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Part 1. The Case of Non Equal Densities

1. Introduction of The Case of non Equal Densities

In this paper, we consider incompressible two-phase flows with phase transitions
in Rn with initial interface is nearly flat. Let

Ω±(t) = {x = (x′, xn) ∈ Rn−1 × R : ±(xn − h(t, x′)) > 0, t ≥ 0},

and Ω(t) = Ω−(t) ∪ Ω+(t). A nearly flat interface represented as a graph over
Rn−1 is given by

Γ(t) = {(x′, xn) ∈ Rn−1 × R : xn − h(t, x′) = 0, t ≥ 0}.

Let ρ± > 0 denote the densities of Ω±(t). From section 1 to section 12, we consider
the case of non-equal densities ρ+ ̸= ρ−. In order to economize our notation, we
set

ρ =

{
ρ+ in Ω+(t)

ρ− in Ω−(t).

Let u denote the velocity vector field, π the pressure field and θ the absolute
temperature field. T (u, π, θ) the stress tensor defined by

T (u, π, θ) = 2µ(θ)D(u)− πI,

D(u) = (∇u + [∇u]T)/2 denotes the rate of deformation tensor, µ±(θ) > 0 the
viscosity, I the unit matrix. νΓ = (−∇′h, 1)/(|∇′h|2 + 1)1/2 the outer normal of
Ω+, uΓ the interface velocity, VΓ = uΓ · νΓ the normal velocity of Γ(t), HΓ =
H(Γ(t)) = divΓνΓ = ∇′ · νΓ the curvature of Γ(t), σ > 0 the constant coefficient
of surface tension. j , and

[[u]] =
(
u|Ω+(t) − u|Ω−(t)

)∣∣
Γ(t)

denote the jump of a quantity u across Γ(t). We define the phase flux j by

j = ρ+(u+ − uΓ) · νΓ = ρ−(u− − uΓ) · νΓ,

because balance of mass across Γ(t) requires [[ρ(u− uΓ)]] · νΓ = 0 (cf. [14, Section
2]).

In the problem without phase transitions, it holds that VΓ = u ·νΓ i.e. j = 0. This
means that the normal velocity of Γ(t), VΓ is determined by the only velocity, u.
In the problem with phase transitions, VΓ isn’t determined by the only u, hence
j ̸= 0.
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Several quantities are derived from the specific free energy ψ±(θ) in phase Ω±(t)
as follows.

• ϵ±(θ) := ψ±(θ) + θη±(θ) the internal energy,
• η±(θ) := −ψ′

±(θ) the entropy,
• κ±(θ) := ϵ′±(θ) = −θψ′′

±(θ) > 0 the heat capacity,
• l(θ) := θ[[ψ′(θ)]] = −θ[[η(θ)]] the latent heat.

Further d±(θ) > 0 denotes the coefficient of heat conduction in Fourier’s law. In
order to economize our notation, we set

d(θ) =

{
d+(θ) in Ω+(t)

d−(θ) in Ω−(t).

We just keep in mind that the coefficients depend on the phases.
We find a family of hypersurfaces {Γ(t)}t≥0 and appropriately smooth functions

u : R+ × Rn → Rn, and π, θ : R+ × Rn → R such that

ρ(∂tu+ u · ∇u)− div T (u, π, θ) = 0 in Ω(t), t > 0,

div u = 0 in Ω(t), t > 0,

[[
1

ρ
]]j2νΓ − [[T (u, π, θ)νΓ]]− σHΓνΓ = 0 on Γ(t), t > 0,

[[u]]− [[
1

ρ
]]jνΓ = 0 on Γ(t), t > 0, (1.1)

u(0) = u0 in Ω(t),

ρκ(θ)(∂tθ + u · ∇θ)− div(d(θ)∇θ)− 2µ(θ)|D(u)|22 = 0 in Ω(t), t > 0,

l(θ)j + [[d(θ)∂νΓθ]] = 0 on Γ(t), t > 0,
(1.2)

[[θ]] = 0 on Γ(t), t > 0,

θ(0) = θ0 in Rn,

[[ψ(θ)]] + [[
1

2ρ2
]]j2 − [[

T (u, π, θ)νΓ · νΓ
ρ

]] = 0 on Γ(t), t > 0,

VΓ − u · νΓ +
1

ρ
j = 0 on Γ(t), t > 0, (1.3)

Γ(0) = Γ0,

where |D|22 = Σn
i,j=1d

2
ij and divD = (Σn

j=1∂jd1j , · · · ,Σn
j=1∂jdnj)

T for an n × n
matrix D whose (i, j) element is dij . The problem is called an incompressible
two-phase flow with phase transitions. Here we remark that finding a family of
hypersurfaces {Γ(t)}t≥0 is equivalent to finding a family of {Ω(t)}t≥0.
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We explain the model concisely. Let V , S and νS be any fixed bounded do-
main in Ω±(t), the smooth boundary and the outer normal of S, respectively, and
suppose S ∩ Γ(t) = ∅.

Observing the volume flowing from V in unit time through S, we have:∫ ∫
S

ρu · νS dS = − ∂

∂t

∫ ∫ ∫
V

ρ dV,

so it holds that∫ ∫
S

ρu · νS dS = − ∂

∂t

∫ ∫ ∫
V

ρ dV = −
∫ ∫ ∫

V

∂

∂t
ρ dV.

By Gauss formula, we gain∫ ∫
S

ρu · νS dS =

∫ ∫ ∫
V

div(ρu) dV,

hence we observe ∫ ∫ ∫
V

(∂tρ+ div (ρu)) dV = 0.

From voluntariness of V , the equation:

∂tρ+ div (ρu) = 0 in Ω(t), t > 0
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denotes balance of mass in Ω(t). The second equation of (1.1):

divu = 0 in Ω(t), t > 0

stands for the case where ρ is a constant i.e. we consider incompressible flows.
Next, we write equations that mean balance of momentum:

∂t(ρu) + div (ρu⊗ u)− divT (u, π, θ) = 0 in Ω(t), t > 0,

[[ρu⊗ (u− uΓ)− T (u, π, θ)]]νΓ = σHΓνΓ on Γ(t), t > 0,

where ⊗ means tensor product i.e. a ⊗ b = abT for a, b ∈ Rn. In case ρ is a
constant,

div (ρu⊗ u) = ρ(Σn
j=1∂j(u1uj), · · · ,Σn

j=1∂j(unuj))
T

= ρ(Σn
j=1(∂ju1)uj + u1divu, · · · ,Σn

j=1(∂jun)uj + undivu)
T

= ρu · ∇u,

so

ρ(∂tu+ u · ∇u)− divT (u, π, θ) = ∂t(ρu) + div (ρu⊗ u)− divT (u, π, θ) = 0

in Ω(t). Utilizing j = ρ(u− uΓ) · νΓ i.e. [[1/ρ]]j = [[u · νΓ]], we have

[[ρu⊗ (u− uΓ)]]νΓ = [[ρ(u− uΓ) · νΓu]] = [[u]]j = [[
1

ρ
]]j2νΓ,

therefore it holds that

[[
1

ρ
]]j2νΓ − [[T (u, π, θ)νΓ]]− σHΓνΓ = 0

on Γ(t). This model is explained in more detail in Prüss-Shibata-Shimizu-Simonett
[14] ( cf. [1], [2], [3], [7], [8], [9], [10], [12], [13]). It is in some sense the simplest
sharp interface model for incompressible Newtonian two-phase flows taking into
account phase transitions driven by temperature.

Note that in the case of equal densities, the phase flux j does not enter (1.1)
because [[1/ρ]] = 0, and so in this case we obtain essentially a Stefan problem
with surface tension, which is only weakly coupled to the standard two-phase
Navier-Stokes problem via temperature dependent viscosities. We call this case
temperature dominated, and it has been studied in [14] and Section 11. But in the
case of different densities, the phase flux j causes a jump in the velocity field on
the interface, which leads to so called Stefan currents which are convections driven
by phase transitions. In this situation it turns out that the heat problem (1.2) is
only weakly coupled to (1.1) and (1.3), we call this case velocity dominated. The
resulting two-phase Navier-Stokes problem is non-standard, therefore it requires a
new analysis, and it has been studied in Prüss and Shimizu [15] in Lp-setting in
time and space.

The aim of section 1-12 is to prove local Lp-Lq well-posedness of the problem
of (1.1) (1.2) (1.3) in the case of non-equal densities and an initial interface which
is nearly flat.
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We set Ω0 = Ω(0) and Γ0 = Γ(0). The main result of this paper is the local-
wellposedness of (1.1) (1.2) (1.3) Lp in time Lq in space setting.

Theorem 1.1. Let p <∞, n < q <∞, 2/p+n/q < 1 and ρ+ ̸= ρ−, and suppose
ψ± ∈ C3(0,∞), µ±, d± ∈ C2(0,∞) are such that

κ±(s) = −sψ′′
±(s) > 0, µ±(s) > 0, d±(s) > 0 s ∈ (0,∞).

Let the initial interface Γ0 be given by a graph x′ 7→ (x′, h0(x
′)), θ∞ > 0 be the

constant temperature at infinity. And let

(u0, θ0, h0) ∈ B2−2/p
q,p (Ω0)

n ×B2−2/p
q,p (Ω0)×B3−1/p−1/q

q,p (Rn−1)

be given. Assume that the compatibility conditions:

div u0 = 0 in Ω0,

PΓ0 [[µ(θ0)D(u0)ν0]] = 0, PΓ0 [[u0]] = 0 on Γ0,

[[θ0]] = 0, (l(θ0)/[[1/ρ]])[[u0 · ν0]] + [[d(θ0)∂ν0θ0]] = 0 on Γ0,

where PΓ0 = I − νΓ0 ⊗ νΓ0 denotes the projection onto the tangent bundle of Γ0.
Then there exists a constant ε0 depending only on Ω0, p, q, n such that if h0 and
u0 satisfy ∥∇′h0∥L∞(Ṙn) + ∥u0∥L∞(Ω0) ≤ ε0, then there exist

T = T (∥θ0 − θ∞∥
B

2−2/p
q,p (Ṙn)

+ ∥h0∥B3−1/p−1/q
q,p (Rn−1)

, ε0) > 0

and a unique Lp-Lq solution (u, π, θ, h) of (1.1)-(1.3) on [0, T ] in the class of (2.8)
below.

Remark 1.2.

(1) The notion of Lp-Lq-solution is explained in more detail in Section 5.
(2) In Prüss-Shimizu [15], they considered the same problem when p = q and

proved local well-posedness in Lp-setting when n+2 < p <∞. Our result
may treat the case when p < ∞, n < q < ∞ and 2/p + n/q < 1, which
covers wider range than the results of [15]. Indeed, if n+ 2 < q <∞,

n+ 2− 2q

q − n
=

(n+ 2)(q − n)− 2q

q − n

=
qn− n2 − 2n

q − n

=
(q − n− 2)n

q − n
> 0.

Thus, we know that

2q/(q − n) < p ≤ n+ 2

is permitted and if n+ 2 < p <∞, then q = n+ 2 is permitted.
(3) The restriction of expornents of p, q comes from using the following em-

bedding relations to treat nonlinear terms. When n < q < ∞, it holds
that

W 1
q (Rn

±) ↪→ L∞(Rn
±).
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When 2 < p <∞, it holds that

B2−2/p
q,p (Rn

±) ↪→W 1
q (Rn

±).

Let J = [0, T ]. When 1 < p, q <∞, it holds that

W 1
p (J ;Lq(Rn

±)) ∩ Lp(J ;W
2
q (Rn

±)) ↪→ BUC(J ;B2−2/p
q,p (Rn

±)),

and when n < q <∞ and 2/p+ n/q < 1, it holds that

H1/2
p (J ;Lq(Rn

±)) ∩ Lp(J ;W
1
q (Rn

±)) ↪→ BUC(J ;BUC(Rn
±))

(cf. Lemma 5.2, below).
(4) The smallness condition ∥u0∥L∞(Ω0) ≤ ε0 comes from the nonlinear terms

un∇′h and u′ ·∇′h in the fourth equation of (2.4) and the second equation
of (2.6), respectively.

2. Linearized Problem

Let Rn
0 = Rn−1 ×{0} and Ṙn = Rn\Rn

0 . We use contraction mapping principle
in order to prove Theorem 1.1.

Theorem 2.1. (contraction mapping principle) Let X be a Banach space and S
be a closed subset in X. If a map, Φ : S → S is a contraction map i.e. there exists
ρ (0 ≤ ρ < 1) and

∥Φ(u)− Φ(υ)∥X ≤ ρ∥u− υ∥X for u, υ ∈ S,

there is a unique fixed point of Φ in S.

Here, we mention semi-group theory.

Theorem 2.2. (semi-group and Lp − Lq estimate){
∂tu−∆u = f t > 0,

u(0) = u0.
(2.1)

We could give the unique solution of (2.1), u as

u(t) = et∆u0 +

∫ t

0

e(t−s)∆f(s) dt

et∆g satisfies the following: for any 1 ≤ p ≤ q < ∞, g ∈ Lq(Rn) and multi-index
α,

∥∂kt ∂αx et∆g∥Lp(Rn) ≤ Ct−
n
2 ( 1

q−
1
p )−k− |α|

2 ∥g∥Lq(Rn) for t > 0,

where α = (α1, · · · , αn), |α| = α1 + α2 + · · ·+ αn, ∂
α
x = ∂α1

x1
∂α2
x2

· · ·ααn
xn

.

We deal with the next quasi-linear problem:{
∂tu−∆u = P (u,∇u,∇2u) t > 0,

u(0) = u0.
(2.2)
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The formula:

u(t) = et∆u0 +

∫ t

0

e(t−s)∆P (u,∇u,∇2u)(s) ds

is called mild solution. Defining Φ(u) as Φ(u) =
∫ t

0
e(t−s)∆P (u,∇u,∇2u)(s) ds,

we could write

u(t) = et∆u0 +Φ(u).

We would like estimates of Φ(u), ∇Φ(u) and ∇2Φ(u) to prove contract of Φ(s).
By Theorem 2.2,

∥∇2Φ(u)∥Lp(Rn) ≤ C

∫ t

0

1

t− s
∥P (u,∇u,∇2u)∥Lq(Rn) dt

The right hand side of this estimate has singularity at t = 0. This fact shows
that it is not easy for us to solve (2.2) with contraction mapping principle and
properties of semi-group. However, estimates of maximal Lp regularity is useful.
Incidentally, we could solve semi-linear problem by properties of semi-group.

Definition 2.3. (Maximal Lp Regularity) Let X be a Banach space and A be a
closed operator whose domain, D(A) is dense in X. We treat the following Cauchy
problem: {

∂tu+Au = f t > 0,

u(0) = 0,
(2.3)

We say that A has maximal regularity when (2.3) admits a unique solution, u for
any f ∈ Lp((0, T );X) (1 < p < ∞), where 0 < t < T ≤ ∞ and u satisfies the
estimate:

∥∂tu∥Lp((0,T );X) + ∥Au∥Lp((0,T );X) ≤ C∥f∥Lp((0,T );X),

where a positive constant, C is independent of f . Moreover, we know that an
operator, A is a generator of semi-group, e−tA if A has maximal regularity.

Changing variables of (1.1)-(1.3) with yn = xn − h(x′, t), we obtain the quasi-
linear problem. Indeed, setting u(x, t) = υ(y, t), we obtain

υ(y, t) = υ(x′, xn − h(x′, t), t) = u(x, t), ∂ku = −(∂kh)∂nυ + ∂nυ

∂nu = ∂nυ, ∂2ku = ∂2kυ + (∂kh)
2∂2nυ − (∂2kh)∂nυ − 2(∂kh)∂k∂nυ

∂2nu = ∂2nυ, ∂tu = −(∂th)∂nυ + ∂tυ.

Therefore,

ρ∂tu− µ∆u = ρ∂tυ−µ∆υ − ρ(∂th)∂nυ

−µ|∇′h|2∂2nυ + µ(∆′h)∂nυ + 2µ(∇′h) · ∇′∂nυ.

The principal part of the linearized problem in the case of a nearly flat initial
interface reads as follows

ρ∂tu− µ∆u+∇π = fu in Ṙn, t > 0,

div u = fd in Ṙn, t > 0,
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−2[[µD(u)ν]] + [[π]]ν − σ∆′hν = gu on Rn
0 , t > 0,

[[u′]] = g on Rn
0 , t > 0, (2.4)

u(0) = u0 in Ṙn,

ρκ∂tθ − d∆θ = fθ in Ṙn, t > 0,

−[[d∂νθ]] = gθ on Rn
0 , t > 0,

[[θ]] = 0 on Rn
0 , t > 0, (2.5)

θ(0) = θ0 in Ṙn,

−2[[
µ0D(u)ν · ν

ρ
]] + [[

π

ρ
]] = gπ on Rn

0 , t > 0,

∂th− [[ρu · ν]]/[[ρ]] = gh on Rn
0 , t > 0, (2.6)

h(0) = h0 on Rn
0 ,

where µ±, κ±, d±, ρ± are constants, ν = en = (0, · · · , 0, 1). We assume as always
in this paper [[ρ]] = ρ+ − ρ− ̸= 0. Apparently, (2.5) decouples from the remaining
problem. Since it is well-known that this problem has maximal Lp-Lq-regularity
(cf. Denk, Hieber and Prüss [4]), we concentrate on the remaining one. It reduces
to the problem:

ρ∂tu− µ∆u+∇π = fu in Ṙn, t > 0,

div u = fd in Ṙn, t > 0,

−2[[µD(u)ν]] + [[π]]ν − σ∆′hν = gu on Rn
0 , t > 0,

[[u′]] = g on Rn
0 , t > 0, (2.7)

−2[[µD(u)ν · ν/ρ]] + [[π/ρ]] = gπ on Rn
0 , t > 0,

∂th− [[ρun]]/[[ρ]] = gh on Rn
0 , t > 0,

u(0) = 0 in Ṙn,

h(0) = 0 on Rn
0

with positive constants, ρ, µ, σ and κ.

Remark 2.4. The system (2.7) is the different linear problem from two-phase
Stokes problem without phase transitions analyzed by Prüss-Simonett [17, 18],
Shibata-Shimizu [23], and Kohne-Prüss-Wilke [11].

We set

Ŵ 1
q (Rn) = {θ ∈ Lq,loc(Rn) | ∇θ ∈ Lq(Rn)n},

Lp,0,γ0(R;X) = {f : R → X | e−γ0tf(t) ∈ Lp(R;X), f(t) = 0 for t < 0},
Wm

p,0,γ0
(R;X) = {f ∈ Lp,0,γ0(R;X) | e−γ0tDj

t f(t) ∈ Lp(R;X), j = 1, · · · ,m},
for a ∈ R,

Λa
γf(t) = L−1[|s|aL[f ](s)](t)
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Ha
p,0,γ0

(R;X) = {f : R → X | e−γtΛa
γf(t) ∈ Lp(R;X)

for any γ ≥ γ0, f(t) = 0 for t < 0}

where L and L−1 are Laplace transform and its inverse respectively, and set
Ŵ−1

q (Rn) the dual space of Ŵ 1
q′(Rn), where 1/q + 1/q′ = 1.

For problem (2.7), we have the following maximal Lp-Lq regularity result.

Theorem 2.5. Let 1 < p, q <∞, and assume that σ, ρ±, µ± are positive constants
and ρ+ ̸= ρ−. Suppose the data (fu, fd, gu, g, gπ, gh) satisfy the following regularity
conditions:

fu ∈ Lp,0,γ0(R+;Lq(Rn))n,

fd ∈W 1
p,0,γ0

(R+; Ŵ
−1
q (Rn)) ∩ Lp,0,γ0(R+;W

1
q (Ṙn)),

gu ∈ H
1/2
p,0,γ0

(R+;Lq(Rn))n ∩ Lp,0,γ0(R+;W
1
q (Ṙn))n,

g ∈W 1
p,0,γ0

(R+;Lq(Rn))n−1 ∩ Lp,0,γ0(R+;W
2
q (Ṙn))n−1,

gπ ∈ H
1/2
p,0,γ0

(R+;Lq(Rn)) ∩ Lp,0,γ0(R+;W
1
q (Ṙn)),

gh ∈W 1
p,0,γ0

(R+;Lq(Rn)) ∩ Lp,0,γ0(R+;W
2
q (Ṙn))

and compatibility conditions:

fd(0) = PRn−1gu(0) = g(0) = 0 in Ṙn,

where PRn−1 denotes the projection onto Rn−1. Then the asymmetric Stokes prob-
lem (2.7) admits a unique solution (u, π, h) with regularity

u ∈W 1
p,0,γ0

(R+;Lq(Rn))n ∩ Lp,0,γ0
(R+;W

2
q (Ṙn))n,

π ∈ Lp,0,γ0(R+; Ŵ
1
q (Ṙn)),

π± ∈ H
1/2
p,0,γ0

(R+;Lq(Rn
±)) ∩ Lp,0,γ0(R+;W

1
q (Rn

±)),

h ∈W 1
p,0,γ0

(R+;W
2
q (Ṙn)) ∩ Lp,0,γ0(R+;W

3
q (Ṙn))

∩H3/2
p,0,γ0

(R+;W
1
q (Ṙn)) ∩W 2

p,0,γ0
(R+;Lq(Rn)),

The solution map [(fu, fd, gu, g, gπ, gh) 7→ (u, π, h)] is continuous between the cor-
responding spaces.

Here, compatibility conditions are necessary conditions that initial values should
satisfy. For instance, ∂ju(x, 0) = 0 (j = 1, · · · , n) by u(0) = u(x, 0) = 0 for any
x ∈ R, therefore fd(0) = fd(x, 0) = divu(x, 0) = 0 for any x ∈ R.

If 0 < T <∞, it holds that

∥f∥Lp(0,T ;Lq(Rn)) =
(∫ T

0

∥f(t)∥pLq(Rn) dt
)1/p

=
(∫ T

0

∥eγte−γtf(t)∥pLq(Rn) dt
)1/p
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≤
(∫ T

0

(
sup

t∈[0,T ]

eγt
)
∥e−γtf(t)∥pLq(Rn) dt

)1/p
= eγT ∥e−γtf∥Lp(R+,Lq(R))

for some γ > 0. Hence, we may view the nonlinear problem in following spaces.
Let J = [0, T ]. We set the function spaces of the solution:

Eu(J) := (W 1
p (J ;Lq(Rn)) ∩ Lp(J ;W

2
q (Ṙn))n,

Eπ(J) := Lp(J ; Ŵ
1
q (Ṙn)),

Eπ±(J) := H1/2
p (J ;Lq(Rn

±))
n ∩ Lp(J ;W

1
q (Ṙn

±))
n,

Eθ(J) :=W 1
p (J ;Lq(Rn)) ∩ Lp(J ;W

2
q (Ṙn)),

Eh(J) :=W 1
p (J ;W

2
q (Ṙn)) ∩ Lp(J ;W

3
q (Ṙn))

∩H3/2
p (J ;W 1

q (Ṙn)) ∩W 2
p,0,γ0

(R+;Lq(Rn)),

E(J) := Eu(J)× Eπ(J)× Eπ±(J)× Eθ(J)× Eh(J). (2.8)

We set the function spaces of right members:

Fu(J) := Lp(J ;Lq(Rn))n,

Fd(J) :=W 1
p (J ; Ŵ

−1
q (Rn)) ∩ Lp(J ;W

1
q (Ṙn)),

Fθ(J) := Lp(J ;Lq(Rn)),

G(J) :=W 1
p (J ;Lq(Rn)) ∩ Lp(J ;W

2
q (Ṙn)),

Gu(J) := H1/2
p (J ;Lq(Rn))n ∩ Lp(J ;W

1
q (Ṙn))n,

Gθ(J) := H1/2
p (J ;Lq(Rn)) ∩ Lp(J ;W

1
q (Ṙn)),

Gπ(J) := H1/2
p (J ;Lq(Rn)) ∩ Lp(J ;W

1
q (Ṙn)),

Gh(J) :=W 1
p (J ;Lq(Ṙn)) ∩ Lp(J ;W

2
q (Ṙn)),

F(J) := Fu(J)× Fd(J)× Fθ(J)×Gu(J)×G(J)×Gθ(J)×Gπ(J)×Gh(J).

