposition 5.1] which follows from
Keller [11] (Cf. Rickard [15], [1, Proposition 1.1]).

Proposition 3.3. Let R and S be locally bounded categories. Then the
following are equivalent:

(1) There is a triangle equivalence D(ModS) → D(ModR); and
(2) There is a full subcategory E of Kb(addR) such that



26

(a) Kb(addR)(T, U [n]) = 0 for all T, U ∈ E and all n ̸= 0;
(b) R is contained in the smallest full triangulated subcategory

of Kb(addR) containing E that is closed under direct sum-
mands and isomorphisms; and

(c) E is isomorphic to S.

Definition 3.4. We say that locally bounded categories R and S are
derived equivalent if one of the equivalent conditions above holds. In
(2) the triple (R,E, S) is called a tilting triple and E ⊆ Kb(addR) is
called a tilting subcategory for R.

Theorem 1.5 in [1] is interpreted as follows.

Theorem 3.5. If (A,E,B) is a tilting triple of locally bounded cate-

gories with an isomorphism ψ : E → B, then (Â, Ê, B̂) is also a tilting

triple with the isomorphism ψ̂ : Ê → B̂, where Ê is isomorphic to
(and identified with) the full subcategory of Kb(add Â) consisting of the

(1l[n])̃ (T ) with T ∈ E, n ∈ Z.

For a group G acting on a category S we say that a subclass E of the
objects of S is G-stable (resp. G-stable up to isomorphisms) if gx ∈ E
(resp. if gx is isomorphic to some object in E) for all g ∈ G and x ∈ E.

Proposition 3.6. Let (A,E,B) be a tilting triple of locally bounded

categories with an isomorphism ψ : E → B, g an automorphism of Â
and h an automorphism of B̂. Then Â/⟨g⟩ is derived equivalent to

B̂/⟨h⟩ if
(1) g is of infinite order and ⟨g⟩ acts freely on Â;

(2) Ê is ⟨g̃⟩-stable; and
(3) The following diagram commutes:

Ê
ψ̂−−−→ B̂

g̃

y yh
Ê −−−→

ψ̂
B̂.

Remark 3.7. Let E be a tilting subcategory for a locally bounded
category R and G a group acting on R. If E is G-stable up to iso-
morphisms, then there exists a tilting subcategory E ′ for R such that
E ∼= E ′ and E ′ is G-stable (see [1, Remark 3.2] and [2, Lemma 5.3.3
and Remark 5.3(2)]).

4. Reduction to hereditary tree algebras

Let Q be a quiver. We denote by Q̄ the underlying graph of Q, and
call Q finite if both Q0 and Q1 are finite sets. Each automorphism of Q
is regarded as an automorphism of Q̄ preserving the orientation of Q,
thus Aut(Q) can be regarded as a subgroup of Aut(Q̄). Suppose now
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that Q is a finite oriented tree. Then it is also known that Aut(Q) ≤
Aut0(Q̄) := {f ∈ Aut(Q̄) | f(x) = x for some x ∈ Q0}. We say that
Q is an admissibly oriented tree if Aut(Q) = Aut0(Q̄). We quote the
following from [3, Lemma 4.1]:

Lemma 4.1. For any finite tree T there exists an admissibly oriented
tree Q with a unique source such that Q̄ = T .

We cite the following from [3, Lemma 5.4].

Lemma 4.2. Let A be a piecewise hereditary algebra of type Q for an
admissibly oriented tree Q. Then there is a tilting triple (A,E, kQ)

such that E is ⟨ϕ̃⟩-stable up to isomorphisms for all ϕ ∈ Aut(A).

By the following proposition we can reduce the derived equivalence
classification of generalized multifold extensions of piecewise hereditary
algebras of tree type to the corresponding problem of generalized mul-
tifold extensions of hereditary tree algebras. The second statement also
enables us to compare the generalized multifold extension and a twisted
version corresponding to it using the repetitive category of the common
hereditary algebra.

