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Birkhoff (1) defined the notion of a free algebra over K which was a class of
algebras. Hence, we can consider a free algebra over the class of all fields (simply
we say, a free algebra over all fields). Since a free algebra over all groups is a
group, a free algebra over all groups is called a free group. But it is easily seen
that a free algebra over all fields is not a field. We will consider what kind of
algebras the free algebras over all fields are, and show that any free algebra over all
fields is a pseudo-field defined in §2. In contrast with the case of the free algebra
over all fields, any free algebra over all pseudo-fields is a pseudo-field. Therefore,
we can call a free algebra over all pseudo-fields a free pseudo-field. Further, we
will show that any irréducible pseudo-field is a field and that a free pseudo-field is
isomorphic to the free algebra over all fields with same cardinality of generators.

§1. Free algebras over all fields:

The first order language &% that we consider has two nullary function symbols
0, 1, two unary function symbols —, ~!, two binary function symbols 4+, - and no
relation symbols other than =.
We now give the axiomatic system of fields.
Al. (x+y+z=z+(y+2)

A2, z+y=y+x
A3, x+0=x

A4, x+(—x)=0

A5. (Z-y)rz=x(y2)
AS. z-l=zx

A7. lex=x

A9, z(y+z)=(zy)+(x-2)
A9. (y+2)x=(y-2)+(z* x)
Al0. zx0 -z tz=lAz-z7i=1L
Note that the commutative law x-y=y-z is not contained within this axiomatic
system. The axioms Al-A9 constitute the axiomatic system of unitary rings. Our
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definition of fields permits a field in which 1=0 holds. Such a field has only one
element 0.

Let W be the set of all terms of the language .. We define a relation ~ on W
as follows:

X~Y «> X=Y is derivable from the axiomatic system of fields.

Then, the relation ~ is a congruence relation, and W/~ is naturally an algebra
of same type as fields. We call this algebra a free algebra over all fields with o
generators. Let (x] be the element of W/~ which contains z, then the subalgebra
of W/~ generated by (z,], (x,), ...... , [xa] is called a free algebra over all fields
with n generators. We denote this by FF,(n<w).

Theorem 1.1. FF,(nZ<o) is not a field.

Proof. We abbreviate 1+1 by 2. [2)#0 but [2]-(2)'=[2-2"1]%#([1]). Because
2-27'=1 is not derivable. Q.E.D.

§2. Pseudo-fields.

We begin with the presentation of the axiomatic system of pseudo-fields. We
abbreviate z+(—y) and (z-y)-z by z—y and z-y-z, respectively.

The axioms P1-P9 are same as the axioms AI-AS.

P10. z'—yi=(z—y)-(z—y) (7 =y
P11. r-y=z-y-x~tez. ,

A pseudo-field is an algebra <A ; 0, 1, —, 7!, +, -> which is a model of the
axiomatic system of pseudo-fields. We say simply that A is a pseudo-field, when
<A;0,1, —, "', +, -> is a pseudo-field. '

Prof. P.M. Cohn has informed me that the axiomatic system (P1-P9)+PIl1 is
equivalent to the axiomatic system (P1—P9)+(*), where (*) x=z"1-z2

Every axioms of pseudo-fields are derivable from the axiomatic system of fields.
Therefore, any field is a pseudo-field. The following theorem gives another axiomatic
system of fields.

Theorem 2.1. The axiomatic system of fields is equivalent to the axiomatic system
obtained by adding the following axiom to the axiomatic system of pseudo-fields :

@2.1) zy=0 - 2=0Vy=0.

Proof. Clearly, (2.1) is derivable from the axiomatic system of fields. Conversely,

in the axiom P11, we substitute 1 for y and transpose x. Then, we have
2.2) (xrz'—1D)-2=0, z+(z"+2—1)=0.
By 2.1), z#0 — x-z7'=1Axt-z=1. Q.E.D.

Definition 2.2. Let A be a pseudo-field. A non-empty subset J of A is an ideal
of A if it satisfies the following two conditions: V

1) zeJ and yeJ = z—yed
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2) z=J and yeA = z+y&J and y-x&J.