We know that

Eu(J) ↪→ BUC(J ;B2−2/p
q,p (Ṙn))n,

Eθ(J) ↪→ BUC(J ;B2−2/p
q,p (Ṙn)),

W 1
p (J ;W

2
q (Ṙn)) ∩ Lp(J ;W

3
q (Ṙn)) ↪→ BUC(J ;B3−1/p

q,p (Ṙn),

so we define the time trace space Xγ of E(J) as

Xγ = B2−2/p
q,p (Ṙn)n ×B2−2/p

q,p (Ṙn)×B3−1/p−1/q
q,p (Rn−1).

The main result which is maximal Lp-Lq regularity for linearized problem (2.4)-
(2.6) is stated as follows.
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Theorem 2.6. Let 1 < p, q <∞, and assume that σ, ρ± µ± are positive constants
ρ+ ̸= ρ−, and set J = [0, T ]. If (fu, fd, fθ, gu, g, gθ, gπ, gh) ∈ F(J), and the initial
data

(u0, θ0, h0) ∈ Xγ = B2−2/p
q,p (Ṙn)n ×B2−2/p

q,p (Ṙn)×B3−1/p−1/q
q,p (Rn−1)

satisfy the compatibility conditions:

div u0 = fd(0) in Ṙn, 2− 2/p > 1 + 1/q,

−[[µPRn−1D(u0)]] = PRn−1gu(0) on Rn−1, 2− 2/p > 1 + 1/q,

[[u′0]] = g(0), [[θ0]] = 0 on Rn−1, 2− 2/p > 1/q,

−[[d∂nθ0]] = gθ(0) on Rn−1, 2− 2/p > 1 + 1/q,

then the linearized problem (2.4)-(2.6) admits a unique solution (u, π, π±, θ, h) ∈
E(J).

Theorem 2.6 is proved by combining Theorem 2.5 and the results within [11],
[23] and [4]. Therefore it is key to prove Theorem 2.5.

The plan for this part is as follows. In Section 4, we prove Theorem 2.5, namely
maximal Lp-Lq regularity of (2.7). Section 5 is devoted to prove local Lp-Lq

well-posedness of the problem of (1.1) (1.2) (1.3). In Appendix, we calculate the
explicit solution formula of (2.7).

3. R−boundedness and Operator Valued Fourier Multiplier
Theorem

This section is a quotation from Section 2 in [24]. Let X and Y be two Banach
spaces whose norms are ∥ · ∥X and ∥ · ∥Y , respectively. B denote the set of all
bounded linear operators from X into Y and B(X) = B(X,X).

Definition 3.1. ([24, Definition 2.1]) A family of operators T ⊂ B(X,Y ) is called
R−bounded, if there exist constants C > 0 and p ∈ [1,∞) such that for each
m ∈ N, N being the set of all natural numbers, Tj ∈ T , xj ∈ X (j = 1, · · · , N) and
for all sequence {rj(u)}Nj=1 of independent, symmetric, {−1, 1}−valued random
variables on [0, 1], there holds the inequality:∫ 1

0

∥
N∑
j=1

rj(u)Tj(xj)∥pY du ≤ C

∫ 1

0

∥
N∑
j=1

rj(u)xj∥pX du. (3.1)

The smallest such C is called R−bound of T , which is denoted by R(T ).

Given M ∈ L1,loc(R;B(X,Y )), let us define the operator TM : F−1D(R, X) →
S′(R, Y ) by the formula:

TMϕ = F−1[MF [ϕ]], (F [ϕ] ∈ D(D, X)) (3.2)

We mention operator valued Fourier multiplier theorem by Weis under the defini-
tion R−boundedness above.
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Theorem 3.2. ([25], [24, Theorem 2.3]) Let G be a domain in Rn and 1 < p <∞.
Let M be a function in C1(R\{0},B(Lq(G))) such that

R({M(ρ) | ρ ∈ R\{0}}) = κ0 <∞, R({ρM ′(ρ) | ρ ∈ R\{0}}) = κ1 <∞.

Then, the operator TM defined in (3.2) is extended to a bounded linear operator
from Lp(R;Lq(G)) into Lp(R;Lq(G)). Moreover, denoting this extension by TM ,
we have

∥TM∥B(Lp(R;Lq(G))) ≤ C(κ0 + κ1)

for some positive constant C depending on p, q, G.

A sector Σϵ,γ is defined as

Σϵ,γ0 = {s ∈ C\{0} | | arg s| ≤ π − ϵ, |s| ≥ γ}

From Theorem 3.2, we obtain the next theorem.

Theorem 3.3. ([24, Theorem 2.8]) Let 1 < p, q < ∞, 0 < ϵ < π/2 and γ0 ≥ 0.
Let G be a domain in Rn and Φs be a function of τ ∈ R\{0} when s = γ+iτ ∈ Σϵ,γ

with its value in B(Lq(G)). Assume that the sets {Φs | s ∈ Σϵ,γ0} and {τ d
dτΦs |

s = γ+ iτ ∈ Σϵ,γ0} are R−bounded families in B(Lq(G)). In addition, we assume
that there exists a constant M such that

R({Φs | s ∈ Σϵ,γ0}) ≤M, R({τ d
dτ

Φs | s = γ + iτ ∈ Σϵ,γ0}) ≤M.

Then, we have

∥Φsf∥Lq(G) ≤ CqM∥f∥Lq(G) (f ∈ Lq(G), p ∈ Σϵ, γ0)

for me constant Cq depending on q.
Moreover, if we define the operator Ψ of a function f ∈ Lp(R;Lq(G)) by the

formula:

Ψf(x, t) = L−1
s [ΦsL[f ](s)](x, t) = eγtF−1

τ [ΦsF [e−γtf ](τ)](t) (3.3)

where

F [e−γtf ](τ) =

∫ ∞

−∞
e−(γ+iτ)tf(x, t) dt,

then there exists a constant Cp,q depending on p and q such that

∥e−γtΨf∥Lp(R;Lq(G)) ≤ Cp,qM∥e−γtf∥Lp(R;Lq(G))

for any γ ≥ γ0.

Thus, we may investigate whether or not solutions whose forms are (3.3) satisfy
the condition of Theorem 3.3. However, it is not easy to understand the definition
of R−boundedness and we couldn’t directly solve the linearized by Theorem 3.2,
hence we use a useful lemma.
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Lemma 3.4. ([24, Lemma 5.4]) Let 0 < ϵ < π/2, 1 < q <∞ and γ0 ≥ 0. Suppose
that m1 and m2 satisfy for l = 0, 1

|Dα′

ξ′ (τDτ )
lm1(s, ξ

′)| ≤ Cϵ,γ0(|s|1/2 +A)−|ξ′|,

|Dα′

ξ′ (τDτ )
lm2(s, ξ

′)| ≤ Cϵ,γ0A
−|ξ′|,

respectively. We define K1, K2 and K3 for s ∈ Σϵ,γ0 as

[K1(s)g](x) =

∫ ∞

0

F−1
ξ′ [m1(s, ξ

′)|s|1/2e−B±xn ĝ(ξ′, yn)](x
′) dyn,

[K2(s)g](x) =

∫ ∞

0

F−1
ξ′ [m2(s, ξ

′)Ae−Axn ĝ(ξ′, yn)](x
′) dyn,

[K3(s)g](x) =

∫ ∞

0

F−1
ξ′ [m1(s, ξ

′)e−B±xn ĝ(ξ′, yn)](x
′) dyn.

Then, for l = 0, 1 and i = 1, 2, 3, the sets, {(τDτ )
lKi(s) | s ∈ Σϵ,γ0} are

R−bounded families in B(Lq(Rn
+)).

By Lemma 3.4, we may discuss boundedness of functions for R-boundedness of
operators.

4. Maximal Lp-Lq Regularity; Proof of Theorem 2.5

In this section, we prove Theorem 2.5 by estimating explicit solution formula of
(2.7). (2.7) is written by the following problem in the upper and the lower half
spaces:

ρ±∂tu± − µ±∆u± +∇π± = fu in Rn
± , t > 0,

divu± = fd in Rn
± , t > 0,

−2[[µD(u)ν]] + [[π]]ν − σ(∆′h)ν = gu on Rn
0 , t > 0,

[[u′]] = g on Rn
0 , t > 0,

u±(0) = 0 in Rn
±,

−2[[µD(u)ν · ν/ρ]] + [[π/ρ]] = gπ on Rn
0 , t > 0,

∂th− [[ρu · ν]]/[[ρ]] = gh on Rn
0 , t > 0,

h±(0) = 0 on Rn
0 , (4.1)

where ν = en = (0, · · · , 0, 1)T , u± = (u±1, · · · , u±n)
T , u′ = (u1, · · · , un−1)

T and
ρ±, µ± and σ are positive constants.

If we set u = υ+w and π = τ + κ for a solution (u, π) of (4.1), then (υ, τ) and
(w, κ) satisfy the following problems:

ρ±∂tυ± − µ±∆υ± +∇τ± = fu in Rn
± , t > 0,

divυ± = fd in Rn
± , t > 0,

[[µ(∂nυk + ∂kυn)]] = −gu,k on Rn
0 , t > 0,

[[2µ∂nυn]]− [[τ ]] = −gu,n on Rn
0 , t > 0,
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[[υk]] = gk on Rn
0 , t > 0,

υ±(0) = 0 in Rn
±,

[[(2µ/ρ)∂nυn]]− [[τ/ρ]] = −gπ on Rn
0 , t > 0. (4.2)

ρ±∂tw± − µ±∆w± +∇κ± = 0 in Rn
± , t > 0,

divw± = 0 in Rn
± , t > 0,

[[µ(∂nwk + ∂kwn)]] = 0 on Rn
0 , t > 0,

[[2µ∂nwn]]− [[κ]] = −σ∆′h on Rn
0 , t > 0,

[[wk]] = 0 on Rn
0 , t > 0,

w±(0) = 0 in Rn
±,

[[(2µ/ρ)∂nwn]]− [[κ/ρ]] = 0 on Rn
0 , t > 0,

∂th− [[ρwn]]/[[ρ]] = gh + [[ρυn]]/[[ρ]] on Rn
0 , t > 0,

h±(0) = 0 on Rn
0 . (4.3)

Let Fx′ and F−1
ξ′ denote the partial Fourier transform with respect to x′ and

its inversion transform

Fx′ [u(·, xn)](ξ′) =
∫
Rn−1

e−ix′·ξ′u(x′, xn) dx
′,

F−1
ξ′ [u(·, ξn)](x′) = (2π)−n+1

∫
Rn−1

eix
′·ξ′u(ξ′, ξn) dξ

′,

and let Lt and L−1
s denote the Laplace transform and its inversion transform

Lt[u](s) =

∫
R
e−stu(t) dt, L−1

s [u](t) = (2π)−1

∫
R
estu(s) dτ.

We use the symbol: û = Fx′Lt[u]. Set

A = |ξ′| , B± =

√
ρ±
µ±

s+A2 with ReB± > 0.

First we solve (4.2). We could deduce the case where fu = fd = 0 in the problem
(4.2) (e.g. Shibata and Shimizu [24, Section 3]). Using the Fourier transform with
respect to x′ and the Laplace transform with respect to t, we can convert the
problem (4.2) into ordinary differential equations of xn with fu = fd = 0;

B2
±υ̂±k − ∂2nυ̂±k + (iξk/µ±)τ̂± = 0 in Rn

±, (4.4)

B2
±υ̂±n − ∂2nυ̂±n + µ−1

± ∂nτ̂± = 0 in Rn
±, (4.5)

Σn−1
k=1 iξkυ̂±k + ∂nυ̂±n = 0 in Rn

±, (4.6)

υ̂+k|xn=0 − υ̂−k|xn=0 = ĝk on Rn
0 , (4.7)

[[µ(∂nυ̂k + iξkυ̂n)k]] = −ĝu,k on Rn
0 , (4.8)

[[2µ∂nυ̂n]]− [[τ̂ ]] = −ĝu,n on Rn
0 , (4.9)

[[(2µ/ρ)∂nυ̂n]]− [[π̂/ρ]] = −ĝπ on Rn
0 , (4.10)
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k = 1, · · · , n− 1 .

From (4.4) and (4.5), it holds that

B2
±(Σ

n−1
k=1 iξkυ̂±k + ∂nυ̂±n)− ∂2n(Σ

n−1
k=1 iξkυ̂±k + ∂nυ̂±n) + µ−1

± (−A2 + ∂2n)τ̂ = 0,

so by (4.6), we gain

(A2 − ∂2n)µ
−1
± τ̂± = 0.

Moreover, from this equation, (4.4) and (4.5), it is showed that

(A2 − ∂2n)(B
2
± − ∂2n)υ̂±m = 0 for m = 1, · · · , n.

We look for solutions whose forms are;

τ̂+(s, ξ
′, xn) = µ+Re

−Axn for xn > 0, (4.11)

τ̂−(s, ξ
′, xn) = µ−R

′eAxn for xn < 0, (4.12)

υ̂+m(s, ξ′, xn) = Pme
−Axn +Qme

−B+xn for xn > 0, (4.13)

υ̂−m(s, ξ′, xn) = P ′
me

Axn +Q′
me

B−xn for xn < 0. (4.14)

Generally, we give the solution of the following equation:

(A2 − ∂2n)f = 0

as

f = C1e
−Axn + C2e

Axn

but eAxn → ∞ (xn → ∞), so we couldn’t use Fourier transform for f when
xn → ∞. Oppositely, e−Axn → ∞(xn → −∞) if xn < 0. In the same way, the
function:

g = C1e
−Axn + C2e

Axn + C3e
−Bxn + C4e

Bxn

is the general solution of

(A2 − ∂2n)(B
2 − ∂2n)g = 0

but we should set C2 = C4 = 0 in case xn > 0 and C1 = C3 = 0 if xn < 0 because
of ReB± > 0 and |eB± | = |eReB±+iImB± | = eReB± . Thus, we look for solutions
whose forms are (4.11)-(4.14).

We set

α± = −µ±A
2(3B± −A)/(2B±(B± +A)) , β = (µ+B+ + µ−B−)/2.

R, R′, Pm, P ′
m, Qm, Q′

m are determined by

R = (α+ + α− − β)−1{(−2α− + µ−B−) ˆdivx′g

+ (µ−(1− ρ+/ρ−))
−1(α− + µ−A

2/(2B−))ĝu,n

+ (µ+(1− ρ−/ρ+))
−1(α− − β − µ+A

2/(2B+))ĝu,n

+ (µ−(−1 + ρ+/ρ−))
−1ρ+(α− + µ−A

2/(2B−))ĝπ

+ (µ+(−1 + ρ−/ρ+))
−1ρ−(α− − β − µ+A

2/(2B+))ĝπ

− Σn−1
k=1 iξkĝu,k}, (4.15)
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R′ = (α+ + α− − β)−1{(2α+ − µ+B+) ˆdivx′g

+ (µ+(1− ρ−/ρ+))
−1(−α+ − µ+A

2/(2B+))ĝu,n

+ (µ−(1− ρ+/ρ−))
−1(−α+ + β + µ−A

2/(2B−))ĝu,n

+ (µ+(−1 + ρ−/ρ+))
−1ρ−(−α+ − µ+A

2/(2B+))ĝπ

+ (µ−(−1 + ρ+/ρ−))
−1ρ+(−α+ + β + µ−A

2/(2B+))ĝπ

− Σn−1
k=1 iξkĝu,k}, (4.16)

Pk = −iµ+ξkR/(ρ+s), Pn = µ+AR/(ρ+s), (4.17)

P ′
k = −iµ−ξkR

′/(ρ−s), P ′
n = −µ−AR

′/(ρ−s), (4.18)

Qk = (µ+B+ + µ−B−)
−1[−(µ+A+ µ−B−)iµ+ξkR/(ρ+s) + µ2

+iξkAR/(ρ+s)

+ iξk{(2B+(1− ρ−/ρ+))
−1(−ρ−ĝπ + ĝu,n)

− (A/B+)µ
2
+AR/(ρ+s)− µ+R/(2B+)}

− (B− −A)iµ2
−ξkR

′/(ρ−s) + µ2
−iξkAR

′/(ρ−s)

− iξk{(2B−(1− ρ+/ρ−))
−1(−ρ+ĝπ + ĝu,n) + (A/B−)µ

2
−AR

′/(ρ−s)

+ µ−R
′/(2B−)}+ µ−B−ĝk + ĝu,k], (4.19)

Q′
k = (µ+B+ + µ−B−)

−1[−(B+ −A)iµ2
+ξkR/(ρ+s) + µ2

+iξkAR/(ρ+s)

+ iξk{(2B+(1− ρ−/ρ+))
−1(−ρ−ĝπ + ĝu,n)

− (A/B+)µ
2
+AR/(ρ+s)− µ+R/(2B+)}

+ (µ+B+ + µ−A)iµ−ξkR
′/(ρ−s) + µ2

−iξkAR
′/(ρ−s)

− iξk{(2B−(1− ρ+/ρ−))
−1(−ρ+ĝπ + ĝu,n) + (A/B−)µ

2
−AR

′/(ρ−s)

+ µ−R
′/(2B−)} − µ+B+ĝk − ĝu,k]. (4.20)

Using

f(B+, B−, A) = µ+A
2(3B+ −A)B−(B− +A) + µ−A

2(3B− −A)B+(B+ +A)

+ (µ+B+ + µ−B−)B+B−(B+ +A)(B− +A), (4.21)

we deform τ̂+;

τ̂+(s, ξ
′, xn) = (f(B+, B−, A))

−1×

[−2B+(B+ +A)(µ−A
2(3B− −A) + µ−B

2
−(B+ +A))e−Axn ˆdivx′g

− (2ρ−µ−A
2(B− −A)B+(B+ +A)/(µ−[[ρ]]))e

−Axn ĝu,n

+ ((ρ+(B+ +A)(µ−A
2B+(3B− −A) + µ+A

2B−(B− +A)

+ (µ+B+ + µ−B−)B+B−(B− +A)))/(µ+[[ρ]]))e
−Axn ĝu,n

+ (2ρ+ρ−µ−A
2(B− −A)B+(B+ +A)/(µ−[[ρ]]))e

−Axn ĝπ

− (ρ+ρ−(B+ +A)(µ−A
2B+(3B− −A) + µ+A

2B−(B− +A)

+ (µ+B+ + µ−B−)B+B−(B− +A)))/(µ+[[ρ]])e
−Axn ĝπ
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+Σn−1
k=1 iξkB+B−(B+ +A)(B− +A)e−Axn ĝu,k].

We consider R-boundedness of solution operators defined in a sector

Σϵ,γ0 = {s ∈ C\{0} | | arg s| ≤ π − ϵ, |s| ≥ γ0}
with 0 < ϵ < π/2 and γ0 ≥ 1 large enough (see Section 3).

Lemma 4.1. Let l = 0, 1. For every s ∈ Σϵ,γ0 , we have

|f(B+, B−, A)| ≥ Cϵ,γ0(|s|1/2 +A)5,

|Dα′

ξ′ (τDτ )
lf(B+, B−, A)

−1| ≤ Cϵ,γ0(|s|1/2 +A)−5A−|α′|.

Proof. This lemma is proved in the same way as Lemma 5.5 in [20]. �

Refining Lemma 4.6 and Lemma 4.8 in [23], we derive the following estimates
for l = 0, 1;

|Dα′

ξ′ (τDτ )
l(2B+(B+ +A)(µ−A

2(3B− −A) + µ−B
2
−(B+ +A)))|,

|Dα′

ξ′ (τDτ )
l(2ρ−µ−A

2(B− −A)B+(B+ +A))|,

|Dα′

ξ′ (τDτ )
l(ρ+(B+ +A)(µ−A

2B+(3B− −A) + µ+A
2B−(B− +A)

+ (µ+B+ + µ−B−)B+B−(B− +A)))|,

|Dα′

ξ′ (τDτ )
l(iξkB+B−(B+ +A)(B− +A))| ≤ Cϵ,γ0(|s|1/2 +A)5A−|α′|. (4.22)

Because of Lemma 4.1 and (4.22), we could make use of the following lemma. By
Lemma 3.4 and Volevich trick, we obtain

∥e−γt∇τ±∥Lp(R,Lq(Rn
±)) ≤ Cϵ,γ0(∥e−γt(g,∇g,∇2g)∥Lp(R,Lq(Rn

±))

+ ∥e−γt(gu,∇gu, gπ,∇gπ)∥Lp(R,Lq(Rn
+))). (4.23)

Now we calculate vk, k = 1, . . . , n− 1. By (4.13), we could deform υ̂+k as follows:

υ̂+k(s, ξ
′, xn)

=− iµ+

ρ+

1

s
ξkRe

−Axn +m1(s, ξ
′)
1

s
ξkRe

−B+xn +m2(s, ξ
′)
1

s
ξkR

′e−B+xn

− iµ+

2

1

B+(µ+B+ + µ−B−)
ξkRe

−B+xn − iµ−

2

1

B−(µ+B+ + µ−B−)
ξkR

′e−B+xn

+
i

2(1− ρ−/ρ+)

1

B+(µ+B+ + µ−B−)
ξke

−B+xn(−ρ−ĝπ + ĝu,n)

− i

2(1− ρ+/ρ−)

1

B−(µ+B+ + µ−B−)
ξke

−B+xn(−ρ+ĝπ + ĝu,n)

+
µ−B−

µ+B+ + µ−B−
e−B+xn ĝk +

1

µ+B+ + µ−B−
e−B+xn ĝu,k,

where both m1(s, ξ
′) and m2(s, ξ

′) satisfy

|Dα′

ξ′ (τDτ )
lml′(s, ξ)| ≤ CA−|α′|
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for l = 0, 1 and l′ = 1, 2. For terms which carry A or ξk, we may estimate them
like τ+. For terms which do not carry A or ξk;

µ−B−(µ+B+ + µ−B−)
−1e−B+xn ĝk , (µ+B+ + µ−B−)

−1e−B+xn ĝu,k,

we pay attention that

|Dα′

ξ′ (τDτ )
lµ−B−(µ+B+ + µ−B−)

−1| ≤ Cϵ,γ0(|s|1/2 +A)−|α′|

and
|Dα′

ξ′ (τDτ )
l(µ+B+ + µ−B−)

−1| ≤ Cϵ,γ0(|s|1/2 +A)−1−|α′|

hold for l = 0, 1 in the view of regularity of gk and gu,k. In order to estimate
υ+n, we use the following formula of υ+n in view of (12.3) and (12.4) in Section
12 below,

υ̂+n(ξ
′, xn, s) = (µ+AR/(ρ+s))e

−Axn +Σn−1
k=1(iξk/B+)Qke

−B+xn . (4.24)

Employing this formula, we could estimate υn like υk because for l = 0, 1 it holds
that

|Dα′

ξ′ (τDτ )
l(ξk/B+)| ≤ Cϵ,γ0A

−|ξ′|.