Proposition 4.3. Let A be a piecewise hereditary algebra of tree type
Q̄ for an admissibly oriented tree Q, and n a positive integer. Then we
have the following:

(1) For any ϕ ∈ Aut(Â) with jump n, there exists some ψ ∈
Aut(k̂Q) with jump n such that Â/⟨ϕ⟩ is derived equivalent to

k̂Q/⟨ψ⟩; and
(2) If we set ϕ′ := νnAϕ̂0 ∈ Aut(Â), where ϕ0 := (1l[0])−1ν−nϕ1l[0],

then there exists some ψ′ ∈ Aut(k̂Q) with jump n such that

Â/⟨ϕ′⟩ is derived equivalent to k̂Q/⟨ψ′⟩, and that the actions of

ψ and ψ′ coincide on the objects of k̂Q.

Proof. (1) We set ϕi := (1l[i])−1ν−nϕ1l[i] ∈ Aut(A) for all i ∈ Z. By
Lemma 4.2, there exists a tilting triple (A,E, kQ) with an isomorphism
ζ : E → kQ such that E is ⟨η̃⟩-stable up to isomorphisms for all η ∈
Aut(A). In particular, E is ⟨ϕ̃i⟩-stable up to isomorphisms for all i ∈ Z.
Then (Â, Ê, k̂Q) is a tilting triple with the isomorphism ζ̂ by Theorem
3.5 and the following holds.

Claim 6. Ê is ⟨ϕ̃⟩-stable up to isomorphisms.

Indeed, for each T ∈ E0 and i ∈ Z, we have

ϕ̃(1l[i])̃ (T ) = (νnν−nϕ1l[i])̃ (T )

= (νn1l[i]ϕi)̃ (T )

= (1l[i+n])̃ ϕ̃i(T ).

(4.1)
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Since E is ⟨ϕ̃i⟩-stable up to isomorphisms, we have ϕ̃i(T ) ∼= T ′ for some

T ′ ∈ E, and hence ϕ̃((1l[i])̃ (T )) ∼= (1l[i+n])̃ (T ′) ∈ Ê, as desired.

By Remark 3.7, we have a ⟨ϕ̃⟩-stable tilting subcategory Ê ′ and

an isomorphism θ : Ê ′ ∼
→ Ê. Therefore by Proposition 3.6 Â/⟨ϕ⟩ and

Ê ′/⟨ϕ̃⟩ are derived equivalent. If we set ψ := (ζ̂θ)ϕ̃(ζ̂θ)−1, then (4.1)

shows that ψ is an automorphism with jump n, and that Ê ′/⟨ϕ̃⟩ ∼=
k̂Q/⟨ψ⟩. Hence Â/⟨ϕ⟩ and k̂Q/⟨ψ⟩ are derived equivalent.

(2) Note that ϕ′ is also an automorphism with jump n. By the

same argument we see that Ê is also ⟨ϕ̃′⟩-stable up to isomorphisms;

there exists a ⟨ϕ̃′⟩-stable tilting subcategory Ê ′′ and an isomorphism

θ′ : Ê ′′ ∼
→ Ê; and Â/⟨ϕ′⟩ and Ê ′′/⟨ϕ̃′⟩ are derived equivalent. Set ψ′ :=

(ζ̂θ′)ϕ̃′(ζ̂θ′)−1, then ψ′ is an automorphism with jump n, Ê ′′/⟨ϕ̃′⟩ ∼=
k̂Q/⟨ψ′⟩, and Â/⟨ϕ′⟩ and k̂Q/⟨ψ′⟩ are derived equivalent. Now for

i = 0 the equality (4.1) shows that ϕ̃(1l[0])̃ (T ) = (1l[n])̃ ϕ̃0(T ) for all

T ∈ E0. Since ϕ
′
0 = ϕ0, the same calculation shows that ϕ̃′(1l[0])̃ (T ) =

(1l[n])̃ ϕ̃0(T ) for all T ∈ E0. Thus the actions of ϕ̃ and ϕ̃′ coincide on
the objects of E[0], which shows that the actions of ψ and ψ′ coincide on
the objects of kQ[0]. Hence by Lemma 2.5 their actions coincide on the

objects of k̂Q. Indeed, ψ(x[i]) = ψνi(x[0]) = νiψ(x[0]) = νiψ′(x[0]) =
ψ′νi(x[0]) = ψ′(x[i]) for all x ∈ Q0 and i ∈ Z. □

5. Hereditary tree algebras

Remark 5.1. Let Q be an oriented tree.

(1) We may identify k̂Q = kQ̂/Î as stated in Lemma 2.3, and we

denote by µ the morphism µ+ Î in k̂Q for each morphism µ in kQ̂.
(2) Let x, y ∈ Q̂0. Since Î contains full commutativity relations, we

have dimk k̂Q(x, y)≤ 1, and in particular Q̂ has no double arrows.