Definition 2.3. Let A be a pseudo-field and J be an ideal of A. We define a
relation ~; on A as follows:

Zr~gy = r—ye&J.

The relation ~, is compatible with 0, 1, —, + and - similarly to the case of
rings. Further, ~, is compatible with -! by the axiom P10. Thus we obtain the
following theorem.

Theorem 2.4. For any pseudo-field A and any ideal J of A, the relation ~, is a
congruence relation, and A/~ is naturally a pseudo-field. (A/~, is denoted by A/J.)

Homomorphism Theorem is easily shown.

Theorem 2.5. (Homomorphism Theorem) Let A and B be pseudo-fields, and ¢:
A—B a homomorphism of A onto B. Then J=¢ % (0z) is an ideal of A, and A/[J is
isomorphic to B, where the isomorphism is given by [a] — ¢(a) (a€A).

We now define the term ‘irreducible’ which is called ‘subdirectly irreducible’ in
Birkhoff [2]. Since there exists a pseudo-field in which 1=0 holds, the exceptional
_case occurs. Such a pseudo-field has only one element 0.

Definition 2.6. Let A be a pseudo-field, = be a non-zero element of A. A is
irreducible with respect to x if z is contained within any ideal of A which contains
at least an element other than 0. A is irreducible, if there exists a non-zero element
such that A is irreducibie with respect to the element, or A has only one element 0.

It is valid in fields that =0 or y=0 if x-y=0. But it is not always valid in
pseudo-fields. The following lemma says that it is valid in irreducible pseudo-fields.

Lemma 2.7. Let A be an irreducible pseudo-field, and x, ye A.

Then, xy=0 - z=0Vy=0.

Proof. Clearly, the lemma holds when A has only one element. Suppose that
z#0, y#0 and x2-y=0. Let 2(#0) be an element which A is irreducible with respect
to. Because z is contained within the ideal generated by =z, there exist elements «,

sy eeenen , @, by, bay el , bn of A such that =7 ai+xb;.
=1

Similarly, there exist elements ¢,, ¢, ...... , Cmy Ay, Ay e , dwm 0Of A such that =z

m
:ch-y‘di.
=1

nom

Hence, zez~tv2=) 2] ai*x by cpoyd;
7 7

i=1 j=1

n m
=2 X airxebicz ey x v yody (by P11)
i=1 =1
=0 (by z+y=0).
In the axiom P11, we substitute z and 1 for = and y respectively. Then we have
z=z-2"'-z=0. This is a contradiction. Q.E.D.

The following theorem is very important. It completely characterizes irreducible
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pseudo-fields. The results in §3 can be regarded as its corollaries.

Theorem 2.8. A pseudo-field A is irreducible if and only if A is a fleld.

Proof. Suppose that A is a field. When A has only one element 0, it holds
obviously. Let .z be a non-zero element of A. If an ideal J contains a, J contains 1
because of a-a~*=1. Hence, A is irreducible with respect to 1. Q.E.D.

Conversely, suppose that a pseudo-field A is irreducible. Obviously, the axioms
of fields other than A10 are valid in A. By Lemma 2.7 and (2.2), for any element
of A, if 2%0, then z-z"'=1 and z~'-z=1. Hence, the axiom Al0 is valid in A.
Therefore, A is a field. Q.E.D.

§3. Identities and Free algebras.

An identity is an atomic formula of the language ., that is, the form is £=5 where ¢
and s are terms of . Let A be a pseudo-field and let Id(A) denote the set of all
identities valid in A. For a class K of pseudo-fields, Id(K) denotes the set of identities

40 %(A) as in Griatzer [3]. The following decomposition theorem is very useful for
Ae .
the study of Id(K).

Theorem 3.1. Let K be a class of pseudo-fields. Then, there exists a class of
irreducible pseudo-fields K, such that Id(K)=I1d(K,).

Proof. Let A=K and s=¢&Id(A). Then there exists an assignment f of A such
that f(s)#f(¢). Let J be an ideal of A which is maximal with respect to f(s)—f¢)+0,
that is, a maximal element of the set {J|J is an ideal of A and ( f(s)—f&)&EJ}.
The existance of J is obtained by Zorn’s lemma. We can show that the pseudo-field
AlJ 1is irreducible, s=z&1d(A}J), and Id(A)SId(AlJ). Hence, if we put K,={A/J |
AeK and J is an ideal of A} and K,={A | AcK, and A is irreducible}, we have
Id(K)=1d(K,). Q.E.D.