We don’t make use of the description of υ̂+n:

υ̂+n(ξ
′, xn, s) = (µ+AR/(ρ+s))e

−Axn +Qne
−B+xn ,

where

Qn = (2µ+B+(1−ρ−/ρ+))−1(−ρ−ĝπ + ĝu,n)− (A/B+)(µ+AR/(ρ+s))−R/(2B+)

(see Section 12 below) because we couldn’t apply Lemma 3.4 to the term (R/
(2B+))e

−B+xn . Lemma 3.4 avails estimate of γυ+ and ∂tυ+ such that

∥e−γt(γυ+, ∂tυ+)∥Lp(R,Lq(Rn
+)) ≤ Cϵ,γ0(∥e−γt(g, ∂tg,∇g,∇2g)∥Lp(R,Lq(Rn

+))

+ ∥e−γt(gu,Λ
1/2
γ gu,∇gu, gπ,Λ1/2

γ gπ,∇gπ)∥Lp(R,Lq(Rn
+))). (4.25)

Moreover, we see by (4.14)

∥e−γt(γυ−, ∂tυ−)∥Lp(R,Lq(Rn
−)) ≤ Cϵ,γ0(∥e−γt(g, ∂tg,∇g,∇2g)∥Lp(R,Lq(Rn

−))

+ ∥e−γt(gu,Λ
1/2
γ gu,∇gu, gπ,Λ1/2

γ gπ,∇gπ)∥Lp(R,Lq(Rn
−))). (4.26)

By using the identity (1−∆)υ± = υ± − µ−1
± ρ±∂tυ±, we obtain

∥e−γt(υ±,∇υ±,∇2υ±)∥Lp(R,Lq(Rn
±)) ≤ Cϵ,γ0(∥e−γt(g, ∂tg,∇g,∇2g)∥Lp(R,Lq(Rn

±))

+ ∥e−γt(gu,Λ
1/2
γ gu,∇gu, gπ,Λ1/2

γ gπ,∇gπ)∥Lp(R,Lq(Rn
±))). (4.27)

Now, we investigate the regularity of h. Defining L(B+, B−, A) as

L(B+, B−, A)

= sf(B+, B−, A) + [[ρ]]−2σA2{2ρ+ρ−A2(B+ −A)(B− −A)

+A2
(
ρ2+B−(B− +A) + ρ2−B+(B+ +A)

)
+A3

(
µ−µ

−1
+ ρ2+(3B− −A) + µ+µ

−1
− ρ2−(3B+ −A)

)
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+ (µ+B+ + µ−B−)A
(
µ−1
+ ρ2+B−(B− +A) + µ−1

− ρ2−B+(B+ +A)
)
}, (4.28)

we have

ĥ(s, ξ′) = f(B+, B−, A)L(B+, B−, A)
−1(ĝh + [[ρυ̂n]]/[[ρ]]). (4.29)

Lemma 4.2. Let l = 0, 1. For every s ∈ Σϵ,γ0 , we have

|L(B+, B−, A)| ≥ Cϵ,γ0(|s|1/2 +A)3(|s|(|s|1/2 +A)2 + σA3/[[ρ]]2)

≥ Cϵ,γ0(|s|1/2 +A)6, (4.30)

|Dα′

ξ′ (τDτ )
lL(B+, B−, A)

−1|

≤ Cϵ,γ0(|s|1/2 +A)−3(|s|(|s|1/2 +A)2 + σA3/[[ρ]]2)−1A−|α′|

≤ Cϵ,γ0(|s|1/2 +A)−6A−|α′| (4.31)

hold.

Proof. We use symbols that are used in Lemma 6.1 in [23]. Let δ and O(δ) be a
small number determined later and a symbol satisfying |O(δ)| ≤ Cδ, respectively.
Suppose δ ≤ min (ρ+/µ+, ρ−/µ−).

First we prove (4.30) in the case where

|ρ±µ−1
± sA−2| ≤ δ.

If we write
B± = A(1 +O(δ)),

then we obtain from (4.29) and (4.21)

L(B+, B−, A) = s(µ+ + µ−)A
5(9 + 16O(δ))

+[[ρ]]−2σA3{A3(ρ2+ + ρ2−)(2 + 3O(δ))

+A3(µ−µ
−1
+ ρ2+ + µ+µ

−1
− ρ2−)(2 + 3O(δ))

+A3(µ+ + µ−)(µ
−1
+ ρ2+ + µ−1

− ρ2−)(2 + 3O(δ))}.

Since A ≥ 2−1(|s|1/2 +A), if we choose a δ properly, in the same way as the proof
of Lemma 6.1 in [23] we obtain

|L(B+, B−, A)| ≥ Cϵ,γ0(|s|1/2 +A)3(|s|(|s|1/2 +A)2 + σA3/[[ρ]]2)

≥ Cϵ,γ0(|s|1/2 +A)6.

Secondly, we prove (4.30) in the case where

|ρ±µ−1
± sA−2| ≥ δ.

By Lemma 4.6, Lemma 4.8 in [23] and Lemma 4.1,

|L(B+, B−, A)| ≥ |s∥f(B+, B−, A)| − Cσ[[ρ]]−2A3(|s|1/2 +A)3

≥ C1(|s|1/2 +A)3(|s|(|s|1/2 +A)2 − σ[[ρ]]−2A3).

Because
A ≤ (min (ρ+/µ+, ρ−/µ−))

1/2δ−1/2|s|1/2 , |s|−1 ≤ γ−1
0 ,
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there exists C2 > 0 such that

|s|(|s|1/2 +A)2 − [[ρ]]−2A3 ≥ |s|2(1− C2γ
−1/2
0 ).

Combining the inequality above and

|s|2 = (|s|2 + |s|2)/2 ≥ C(|s|(|s|1/2 +A)2 + σA3/[ρ]]2)

≥ Cϵ,γ0γ
1/2
0 (|s|1/2 + |s|1/2)(|s|1/2 +A)2

≥ Cϵ,γ0(|s|1/2 +A)3,

we obtain

|L(B+, B−, A)| ≥ Cϵ,γ0(|s|1/2 +A)3(|s|(|s|1/2 +A)2 + σA3/[[ρ]]2)

≥ Cϵ,γ0(|s|1/2 +A)6.

By the Bell formula, we obtain (4.31) as the similar manner in the proof of Lemma
6.1 in [23]. �

By using an extension

ĥ(s, ξ′, xn) = f(B+, B−, A))L(B+, B−, A)
−1e−Axn(ĝh + [[ρυ̂n]]/[[ρ]]),

from Lemma 3.4 , Lemma 4.1 and Lemma 4.2, we have

e−γt∇h, e−γt∂t∇h, e−γt∇2h, e−γt∇3h, e−γt∂t∇2h ∈ Lp(R, Lq(Rn
+)).

Since the problem (4.3) is the case where we set fu = fd = gu,k = 0 and gu,n =
σ∆′h in the problem (4.2) and add two equations from below in (4.3), estimates
(4.23)-(4.27) hold for w± and κ±, too. In order to prove e−γth ∈ Lp(R, Lq(Rn

+)),
we use an extension;

ĥ(s, ξ′, xn) = f(B+, B−, A)L(B+, B−, A)
−1e−B+xn(ĝh + [[ρυ̂n]]/[[ρ]])

and the identity;

f(B+, B−, A)

L(B+, B−, A)
=

1

s
− L(B+, B−A)− sf(B+, B−, A)

sL(B+, B−, A)
.

It is clear that

|Dα′

ξ′ (τDτ )
ls−1| ≤ |s|−1(|s|1/2 +A)−|α′| ≤ γ−1

0 (|s|1/2 +A)−|α′|

for l = 0, 1. By (4.28),

L(B+, B−, A)− sf(B+, B−, A) = σ[[ρ]]−2AM(s, ξ′)

where M(s, ξ′) is a function satisfying

|Dα′

ξ′ (τDτ )
lM(s, ξ′)| ≤ Cϵ,γ0(|s|1/2 +A)5A−|α′|.

In view of Lemma 3.4 , we see

e−γth, e−γt∂th, e
−γt∂2t h, Λ

3/2
γ h, ∇Λ3/2

γ h ∈ Lp(R, Lq(Rn
+)).



TWO-PHASE INCOMPRESSIBLE FLOWS WITH PHASE TRANSITIONS 23

In fact, by using the Volevich trick: if f(x, yn) → 0 (yn → ∞),

f(x, 0) = −
∫ ∞

0

∂f

∂yn
(x, yn) dyn

and B+ = {(ρ+/µ+)s+A2}/B+, we have

Fx′Lt[∂
2
t h](s, ξ

′, xn) = s2ĥ(s, ξ′, xn)

=
(
s− σ[[ρ]]−2sM(s, ξ′)

L(B+, B−, A)
A
)
e−B+xn

(
ĝh(s, ξ

′, xn) +
[[ρυ̂n(s, ξ

′, xn)]]

[[ρ]]

)
=−
∫ ∞

0

∂y

{(
s− σ[[ρ]]−2sM(s, ξ′)

L(B+, B−, A)
A
)
e−B+(xn+yn)

(
ĝh(s, ξ

′, yn) +
[[ρυ̂n(s, ξ

′, yn)]]

[[ρ]]

)}
dy

=

∫ ∞

0

s
1
2 e−B+(xn+yn)

{ ρ+
µ+

s
1
2

B+

(
sĝh(s, ξ

′, xn) +
[[ρsυ̂n(s, ξ

′, xn)]]

[[ρ]]

)
− s

1
2 ∂nĝh(s, ξ

′, xn)− s
1
2
[[ρ∂nυ̂n(s, ξ

′, xn)]]

[[ρ]]

}
dy

+

∫ ∞

0

Ae−B+(xn+yn)
( A

B+
sĝh(s, ξ

′, xn) +
A

B+

[[ρsυ̂n(s, ξ
′, xn)]]

[[ρ]]

)
dy

−
∫ ∞

0

Ae−B+(xn+yn)
{σ[[ρ]]−2B+M(s, ξ′)

L(B+, B−, A)

(
sĝh(s, ξ

′, xn) +
[[ρsυ̂n(s, ξ

′, xn)]]

[[ρ]]

)
− σ[[ρ]]−2s

1
2M(s, ξ′)

L(B+, B−, A)

(
s

1
2 ∂nĝh(s, ξ

′, xn) +
[[ρs

1
2 ∂nυ̂n(s, ξ

′, xn)]]

[[ρ]]

)}
dy.

(4.32)

Since gh, v ∈ Gh and∣∣∣∣∣Dα′

ξ′ (τDτ )
l σ[[ρ]]

−2βM(s, ξ′)

L(B+, B−, A)

∣∣∣∣∣ ≤ Cϵ,γ0A
−|α′|, β = s

1
2 or B+,

we could apply Lemma 3.4 to the solution formula (4.32). Here we regard ∇Λ
1/2
γ υn

in (4.34) as a given function because we know (4.25), (4.26), (4.27) and the relation

W 1
p (R;Lq(Rn

±)) ∩ Lp(R;W 2
q (Rn

±)) ↪→ H1/2
p (R;W 1

q (Rn
±)) (4.33)

(cf. Proposition 2.9 in [22]). After all, it holds that

∥e−γt(h, ∂th,∇h, ∂2t h, ∂t∇h,∇2h,∇3h, ∂t∇2h,Λ3/2
γ h,∇Λ3/2

γ h)∥Lp(R,Lq(Rn
±))

≤ C(∥e−γt(gh, ∂tgh,∇gh,∇2gh, ∂tυn,∇Λ1/2
γ υn)∥Lp(R,Lq(Rn

±)). (4.34)

In the end, we refer that we could prove that υ, w, τ , κ vanish for t < 0 in the
same way as Section 3 in [24]. We have thus proved Theorem 2.5.
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5. Local Lp-Lq well-posedness; Proof of Theorem 1.1

In this section, we prove Theorem 1.1. The nonlinear problem (1.1)-(1.3) can

be transformed to a problem on Ṙn := Rn \ [Rn−1 × {0}] by means of the trans-
formations

u(t, x′, xn) := (u′, un)
T(t, x′, xn + h(t, x′)),

θ̄(t, x′, xn) := θ(t, x′, xn + h(t, x′))− θ∞,

π̄(t, x′, xn) := π(t, x′, xn + h(t, x′))− π∞,

where t ∈ J = [0, T ], x′ ∈ Rn−1, xn ∈ R, xn ̸= 0. Here θ∞ > 0 denotes
the (equilibrium) temperature at infinity and π∞ the corresponding (equilibrium)
pressure at infinity defined by the relations

[[ψ(θ∞)]] + [[π∞/ρ]] = 0, [[π∞]] = 0.

With a slight abuse of notation we will denote in the sequel the transformed
velocity again by u, the transformed temperature by θ, and the transformed pres-
sure by π. For given initial data u0(x) and θ0(x), we set again u0(x

′, xn) :=
u0(x

′, xn + h0(x
′)) and θ0(x

′, xn) := θ0(x
′, xn + h0(x

′))− θ∞, and define

µ0 = µ(θ∞), κ0 = κ(θ∞), d0 = d(θ∞), l0 = l(θ∞).

We remark that µ0, κ0, d0 and l0 are constants. With this notation we have the
transformed problem

ρ∂tu− µ0∆u+∇π = Fu(u, π, θ, h) in Ṙn, t > 0,

div u = Fd(u, h) in Ṙn, t > 0,

−[[µ0(∂nu
′ +∇′un)]] = Gu′(u, θ, h) on Rn−1, t > 0,

−2[[µ0∂nun]] + [[π]]− σ∆′h = Gun(u, θ, h) on Rn−1, t > 0,

[[u′]] = G(u, h) on Rn−1, t > 0,

ρκ0∂tθ − d0∆θ = Fθ(u, θ, h) in Ṙn, t > 0,

[[θ]] = 0 on Rn−1, t > 0,

−[[d0∂nθ]] = Gθ(u, θ, h) on Rn−1, t > 0,

−2[[(µ0/ρ)∂nun]] + [[π/ρ]] = Gπ(u, θ, h) on Rn−1, t > 0,

∂th− [[ρun]]/[[ρ]] = Gh(u, h) on Rn−1, t > 0,

u(0) = u0, θ(0) = θ0 in Ṙn,

h(0) = h0 on Rn−1, (5.1)

where the phase flux j already has been eliminated, according to Section 1. Here
it reads

j =
[[un]]− [[u′]] · ∇′h√
1 + |∇′h|2[[1/ρ]]

= [[un]]

√
1 + |∇′h|2
[[1/ρ]]

.
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The nonlinear right hand sides are defined by

Fu(u, π, θ, h) = (Fu′(u, π, θ, h), Fun(u, θ, h))
T,

Fu′(u, π, θ, h) = (µ(θ)− µ0)∆u
′

+ µ(θ)(−∆′h∂nu
′ − 2∇′h · ∇′∂nu

′ + |∇′h|2∂2nu′)
− ρ(u′ · ∇′u′ + un∂nu

′ − u′ · ∇′h∂nu
′) + ρ∂th∂nu

′ +∇′h∂nπ

+ {(∇′u′ + [∇′u′]T)− (∇′h⊗ ∂nu
′ + ∂nu

′ ⊗∇′h)}µ′(θ)∇′θ

+ (∂nu
′ +∇′un −∇′h∂nun)µ

′(θ)∂nθ,

Fun(u, θ, h) = (µ(θ)− µ0)∆un

+ µ(θ)(−∆′h∂nun − 2∇′h · ∇′∂nun + |∇′h|2∂2nun)
− ρ(u′ · ∇′un + un∂nun − u′ · ∇′h∂nun) + ρ∂th∂nun

+ ([∂nu
′]T + [∇′un]

T − ∂nun[∇′h]T)µ′(θ)∇′θ + 2∂nunµ
′(θ)∂nθ,

Fd(u, h) = ∇′h · ∂nu′ = ∂n(∇′h · u′),

Gu′(u, θ, h) = [[(µ(θ)− µ0)(∂nu
′ +∇′un)]]− [[µ(θ)(∇u′ + [∇u′]T)]]∇′h

+ [[µ(θ){∇′h(∂nu
′ · ∇′h) + ∂nu

′|∇′h|2 −∇′h∂nun}]]
+ [[µ(θ){−(∂nu

′ +∇′un) · ∇′h+ 2∂nun + ∂nun|∇′h|2}]]∇′h

+ [[ρ−1]](1 + |∇′h|2)[[un]]2∇′h,

Gun(u, θ, h) = [[(µ(θ)− µ0)2∂nun]]− [[µ(θ)(∂nu
′ +∇′un) · ∇′h]]

+ [[µ(θ)∂nun]]|∇′h|2 − [[ρ−1]](1 + |∇′h|2)[[un]]2 − σJ(h),

G(u, h) = −[[un]]∇′h,

Fθ(u, θ, h) = ρ(κ0 − κ(θ))∂tθ + (d(θ)− d0)∆θ

+ ρκ(θ){∂th∂nθ − u′ · ∇θ + (u′ · ∇′h)∂nθ − un∂nθ}
+ d′(θ){|∇′θ −∇′h∂nθ|2 + (∂nθ)

2}

+ (µ(θ)/2)|∇′u′ + [∇′u′]T −∇′h⊗ ∂nu
′ − ∂nu

′ ⊗∇′h|2

+ µ(θ)[|∂nu′ +∇′w − ∂nun∇′h|2 + 2|∂nun|2],
Gθ(u, θ, h) = [[(d(θ)− d0)∂nθ]]− [[d(θ)∇′θ · ∇′h]]

+ (l(θ)/[[1/ρ]])(1 + |∇′h|2)[[un]],
Gπ(u, θ, h) = −[[ψ(θ + θ∞)− ψ(θ∞)]] + 2[[(µ(θ)− µ0)∂nun/ρ]]

− [[
1

2ρ2
]](1 + |∇′h|2)[[ 1

ρ
]]−2[[un]]

2 − 2[[
µ(θ)

ρ
∂nu

′ · ∇′h]]

+
2

1 + |∇′h|2
[[
µ(θ)

ρ
{(∇u′∇′h) · ∇′h−∇′un · ∇′h}]],

Gh(u, h) = − [[ρu′ · ∇′h]]

[[ρ]]
.
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The curvature of Γ(t) is given by

H(Γ(t)) = div x′

(
∇′h(t, x′)√

1 + |∇′h(t, x′)|2

)
= ∆′h− J(h),

with

J(h) =
|∇′h|2∆′h

(1 +
√

1 + |∇′h|2)
√
1 + |∇′h|2

+
∇′h · (∇′2h · ∇′h)

(1 + |∇′h|2)3/2
,

where ∇′2h denotes the Hessian of h.
Concerning the boundary condition

[[ρ−1]]j2νΓ − [[µ(θ)(∇u+ [∇u]T)]]νΓ = (σHΓ − [[π]])νΓ (5.2)

in (1.1), multiplying (5.2) by
√

1 + |∇′h|2ν, ν = en, we obtain

σHΓ − [[π]] = −[[µ(θ)(∇u+ [∇u]T)]]
√

1 + |∇′h|2νΓ · ν + [[ρ−1]]j2.

Inserting this relation into (5.2), we obtain the nonlinear term Gv(u, θ, h) which
neither contains the curvature nor the pressure jump [[π]] (cf. [14, Section 4]).

Given h0 ∈ B
3−1/p−1/q
q,p (Rn−1) we define

Θh0(x) := (x′, xn + h0(x
′)) (x′, xn) ∈ Rn × R.

Letting Ωh0,± := {(x′, xn) ∈ Rn × R : ±(xn − h0(x
′)) > 0} and Ωh0 := Ωh0,+ ∪

Ωh0,−. By the assumption 2 < p < ∞, n < q < ∞ and 2/p + n/q < 1, we
obtain from Sobolev’s embedding theorem that Θh0 yields a C2-diffeomorphism

between Ṙn and Ωh0 , Rn
+ and Ωh0,+, and Rn

− and Ωh0,−. The inverse transform is

given by Θ−1
h0

(x′, xn) = (x′, xn − h0(x
′)). It then follows from the chain rule and

transformation rule for integrals that

Θ∗
h0

∈ Isom(W k
p (Ṙn),W k

p (Ωh0
)), [Θ∗

h0
]−1 = Θh0

∗ k = 0, 1, 2,

where we use the notation

Θ∗
h0
f = f ◦Θh0 f : Ωh0 → Rm,

Θh0
∗ g = g ◦Θ−1

h0
g : Ṙn → Rm,

for the pull-back and push-forward operators, where m is non-negative integer.
Therefore it is enough to prove the following theorem instead of Theorem 1.1.

Theorem 5.1. Let 2 < p <∞, n < q <∞ and 2/p+n/q < 1. Let ψ± ∈ C3(0,∞),
µ±, d± ∈ C2(0,∞) be such that

κ±(s) = −sψ′′
±(s) > 0, µ±(s) > 0, d±(s) > 0 s ∈ (0,∞),

and

(u0, θ0, h0) ∈ B2−2/p
q,p (Ṙn)n ×B2−2/p

q,p (Ṙn)×B3−1/p−1/q
q,p (Rn−1)

be given. Assume that the compatibility conditions:

div (Θh0
∗ u0) = 0 in Ω0,

[[µPΓ0E(Θh0
∗ u0)ν0]] = 0, [[PΓ0Θ

h0
∗ u0]] = 0 on Γ0,
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[[Θh0
∗ θ0]] = 0, [[d∂ν0Θ

h0
∗ θ0]] + ℓ(Θh0

∗ (θ0 + θ∞))[[ρ−1]]−1[[Θh0
∗ u0 · ν0]] = 0 on Γ0.

(5.3)

Then there exists a constant ε0 depending only on Ω0, p, q, n such that if h0 and
u0 satisfy ∥∇′h0∥L∞(Ṙn) + ∥Θh0

∗ u0∥L∞(Ṙn) ≤ ε0, then there exist

T = T (∥θ0 − θ∞∥
B

2−2/p
q,p (Ṙn)

, ∥h0∥B3−1/p−1/q
q,p (Rn−1)

, ε0) > 0

and a unique Lp-Lq solution (u, π, θ, h) of the nonlinear problem (5.1) on [0, T ] of
E(J) which is defined by (2.8).