(3) Let α : x → y be in Q̂1 and ϕ ∈ Aut(k̂Q). Then there exists a

unique arrow ϕx→ ϕy in Q̂, which we denote by (π̂ϕ)(α), and we have

ϕ(α) = ϕα(π̂ϕ)(α) ∈ k̂Q(ϕx, ϕy) for a unique ϕα ∈ k× := k \ {0}. This
defines an automorphism π̂ϕ of Q̂, and thus a group homomorphism

π̂ : Aut(k̂Q) → Aut(Q̂).
(4) Similarly, let α : x → y be in Q1 and ψ ∈ Aut(kQ). Then there

exists a unique arrow ψx→ ψy inQ, which we denote by (πψ)(α). This
defines an automorphism πψ of Q, and thus a group homomorphism
π : Aut(kQ) → Aut(Q).

We cite the following from [3, Proposition 7.4].

Proposition 5.2. Let R be a locally bounded category, and g, h auto-
morphisms of R acting freely on R. If there exists a map ρ : R0 → k×

such that ρ(y)g(f) = h(f)ρ(x) for all morphisms f : x → y in R, then
R/⟨g⟩ ∼= R/⟨h⟩. □
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Definition 5.3. (1) For a quiver Q = (Q0, Q1, s, t) we set Q[Q−1
1 ] to

be the quiver

Q[Q−1
1 ] := (Q0, Q1 ⊔ {α−1 | α ∈ Q1}, s′, t′),

where s′|Q1 := s, t′|Q1 := t, s′(α−1) := t(α) and t′(α−1) := s(α) for all
α ∈ Q1. A walk in Q is a path in Q[Q−1

1 ].
(2) Suppose that Q is a finite oriented tree. Then for each x, y ∈

Q0 there exists a unique shortest walk from x to y in Q, which we
denote by w(x, y). If w(x, y) = αεnn · · ·αε11 for some α1, · · · , αn ∈ Q1

and ε1, . . . , εn ∈ {1,−1}, then we define a subquiver W (x, y) of Q by
W (x, y) := (W (x, y)0,W (x, y)1, s

′, t′), whereW (x, y)0 := {s(αi), t(αi) |
i = 1, . . . , n}, W (x, y)1 := {α1, . . . , αn}, and s′, t′ are restrictions of
s, t to W (x, y)1, respectively. Since Q is an oriented tree, w(x, y) is
uniquely recovered by W (x, y). Therefore we can identify w(x, y) with
W (x, y), and define a sink and a source of w(x, y) as those in W (x, y).

The following is a central part of the proof of the main result.

Proposition 5.4. Let Q be a finite oriented tree and ϕ, ψ automor-

phisms of k̂Q acting freely on k̂Q. If the actions of ϕ and ψ coincide

on the objects of k̂Q, then there exists a map ρ : (Q̂0 =) k̂Q0 → k×

such that ρ(y)ψ(f) = ϕ(f)ρ(x) for all morphisms f : x → y in k̂Q.
Hence in particular, k̂Q/⟨ϕ⟩ is isomorphic to k̂Q/⟨ψ⟩.

Proof. Assume that the actions of ϕ, ψ ∈ Aut(k̂Q) coincides on the

objects of k̂Q. Then ϕ and ψ induce the same quiver automorphism

q = π̂ϕ = π̂ψ of Q̂, and there exist (ϕα)α∈Q̂1
, (ψα)α∈Q̂1

∈ (k×)Q̂1 such

that for each α ∈ Q̂1 we have

ϕ(α) = ϕαq(α), ψ(α) = ψαq(α).

For each path λ = αn · · ·α1 in Q̂ with α1, . . . , αn ∈ Q̂1 we set ϕλ :=
ϕαn · · ·ϕα1 . Then we have

ϕ(λ) = ϕλq(λ),

where q(λ) := q(αn) · · · q(α1) because ϕ(αn) · · ·ϕ(α1) = ϕαn · · ·ϕα1q(αn) · · · q(α1).

To show the statement we may assume that ψα = 1 for all α ∈ Q̂1.