Now we prove Theorem 5.1. There is an extension F ∗
d ∈ Fd(J) which satisfies

F ∗
d (0) = div u0 (cf. [17, Theorem 6.3]). We define F ∗

d , G
∗
u, G

∗, G∗
θ and G∗

π as

G∗
u(u0, θ0, h0) = et∆

′
Gu(u0, θ0, h0),

G∗(u0, h0) = et∆
′
G(u0, h0), G∗

θ(u0, θ0, h0) = et∆
′
Gθ(u0, θ0, h0),

G∗
π(u0, θ0, h0) = et∆

′
Gπ(u0, θ0, h0), G∗

h(u0, h0) = et∆
′
Gh(u0, h0),

where et∆
′
is a semigroup generated by ∆′. Let u∗, π∗ and h∗ be solutions of the

next problem:

ρ∂tu
∗ − µ0∆u

∗ +∇π∗ = 0 in Ṙn, t > 0,

div u∗ = F ∗
d (u0, h0) in Ṙn, t > 0,

−2[[µ0D(u∗)ν]] + [[π∗]]ν − σ∆′h∗ν = G∗
u(u0, θ0, h0) on Rn

0 , t > 0,

[[u∗′]] = G∗(u0, h0) on Rn
0 , t > 0,

ρκ0∂tθ
∗ − d∆θ∗ = 0 in Rn

± , t > 0,

[[θ∗]] = 0 on Rn
0 , t > 0,

−[[d0∂nθ
∗]] = G∗

θ(u0, θ0, h0) on Rn
0 , t > 0,

−2[[µ0D(u∗)ν · ν/ρ]] + [[π∗/ρ]] = G∗
π(u0, θ0, h0) on Rn

0 , t > 0,

∂th
∗ − [[ρu∗n]]/[[ρ]] = G∗

h(u0, h0) on Rn
0 , t > 0,

u∗(0) = u0 , θ
∗(0) = θ0 in Ṙn,

h∗(0) = h0 on Rn
0 . (5.4)

With these extensions, we may apply Theorem 2.6 in order to solve (5.4), be-
cause the right members of (5.4) satisfy the required regularity conditions and
the required compatibility conditions. By Theorem 2.6, a unique solution of (5.4)
satisfies

z∗ = (u∗, π∗, π∗
±, θ

∗, h∗) ∈ E(J),
∥z∗∥E(J) ≤ C(∥u0∥B2−2/p

q,p (Ṙn)
+ ∥θ0 − θ∞∥

B
2−2/p
q,p (Ṙn)

+ ∥h0∥B3−1/p−1/q
q,p (Rn−1)

).

(5.5)

We seek a solution of (5.1) of the form: u = ū + u∗, π = π̄ + π∗, θ = θ̄ + θ∗,
h = h̄+ h∗. Namely, ū, π̄, θ̄ and h̄ are solutions of the following equations whose
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initial values are 0:

ρ∂tū− µ0∆ū+∇π̄ = Fu(ū+ u∗, π̄ + π∗, θ̄ + θ∗, h̄+ h∗) in Ṙn, t > 0,

div ū = Fd(ū+ u∗, h̄+ h∗)− F ∗
d (u0, h0) in Ṙn, t > 0,

−2[[µ0D(ū)ν]] + [[π̄]]ν − σ∆′h̄ν = Gu(ū+ u∗, θ̄ + θ∗, h̄+ h∗)

−G∗
u(u0, θ0, h0) on Rn

0 , t > 0,

[[ū′]] = G(ū+ u∗, h̄+ h∗)−G∗(u0, h0) on Rn
0 , t > 0,

ρκ0∂tθ̄ − d∆θ̄ = Fθ(ū+ u∗, θ̄ + θ∗, h̄+ h∗) in Rn
±, t > 0,

[[θ̄]] = 0 on Rn
0 , t > 0,

−[[d0∂nθ̄]] = Gθ(ū+ u∗, θ̄ + θ∗, h̄+ h∗)

−G∗
θ(u0, θ0, h0) on Rn

0 , t > 0,

−2[[µ0D(ū)ν · ν/ρ]] + [[π̄/ρ]] = Gπ(ū+ u∗, θ̄ + θ∗, h̄+ h∗)

−G∗
π(u0, θ0, h0) on Rn

0 , t > 0,

∂th̄− [[ρūn]]/[[ρ]] = Gh(ū+ u∗, h̄+ h∗)−G∗
h(u0, h0) on Rn

0 , t > 0,

ū(0) = 0 , θ̄(0) = 0 in Ṙn,

h̄(0) = 0 on Rn
0 .

(5.6)

In what follows, we shall solve (5.6) by contraction mapping principle. We define
the underlying space XR,T by

XR,T = {z̄ = (ū, π̄, π̄±, θ̄, h̄) ∈ E0(J), J = [0, T ], ∥z̄∥E(J) ≤ R},
where E0(J) = {E(J) | z̄(0) = 0}. Here T is a positive number determined later
and R is a large number which satisfies

C(∥u0∥B2−2/p
q,p (Ṙn)

+ ∥θ0 − θ∞∥
B

2−2/p
q,p (Ṙn)

+ ∥h0∥B3−1/p−1/q
q,p (Rn−1)

) ≤ R,

where the left-hand side is the same as the right-hand side of (5.5). We set the

equation (5.6) L(z̄) = N(z̄ + z∗), z̄(0) = 0. Given z̃ = (ũ, π̃, π̃±, θ̃, h̃) ∈ XR,T , let
z̄ = (ū, π̄, π̄±, θ̄, h̄) be a solution to the equation L(z̄) = N(z̃ + z∗), z̄(0) = 0. Our
task is to show that if we define the map Φ(z̃) = z̄, then Φ is a contraction map
from XR,T into itself. The following lemmas avail to estimate of the nonlinear
terms and to prove contraction of Φ.

Lemma 5.2 (Embeddings). Set J = [0, T ] with 0 < T <∞. We use the following
embedding relations.
(1) (Sobolev Embeddings in Bessel Potential Space) For 2 < p <∞, it holds that

H1/2
p (J) ↪→ C1/2−1/p(J),

where C1/2−1/p denotes Hölder space.
(2) For n < q <∞, it holds that

W 1
q (Rn

±) ↪→ L∞(Rn
±).
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(3) For 2 < p <∞, it holds that

B2−2/p
q,p (Rn

±) ↪→W 1
q (Rn

±).

(4) For 1 < p, q <∞, it holds that

W 1
p (J ;Lq(Rn

±)) ∩ Lp(J ;W
2
q (Rn

±)) ↪→ BUC(J ;B2−2/p
q,p (Rn

±)).

(5) For n < q <∞ and 2/p+ n/q < 1, it holds that

H1/2
p (J ;Lq(Rn

±)) ∩ Lp(J ;W
1
q (Rn

±)) ↪→ BUC(J ;BUC(Rn
±)).

Proof. Since the relations (1) to (3) are basic embeddings for Sobolev space and
Besov space, we prove (4) and (5).
(4) We may utilize the embedding relation:

W 1
p (J ;E0) ∩ Lp(J ;E1) ⊂ BUC(J ; (E0, E1)1−1/p,p)

for any two Banach spaces E0 and E1 such that E1 is dense in E0, 1 < p < ∞.
Here, (·, ·)θ,p denotes the real interpolation with exponent 0 < θ < 1 and

(Lq(Rn
±),W

2
q (Rn

±))1−1/p,p ≃ B2−2/p
q,p (Rn

±)

where we make use of
(F s0

qp0
, F s1

qp1
)θ,p ≃ Bs

qp,

where 0 < p, q, p0, p1 ≤ ∞, s0 ̸= s1 and s = (1− θ)s0 + θs1 (0 < θ < 1).
(5) We have

H1/2
p (J ;Lq(Rn

±)) ∩ Lp(J ;W
1
q (Rn

±)) ↪→ Hθ/2
p (J ; [Lq(Rn

±),W
1
q (Rn

±)]θ)

= Hθ/2
p (J ;H1−θ

q (Rn
±)),

where [·, ·]θ denotes the complex interpolation with exponent 0 < θ < 1. If θ/2−
1/p > 0 and 1− θ − n/q > 0, namely

2/p < 1− n/q,

then the embedding relation

Hθ/2
p (J ;H1−θ

q (Rn
±)) ↪→ BUC(J ;BUC(Rn

±))

holds. We may think as follows:

H1/2
p (J ;Lq(Rn

±)) ∩ Lp(J ;W
1
q (Rn

±)) ⊂W θ/2
p (J ;W 1−θ

q (Rn
±))

≃ F θ/2
pp (J ;F 1−θ

qq (Rn
±))

if 0 < θ < 1. There exist θ, φ and ϕ such that 2/p < θ < 1− n/q, 1/p < φ < θ/2
and n/q < ϕ < 1− θ by density of R, hence the next embeddings hold,

F
1
2 θ
pp (J) ↪→ Fφ

p2(J) ≃ Hφ
p (J) ↪→ Cφ− 1

p (J),

F 1−θ
qq (Rn

±) ↪→ Fϕ
q2(R

n
±) ≃ Hϕ

q (Rn
±) ↪→ Cϕ−n

q (Rn
±).

Thus, we obtain

H1/2
p (J ;Lq(Rn

±)) ∩ Lp(J ;W
1
q (Rn

±)) ↪→ Cφ− 1
p (J ;Cϕ−n

q (Rn
±)),
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so we see boundedness and continuity by the definition of Hölder space.
�

Remark 5.3. We remark that if n < q < ∞ and 2/p + n/q < 1, then it holds
that p > 2. Indeed, it is clear that by n < q <∞

2

p
+
n

q
< 1 ⇔ 2

p
<
n− q

q

⇔ 2q

q − n
< p

and 0 < q − n < q, therefore we have 2 < 2q/(q − n).

Lemma 5.4. Suppose that 1 < p, q <∞. Set J = [0, T ], 0 < T <∞.

(1) For f ∈ {f | ∇i+1f, ∇i−1f ∈ Lq}, we have

∥∇if∥Lq(Rn
±) ≤ C∥∇i−1f∥1/2Lq(Rn

±)∥∇
i+1f∥1/2Lq(Rn

±). (5.7)

(2) For f ∈ Lp(J ;X), 1 < r <∞, we have(∫ T

0

∥f∥p/rX dt

)1/p

≤ T (r−1)/(rp)∥f∥1/rLp(J;X). (5.8)

(3) For f ∈W 1
p,0(J ;X) = {f ∈W 1

p (J ;X) | f |t=0 = 0}, we have

∥f∥L∞(J;X) ≤ T (p−1)/p∥f∥W 1
p (J;X). (5.9)

Here, i ∈ N and we abbreviate Lq(Rn
±) and Wm

q (Rn
±) to Lq and Wm

q with non
negative integer, m, respectively. X is L∞, Lq or Wm

q .

Proof. (5.7) is well known as the Gagliard-Nirenberg inequality and (5.8) is easily
proved by the Hölder inequality, so we prove (5.9). Because f |t=0 = 0, we obtain

∥f∥L∞(J;X) = esssup
t∈[0,T ]

∣∣∣∣∣
∣∣∣∣∣
∫ t

0

∂sf ds

∣∣∣∣∣
∣∣∣∣∣
X

≤
∫ T

0

∥∂sf∥X ds ≤ T (p−1)/p∥f∥W 1
p (J;X).

�
Lemma 5.5. For f, g ∈W 1

p (J ;Lq) ∩ Lp(J ;W
2
q ), we have

∥∇f∇g∥Lp(J;Lq) ≤ CT 1/(2p)∥f∥W 1
p (J;Lq)∩Lp(J;W 2

q )
∥g∥W 1

p (J;Lq)∩Lp(J;W 2
q )
,

where we set Lq = Lq(Rn
±) and W

2
q =W 2

q (Rn
±).

Proof. By (5.7), (5.8) and Lemma 5.2 (5), we obtain

∥∇f∇g∥Lp(J;Lq) ≤ ∥∇f∥L∞(J;L∞)

(∫ T

0

∥∇g(t)∥pLq
dt
)1/p

≤ C∥∇f∥L∞(J;L∞)

(∫ T

0

∥g(t)∥p/2Lq
∥∇2g(t)∥p/2Lq

dt
)1/p

≤ CT 1/(2p)∥f∥W 1
p (J;Lq)∩Lp(J;W 2

q )
∥g∥W 1

p (J;Lq)∩Lp(J;W 2
q )
.
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�
Lemma 5.6 (Fractional order derivative). We propose that 2 < p < ∞, 1 < q <
∞, 0 < T < ∞ and set J = [0, T ] and Lq = Lq(Rn

±). For f ∈ W 1
p (J ;Lq) and

g ∈ H
1/2
p (J ;Lq), we have

∥fg∥
H

1/2
p (J;Lq)

≤ CT 1/(2p)∥f∥1/2W 1
p (J;Lq)

∥f∥1/2
H

1/2
p (J;Lq)

∥g∥
H

1/2
p (J;Lq)

.

Proof. By the relation, Hs
p ≃ F s

p2 for s > 0 and the Hölder inequality for Triebel-
Lizorkin space, we have

∥fg∥
H

1/2
p (J;Lq)

≤ C∥f∥
H

1/2
p (J;Lq)

∥g∥
H

1/2
2 (J;Lq)

.

Lp ⊂ L2 holds from |T | < ∞ and 2 < p, hence ∥g∥
H

1/2
2 (J;Lq)

≤ C∥g∥
H

1/2
p (J;Lq)

.

Making use of (1) in Lemma 5.2 and (5.8), we derive

∥f∥Lp(J;Lq) =
(∫ T

0

∥f∥p/2Lq
∥f∥p/2Lq

dt
)1/2

≤ C∥f∥1/2
H

1/2
p (J;Lq)

(∫ T

0

∥f∥p/2Lq
dt
)1/2

≤ CT 1/(2p)∥f∥1/2
H

1/2
p (J;Lq)

∥f∥1/2Lp(J;Lq)
.

In the same way as that,

∥Λ1/2
γ f∥Lp(J;Lq) ≤ T 1/(2p)∥f∥1/2W 1

p (J;Lq)
∥f∥1/2

H
1/2
p (J;Lq)

.

Combining these estimates, we obtain the desired estimate. �
Lemma 5.7. Set J = [0, T ] with 0 < T < ∞. If 1 < p < ∞, n < q < ∞, then
we have for f ∈ Lp(J ;W

3
q (Rn

±)) and g ∈W 1
p,0(J ;Lq(Rn

±)) ∩ Lp,0(J ;W
2
q (Rn

±))

∥(∇3f)g∥Lp(J;Lq(Rn
±)) ≤ T 1−1/pC∥g∥W 1

p (J;Lq(Rn
±))∩Lp(J;W 2

q (Rn
±))∥f∥Lp(J;W 3

q (Rn
±)).

Proof. Since n < q <∞, by the Gagliard-Nirenberg inequality:

∥∇ju∥Lp ≤ C∥∇mu∥αLr
∥u∥1−α

Lq
,

where we suppose p, q, r (1 ≤ p, q, r ≤ ∞), m ∈ N, j ∈ N ∪ {0} and α ∈ R satisfy

1/p = j/n+ (1/r −m/n)α+ (1− α)/q, j/m ≤ α ≤ 1,

we have
∥g(t)∥L∞ ≤ C∥∇g(t)∥n/qLq

∥g(t)∥1−n/q
Lq

, (5.10)

Combining (5.10), (5.9) and the Höder inequality, we have

∥(∇3f)g∥Lp(J;Lq(Rn
±)) ≤ C

(∫ T

0

∥∇3f∥pLq
∥∇g∥np/qLq

∥g∥p(1−n/q)
Lq

dt

)1/p

≤ C∥∇g∥n/qL∞(J;Lq)
∥g∥1−n/q

L∞(J;Lq)
∥∇3f∥Lp(J;Lq)

≤ C∥g∥L∞(J;W 1
q )
∥g∥L∞(J;Lq)∥f∥Lp(J;W 3

q )

≤ CT 1−1/p∥g∥W 1
p (J;Lq)∩Lp(J;W 2

q )
∥f∥Lp(J;W 3

q )
.

�
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Remark 5.8. We remind that

Fd(u
∗, h∗)|t=0 = F ∗

d (u0, h0)|t=0, Gu(u
∗, θ∗, h∗)|t=0 = G∗

u(u0, θ0, h0)|t=0,

G(u∗, h∗)|t=0 = G∗
u(u0, h0)|t=0, Gθ(u

∗, θ∗, h∗)|t=0 = G∗
θ(u0, θ0, h0)|t=0,

Gπ(u
∗, θ∗, h∗)|t=0 = G∗

π(u0, θ0, h0)|t=0, Gh(u
∗, h∗)|t=0 = G∗

h(u0, h0)|t=0.

Now, we show the mapping Φ is contractive based on Theorem 2.6 and using
Lemmas 5.2-5.7. We remind that we consider L(z̃) = N(z̄ + z∗) with z̄ = 0,
z∗(0) = z̄0. Nonlinear terms are classified into three types:

(I) highest order terms carry the difference of coefficient ( e.g. (µ(θ)−µ0)∂nu
in Gu′),

(II) products between lower order terms (e.g. ∂th∂nu in Fu),
(III) highest order terms carry ∇′h (e.g. J(h) in Gun).

We consider a typical nonlinear term in each type.
(I): As a type of (I), we consider (µ(θ)−µ0)∂nu in Gu′(u, θ, h). By µ ∈ C2(0,∞),
Lemma 5.2 and Lemma 5.4, we obtain

∥(µ(θ)− µ0)∂nu∥Lp(J;W 1
q )

≤ ∥µ′(θ)∥L∞(J;L∞)∥∇θ∂nu∥Lp(J;Lq) + 2∥µ(θ)− µ0∥L∞(J;L∞)∥u∥Lp(J;W 2
q )

≤ CT 1/(4p)R2.

This estimate holds for both u = ū and u = u∗. Combining the relation (4.33)

and µ ∈ C2(0,∞), we estimate H
1/2
p (J ;Lq) norm of (µ(θ)− µ0)∂nu.

(II): As a type of (II), we consider ∂th∂nu in Fu(u, π, θ, h). By Lemma 5.2 and
Lemma 5.4

∥∂th∂nu∥Lp(J;Lq) ≤ C∥∂th∥L∞(J;L∞)∥∂nu∥Lp(J;Lq)

≤ C∥h∥
H

3/2
p (J;W 1

q )
∥u∥1/2Lp(J;Lq)

∥∇2u∥1/2Lp(J;Lq)

≤ C∥h∥
H

3/2
p (J;W 1

q )
T 1/(4p)∥u∥1/4W 1

p (J;Lq)
∥u∥1/4Lp(J;Lq)

∥∇2u∥1/2Lp(J;Lq)

≤ CT 1/(4p)R2,

where

∥u∥Lp(J;Lq) =
(∫ T

0

∥u∥pLq
dt
)1/p

=
(∫ T

0

∥u∥p/2Lq
∥u∥p/2Lq

dt
)1/p

≤ ∥u∥1/2L∞(J;Lq)

(∫ T

0

∥u∥p/2Lq
dt
)1/p

≤ C∥u∥1/2W 1
p (J;Lq)

T 1/(2p)∥u∥1/2Lp(J;Lq)
.

This estimate holds for both u = ū and u = u∗.
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(III): As a type of (III), we consider J(h) in Gun(u, θ, h). Lemma 5.6 could not
be used because J(h) is a fraction. Thus, in view of the relation,

W 1
p (J ;Lq(Ṙn)) ∩ Lp(J ;Lq(Ṙn)) ⊂ H1/2

p (J ;Lq(Ṙn)),

we handle Lp(J ;Lq) norm of ∂tJ(h). J(h) has been defined as

J(h) =
|∇′h|2∆′h

(1 +
√

1 + |∇′h|2)
√
1 + |∇′h|2

+
∇′h · (∇′2h · ∇′h)

(1 + |∇′h|2)3/2
.

Let the first term and the second term of J(h) be J1(h) and J2(h), respectively.
We easily see that

∂tJ2(h) =
∇′∂th · (∇′2h · ∇′h)

(1 + |∇′h|2)3/2
+

∇′h · (∇′2∂th · ∇′h)

(1 + |∇′h|2)3/2
+

∇′h · (∇′2h · ∇′∂th)

(1 + |∇′h|2)3/2

− 3∇′h · (∇′2h · ∇′h)(1 + |∇′h|2)−5/2∇′f · ∂t∇′h,

therefore

|∂tJ2(h)| ≤ C(|∇′2h||∂t∇′h|+ |∇′h||∇′2∂th|).
Combining the following relation and estimates derived by Lemma 5.2, (5.8), (5.9)

∂t∇′h̄, ∂t∇′h∗ ∈ H1/2
p (J ;Lq(Ṙn)) ∩ Lp(J ;W

1
q (Ṙn)) ⊂ BUC(J ;BUC(Ṙn)),

∥∇′2h∥Lp(J;Lq) ≤ CT 1/(2p)∥h∥1/2W 1
p (J;W

2
q )
∥h∥1/2Lp(J;W 2

q )
, h = h∗ or h̄

∥∇′h̄∥L∞(J;L∞) ≤ CT (p−1)/p∥h̄∥W 1
p (J;W

2
q )

and ∥∇′h∗∥L∞(J;L∞) ≤ ε0 by the assumption, we estimate Gun norm of ∂tJ2(h).
We could calculate |∂tJ1(h)| similarly.

Finally we remark that the nonlinear terms [[un]]∇′h in G(u, h) and [[ρu′ ·
∇′h]]/[[ρ]] in Gh(u, h). By Theorem 2.6, it holds that

∥u∗n∇′h̄∥Lp(J;W 2
q )

≤ ∥u∗n∥L∞(J;L∞)∥∇′h̄∥Lp(J;W 2
q )

≤ ∥u∗n∥L∞(J;L∞)R,

we have to impose the smallness assumption ∥u0∥L∞(Ṙn) ≤ ε0. Thus, ϵ0 may

be smaller than T 1/(4p) and T (p−1)/p. Indeed, there exists positive numbers that
belong to a interval, (0,min {T 1/(4p), T (p−1)/p}] by density of R. Here, by 1/
(4p)−(p−1)/p < 0 if 2 < p, T 1/4p > T (p−1)/p if 0 < T < 1 and T 1/(4p) < T (p−1)/p

in case 1 < T .
Combining the estimates above, we show the mapping Φ is contractive if we

take time interval, T and ε0 small. This completes the proof of Theorem 5.1.

6. Results for Large Initial Data

We remove the smallness condition ∥u0∥L∞(Rn)ϵ0.

Theorem 6.1. Let 2 < p <∞, n < q <∞, 2/p+ n/q < 1, ρ± > 0, [[ρ]] ̸= 0, and
suppose ψ± ∈ C3(0,∞), µ±, d± ∈ C2(0,∞) are such that

κ±(s) = −sψ′′
±(s) > 0, µ±(s) > 0, d±(s) > 0 s ∈ (0,∞).
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Let the initial interface Γ0 be given by a graph x′ 7→ (x′, h0(x
′)). Assume the

regularity conditions:

(u0, θ0, h0) ∈ B2−2/p
q,p (Ω0)

n ×B2−2/p
q,p (Ω0)×B3−1/p−1/q

q,p (Rn−1)

and the compatibility conditions:

div u0 = 0 in Ω0,

PΓ0 [[µ(θ0)D(u0)ν0]] = 0, PΓ0 [[u0]] = 0 on Γ0,

[[θ0]] = 0, (l(θ0)/[[1/ρ]])[[u0 · ν0]] + [[d(θ0)∂ν0θ0]] = 0 on Γ0,

where PΓ0 = I − νΓ0 ⊗ νΓ0 denotes the projection onto the tangent bundle of Γ0.
Then there exists a constant ε0 depending only on Ω0, p, q, n such that if h0
satisfies ∥∇′h0∥L∞(Ṙn) ≤ ε0, then there exist

T = T (∥u0∥B2−2/p
q,p (Ω0)

+ ∥θ0∥B2−2/p
q,p (Ω0)

+ ∥h0∥B3−1/p−1/q
q,p (Rn−1)

, ε0) > 0

and a unique Lp-Lq solution (u, π, θ, h) of (1.1)-(1.3) on [0, T ] in the class of (7.6)
below.

Remark 6.2.

(1) The notion of Lp-Lq-solution is explained in more detail below.
(2) We supposed ∥u0∥L∞(Ω0) + ∥∇′h0∥L∞(Ṙn) ≤ ϵ0 in [5]. In this paper we

remove the smallness condition ∥u0∥L∞(Ω0) ≤ ϵ0.
(3) In Prüss, Shimizu and Wilke [16], they considered the same problem in

bounded domain when p = q and proved local well-posedness in Lp-setting
when n + 2 < p < ∞. Our result may treat the case when 2 < p < ∞,
n < q <∞ and 2/p+ n/q < 1, which covers wider range than the results
of [15]. Indeed, if n+ 2 < q <∞, then

2q/(q − n) < p ≤ n+ 2

is permitted and if n+ 2 < p <∞, then q = n+ 2 is permitted.
(4) The restriction of expornents of p, q comes from using the following em-

bedding relations to treat nonlinear terms. When n < q < ∞, it holds
that

W 1
q (Rn

±) ↪→ L∞(Rn
±).

When 2 < p <∞, it holds that

B2−2/p
qp (Rn

±) ↪→W 1
q (Rn

±).

Let J = [0, T ]. When 2/p+ n/q < 1, it holds that

W 1
p (J ;Lq(Rn

±)) ∩ Lp(J ;W
2
q (Rn

±)) ↪→ BUC(J ;BUC(Rn
±)),

and when n < q <∞ and 2/p+ n/q < 1, it holds that

H1/2
p (J ;Lq(Rn

±)) ∩ Lp(J ;W
1
q (Rn

±)) ↪→ BUC(J ;BUC(Rn
±))

(cf. Lemma 4.2 in [5]).
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7. Linearized Problem

Let Rn
0 = Rn−1 × {0} and Ṙn = Rn\Rn

0 . In order to prove Theorem 6.1,
we use maximal Lp-Lq-regularity of the modified principal linearized problem of
(1.1),(1.2),(1.3).

ρ∂tu− µ(x)∆u+∇π = ρfu in Ṙn, t > 0,

div u = fd in Ṙn, t > 0,

[[u′]] + c(t, x)∇′h = gu on Rn
0 , t > 0, (7.1)

−[[µ(x)(∇′un + ∂nu
′)]] = gτ on Rn

0 , t > 0,

−2[[µ(x)∂nun]] + [[π]]− σ∆′h = gn on Rn
0 , t > 0,

u(0) = u0 in Ṙn,

ρκ(x)∂tθ − d(x)∆θ = ρκ(x)fθ in Ṙn, t > 0,

−[[d(x)∂nθ]] = gθ on Rn
0 , t > 0,

[[θ]] = 0 on Rn
0 , t > 0, (7.2)

θ(0) = θ0 in Ṙn,

−2[[(µ(x)/ρ)∂nun]] + [[π/ρ]] = gπ on Rn
0 , t > 0,

∂th− [[ρun]]/[[ρ]] + b(t, x) · ∇′h/[[ρ]] = gh on Rn
0 , t > 0, (7.3)

h(0) = h0 on Rn
0 .

Here c(t, x) and b(t, x) are substitutions for un and u′ close to initial velocity u0n
and u0

′.
Since (7.2) decouples from the remaining problem and it is well-known that

this problem has maximal Lp-Lq-regularity (cf. Denk, Hieber and Prüss [4]), we
concentrate on the remaining one. It reduces to the modified asymmetric Stokes
problem:

ρ∂tu− µ(x)∆u+∇π = fu in Ṙn, t > 0,

div u = fd in Ṙn, t > 0,

[[u′]] + c(t, x)∇′h = g on Rn
0 , t > 0, (7.4)

−[[µ(x)(∇′un + ∂nu
′)]] = gτ on Rn

0 , t > 0,

−2[[µ(x)∂nun]] + [[π]]− σ∆′h = gu on Rn
0 , t > 0,

−2[[(µ(x)/ρ)∂nun]] + [[π/ρ]] = gπ on Rn
0 , t > 0,

∂th− [[ρun]]/[[ρ]] + b(t, x) · ∇′h/[[ρ]] = gh on Rn
0 , t > 0,

u(0) = 0 in Ṙn,

h(0) = 0 on Rn
0 ,
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where ω ≥ 0. We add ωu for the first equation and ωh for the sixth equation in
order to consider on time interval R+. The differences of the modified asymmetric
Stokes problem (7.4) from the asymmetric Stokes problem (2.4) in [5] are in where
the modified (7.4) contains c(t, x)∇′h and b(t, x) · ∇′h/[[ρ]] in the 3rd and the 6th
equation, respectively, and µ(x) is a function not a constant. We set

Lp,0,γ0(R;X) = {f : R → X | e−γ0tf(t) ∈ Lp(R;X), f(t) = 0 for t < 0},

Wm
p,0,γ0

(R;X) = {f ∈ Lp,0,γ0(R;X) | e−γ0tDj
t f(t) ∈ Lp(R;X), j = 1, · · · ,m},

Ŵ 1
q (Rn) = {θ ∈ Lq,loc(Rn) | ∇θ ∈ Lq(Rn)n},

Ŵ−1
q (Rn) = Ŵ 1

q (Rn)∗, 1/q + 1/q′ = 1,

∥θ∥Ŵ−1
q (Rn) = sup

φ∈Ŵ 1
q (Rn), ∥∇φ∥L

q′ (R
n)=1

|
∫
Rn

θφ dx|,

< Dt >
α f(t) = F−1[(1 + s2)

a
2 F [f ](s)](t) for a ≥ 0,

Ha
p,0,γ0

(R;X) = {f : R → X | e−γt < Dt >
a f(t) ∈ Lp(R;X)

for any γ ≥ γ0, f(t) = 0 for t < 0},

where F and F−1 are Fourier transform and its inverse respectively, and set
Ŵ−1

q (Rn) the dual space of Ŵ 1
q′(Rn), where 1/q + 1/q′ = 1.

We set the following function spaces.

Cℓ(Ṙn) = {u ∈ C(Ṙn) | ∃C+, C− > 0, s.t. ∀ε > 0, ∃r0 > 0

|u+(x)− C+| < ε, |u−(x)− C−| < ε for x ∈ Ṙn \Br0(0)}.

We set the function spaces of the solution:

Eu,γ0
(R) := [W 1

p,0,γ0
(R;Lq(Rn)) ∩ Lp,0,γ0

(R;W 2
q (Ṙn))]n,

Eπ,γ0(R) := Lp,0,γ0(R; Ŵ 1
q (Ṙn)),

Eπ±,γ0(R) := H
1/2
p,0,γ0

(R;Lq(Rn
±)) ∩ Lp,0,γ0(R;W 1

q (Rn
±)),

Eh,γ0(R) :=W 1
p,0,γ0

(R;W 2
q (Ṙn)) ∩ Lp,0,γ0(R;W 3

q (Ṙn)) ∩W 2
p,0,γ0

(R;Lq(Rn)),

Eγ0(R) := Eu,γ0(R)× Eπ,γ0(R)× Eπ±,γ0(R)× Eh,γ0(R).

We set the function spaces of right members:

Fu,γ0(R) := Lp,0,γ0(R;Lq(Rn))n,

Fd,γ0(R) :=W 1
p,0,γ0

(R; Ŵ−1
q (Rn)) ∩ Lp,0,γ0(R;W 1

q (Ṙn)),

Gu,γ0(R)×Gh,γ0(R) := [W 1
p,0,γ0

(R;Lq(Rn)) ∩ Lp,0,γ0(R;W 2
q (Ṙn))]n,

Gτ,γ0(R)×Gn,γ0(R)×Gπ,γ0(R) := [H
1/2
p,0,γ0

(R;Lq(Rn)) ∩ Lp,0,γ0(R;W 1
q (Ṙn))]n+1,

Fγ0(R) := Fu,γ0(R)× Fd,γ0(R)×Gu,γ0(R)
×Gτ,γ0(R)×Gn,γ0(R)×Gπ,γ0(R)×Gh,γ0(R).
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For the modified (7.4), we have the following maximal Lp-Lq regularity result.

Theorem 7.1. Let 2 < p < ∞, n < q < ∞, 2/p + n/q < 1. We assume

that µ(x) ∈ BUC1(Ṙn) ∩ Cℓ(Ṙn), µ > 0, (b(t, x), c(t, x)) ∈ [W 1
p,0,γ0

(R;Lq(Rn)) ∩
Lp,0,γ0(R;W 2

q (Ṙn))]n and (b(t, x), c(t, x)) ∈ BUC(R, BUC1(Ṙn) ∩ Cℓ(Ṙn)) If the
data (fu, fd, gu, gτ , gn, , gπ, gh) ∈ Fγ0(R) satisfy the compatibility conditions:

fd(0) = 0, gu(0) = gτ (0) = 0 in Ṙn,

then the modified asymmetric Stokes problem (7.4) admits a unique solution
(u, π, π±, h) ∈ Eγ0

(R). There exists Cγ0
> 0 such that the following estimate holds:

∥(u, π, π±, h)∥Eγ0 (R) ≤ C∥(fu, fd, gu, g, gπ, gh)∥Fγ0 (R). (7.5)

If u ∈ Lp,o,γ0(R, Lq(Rn)) for some γ0 > 1, then for any T with 0 < T < ∞, it
holds that

∥u∥Lp(0,T ;Lq(Rn)) ≤ eγ0T ∥e−γ0tu∥Lp(R,Lq(Rn)).

Hence, we may view the nonlinear problem in following spaces. Let J = [0, T ].
We set the function spaces of the solution:

Eu(J) := [(W 1
p (J ;Lq(Rn)) ∩ Lp(J ;W

2
q (Ṙn))]n,

Eπ(J) := Lp(J ; Ŵ
1
q (Ṙn)),

Eπ±(J) := H1/2
p (J ;Lq(Rn

±)) ∩ Lp(J ;W
1
q (Ṙn

±)),

Eθ(J) :=W 1
p (J ;Lq(Rn)) ∩ Lp(J ;W

2
q (Ṙn)),

Eh(J) :=W 1
p (J ;W

2
q (Ṙn)) ∩ Lp(J ;W

3
q (Ṙn)) ∩W 2

p,0,γ0
(R+;Lq(Rn)),

E(J) := Eu(J)× Eπ(J)× Eπ±(J)× Eθ(J)× Eh(J). (7.6)

We set the function spaces of right members:

Fu(J)× Fθ(J) := Lp(J ;Lq(Rn))n+1,

Fd(J) :=W 1
p (J ; Ŵ

−1
q (Rn)) ∩ Lp(J ;W

1
q (Ṙn)),

Gu(J) = Gh(J) := [W 1
p (J ;Lq(Rn)) ∩ Lp(J ;W

2
q (Ṙn))]n,

Gτ (J)×Gn(J)×Gθ(J)×Gπ(J) := [H1/2
p (J ;Lq(Rn)) ∩ Lp(J ;W

1
q (Ṙn))]n+2,

F(J) := Fu(J)× Fd(J)× Fθ(J)×Gu(J)×Gτ (J)×Gn(J)

×Gθ(J)×Gπ(J)×Gh(J).

We define the time trace space Xγ of E(J) as

Xγ = B2−2/p
q,p (Ṙn)n ×B2−2/p

q,p (Ṙn)×B3−1/p−1/q
q,p (Rn−1).

The main result which is maximal Lp-Lq regularity for linearized problem (7.1)-
(7.3) is stated as follows.
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Theorem 7.2. Let 2 < p < ∞, n < q < ∞, 2/p + n/q < 1. We assume

that µ(x), d(x) ∈ BUC1(Ṙn) ∩ Cℓ(Ṙn), µ± > 0, d± > 0, (b(t, x), c(t, x)) ∈
[W 1

p (J ;Lq(Rn)) ∩ Lp(J ;W
2
q (Ṙn))]n with J = [0, T ] and (b(t, x), c(t, x)) ∈ C(J,

BUC1(Ṙn) ∩ Cℓ(Ṙn)). If (fu, fd, fθ, gu, gτ , gn, gθ, gπ, gh) ∈ F(J), and the initial
data

(u0, θ0, h0) ∈ Xγ = B2−2/p
q,p (Ṙn)n ×B2−2/p

q,p (Ṙn)×B3−1/p−1/q
q,p (Rn−1)

satisfy the compatibility conditions:

div u0 = fd(0) in Ṙn, 2− 2/p > 1 + 1/q,

−[[µ(x)(∇′u0n + ∂nu0
′]] = gτ (0) on Rn−1, 2− 2/p > 1 + 1/q,

[[u0
′]] + c(0, x)∇′h0 = gu(0), [[θ0]] = 0 on Rn−1, 2− 2/p > 1/q,

−[[d(x)∂nθ0]] = gθ(0) on Rn−1, 2− 2/p > 1 + 1/q,

then the linearized problem (7.1)-(7.3) admits a unique solution (u, π, π±, θ, h) ∈
E(J).

Theorem 7.2 is proved by combining Theorem 7.1 and the results within [23]
and [4]. Therefore it is key to prove Theorem 7.1.

The plan for this part is as follows. In Section 8, we prove maximal Lp-Lq

regularity of (7.4) in the case where µ, b and c are constant. In section 9, we prove
Theorem 7.1. Section 10 is devoted to prove local Lp-Lq well-posedness of the
problem of (1.1) (1.2) (1.3).

8. Maximal Lp-Lq Regularity; for Constant Coefficients

Let Rn
0 = Rn−1 × {0} and Ṙn = Rn\Rn

0 . We solve (7.4) in the case where µ, c
and b are constants:

ρ∂tu− µ0∆u+∇π = fu in Ṙn, t > 0,

div u = fd in Ṙn, t > 0,

[[u′]] + c0∇′h = gu on Rn
0 , t > 0,

−[[µ0(∂nu
′ +∇′un)]] = gτ on Rn

0 , t > 0,

−2[[µ0∂nun]] + [[π]]− σ∆′h = gn on Rn
0 , t > 0,

−2[[(µ0/ρ)∂nun]] + [[π/ρ]] = gπ on Rn
0 , t > 0,

∂th− [[ρun]]/[[ρ]] + b0 · ∇′h/[[ρ]] = gh on Rn
0 , t > 0,

u(0) = 0 in Ṙn,

h(0) = 0 on Rn
0 , (8.1)

where c0 ∈ R, b0 ∈ Rn−1, µ0± > 0 are constants. We assume as always in this
paper [[ρ]] = ρ+ − ρ− ̸= 0.

For problem (8.1), we have the following maximal Lp-Lq regularity result.



TWO-PHASE INCOMPRESSIBLE FLOWS WITH PHASE TRANSITIONS 39

Theorem 8.1. Let 1 < p, q < ∞, and assume that σ > 0, µ0± > 0, c0 ∈ R and
b0 ∈ Rn−1 are constants. Suppose the data (fu, fd, gu, gτ , gn, , gπ, gh) ∈ Fγ0(R)
satisfy the compatibility conditions:

fd(0) = 0, gu(0) = gτ (0) = 0 in Ṙn.

Then the asymmetric Stokes problem (8.1) admits a unique solution (u, π, π±, h) ∈
Eγ0(R). There exists C > 0 such that the following estimate holds:

∥(u, π, π±, h)∥Eγ0 (R) ≤ C∥(fu, fd, gu, g, gπ, gh)∥Fγ0 (R). (8.2)

In the rest of the section, we prove Theorem 8.1. If we set u = υ + w and
π = τ + κ for a solution (u, π) of (8.1), then (υ, τ) and (w, κ) satisfy the following
problems:

ρ±∂tυ± − µ0±∆υ± +∇τ± = fu in Rn
± , t > 0,

divυ± = fd in Rn
± , t > 0,

[[υ′]] = gu on Rn
0 , t > 0,

[[µ0(∂nυk + ∂kυn)]] = −gτ on Rn
0 , t > 0,

[[2µ0∂nυn]]− [[τ ]] = −gn on Rn
0 , t > 0,

υ±(0) = 0 in Rn
±,

[[(2µ0/ρ)∂nυn]]− [[τ/ρ]] = −gπ on Rn
0 , t > 0. (8.3)

ρ±∂tw± − µ0±∆w± +∇κ± = 0 in Rn
± , t > 0,

divw± = 0 in Rn
± , t > 0,

[[w′]] = −c0∇′h on Rn
0 , t > 0,

[[µ0(∂nwk + ∂kwn)]] = 0 on Rn
0 , t > 0,

[[2µ0∂nwn]]− [[κ]] = −σ∆′h on Rn
0 , t > 0,

w±(0) = 0 in Rn
±,

[[(2µ0/ρ)∂nwn]]− [[κ/ρ]] = 0 on Rn
0 , t > 0,

∂th− [[ρwn]]/[[ρ]] + b0 · ∇′h/[[ρ]] = gh + [[ρυn]]/[[ρ]] on Rn
0 , t > 0,

h±(0) = 0 on Rn
0 . (8.4)

Let Fx′ and F−1
ξ′ denote the partial Fourier transform with respect to x′ and

its inversion transform

Fx′ [u(·, xn)](ξ′) =
∫
Rn−1

e−ix′·ξ′u(x′, xn) dx
′,

F−1
ξ′ [u(·, ξn)](x′) = (2π)−n+1

∫
Rn−1

eix
′·ξ′u(ξ′, ξn) dξ

′,

and let Lt and L−1
s denote the Laplace transform and its inversion transform

Lt[u](s) =

∫
R
e−stu(t) dt, L−1

s [u](t) = (2π)−1

∫
R
estu(s) dτ.
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We use the symbol: û = Fx′Lt[u]. Set

A = |ξ′| , B± = (ρ±s/µ± +A2)
1
2 .

First we solve (8.3). We could deduce the case where fu = fd = 0 in the problem
(8.3) (e.g. Shibata and Shimizu [24, Section 3]). Using the Fourier transform with
respect to x′ and the Laplace transform with respect to t, we can convert the
problem (8.3) into ordinary differential equations of xn. It was solved in [5]. By
Section 4 in [5], we know that there exists a unique solution of (8.3) and which
satisfies the estimate:

∥e−γt(γυ, ∂tυ, ∇2υ, ∇τ)∥Lp(R,Lq(Rn)) + ∥e−γt(< Dt >
1
2 τ±, ∇τ±)∥Lp(R,Lq(Rn

±))

≤ Cγ0
(∥e−γt(γgu, ∂tgu, ∇2gu,∇(gτ , gn, gπ), < Dt >

1
2 (gτ , gn, gπ)∥Lp(R,Lq(Rn)).

(8.5)

Next, we solve the problem (8.4). In order to solve (8.4), we can use the solution
formula of (8.3) in [5] with fu = fd = gτ = gπ = 0, gu = −∇′h and gn = σ∆′h,
we obtain the solution formula:

κ̂+ = µ+Re
−Axn , ŵ+m = Pme

−Axn +Qme
−B+xn for xn > 0

κ̂− = µ−R
′eAxn , ŵ−m = P ′

me
Axn +Q′

me
B−xn for xn < 0.

where we set α± = −µ±A
2(3B± −A)/(2B±(B± +A)), β = (µ+B+ + µ−B−)/2,

R = (α+ + α−β)
−1
[
+(µ−(1− ρ+/ρ−))

−1(α− + µ−A
2/(2B−))(−σA2ĥ)

+ (µ+(1− ρ−/ρ+))
−1(α− − β − µ+A

2/(2B+))(−σA2ĥ)
]
,

R′ = (α+ + α−β)
−1
[
+(µ+(1− ρ−/ρ+))

−1(−α+ − µ+A
2/(2B+))(−σA2ĥ),

+ (µ−(1− ρ+/ρ−))
−1(−α+ + β + µ−A

2/(2B−))(−σA2ĥ)
]
,

Pk = −iµ+ξkR/(ρ+s), Pn = µ+AR/(ρ+s),

P ′
k = −iµ−ξkR

′/(ρ−s), P ′
n = −µ−AR

′/(ρ−s),

Qn = (2µ+B+(1− ρ−/ρ+))
−1(−σA2ĥ)− (A/B+)Pn −R/(2B+),

Q′
n = (2µ−B−(1− ρ+/ρ−))

−1(−σA2ĥ)− (A/B−)P
′
n +R′/(2B−).

Substituting

[[ρŵn]] =− ρ+(B+ −A)(2B+(B+ +A))−1R− ρ−(B− −A)(2B−(B− +A))−1R′

− σA2ĥ(ρ+/(2µ+B+(1− ρ−/ρ+))− ρ−/(2µ−B−(1− ρ+/ρ−)))

with B2
± = ρ±s/µ± + A2 for the second equation from below in (8.4), finally we

obtain the description of ĥ

ĥ = f(B+, B−, A)L(B+, B−, A)
−1(ĝh + [[ρυ̂n]]/[[ρ]]), (8.6)
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where

f(B+, B−, A) = µ+A
2(3B+ −A)B−(B− +A) + µ−A

2(3B− −A)B+(B+ +A)

+ (µ+B+ + µ−B−)B+B−(B+ +A)(B− +A), (8.7)

and

L(B+, B−, A) = sf(B+, B−, A) + ib0 · ξ′[[ρ]]−1f(B+, B−, A)

+ [[ρ]]−2σA2{2ρ+ρ−A2(B+ −A)(B− −A)

+A2
(
ρ2+B−(B− +A) + ρ2−B+(B+ +A)

)
+A3

(
µ−µ

−1
+ ρ2+(3B− −A) + µ+µ

−1
− ρ2−(3B+ −A))

+ (µ+B+ + µ−B−)A
(
µ−1
+ ρ2+B−(B− +A) + µ−1

− ρ2−B+(B+ +A)
)

− [[ρ]]σ−1c0
(
µ−ρ+(B+ −A)((B− −A)3 + 4B2

−A)

+ µ+ρ−(B− −A)((B+ −A)3 + 4B2
+A)

)
}, (8.8)

We remark that f(B+, B−, A) is the same function as in the solution formula ĥ
of (3.3) in [5], however L(B+, B−, A) is different. If we put b0 = 0 and c0 = 0 in

(8.8), then it is the same formula for ĥ of (3.3) in [5].
We consider R-boundedness of solution operators defined in a sector Σϵ,γ0 =

{s ∈ C\{0} | | arg s| ≤ π − ϵ, |s| ≥ γ0} with 0 < ϵ < π/2 and γ0 ≥ 0.