Since for each x, y ∈ Q̂0 the morphism space k̂Q(x, y) is at most 1-
dimensional and has a basis of the form µ for some path µ, it is enough
to show that there exists a map ρ : Q̂0 → k× satisfying the following
condition:

ρ(v[j]) = ϕβρ(u
[i]) for all β : u[i] → v[j] in Q̂1. (5.1)

We define a map ρ as follows:
Fix a maximal path µ : y ⇝ x in Q. Then x is a sink and y is a source
in Q. We can write µ as µ = αl · · ·α1 for some α1, . . . , αl ∈ Q1. First
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we set ρ(x[0]) := 1. By induction on 0 ≤ i ∈ Z we define ρ(x[i]) and
ρ(x[−i]) by the following formulas:

ρ(x[i+1]) := ϕµ[i+1]ϕµ∗[i]ρ(x
[i]), (5.2)

ρ(x[i−1]) := ϕ−1
µ∗[i−1]ϕ

−1
µ[i]
ρ(x[i]). (5.3)

Now for each i ∈ Z and u ∈ Q0 if w(u, x) = βεmm · · · βε11 for some
β1, . . . , βm ∈ Q1 and ε1, . . . , εm ∈ {1,−1}, then we set

ρ(u[i]) := ϕ−ε1
β
[i]
1

· · ·ϕ−εm
β
[i]
m

ρ(x[i]). (5.4)

We have to verify the condition (5.1).
Case 1. β = α[i] : u[i] → v[i] for some i ∈ Z, and α : u → v in

Q1. Since Q is an oriented tree, we have either w(u, x) = w(v, x)α or
w(v, x) = w(u, x)α−1. In either case we have ρ(v[i]) = ϕα[i]ρ(u[i]) by
the formula (5.4).

Case 2. Otherwise, we have β = λ∗[i] : u[i] → v[i+1] for some maximal
path λ : v ⇝ u in Q and i ∈ Z. In this case the condition (5.1) has the
following form:

ρ(v[i+1]) = ϕλ∗[i]ρ(u
[i]). (5.5)

Two paths are said to be parallel if they have the same source and the
same target. We prepare the following for the proof.

Claim 7. If ζ and η are parallel paths in Q̂, then we have ϕζ = ϕη.

Indeed, since ζ − η ∈ Î, we have ϕ(ζ) = ϕ(η), which shows

ϕζq(ζ) = ϕηq(η).

Here we have q(ζ) = ψ(ζ) = ψ(η) = q(η), and ψ(ζ) ̸= 0 because ζ ̸= 0.
Hence ϕζ = ϕη, as required.

We now set d(a, b) to be the number of sinks in w(a, b) for all a, b ∈
Q0. By induction on d(y, v) we show that the condition (5.5) holds.
Note that both v and y (resp. u and x) are sources (resp. sinks) in Q.

Assume d(y, v) = 0. Then y = v because these are sources in Q. By
formulas (5.4) and (5.2) we have

ρ(v[i+1]) = ρ(y[i+1]) = ϕ−1

α
[i+1]
1

· · ·ϕ−1

α
[i+1]
l

ρ(x[i+1]) = ϕµ∗[i]ρ(x
[i]).

If u = x, then λ = µ and hence ϕµ∗[i]ρ(x
[i]) = ϕλ∗[i]ρ(u

[i]). Thus (5.5)
holds.

If u ̸= x, then ϕµ∗[i]ϕµ[i] = ϕλ∗[i]ϕλ[i] by Claim 7. Since Q is an

oriented tree, we have w(u, x) = µλ−1, and ρ(u[i]) = ϕλ[i]ϕ
−1
µ[i]
ρ(x[i]).

Therefore

ρ(v[i+1]) = ϕµ∗[i]ρ(x
[i]) = ϕλ∗[i]ϕλ[i]ϕ

−1
µ[i]
ρ(x[i]) = ϕλ∗[i]ρ(u

[i]),

and (5.5) holds.
Assume d(y, v) ≥ 1. Then we can write w(y, v) = ν−1

1 ν2 · · · ν−1
m−1νm

for some paths ν1, . . . , νm of length at least 1 and m ≥ 2. Set z1 :=
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Figure 5.1

t(ν2), z2 := s(ν2). Then z1 is a sink and z2 is a source in w(y, v). Since
Q is a tree, there exists a unique maximal path of the form ν0ν2ν