Lemma 8.2 (Lemma 4.1 in [5]). For l = 0, 1, γ0 ≥ 1 and ϵ ∈ (0, π/2), we have

|f(B+, B−, A)| ≥ Cϵ,γ0(|s|1/2 +A)5,

|Dα′

ξ′ (τDτ )
lf(B+, B−, A)

−1| ≤ Cϵ,γ0(|s|1/2 +A)−5A−|α′|.

Lemma 8.3. For l = 0, 1, γ0 ≥ 1 and ϵ ∈ (0, π/2),

|L(B+, B−, A)| ≥ Cϵ,γ0(|s|1/2 +A)3(|s|(|s|1/2 +A)2 + σA3/[[ρ]]2)

≥ Cϵ,γ0(|s|1/2 +A)6, (8.9)

|Dα′

ξ′ (τDτ )
lL(B+, B−, A)

−1|

≤ Cϵ,γ0(|s|1/2 +A)−3(|s|(|s|1/2 +A)2 + σA3/[[ρ]]2)−1A−|α′|

≤ Cϵ,γ0(|s|1/2 +A)−6A−|α′| (8.10)

hold.

Proof. We use symbols that are used in Lemma 6.1 in [23]. Let δ and O(δ) be
a small number determined later and a symbol satisfying |O(δ)| ≤ Cδ respec-
tively. Suppose δ ≤ min (ρ+/µ+, ρ−/µ−). First we prove (8.9) in the case where
|ρ±µ−1

± sA−2| ≤ δ. If we write B± = A(1 +O(δ)), then we obtain from (8.6) and
(8.7)

L(B+, B−, A) = s(µ+ + µ−)A
5(9 + 16O(δ))

+[[ρ]]−2σA6(i[[ρ]]σ−1b0 · ξ′A−1)(9 + 16O(δ))
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+[[ρ]]−2σA3
(
A3(ρ2+ + ρ2−)(2 + 3O(δ))

+A3((µ−µ
−1
+ ρ2+ + µ+µ

−1
− ρ2−)(2 + 3O(δ)))

+A3(µ+ + µ−)(µ
−1
+ ρ2+ + µ−1

− ρ2−)(2 + 3O(δ))

−A3[[ρ]]σ−1c0(µ−ρ+ + µ+ρ−)17O(δ)
)
.

Now, A ≥ 2−1(|s|1/2 +A). Therefore, in the same way as the proof of Lemma 6.1
in [23], choosing a δ properly, we gain

|L(B+, B−, A)| ≥ Cϵ,γ0(|s|1/2 +A)3(|s|(|s|1/2 +A)2 + σA3/[[ρ]]2)

≥ Cϵ,γ0(|s|1/2 +A)6.

Secondly, we prove (8.9) in the case where |ρ±µ−1
± sA−2| ≥ δ. By Lemma 4.6,

Lemma 4.8 in [23],

|L(B+, B−, A)| ≥ (|s| − C1A)|f(B+, B−, A)| − C2σ[[ρ]]
−2A3(|s|1/2 +A)3

≥ C3(|s|1/2 +A)3((|s| − C1A)(|s|1/2 +A)2 − σ[[ρ]]−2A3)

Because

A ≤ (min (ρ+/µ+, ρ−/µ−))
1/2δ−1/2|s|1/2 , |s|−1 ≤ γ−1

0 ,

there exist C3, C4 > 0 such that

|s| − C1A ≥ (1− C3γ
−1/2
0 )|s|,

|s|(|s|1/2 +A)2 − [[ρ]]−2A3 ≥ |s|2(1− C4γ
−1/2
0 ).

Combining the inequality above and

|s|2 = (|s|2 + |s|2)/2 ≥ C(|s|(|s|1/2 +A)2 + σA3/[ρ]]2)

≥ Cϵ,γ0
γ
1/2
0 (|s|1/2 + |s|1/2)(|s|1/2 +A)2

≥ Cϵ,γ0(|s|1/2 +A)3,

we obtain

|L(B+, B−, A)| ≥ Cϵ,γ0(|s|1/2 +A)3(|s|(|s|1/2 +A)2 + σA3/[[ρ]]2)

≥ Cϵ,γ0(|s|1/2 +A)6

from (8.8). By the Bell formula, we obtain (8.10) as the similar manner in the
proof of Lemma 6.1 in [23]. �

In case we use an extension

ĥ = f(B+, B−, A))L(B+, B−, A)
−1e−Axn(ĝh + [[ρυ̂n]]/[[ρ]]),

by Lemma 5.4 in [24] Lemma 2.1 and Lemma 2.2,

e−γt∆h, e−γt∂t∆h, e
−γt∇3h ∈ Lp(R, Lq(Rn

+)).
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Then, since the problem (8.4) is the case where we set fu = fd = gτ = 0 and
gn = σ∆′h in the problem (8.3) and add two equations below in (8.4), estimates
(8.5) hold for κ± and w±, too. When we prove e−γth ∈ Lp(R, Lq(Rn

+)), we use an
extension;

ĥ = f(B+, B−, A)L(B+, B−, A)
−1e−B+xn(ĝh + [[ρυ̂n]]/[[ρ]])

and the identity;

f(B+, B−, A)

L(B+, B−, A)
=

1

s
− L(B+, B−A)− sf(B+, B−, A)

sL(B+, B−, A)
.

It is clear that

|Dα′

ξ′ (τDτ )
ls−1| ≤ |s|−1(|s|1/2 +A)−|α′| ≤ γ−1

0 (|s|1/2 +A)−|α′|

for l = 0, 1. By (8.8), L(B+, B−, A) − sf(B+, B−, A) = σ[[ρ]]−2AM(s, ξ′) where

M(s, ξ′) is a function satisfying |Dα′

ξ′ (τDτ )
lM(s, ξ′)| ≤ Cϵ,γ0(|s|1/2 + A)5A−|α′|.

In view of Lemma 5.4 in [24], we see

e−γth, e−γt∂th, e
−γt∂2t h ∈ Lp(R, Lq(Rn

+)).

For example, in fact, we could obtain that

Fx′Lt[∂
2
t h] = s2ĥ =

(
s

1
2 − σ[[ρ]]−2s

1
2M(s, ξ′)

L(B+, B−, A)
A

)
e−B+xn

(
s

1
2 ĝh + s

1
2
[[ρυ̂n]]

[[ρ]]

)
,

|Dα′

ξ′ (τDτ )
l1| ≤ Cϵ,γ0(|s|

1
2 +A)−|α′|

and ∣∣∣∣∣Dα′

ξ′ (τDτ )
l σ[[ρ]]

−2s
1
2M(s, ξ′)

L(B+, B−, A)

∣∣∣∣∣ ≤ Cϵ,γ0A
−|α′|.

After all, it holds that

∥e−γt(γh, ∂th,∇h)∥Lp(R,W 2
q (Ṙn)) + ∥e−γt∂2t h∥Lp(R,Lq(Rn))

≤ C(∥e−γt(γgh, ∂tgh,∇2gh, ∂tυn, < Dt >
1
2 υn)∥Lp(R,Lq(Rn)). (8.11)

In the same way as the section 3 in [24], we could prove that υ, w, τ , κ vanish for
t < 0. This completes the proof of Theorem 8.1.

9. Maximal Lp-Lq Regularity; for Variable Coefficients

In this section, we prove Theorem 7.1. We set

µ̃+(x) =

{
µ+(x) x ∈ Rn

+

µ+(−x) x ∈ Rn
−
, µ̃−(x) =

{
µ−(−x) x ∈ Rn

+

µ−(x) x ∈ Rn
−,

and f̃± and d̃±are defined similarly by even extension. Cauchy problems of the
Stokes equation with variable coefficients

ρ+∂tũ+ − µ̃+(x)∆ũ+ +∇π̃+ = ρ+f̃u+, div ũ+ = f̃d+ in Rn, t > 0,

ũ+(0) = 0 in Rn. (9.1)
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ρ−∂tũ− − µ̃−(x)∆ũ− +∇π̃− = ρ−f̃u−, div ũ− = f̃d− in Rn, t > 0,

ũ−(0) = 0 in Rn. (9.2)

are solved for 0 < µ̃±(x) ∈ BUC1(Rn) ∩ Cℓ(Rn) (cf. [?]). We set the solutions
of (9.1) and (9.2) (ũ+, π̃+) and (ũ−, π̃−) respectively and (ũ, π̃) = (ũ+, π̃+) for
x ∈ Rn

+ and (ũ, π̃) = (ũ−, π̃−) for x ∈ Rn
−. Then we reduce the problem (7.4) to

the case fu = fd = 0 by setting (u− ũ, π − π̃).

9.1. µ(x). In this subsection, we consider the case where µ(x) is a variable coef-

ficient and b and c are constants b0 and c0. By the assumption µ(x) ∈ Cℓ(Ṙn),
there exists a large ball Br0(0) and constants C± > 0 such that for every ε > 0,

|µ+(x)− C+| < ε, |µ−(x)− C−| < ε for x ∈ Ṙn \Br0(0).

We set U0 = Ṙn \Br0(0). Since Br0(0) is compact and µ(x) is continuous, Br0(0)
is covered by finite number of open balls Uj = Brj (xj) such that

|µ(x)− µ(xj)| < ε if |x− xj | < rj j = 1, . . . N.

Define coefficients µj(x) (j = 0, 1, . . . , N) by reflection, i.e.

µ0(x) =

{
µ(x) x /∈ Br0(0)

µ(r20
x

|x|2 ) x ∈ Br0(0),

µj(x) =

{
µ(x) x ∈ Brj (xj)

µ(xj + r2j
x−xj

|x−xj |2 ) x /∈ Brj (xj),

for j = 1, . . . N (cf. Section 5 in [?]). Then for each fixed j, µj(x) is uniformly
continuous, i.e., it holds that

|µj(x)− µ(xj)| < ε for ∀x ∈ Ṙn, j = 0, 1 . . . N.

From Theorem 8.1, we obtain that the problem with coefficients µj(x) for fixed j:

ρ∂tu− µj(x)∆u+∇π = 0 in Ṙn, t > 0,

div u = 0 in Ṙn, t > 0,

[[u′]] + c0∇′h = g on Rn
0 , t > 0, (9.3)

−[[µj(x)(∇′un + ∂nu
′)]] = gτ on Rn

0 , t > 0,

−2[[µj(x)∂nun]] + [[π]]− σ∆′h = gu on Rn
0 , t > 0,

−2[[(µj(x)/ρ)∂nun]] + [[π/ρ]] = gπ on Rn
0 , t > 0,

∂th− [[ρun]]/[[ρ]] + b0 · ∇′h/[[ρ]] = gh on Rn
0 , t > 0,

u(0) = 0 in Ṙn,

h(0) = 0 on Rn
0 .

has maximal Lp-Lq regularity and the estimate (8.2).
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We introduce cut-off functions

φj ∈ C∞(Rn) s.t. 0 ≤ φj(x) ≤ 1, suppφj ∈ Uj ,
N∑
j=1

φj(x) = 1,

ψj ∈ C∞(Rn) s.t. ψj(x) = 1 on suppφj , suppψj ⊂ Uj .

Multiplying (9.4) by φj we obtain

ρ∂t(φju)− µj(x)∆(φju) +∇(φjπ) ,

= −µj(x){(∆φj)u+ 2∇φj · ∇u)}+ (∇φj)π in Ṙn, t > 0,

div (φju) = (∇φj)u in Ṙn, t > 0,

[[φju
′]] + c0∇′(φjh) = φjgu + c0(∇′φj)h on Rn

0 , t > 0,

− [[µj(x){∇′(φjun) + ∂n(φju
′)}]]

= φjgτ − [[µj(x){(∇′φj)un + (∂nφj)u
′}]] on Rn

0 , t > 0,

− 2[[µj(x)∂n(φjun)]] + [[φjπ]]− σ∆′(φjh)

= φjgn − 2[[µj(x)(∂nφj)un]]− σ(∆′φj)h− 2σ∇′φj · ∇′h on Rn
0 , t > 0,

− 2[[(µj(x)/ρ)∂n(φjun)]] + [[(φjπ)/ρ]]

= φjgπ − 2[[(µj(x)/ρ)(∂nφj)un]] on Rn
0 , t > 0,

∂t(φjh)− [[ρ(φjun)]]/[[ρ]] + b0 · ∇′(φjh)/[[ρ]]

= φjgh + b0 · (∇′φj)h/[[ρ]] on Rn
0 , t > 0,

(φju)(0) = 0 in Ṙn,

(φjh)(0) = 0 on Rn
0 .

(9.4)

From (8.2) {(φju, φjπ, φjh)}Nj=1 satisfy the estimate

∥(φju, φjπ, φjπ±, φjh)∥Eγ0 (R) ≤ Cγ0

(
∥φj(gu, gτ , gn, gπ, gh)∥Fγ0 (R)

+ ∥e−γtµj(x){(∆φj)u+ 2∇φj · ∇u)}∥Lp(R;Lq(Rn)) + ∥e−γt(∇φj)π∥Lp(R;Lq(Rn))

+ ∥(∇φj)u∥Fγ0,d(R) + ∥e−γt(∇′φj)h∥Lp(R;W 2
q (Ṙn)∩H1

p(R;Lq(Rn))

+ ∥e−γt{µj(x)(∇φj)u+ (∆φj)h+∇′φj · ∇h}∥
Lp(R;W 1

q (Ṙn)∩H
1
2
p (R;Lq(Rn))

)
.

(9.5)

for γ ≥ γ0. For any ϵ > 0, it holds that

∥e−γt∇u∥Lp(R;Lq(Rn)) ≤ ϵ∥e−γt∇2u∥Lp(R;Lq(Rn)) + (4ϵγ)−1∥e−γtγu∥Lp(R;Lq(Rn)),

∥e−γt∇2h∥Lp(R;Lq(Rn))

≤ ϵ∥e−γt∇3h∥Lp(R;Lq(Rn)) + (4ϵγ)−1∥e−γtγ∇h∥Lp(R;Lq(Rn)). (9.6)
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For any R ∈ R with 1 ≤ R <∞ and γ ≥ 1, it holds that

∥e−γt<Dt>
1
2u∥Lp(R;Lq(Rn))

≤ CR− 1
2 ∥e−γt∂tu∥Lp(R;Lq(Rn)) + CR

1
2 ∥e−γtγu∥Lp(R;Lq(Rn)),

∥e−γt<Dt>
1
2∇h∥Lp(R;Lq(Rn))

≤ CR− 1
2 ∥e−γt∂t∇h∥Lp(R;Lq(Rn)) + CR

1
2 ∥e−γtγ∇h∥Lp(R;Lq(Rn)) (9.7)

by Proposition 2.6 in [22]. Using (9.6), (9.7) and taking ϵ > 0 sufficiently small
and R ≥ 1 sufficiently large, we absorb the right hand side norms except
∥e−γt(∇φj)π∥Lp(R;Lq(Rn)) and ∥(∇φj)u∥Fγ0,d(R) into the left hand side. We set the

left hand side of the first equation of (9.4) Fj . In order to treat
∥e−γt(∇φj)π∥Lp(R;Lq(Rn)) and ∥(∇φj)u∥Fγ0,d(R), we consider the following problem

for φj and Fj (j = 0, 1, . . . , N) as in Subsection 7.2 in [16]

∆ϕj = u · ∇φj = div (uφj) in Ṙn,

[[∂nϕj ]] = [[unφj ]] on Rn−1,

[[ϕj ]] = ϕj = 0 on Rn−1,

∆ψj = divFj in Ṙn,

[[ψj ]] = ψj = 0 on Rn−1 (9.8)

with ω ≥ 0. The system is uniquely solvable and

∇ϕj ∈ H1
p (R+;Lq(Rn)) ∩ Lp(R+;H

3
q (Ṙn)), ∇ψj ∈ Lp(R;Lq(Rn)).

Defining

ϕ̃ju = ϕju−∇ϕj , ϕ̃jπ = ϕjπ − ψj + ρ∂tϕj − µ(x)∆ϕj .

Along Corollary 1 in [11] and [?], we see that there are situations where π has

additional time regularity in Ṙn.

Corollary 9.1. Assume in addition to the hypotheses of Theorem 7.1 that

u0 = 0, h0 = fd = 0, div fu = 0 in Ṙn,

[[un]] = 0, [[fun]] = 0 on Rn
0 .

Then π ∈ Hα
γ0,0,p(R;Lq(Rn)) for each α ∈ (0, 12 − 1

2p ).

Proof. Since C∞
0 (Rn) is dense in Lq(Rn), we give g ∈ C∞

0 (Rn) and consider the
problem

∆ψ = g in Ṙn,

[[ρψ]] = 0 on Rn
0 ,

[[∂nψ]] = 0 on Rn
0 .

This problem is uniquely solvable. We set ϕ = ρψ. Then

(π, g)Rn = (π,∆ψ)Rn = (
π

ρ
,∆ϕ)Rn
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= −
∫
Rn−1

[[
π

ρ
∂nϕ]] dx

′ − (
∇π
ρ
,∇ϕ)Rn

= −
∫
Rn−1

[[
π

ρ
∂nϕ]] dx

′ − (
µ

ρ
∆u,∇ϕ)Rn

=

∫
Rn

µ

ρ
∇u : ∇2ϕdx+

∫
Rn−1

(
[[
µ∂nu

ρ
∇ϕ]]− [[

π

ρ
∂nϕ]]

)
dx′.

We know ∇u ∈ H
1
2
p,0,γ0

(R, Lq(Rn)), and also by Section 7 in Prüss-Simonett [?]

e−γt[[π]], e−γt[[∂nu]] ∈ F
1
2−

1
2p

p,q (R;Lq(Rn−1)) for γ ≥ γ0, where F
s
p,q is a Lizorkin-

Triebel space. Applying ∂αt to this identity we obtain

∥e−γt<Dt>
α∂αt π∥Lp(R;Lq(Rn)) ≤ C

(
∥e−γt(<Dt>

α(∇u, [[π]], ∂nu))∥Lp(R;Lq(Rn))

)
for each α ∈ (0, 1/2− 1/2p), which completes the proof of the corollary. �

When {(φju, φjπ, φjh)}Nj=1 change into {(φ̃ju, φ̃jπ, φjh)}Nj=1, the first and sec-
ond equations of (9.4) are changed into

ρ∂t(φ̃ju)− µj(x)∆(φ̃ju) +∇(φ̃jπ) = Fj −∇ψj in Ṙn, t > 0,

div (φ̃ju) = 0 in Ṙn, t > 0,

with

div (Fj −∇ψj) = 0 in Ṙn,

[[(Fj −∇ψj)n]] = [[(φ̃ju)]] = 0 on Rn
0 .

Therefore ∥(∇φj)u∥Fγ0,d(R) is absence and ∥e−γt(∇φj)π∥Lp(R;Lq(Rn)) has time reg-
ularity.

Taking finite sum j = 1 to N for (9.5), we obtain the estimate (7.5). Setting
the left hand side operator L : Eγ0(R) → Fγ0(R), then we obtain L is injective
and has closed range. Surjectivity of L is proved in similar way in [16] with base
results are obtained in Section 7 in [?].

9.2. b(t, x), c(t, x). In this subsection, we consider the case where not only µ(x)
but also b(t, x) and c(t, x) are variable coefficients. Since

b(t, x), c(t, x) ⊂ BUC(R, BUC1(Ṙn))
by the assumption, for every ϵ > 0, there exists δ > 0 such that

|t− tj | < δ ⇒ |c(t, ·)− c(tj , ·)|BUC1(Ṙn) < ϵ

We set U1 = [0, δ), Uj = ((j − 1)δ, (j + 1)δ), j = 1, 2, . . . .. We choose a partition
of unity χj ∈ C∞(R+) as

∞∑
j=0

χj(t) = 1 on R+, 0 ≤ χj(t) ≤ 1, suppχj ⊂ Uj .

We set

cj(x) =
1

δ

∫ (j+1)δ

jδ

c(t, x) dt.
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bj(x) is defined similarly. Multiplying (7.4) by χj we obtain

ρ∂t(χju)− µ(x)∆(χju) +∇(χjπ) = ρ(∂tχj)u in Ṙn, t > 0,

div (χju) = 0 in Ṙn, t > 0,

[[χju
′]] + cj(x)∇(χjh)

= χjgu + cj(x)(∇χj)h− χj

(
(c(t, x)− cj(x)

)
∇h on Rn

0 , t > 0,

− [[µ(x){∇′(χjun) + ∂n(χju
′)}]] = χjgτ on Rn

0 , t > 0,

− 2[[µ(x)∂n(χjun)]] + [[χjπ]]− σ∆′(χjh) = χjgn on Rn
0 , t > 0,

− 2[[(µ(x)/ρ)∂n(χjun)]] + [[(χjπ)/ρ]] = χjgπ on Rn
0 , t > 0,

∂t(χjh)−
[[ρ(χjun)]]

[[ρ]]
+

[[b(x) · ∇′(χjh)]]

[[ρ]]
= χjgh + (∂tχj)h

+
[[b(x) · (∇′χj)h]]

[[ρ]]
− [[χj(b(t, x)− b(x)) · ∇′h]]

[[ρ]]
on Rn

0 , t > 0,

(χju)(0) = 0 in Ṙn,

(χjh)(0) = 0 on Rn
0 .

(9.9)

By using the result in Subsection 4.1, we obtain that {(χju, χjπ, χjπ±, χjh)}∞j=1

satisfy the estimate

∥(χju, χjπ, χjπ±, χjh)∥Eγ0 (R) ≤ ∥χj(gu, gτ , gn, gπ, gh)∥Fγ0 (R)

+ ∥ρ(∂tχj)u∥Fu,γ0
(R) + ∥(∂tχj)h∥Gh,γ0

(R)

+ |cj(x)∇χj |∞∥h∥Gu,γ0 (R)(Uj) + ϵ∥∇h∥Gu,γ0 (R)(Uj)

+ [[ρ]]−1|cj(x)∇χj |∞∥h∥Gh,γ0
(R)(Uj) + ϵ[[ρ]]−1∥∇h∥Gh,γ0

(R)(Uj) (9.10)

where we use for every ϵ > 0

|c(t, x)− cj(x)| ≤
1

δ

∫ (j+1)δ

jδ

|c(t, x)− c(s, x)| ds < ϵ.

in front of the highest order term ∥∇h∥Gu,γ0 (R) and ∥∇h∥Gh,γ0
(R). We take sum j =

1 to∞ for (9.10).
∑∞

j=1 ∥h∥Gh,γ0
(R)(Uj) ≤ 2∥h∥Gh,γ0

(R), ∥u∥Fu,γ0 (R), ∥h∥Gu,γ0 (R) are

lower order terms so we absorb the terms into the left hand side using (9.6)-(9.7)
and choosing γ and R sufficiently large. Therefore we obtain required estimate
(7.5). Setting the left hand side operator L : Eγ0(R) → Fγ0(R), then we obtain
L is injective and has closed range, i.e., L is semi-Fredholm operator. In order
to show surjectivity of L, we employ the continuation method for semi-Fredholm
operators [16]. We introduce the continuation parameter α ∈ [0, 1] by replacing
the 3rd equation and 7th equation of (7.4) into

∥u′∥+ (1− α)c0∇′h+ αc(t, x)∇′h = fd on Rn
0 , t > 0

∂th− [[ρun]]

[[ρ]]
+ (1− α)

[[b0 · ∇′h]]

[[ρ]]
+ α

[[b(t, x) · ∇′h]]

[[ρ]]
= gh on Rn

0 , t > 0
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The problem with α = 0 is solved in Subsection 4.1, this shows that we have
subjectivity in the case α = 0, We can prove that the a priori estimates are uniform
with respect to α ∈ [0, 1]. Hence by continuation method we have surjectivity for
α = 1. In this way we reduce time and space variable coefficients problem into
space variable coefficients problem. The proof of Theorem 7.1 is now complete.