′
0 : v1 ⇝

u1 in Q for some paths ν0, ν
′
0. We set ν := ν2ν

′
0. (See Figure 5.1, where

we omitted the notations [i], [i+1] for paths in Q[i], Q[i+1], respectively.)
Since d(v1, y) = d(v, y)− 1, we have

ρ(v
[i+1]
1 ) = ϕ(ν0ν)∗[i]ρ(u

[i]
1 ) (5.6)

by induction hypothesis. Since the paths ν [i+1](ν0ν)
∗[i] and ν

[i+1]
1 (ν0ν1)

∗[i]

are parallel, we have

ϕν[i+1]ϕ(ν0ν)∗[i] = ϕ
ν
[i+1]
1

ϕ(ν0ν1)∗[i] (5.7)

by Claim 1. Further by the result of Case 1 we have

ρ(v[i+1]) = ϕ−1

ν
[i+1]
1

ϕν[i+1]ρ(v
[i+1]
1 ). (5.8)

It follows from (5.6), (5.7) and (5.8) that

ρ(v[i+1]) = ϕ(ν0ν1)∗[i]ρ(u
[i]
1 ).

(If u1 = u, then ν0ν1 = λ and this already gives (5.5).) Again by the
result of Case 1 we have

ρ(u
[i]
1 ) = ϕ(ν0ν1)[i]ϕ

−1
λ[i]
ρ(u[i]).

Since the paths λ∗[i]λ[i] and (ν0ν1)
∗[i](ν0ν1)

[i] are parallel, we have

ϕλ∗[i]ϕλ[i] = ϕ(ν0ν1)
∗[i]ϕ(ν0ν1)

[i]

by Claim 1. The last three equalities give (5.5). □
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6. Main result

Theorem 6.1. Let A be a piecewise hereditary algebra of tree type and
ϕ an automorphism of Â with jump n. Then Â/⟨ϕ⟩ and T nϕ0(A) are

derived equivalent, where we set ϕ0 := (1l[0])−1ν−nϕ1l[0].

Proof. Let T be the tree type of A. Then by Lemma 4.1 there exists
an admissibly oriented tree Q with Q̄ = T . We set ϕ′ := νnAϕ̂0 (=

ϕ̂0ν
n
A). Then T

n
ϕ0
(A) = Â/⟨ϕ′⟩. By Proposition 4.3(2) there exist some

ψ, ψ′ ∈ Aut(k̂Q) both with jump n such that Â/⟨ϕ⟩ (resp. Â/⟨ϕ′⟩)
is derived equivalent to k̂Q/⟨ψ⟩ (resp. k̂Q/⟨ψ′⟩), and the actions of

ψ and ψ′ coincide on the objects of k̂Q. Then by Proposition 5.4

we have k̂Q/⟨ψ⟩ ∼= k̂Q/⟨ψ′⟩. Hence Â/⟨ϕ⟩ and T nϕ0(A) are derived
equivalent. □
Definition 6.2. Let Λ be a generalized n-fold extension of a piecewise
hereditary algebra A of tree type T , say Λ = Â/⟨ϕ⟩ for some ϕ ∈
Aut(A) with jump n. Further let Q be an admissibly oriented tree

with Q̄ = T . Then by Proposition 4.3 there exists ψ ∈ Aut(k̂Q) with
jump n such that Â/⟨ϕ⟩ is derived equivalent to k̂Q/⟨ψ⟩. We define the
(derived equivalence) type type(Λ) of Λ to be the triple (T, n, π(ψ0)),

where ψ0 := (1l[0])−1ν−nkQψ1l
[0] and π(ψ0) is the conjugacy class of π(ψ0)

in Aut(T ). type(Λ) is uniquely determined by Λ.

By Theorem 6.1, we can extend the main theorem in [3] as follows.

Theorem 6.3. Let Λ, Λ′ be generalized multifold extensions of piece-
wise hereditary algebras of tree type. Then the following are equivalent:

(i) Λ and Λ′ are derived equivalent.
(ii) Λ and Λ′ are stably equivalent.
(iii) type(Λ) = type(Λ′).

Finally we pose a question concerning a refinement of Theorem 6.1.

Question. Under the setting of Theorem 6.1, when are the algebras
Â/⟨ϕ⟩ and T nϕ0(A) isomorphic?

In the forthcoming paper [12] we will give an affirmative answer.
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