10. Local Lp-Lq well-posedness; Proof of Theorem 6.1

In this section, we prove Theorem 6.1. The nonlinear problem (1.1)-(1.3) can

be transformed to a problem on Ṙn := Rn \ [Rn−1 × {0}] by means of the trans-
formations

ū(t, x′, xn) := (u′, un)
T(t, x′, xn + h(t, x′)),

θ̄(t, x′, xn) := θ(t, x′, xn + h(t, x′)),

π̄(t, x′, xn) := π(t, x′, xn + h(t, x′)),

where t ∈ J = [0, T ], x′ ∈ Rn−1, xn ∈ R, xn ̸= 0. With a slight abuse of notation
we will denote in the sequel the transformed velocity again by u, the transformed
temperature by θ, and the transformed pressure by π. For given initial data θ0(x),
we set µ(x) := µ(θ0(x)), κ(x) = κ(θ0(x)), d(x) = d(θ0(x)), c(t, x) = e∆t[[u0n]] and
b(t, x) = e∆t[[ρu0

′]], where e∆t is the heat semigroup. With this notation we have
the transformed problem:

ρ∂tu− µ(x)∆u+∇π = Fu(u, π, θ, h) in Ṙn, t > 0,

div u = Fd(u, h) in Ṙn, t > 0,

[[u′]] + c(t, x)∇′h = Gu(u, h) on Rn−1, t > 0,

−[[µ(x)(∂nu
′ +∇′un)]] = Gτ (u, θ, h) on Rn−1, t > 0,

−2[[µ(x)∂nun]] + [[π]]− σ∆′h = Gn(u, θ, h) on Rn−1, t > 0,

ρκ(x)∂tθ − d(x)∆θ = Fθ(u, θ, h) in Ṙn, t > 0,

[[θ]] = 0 on Rn−1, t > 0,

−[[d(x)∂nθ]] = Gθ(u, θ, h) on Rn−1, t > 0,

−2[[(µ(x)/ρ)∂nun]] + [[π/ρ]] = Gπ(u, θ, h) on Rn−1, t > 0,

∂th− [[ρun]]/[[ρ]] + b(t, x) · ∇′h/[[ρ]] = Gh(u, h) on Rn−1, t > 0,

u(0) = u0, θ(0) = θ0 in Ṙn,

h(0) = h0 on Rn−1. (10.1)

This problem is slightly different from the problem (4.1) in [5] which is linearization
around an equilibrium. The right hand sides of (10.1) are defined by

Fu(u, π, θ, h) = (Fu′(u, π, θ, h), Fun(u, θ, h))
T,

Fu′(u, π, θ, h) = (µ(θ)− µ(θ0))∆u
′
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+ µ(θ)(−∆′h∂nu
′ − 2∇′h · ∇′∂nu

′ + |∇′h|2∂2nu′)
− ρ(u′ · ∇′u′ + un∂nu

′ − u′ · ∇′h∂nu
′) + ρ∂th∂nu

′ +∇′h∂nπ

+ {(∇′u′ + [∇′u′]T)− (∇′h⊗ ∂nu
′ + ∂nu

′ ⊗∇′h)}µ′(θ)∇′θ

+ (∂nu
′ +∇′un −∇′h∂nun)µ

′(θ)∂nθ,

Fun(u, θ, h) = (µ(θ)− µ(θ0))∆un

+ µ(θ)(−∆′h∂nun − 2∇′h · ∇′∂nun + |∇′h|2∂2nun)
− ρ(u′ · ∇′un + un∂nun − u′ · ∇′h∂nun) + ρ∂th∂nun

+ ([∂nu
′]T + [∇′un]

T − ∂nun[∇′h]T)µ′(θ)∇′θ + 2∂nunµ
′(θ)∂nθ,

Fd(u, h) = ∇′h · ∂nu′ = ∂n(∇′h · u′),
Gu(u, h) = [[(e∆tu0n − un)∇′h]],

Gτ (u, θ, h) = [[(µ(θ)− µ(θ0))(∂nu
′ +∇′un)]]− [[µ(θ)(∇u′ + [∇u′]T)]]∇′h

+ [[µ(θ){∇′h(∂nu
′ · ∇′h) + ∂nu

′|∇′h|2 −∇′h∂nun}]]
+ [[µ(θ){−(∂nu

′ +∇′un) · ∇′h+ 2∂nun + ∂nun|∇′h|2}]]∇′h

+ [[ρ−1]](1 + |∇′h|2)[[un]]2∇′h,

Gn(u, θ, h) = [[(µ(θ)− µ(θ0))2∂nun]]− [[µ(θ)(∂nu
′ +∇′un) · ∇′h]]

+ [[µ(θ)∂nun]]|∇′h|2 − [[ρ−1]](1 + |∇′h|2)[[un]]2 − σJ(h),

Fθ(u, θ, h) = ρ(κ(θ0)− κ(θ))∂tθ + (d(θ)− d(θ0))∆θ

+ ρκ(θ){∂th∂nθ − u′ · ∇θ + (u′ · ∇′h)∂nθ − un∂nθ}
+ d′(θ){|∇′θ −∇′h∂nθ|2 + (∂nθ)

2}

+ (µ(θ)/2)|∇′u′ + [∇′u′]T −∇′h⊗ ∂nu
′ − ∂nu

′ ⊗∇′h|2

+ µ(θ)[|∂nu′ +∇′w − ∂nun∇′h|2 + 2|∂nun|2],
Gθ(u, θ, h) = [[(d(θ)− d(θ0))∂nθ]]− [[d(θ)∇′θ · ∇′h]]

+ (l(θ)/[[1/ρ]])(1 + |∇′h|2)[[un]],
Gπ(u, θ, h) = −[[ψ(θ)]] + 2[[(µ(θ)− µ(θ0))∂nun/ρ]]

− [[
1

2ρ2
]](1 + |∇′h|2)[[ 1

ρ
]]−2[[un]]

2 − 2[[
µ(θ)

ρ
∂nu

′ · ∇′h]]

+
2

1 + |∇′h|2
[[
µ(θ)

ρ
{(∇u′∇′h) · ∇′h−∇′un · ∇′h}]],

Gh(u, h) =
[[ρ(e∆tu0

′ − u′) · ∇′h]]

[[ρ]]
.

The curvature of Γ(t) is given by

H(Γ(t)) = div x′

(
∇′h(t, x′)√

1 + |∇′h(t, x′)|2

)
= ∆′h− J(h),
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with

J(h) =
|∇′h|2∆′h

(1 +
√

1 + |∇′h|2)
√
1 + |∇′h|2

+
∇′h · (∇′2h · ∇′h)

(1 + |∇′h|2)3/2
,

where ∇′2h denotes the Hessian of h.
Given h0 ∈ B

3−1/p−1/q
q,p (Rn−1) we define

Θh0(x) := (x′, xn + h0(x
′)) (x′, xn) ∈ Rn × R.

Letting Ωh0,± := {(x′, xn) ∈ Rn × R : ±(xn − h0(x
′)) > 0} and Ωh0 := Ωh0,+ ∪

Ωh0,−. By the assumption 2 < p < ∞, n < q < ∞ and 2/p + n/q < 1, we
obtain from Sobolev’s embedding theorem that Θh0 yields a C2-diffeomorphism

between Ṙn and Ωh0 , Rn
+ and Ωh0,+, and Rn

− and Ωh0,−. The inverse transform is

given by Θ−1
h0

(x′, xn) = (x′, xn − h0(x
′)). It then follows from the chain rule and

transformation rule for integrals that

Θ∗
h0

∈ Isom(W k
p (Ṙn),W k

p (Ωh0)), [Θ∗
h0
]−1 = Θh0

∗ k = 0, 1, 2,

where we use the notation

Θ∗
h0
f = f ◦Θh0 f : Ωh0 → Rm,

Θh0
∗ g = g ◦Θ−1

h0
g : Ṙn → Rm,

for the pull-back and push-forward operators, where m is non-negative integer.
Therefore it is enough to prove the following theorem instead of Theorem 6.1.

Theorem 10.1. Let 2 < p < ∞, n < q < ∞ and 2/p + n/q < 1. Let ψ± ∈
C3(0,∞), µ±, d± ∈ C2(0,∞) be such that

κ±(s) = −sψ′′
±(s) > 0, µ±(s) > 0, d±(s) > 0 s ∈ (0,∞),

and

(u0, θ0, h0) ∈ B2−2/p
q,p (Ṙn)n ×B2−2/p

q,p (Ṙn)×B3−1/p−1/q
q,p (Rn−1)

be given. Assume that the compatibility conditions:

div (Θh0
∗ u0) = 0 in Ω0,

[[µPΓ0E(Θh0
∗ u0)ν0]] = 0, [[PΓ0Θ

h0
∗ u0]] = 0 on Γ0,

[[Θh0
∗ θ0]] = 0, [[d∂ν0Θ

h0
∗ θ0]] + ℓ(Θh0

∗ (θ0 + θ∞))[[ρ−1]]−1[[Θh0
∗ u0 · ν0]] = 0 on Γ0.

(10.2)

Then there exists a constant ε0 > 0 depending only on Ω0, p, q, n such that if h0
and u0 satisfy ∥∇′h0∥L∞(Ṙn) ≤ ε0, then there exist

T = T (∥u0∥B2−2/p
q,p (Ṙn)

, ∥θ0∥B2−2/p
q,p (Ṙn)

, ∥h0∥B3−1/p−1/q
q,p (Rn−1)

, ε0) > 0

and a unique Lp-Lq solution (u, π, θ, h) of the nonlinear problem (10.1) on [0, T ]
of E(J) which is defined by (7.6).
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A proof of Theorem 10.1 is the same proof as for Theorem 4.1 in [5] instead of
the nonlinear terms Gu(u, h) and Gh(u, h). It is possible to take ϵ > 0

|[[e∆tu0n − un]]| < ϵ, |[[e∆tu0
′ − u′]]| < ϵ

small as we want if we take time T small. Therefore we have proved Theorem
10.1.

Part 2. The Case of Equal Densities

11. The Substance of The Case of Equal Densities

In (1.1)-(1.3), setting ρ+ = ρ− = 1, we have the following:

∂tu+ u · ∇u− div T (u, π, θ) = 0 in Ω(t), t > 0,

div u = 0 in Ω(t), t > 0,

[[T (u, π, θ)νΓ]] + σHΓνΓ = 0 on Γ(t), t > 0,

[[u]] = 0 on Γ(t), t > 0, (11.1)

u(0) = u0 in Ω(t),

κ(θ)(∂tθ + u · ∇θ)− div(d(θ)∇θ)− 2µ(θ)|D(u)|22 = 0 in Ω(t), t > 0,

l(θ)j + [[d(θ)∂νΓθ]] = 0 on Γ(t), t > 0,
(11.2)

[[θ]] = 0 on Γ(t), t > 0,

θ(0) = θ0 in Rn,

[[ψ(θ)]]− [[T (u, π, θ)νΓ · νΓ]] = 0 on Γ(t), t > 0,

VΓ − u · νΓ + j = 0 on Γ(t), t > 0, (11.3)

Γ(0) = Γ0,

Changing variables of (11.1)-(11.3) with yn = xn − h(x′, t), we have the following
quasilinear-problem:

∂tu− µ0∆u+∇π = Fu(u, π, θ, h) in Ṙn, t > 0,

divu = Fd(u, h) in Ṙn, t > 0,

−[[µ0(∂nu
′ +∇′un)]] = Gu′(u, θ, h) on Rn

0 , t > 0,

−2[[µ0∂nun]] + [[π]]− σ∆′h = Gun(u, θ, h) on Rn
0 , t > 0,

[[u]] = 0 on Rn
0 , t > 0,

κ0∂tθ − d0∆θ = Fθ(u, θ, h) in Ṙn, t > 0,

[[θ]] = 0 on Rn
0 , t > 0,

l1θ + σ∆′h = Gθ,2(u, θ, h) on Rn
0 , t > 0,
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∂th− [[d0∂nθ]]/l0 = Gh,2(u, θ, h) on Rn
0 , t > 0,

u(0) = u0, θ0 = θ0 in Ṙn,

h(0) = h0 on Rn
0 , (11.4)

where µ0, κ0, d0 and l0 have been defined in Section 5. We suppose that l1 is
a constant defined by l1 = limt→∞ l1(x, t)|Rn

0
where l1(x, t) = [[ψ′(et∆

′
θ0)]] (cf.

Section 5, Section 7 in [14] and Section 5 ). Gθ,2, Gh,2 are defined as

Gθ,2(u, θ, h) = −(l1(x, t)− l1))θ − [[ψ(θ)]] + σJ(h)

Gh,2(u, θ, h) = l(θ)−1[[d(θ)(−Σn−1
k=1(∂kh)∂kθ + |∇′h|2∂nθ]]

+ (l(θ)−1 − l−1
0 )[[d(θ)∂nθ]] + l−1

0 [[(d(θ)− d0)∂nθ]]− (u′ · ∇′)h+ un,

respectively. Thus, we treat the following linearized problem to solve (11.1)-(11.3):

∂tu− µ0∆u+∇π = fu in Ṙn, t > 0,

divu = fd in Ṙn, t > 0,

−[[µ0(∂nu
′ +∇′un)]] = gu′ on Rn

0 , t > 0,

−2[[µ0∂nun]] + [[π]]− σ∆′h = gun on Rn
0 , t > 0,

[[u]] = 0 in Ṙn, (11.5)

κ0∂tθ − d0∆θ = fθ in Ṙn, t > 0,

l1θ = −σ∆′h+ gθ on Rn
0 , t > 0,

∂th = [[d0∂nθ]]/l0 + gh on Rn
0 , t > 0,

θ(0) = θ0 in Ṙn,

h(0) = h0 on Ṙn
0 . (11.6)

We may use results of [23] for (11.5). In order to prove maximal Lp−Lq regularity
of the problem (11.6), we set θ0 = h0 = 0 once and solve (11.6). First dividing the
problem, (11.6) into the nexts:

κ0±∂tU± − d0±∆U± = feθ,± in Rn, t > 0,

U±(x, 0) = 0 in Rn, (11.7)

and

κ0±∂tV± − d0±∆V± = 0 in Rn
±, t > 0,

[[V ]] = −[[U ]] on Rn
0 , t > 0,

l1V = −σ∆′h+ gθ − l1U on Rn
0 , t > 0,

l0∂th− [[d0∂nV ]] = l0gh + [[d0∂nU ]] on Rn
0 , t > 0,

V0 = 0 in Rn,

h0 = 0 on Rn, (11.8)
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where feθ,± are even extensions to Ṙn:

feθ,+(x, t) =

{
fθ,+(x

′, xn, t) for xn > 0

fθ,+(x
′,−xn, t) for xn < 0,

feθ,−(x, t) =

{
fθ,−(x

′,−xn, t) for xn > 0

fθ,−(x
′, xn, t) for xn < 0,

respectively, we could write θ = U + V . Using Fourier transform for (11.7),

(κ0±s+ d0±|ξ|2)FξLt[U ]± = FξLt[f
e
θ,±],

we gain

U± = L−1
s F−1

ξ

[
1

κ0±s+ d0±|ξ|2
FxLt[f

e
θ,±]

]
. (11.9)

Then, ∂nU±|xn=0 = 0 holds. Indeed, by B+ = (κ0+d
−1
0+s + |ξ′|2)1/2, (11.9), the

definition of Fourier transform and Laplace transform,

Fx′Lt[∂nU+|xn=0] =
1

2π

∫ ∞

−∞

iξn
κ0+s+ d0+|ξ|2

FxLt[f
e
θ,+] dξn

=
1

2π

∫ ∞

−∞

iξn
d0+B2

+ + d0+ξ2n
FxLt[f

e
θ,+] dξn

=
1

2πd0+

∫ ∞

−∞

iξn
B2

+ + ξ2n
FxLt[f

e
θ,+] dξn

=
1

2πd0+

∫ ∞

−∞

iξn
B2

+ + ξ2n

(∫ ∞

0

e−iζnξnFx′Lt[fθ,+](ξ
′, ζn) dζn

∫ 0

−∞
e−iζnξnFx′Lt[fθ,+](ξ

′,−ζn) dζn

)
dξn

=
1

2πd0+

∫ ∞

0

Fx′Lt[fθ,+](ξ
′, ζn)

(
∫ ∞

−∞

iξne
−iζnξn

(ξn + iB+)(ξn − iB+)
dξn

+

∫ ∞

−∞

iξne
iζnξn

(ξn + iB+)(ξn − iB+)
dξn

)
dζn

=
1

2πd0+

∫ ∞

0

Fx′Lt[fθ,+](ξ
′, ζn)

(1
2
e−B+ζn − 1

2
e−B+ζn

)
dζn

= 0,

where we use next formulas:∫ ∞

−∞

ixe±iax

x2 + b2
dx = ∓πe−ab for a > 0, b ∈ C (Re b > 0). (11.10)
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Hence, ∂nU+|xn=0 = 0 and we have ∂nU−|xn=0 = 0 in the same way, so [[d∂nU ]] = 0
holds. We prove (11.10) with complex integration. Defining C1, C2 and f±(z) as

C1 = {z ∈ C | z = t,−R ≤ t ≤ R} ∪ {z ∈ C | z = Reit, 0 ≤ t ≤ π},
C2 = {z ∈ C | z = −t,−R ≤ t ≤ R} ∪ {z ∈ C | z = Reit,−π ≤ t ≤ 0},

f±(z) =
ize±iaz

z2 + b2
for a > 0, b ∈ C (Re b > 0),

we have ∫
C1

f+(z) dz =

∫ R

−R

f+(t) dt+

∫ π

0

f+(Re
it)iR dt,∫

C2

f−(z) dz = −
∫ R

−R

f+(−t) dt+
∫ 0

−π

f−(Re
it)iR dt.

By sin t ≥ 0 (0 ≤ t ≤ π) and sin t ≤ 0 (−π ≤ t ≤ 0), it is clear that

f+(Re
it)iR =

iReiteiaReit

R2e2it + b2
iR

= −R
2eite−aR sin teiaR cos t

R2e2it + b2
→ 0 (0 ≤ t ≤ π,R→ ∞),

f−(Re
it)iR =

iReite−iaReit

R2e2it + b2
iR

= −R
2eiteaR sin te−iaR cos t

R2e2it + b2
→ 0 (−π ≤ t ≤ 0, R→ ∞).

By the way, from theorem of residue, we see that∫
C1

f+(z) dz = 2πi lim
z→ib

1

0!

d0

dz0
((z − ib)f+(z))

= 2πi lim
z→ib

izeiaz

z + ib

= −πe−ab,∫
C2

f−(z) dz = 2πi lim
z→−ib

1

0!

d0

dz0
((z + ib)f−(z))

= 2πi lim
z→−ib

izeiaz

z − ib

= −πe−ab.

Thus, we obtain;∫ ∞

−∞
f+(t) dt = −πe−ab,

∫ ∞

−∞
f−(t) dt = − lim

R→∞

∫
C2

f−(z) dz = πe−ab
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i.e. we prove (11.10).

R-R

iR

-iR

C1

C2

CC1

C2

iR

-iR

R-R

From [[d∂nU ]] = 0 and (11.8), it follows that:

(B2
± − ∂2n)V̂± = 0 in Rn

±, (11.11)

[[V̂ ]] = −[[Û ]] on Rn
0 , (11.12)

l1V̂ = σ|ξ′|2ĥ+ ĝθ − l1Û on Rn
0 , (11.13)

l0sĥ− [[d0∂nV̂ ]] = l0ĝh on Rn
0 , (11.14)

where we set B± = (κ0±d
−1
0±s + |ξ′|2)1/2 (ReB± > 0). From (11.11), we look for

solutions whose forms are;

V̂± = P±e
∓B±xn for xn ≷ 0.

By (11.12) and (11.14), it holds that{
P+ − P− = −[[Û ]]

d0+B+P+ + d0−B−P− = Fξ′Lt[l0gh − l0∂th],

so we see the following:{
P+ = (d0+B+d0−B−)

−1(Fξ′Lt[l0gh − l0∂th]− d0−B−[[Û ]])

P− = (d0+B+d0−B−)
−1(Fξ′Lt[l0gh − l0∂th] + d0+B+[[Û ]])

Then, we have the description:

V± =L−1
s F−1

ξ′

[
e∓B±xn

d0+B+ + d0−B−
Fx′Lt[l0gh − l0∂th]

]
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∓ L−1
s F−1

ξ′

[
d0∓B∓e

∓B±xn

d0+B+ + d0−B−
Fx′Lt[ [[U ]] ]

]
. (11.15)

Making use of this formula of V and (11.13), we obtain the description of h:

h = L−1
s F−1

ξ′

[
1

s+ (d0+B+ + d0−B−)l
−1
0 l−1

1 σ|ξ′|2
Fx′Lt[gh]

]

+ L−1
s F−1

ξ′

[
l−1
0 l−1

1 (d0+B+ + d0−B−)

s+ (d0+B+ + d0−B−)l
−1
0 l−1

1 σ|ξ′|2
Fx′Lt[gθ]

]

− L−1
s F−1

ξ′

[
l−1
0 d0+B+

s+ (d0+B+ + d0−B−)l
−1
0 l−1

1 σ|ξ′|2
Fx′Lt[U+]

]

− L−1
s F−1

ξ′

[
l−1
0 d0−B−

s+ (d0+B+ + d0−B−)l
−1
0 l−1

1 σ|ξ′|2
Fx′Lt[U−]

]
. (11.16)

Suppose that

fθ ∈ Lp,0,γ0(R;Lq(Rn)), gθ ∈W 1
p,0,γ0

(R;Lq(Rn)) ∩ Lp,0,γ0(R;W 2
q (Ṙn)),

gh ∈ H
1/2
p,0,γ0

(R;Lq(Rn)) ∩ Lp,0,γ0(R;W 1
q (Ṙn)),

and l0l1 > 0.
We could prove U ∈ W 1

p,0,γ0
(R;Lq(Rn)) ∩ Lp,0,γ0(R;W 2

q (Ṙn)) in the same way
as the proof of Theorem 3.1 in [24] from (11.9). Therefore, we analyze (11.15) and
(11.16).

Lemma 11.1. For s ∈ Σϵ,γ0

|s+ (d0+B+ + d0−B−)l
−1
0 l−1

1 σ|ξ′|2| ≥ C(|s|+ (|s|1/2 + |ξ′|)σ|ξ′|2) (11.17)

|s+ (d0+B+ + d0−B−)l
−1
0 l−1

1 σ|ξ′|2| ≥ C(|s|1/2 + |ξ′|)2 (11.18)

Proof. We prove (11.17) like that

|s+ (d0+B+ + d0−B−)l
−1
0 l−1

1 σ|ξ′|2|
= |d0+B+ + d0−B−||s/(d0+B+ + d0−B−) + l−1

0 l−1
1 σ|ξ′|2|

≥ C(|s|1/2 + |ξ′|)(|s|/(|s|1/2 + |ξ′|) + σ|ξ′|2)

= C(|s|+ (|s|1/2 + |ξ′|)σ|ξ′|2)
by s/(d0+B+ + d0−B−) ∈ Σϵ,γ0 . (11.18) is proved from (11.17) in the same way
as Lemma 3.4 . �

From
1

s+ (d0+B+ + d0−B−)l
−1
0 l−1

1 σ|ξ′|2

=
1

s
− (d0+B+ + d0−B−)l

−1
0 l−1

1 σ|ξ′|
s(s+ (d0+B+ + d0−B−)l

−1
0 l−1

1 σ|ξ′|2)
|ξ′|,
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it holds that

s

s+ (d0+B+ + d0−B−)l
−1
0 l−1

1 σ|ξ′|2
= 1− (d0+B+ + d0−B−)l

−1
0 l−1

1 σ|ξ′|
s+ (d0+B+ + d0−B−)l

−1
0 l−1

1 σ|ξ′|2
|ξ′|,

so we could derive that h, ∂th ∈ Lp,0,γ0(R;Lq(Rn)) with (11.18) and the extension:

h = L−1
s F−1

ξ′

[
1

s+ (d0+B+ + d0−B−)l
−1
0 l−1

1 σ|ξ′|2
e∓B±xnFx′Lt[gh]

]

+ L−1
s F−1

ξ′

[
l−1
0 l−1

1 (d0+B+ + d0−B−)

s+ (d0+B+ + d0−B−)l
−1
0 l−1

1 σ|ξ′|2
e∓B±xnFx′Lt[gθ]

]

− L−1
s F−1

ξ′

[
l−1
0 d0+B+

s+ (d0+B+ + d0−B−)l
−1
0 l−1

1 σ|ξ′|2
e∓B±xnFx′Lt[U+]

]

− L−1
s F−1

ξ′

[
l−1
0 d0−B−

s+ (d0+B+ + d0−B−)l
−1
0 l−1

1 σ|ξ′|2
e∓B±xnFx′Lt[U−]

]
for xn ≷ 0.

Making use of the following extension:

h = L−1
s F−1

ξ′

[
1

s+ (d0+B+ + d0−B−)l
−1
0 l−1

1 σ|ξ′|2
e∓|ξ′|xnFx′Lt[gh]

]

+ L−1
s F−1

ξ′

[
l−1
0 l−1

1 (d0+B+ + d0−B−)

s+ (d0+B+ + d0−B−)l
−1
0 l−1

1 σ|ξ′|2
e∓|ξ′|xnFx′Lt[gθ]

]

− L−1
s F−1

ξ′

[
l−1
0 d0+B+

s+ (d0+B+ + d0−B−)l
−1
0 l−1

1 σ|ξ′|2
e∓|ξ′|xnFx′Lt[U+]

]

− L−1
s F−1

ξ′

[
l−1
0 d0−B−

s+ (d0+B+ + d0−B−)l
−1
0 l−1

1 σ|ξ′|2
e∓|ξ′|xnFx′Lt[U−]

]
for xn ≷ 0

and (11.17), ∇∂th, ∇3Λ
1/2
γ h, ∇4h ∈ Lp,0,γ0(R;Lq(Rn)) could be proved with

Lemma 3.4 .
By Stefan condition:

∂th = [[∂nθ]]/l0 + gh on Rn
0 , t > 0,

we extend h like that

h̃ = −L−1
s F−1

ξ′ [s−1e∓B±xnFx′Lt[[[∂nθ]]/l0 − gh]] in Rn
±, t > 0. (11.19)

In view of (11.19), if θ ∈ Lp,0,γ0(R;W 2
q (Ṙn)) ∩ H1/2

p,0,γ0
(R;W 1

q (Ṙn)), it hold that

h̃ ∈ H
3/2
p,0,γ0

(R;Lq(Ṙn)). From the boundary condition:

l1θ = −σ∆′h+ g on Rn
0 , t > 0,

defining an extension of θ, θ̃ as

θ̃ = −L−1
s F−1

ξ′ [l−1
0 e∓|ξ′|xnFx′Lt[σ∆

′h− g]] in Rn
±, t > 0,
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we realize θ = θ̃ on Rn
0 and θ̃ ∈ Lp,0,γ0(R;W 2

q (Rn
±)) ∩H

1/2
p,0,γ0

(R;W 1
q (Rn

±)). Thus,

h̃ has the regularity, H
3/2
p,0,γ0

(R;Lq(Rn)). Utilizing this facts, we could prove that

θ belongs to W 1
p,0,γ0

(R;Lq(Rn)). So, we see an extension of h,
˜̃
h satisfies that

∂t∆
′˜̃h ∈ Lp,0,γ0(R;Lq(Rn)). We set θ0 = h0 = 0 above but add conditions for

initial values that are not 0 identically to gain the following theorem.

Theorem 11.2. Let 1 < p, q <∞ and assume that κ, d, σ are positive constants

and l0l1 > 0. Suppose initial values (u0, θ0, h0) ∈ B
2−2/p
q,p (Ṙn)n × B

2−2/p
q,p (Ṙn) ×

B
4−2/p−1/q
q,p (Ṙn) and the data (fu, fd, gu, fθ, gθ, gh) satisfy the following conditions:

fu ∈ Lp,0,γ0(R;Lq(Rn)),

fd ∈W 1
p,0,γ0

(R;W−1
q (Rn)) ∩ Lp,0,γ0(R;W 2

q (Ṙn)),

gu ∈ H
1/2
p,0,γ0

(R;Lq(Rn))n ∩ Lp,0,γ0(R;W 1
q (Ṙn))n,

fθ ∈ Lp,0,γ0(R;Lq(Rn)),

gθ ∈W 1
p,0,γ0

(R;Lq(Rn)) ∩ Lp,0,γ0(R;W 2
q (Ṙn)),

gh ∈ H
1/2
p,0,γ0

(R;Lq(Rn)) ∩ Lp,0,γ0(R;W 1
q (Ṙn)),

and the compatibility condition:

div u0 = fd(0) in Ṙn, 2− 2/p > 1 + 1/q,

−[[µPRn−1D(u0)]] = PRn−1gu(0) on Rn−1, 2− 2/p > 1 + 1/q,

[[u′0]] = g(0), [[θ0]] = 0 on Rn−1, 2− 2/p > 1/q,

l1θ0 = σ∆′h0 + gθ(0) on Rn−1, 2− 2/p > 1/q.

Then, the linearized Stefan problem (11.5) and (11.6) admits a unique solution
(u, π, θ, h) with regularity:

u ∈W 1
p,0,γ0

(R+;Lq(Rn))n ∩ Lp,0,γ0(R+;W
2
q (Ṙn))n,

π ∈ Lp,0,γ0(R+; Ŵ
1
q (Ṙn)),

π± ∈ H
1/2
p,0,γ0

(R+;Lq(Rn
±)) ∩ Lp,0,γ0(R+;W

1
q (Rn

±)),

θ ∈W 1
p,0,γ0

(R;Lq(Rn)),

θ̃ ∈ H
1/2
p,0,γ0

(R;W 1
q (Rn)) ∩ Lp,0,γ0(R;W 2

q (Ṙn)),

h ∈W 1
p,0,γ0

(R;W 1
q (Ṙn)) ∩H1/2

p,0,γ0
(R;W 3

q (Ṙn)) ∩ Lp,0,γ0(R;W 4
q (Ṙn)),

h̃ ∈ H
3/2
p,0,γ0

(R;Lq(Rn)),

∇′2˜̃h ∈W 1
p,0,γ0

(R;Lq(Rn)).
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We could solve (11.4) with the result of Theorem 11.2 in the same way as (5.1) but
the height function, h is different from that of (5.1), so we need to notice difference
between (11.4) and (5.1) (cf. Section 6 and Section 7 in [14]). In particular, we
observe nonlinear terms J(h) in Gθ,2 and |∇′h|2∂nθ in Gh,2. Recall J(h) in Section
5:

J(h) =
|∇′h|2∆′h

(1 +
√

1 + |∇′h|2)
√
1 + |∇′h|2

+
∇′h · (∇′2h · ∇′h)

(1 + |∇′h|2)3/2
.

We have set the first term and the second term of J(h) be J1(h) and J2(h),
respectively. We have easily seen that

∂tJ2(h) =
∇′∂th · (∇′2h · ∇′h)

(1 + |∇′h|2)3/2
+

∇′h · (∇′2∂th · ∇′h)

(1 + |∇′h|2)3/2
+

∇′h · (∇′2h · ∇′∂th)

(1 + |∇′h|2)3/2

− 3∇′h · (∇′2h · ∇′h)(1 + |∇′h|2)−5/2∇′h · ∂t∇′h,

therefore
|∂tJ2(h)| ≤ C(|∇′h||∇′2h||∂t∇′h|+ |∇′h|2|∇′2∂th|).

Now, using ∂t∇′h, ∂t∇′2h ∈ Lp(J ;Lq(Rn)) where J = (0, T ] (0 < T <∞), we may
estimate ∇′h and ∇′2h like type (III) in Section 5. In case we couldn’t use the
smallness condition, as a result we derive a power of the time, T with Lemma 5.7.
We could calculate |∂th1(h)| similarly. By Lemma 5.2, Lemma 5.4 and the proof
of Lemma 5.6, we gain

∥|∇′h|2∂nθ∥H1/2
p (J;Lq)

≤ C∥∇′h∥
H

1/2
p (J;Lq)

∥∇′h∥
H

1/2
p (J;Lq)

∥∂nθ∥H1/2
p (J;Lq)

= C∥∇′Λ1/2
γ h∥Lp(J;Lq)∥∇

′h∥
H

1/2
p (J;Lq)

∥∂nθ∥H1/2
p (J;Lq)

≤ C∥Λ1/2
γ h∥1/2Lp(J;Lq)

∥∇′2Λ1/2
γ h∥1/2Lp(J;Lq)

∥∇′h∥
H

1/2
p (J;Lq)

∥∂nθ∥H1/2
p (J;Lq)

≤ CT 1/(4p)∥h∥1/4
H

3/2
p (J;Lq)

∥h∥1/4
H

1/2
p (J;Lq)

∥h∥1/2
H

1/2
p (J;W 2

q )
∥h∥

H
1/2
p (J;W 1

q )

× ∥θ∥W 1
p (J;Lq)∩Lp(J;W 2

q )

≤ CT 1/(4p)∥h∥1/2
H

3/2
p (J;Lq)

∥h∥3/2
H

1/2
p (J;W 2

q )
∥θ∥W 1

p (J;Lq)∩Lp(J;W 2
q )

by (∫ T

0

∥Λ1/2
γ h∥pLq

dt

)1/p

=

(∫ T

0

∥Λ1/2
γ h∥p/2Lq

∥Λ1/2
γ h∥p/2Lq

dt

)1/p

≤ ∥Λ1/2
γ h∥1/2L∞(J;Lq)

(∫ T

0

∥Λ1/2
γ h∥p/2Lq

dt

)1/p

≤ C∥Λ1/2
γ h∥1/2W 1

p (J;Lq)
T 1/(2p)∥Λ1/2

γ h∥1/2Lp(J;Lq)

≤ CT 1/(2p)∥h∥1/2
H

3/2
p (J;Lq)

∥h∥1/2
H

1/2
p (J;Lq)

.
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In the same way as (2.8), define Eθ,2(J), Eθ̃±
(J), Eh,2(J), Eh̃±

(J) and E˜̃
h±

(J) as:

Eθ,2(J) :=W 1
p (J ;Lq(Rn))

Eθ̃±
(J) := H1/2

p (J ;W 1
q (Rn

±)) ∩ Lp(J ;W
2
q (Rn

±)),

Eh,2(J) :=W 1
p (J ;W

1
q (Ṙn)) ∩H1/2

p (J ;W 3
q (Ṙn)) ∩ Lp(J ;W

4
q (Ṙn))

Eh̃±
(J) := H3/2

p (J ;Rn
±),

E˜̃
h±

(J) := {h ∈ Lp(J ;Lq(Rn)) | ∂t∆′h± ∈ Lp(J ;Lq(Rn
±))}

and set

E2(J) := Eu(J)×Eπ(J)×Eπ±(J)×Eθ,2(J)×Eθ̃±
(J)×Eh,2(J)×Eh̃±

(J)×E˜̃
h±

(J).

(11.20)
We state the result for (11.4):

Theorem 11.3. Let p < ∞, n < q < ∞, 2/p + n/q < 1 and suppose ψ± ∈
C3(0,∞), µ±, d± ∈ C2(0,∞) are such that

κ±(s) = −sψ′′
±(s) > 0, µ±(s) > 0, d±(s) > 0 s ∈ (0,∞).

Let the initial interface Γ0 be given by a graph x′ 7→ (x′, h0(x
′)), θ∞ > 0 be the

constant temperature at infinity. And let

(u0, θ0, h0) ∈ B2−2/p
q,p (Ω0)

n ×B2−2/p
q,p (Ω0)×B3−1/p−1/q

q,p (Rn−1)

be given. Assume that the compatibility conditions:

div u0 = 0 in Ω0,

PΓ0 [[µ(θ0)D(u0)ν0]] = 0, PΓ0 [[u0]] = 0 on Γ0,

[[θ0]] = 0, [[ψ(θ0)]] + σHΓ0
on Γ0

and the well-posedness condition:

l(θ0) ̸= 0 on Γ0 and θ0 > 0 in Ω0.

Then there exists a constant ε0 depending only on Ω0, p, q, n such that if h0 and
u0 satisfy ∥∇′h0∥L∞(Ṙn) + ∥u0∥L∞(Ω0) ≤ ε0, then there exist

T = T (∥θ0 − θ∞∥
B

2−2/p
q,p (Ṙn)

+ ∥h0∥B3−1/p−1/q
q,p (Rn−1)

, ε0) > 0

and a unique Lp-Lq solution (u, π, θ, h) of (11.1)-(11.3) on [0, T ] in the class of
(11.20).

Part 3. Appendix

12. Solution Formulas

In Appendix, we exhibit calculation of solution formulas in Section 4. From
(4.4), (4.5), (4.11)-(4.14) we have

(B2
+ −A2)Pk + iξkR = 0 , (B2

+ −A2)Pn −AR = 0.
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Therefore we obtain Pk (k = 1, . . . , n) as (4.17), and the relation

Σn−1
k=1 iξkPk −APn = 0. (12.1)

In the same way, we obtain P ′
k (k = 1, . . . , n) as (4.18), and the relation

Σn−1
k=1 iξkP

′
k +AP ′

n = 0. (12.2)

From (4.6), (4.11)-(4.14), (12.1) and (12.2), we obtain

Σn−1
k=1 iξkQk −B+Qn = 0, (12.3)

Σn−1
k=1 iξkQ

′
k +B−Q

′
n = 0. (12.4)

By (4.13), (4.14), (4.11) and (4.12), we have

[[2µ∂nυ̂n]] = 2µ+(−APn −B+Qn)− 2µ−(AP
′
n +− Qn), [[τ̂ ]] = µ+R− µ−R

′.

Inserting them into (4.9) and we have

µ+(−2APn − 2B+Qn −R)− µ−(2AP
′
n + 2B−Q

′
n −R′) = −ĝu,n. (12.5)

Similarly we have

(µ+/ρ+)(−2APn − 2B+Qn −R)− (µ−/ρ−)(2AP
′
n + 2B−Q

′
n −R′) = −ĝπ.

(12.6)

If we compute difference between (12.5) and the equation (12.6) multiplied by ρ−
and ρ+, it is derived that

Qn = (2µ+B+(1− ρ−/ρ+))
−1(−ρ−ĝπ + ĝu,n)− (A/B+)Pn −R/(2B+), (12.7)

Q′
n = (2µ−B−(1− ρ+/ρ−))

−1(−ρ+ĝπ + ĝu,n)− (A/B−)P
′
n +R′/(2B−). (12.8)

From (4.13) and (4.14),

∂nυ̂+k + iξkυ̂+n = −APke
−Axn −B+Qke

−B+xn + iξkPne
−Axn + iξkQne

−B+xn ,

∂nυ̂−k + iξkυ̂−n = AP ′
ke

Axn +B−Q
′
ke

B−xn + iξkP
′
ne

Axn + iξkQ
′
ne

B−xn .

Substituting them into (4.8), we obtain

µ+B+Qk + µ−B−Q
′
k

= µ+iξk(Pn +Qn)− µ+APk − µ−iξk(P
′
n +Q′

n)− µ−AP
′
k + ĝu,k. (12.9)

Combining (4.7), (4.13) and (4.14), we have;{
µ−B−Qk − µ−B−Q

′
k = µ−B−(ĝk − Pk + P ′

k)

−µ+B+Qk + µ+B+Q
′
k = −µ+B+(ĝk − Pk + P ′

k).
(12.10)

Combining (12.9) and (12.10);

(µ+B+ + µ−B−)Qk = µ−B−(ĝk − Pk + P ′
k) + µ+iξkQn − µ+(APk − iξkPn)

−µ−iξkQ
′
n − µ−(AP

′
k + iξkP

′
n)+ĝu,k.

So, we pay attention to (12.1) and (12.2) and see the following;

(µ+B+ + µ−B−)Σ
n−1
k=1 iξkQk =µ−B− ˆdivx′g + ˆdivx′gu + Pn(−µ−AB− − 2µ+A

2)
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+ P ′
n(−µ−AB− + 2µ−A

2)− µ+A
2Qn + µ−A

2Q′
n,

(12.11)

(µ+B+ + µ−B−)(−B+Qn) =(−µ+B
2
+ − µ−B−B+)Qn. (12.12)

Substituting (12.11) and (12.12) into (12.3), we have

0 = µ−B− ˆdivx′g + ˆdivx′gu

+ (µ+A/(ρ+s))R(−µ−AB− − 2µ+A
2)− (µ−A/(ρ−s))R

′(−µ−AB− + 2µ−A
2)

− (µ+B
2
+ + µ+A

2 + µ−B−B+)Qn + µ−A
2Q′

n,

where we use (4.17) and (4.18). Similarly, keeping in mind for (12.4), we obtain

0 = −µ+B+
ˆdivx′g + ˆdivx′gu

+ (µ+A/(ρ+s))R(µ+AB+ − 2µ+A
2)− (µ−A/(ρ−s))R

′(µ+AB+ + 2µ−A
2)

− µ+A
2Qn + (µ−B

2
− + µ−A

2 + µ+B+B−)Q
′
n.

By using B2
± = ρ±s/µ± +A2, we obtain

R(µ+A
2(3B+ −A)/(2B+(B+ +A)) + (µ+B+ + µ−B−)/2)

+R′µ−A
2(3B− −A)/(2B−(B− +A))

= −µ−B− ˆdivx′g − ˆdivx′gu

−(2µ+B+(1− ρ−/ρ+))
−1(µ+B

2
+ + µ+A

2 + µ−B−B+)(ρ−ĝπ − ĝu,n)

−(2B−(1− ρ+/ρ−))
−1A2(−ρ+ĝπ + ĝu,n) (12.13)

and

Rµ+A
2(3B+ −A)/(2B+(B+ +A))

+R′(µ−A
2(3B− −A)/(2B−(B− +A)) + (µ+B+ + µ−B−)/2)

= µ+B+
ˆdivx′g − ˆdivx′gu

−(2µ−B−(1− ρ+/ρ−))
−1(µ−B

2
− + µ−A

2 + µ+B+B−)(−ρ+ĝπ + ĝu,n)

−(2B+(1− ρ−/ρ+))
−1A2(ρ−ĝπ − ĝu,n), (12.14)

respectively. Solving the simultaneous equations, (12.13) and (12.14), we can
describe R and R′ as (4.15) and (4.16). By (4.17), (4.18), (12.7) and (12.8), we
obtain Qk and Q′

k as (4.19) and (4.20) Thus, we obtain the description of solutions
of (4.4)-(4.10).

Next, we solve the problem (4.3). In order to solve (4.3), we can use the solution
formula of (4.2) with fu = fd = gu,k = gπ = gk = 0 and gu,n = σ∆′h. And then
we solve the last two equations in (4.3). Making use of

R = (α+ + α−β)
−1
[
+ (µ−(1− ρ+/ρ−))

−1(α− + µ−A
2/(2B−))(−σA2ĥ)

+ (µ+(1− ρ−/ρ+))
−1(α− − β − µ+A

2/(2B+))(−σA2ĥ)
]
,

(12.15)
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R′ = (α+ + α−β)
−1
[
+ (µ+(1− ρ−/ρ+))

−1(−α+ − µ+A
2/(2B+))(−σA2ĥ)

+ (µ−(1− ρ+/ρ−))
−1(−α+ + β + µ−A

2/(2B−))(−σA2ĥ)
]
,

(12.16)

we can write

κ̂+ = µ+Re
−Axn , ŵ+m = Pme

−Axn +Qme
−B+xn for xn > 0

κ̂− = µ−R
′eAxn , ŵ−m = P ′

me
Axn +Q′

me
B−xn for xn < 0.

Noting that

Qn = (2µ+B+(1− ρ−/ρ+))
−1(−σA2ĥ)− (A/B+)Pn −R/(2B+),

Q′
n = (2µ−B−(1− ρ+/ρ−))

−1(−σA2ĥ)− (A/B−)P
′
n +R′/(2B−),

we obtain

[[ρŵn]] = −ρ+(B+ −A)(2B+(B+ +A))−1R− ρ−(B− −A)(2B−(B− +A))−1R′

− σA2ĥ(ρ+/(2µ+B+(1− ρ−/ρ+))− ρ−/(2µ−B−(1− ρ+/ρ−)))

with B2
± = ρ±s/µ± +A2. By the second equation below in (4.3), (12.13), (12.15)

and (12.16), finally we obtain the description of ĥ

ĥ = f(B+, B−, A)L(B+, B−, A)
−1(ĝh + [[ρυ̂n]]/[[ρ]]), (4.29)

where we define f(B+, B−, A) and L(B+, B−, A) as (4.21) and (4.28), respectively.
By the way, we don’t use the formula like (4.24) with in order to obtain (4.29)
since it is complicated. The formula like (4.24) avails to estimate wn itself.
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