The above theorem is easily obtained for the general algebras by the subdirect
reduction theorem in Birkhoff [2].

We denote the class of all fields and the class of all pseudo-fields by F and PF,
respectively. Clearly, FCPF and AxA&F and AX A<PF where A is any field having
at least two element and Ax A is the direct product of A and A. Hence, we have
FCPF.

By Theorem 2.8, F is a class of all irreducible pseudo-fields. Hence, the following
theorem is obvious by Theorem 3.1.

Tneorem 3.2. Id(PF)=Id(F).

Since PF is a variety (or equational class), we have the following corollary.

Corollary 3.3. PF is the minimum variety including F.

We denote the free algebra over all pseudo-fields with n generators by FPF,(n<w).
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Because PF is a variety, FPF,=PF. Hence, we can say that FPF, is a free pseudo-
field. ‘
1d(K) determines the structure of the free algebra over K, so we have the follow-
ing theorem.
Theorem 3.4. FF,=FPF.(nSw).

§4. Some identities derivable from the axiomatic system of pseudo-fields.

It can be indirectly (model theoretically) shown by Theorem 3.2 that the identites
in the next theorem are derivable from the axiomatic system of pseudo-fields. But,
we give the direct (proof theoretical) proof of it.

Theorem 4.1. The following identities are derivable from the axiomatic system
of pseudo-fields: '

“4.1) zexTl=a"tex
(4.2) yrxr=zex"leyex.
Proof. (4.1) zezx'—ztex=z-z~tezthx—atx (by P11)
=gox =1zt 2 (by P9)

=(zrz '~z (2~ 1) (xe 2! —1)-2 (by P11)
=(zrz =1z e (zrz7 1) (e vx—2x) (by P9)
=0 (In P11, substitute 1 for y.).

4.2) yox—ze-xzteyiz=(1—zrax Dy (by P9)
=(1—zrz" )y -(l—zz)y (=2 27z (by P11)
=(1—zz™)ey(l—zox™ ) ' (xz—z 27" x) (by P9Y)
=0 (In P11, substitute 1 for y.). Q.E.D.

At first, we regarded above two identities as the axioms of pseudo-fields. But,
after we noticed that they were not used in the proofs of Theorems in §2, they have
been deleted from the axiomatic system of pseudo-fields and the direct proof of them
has been invented.

We define the functions 0, 1, —, +, and . on Z;={0, 1, 2} as same as usual
functions on Z, (mod 3). We define the function = on Z; as follows: 0~'=1, 17'=1,
2-1=2. Then, Z, is a field but (z*)'=zx and (x+y)=y'+2~' are not valid in Z,.
Hence, these identities are not derivable from the axiomatic system of pseudo-field.
But, we add the next axiom to the axiomatic system of pseudo-fields, then these
identities are derivable.

Pi12. 0-'=0.

We say that a pseudo-field (or field) is desirable when the pseudo-field (or field)
satisfies P12.

Theorem 4.2. The following identities are derivable from the axiomatic system

of desirable pseudo-field :
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4.3) (z) =z
4.4 (zey)t=y~teat.
Proof. (4.3) We substitute 0 for y in P10 and use P12, then we have
(4.5) xl=gez el
(=) =z e (z7) e () (by (4.5))
=gex~texmte(xm ) (7)) (by (4.5))
=xex (g7t (by P11 and (4.1))
=xezegTh T (27) (by (4.5))
=gexex! (by P11 and (4.1))
=x (by, P11 and (4.1)).
4.4) (z-y)i=zey-(z-y) ' -(xy)™ (by (4.5))
=ythexTtezey ey ()t (zey)™t (by (4.1) and (4.2))
=y~ lex~tezey(zy) (by (4.5))
=y~texThey ez (2o y) (2ey)(x3)™ (by (4.1) and (4.2))
=y legz~ley~tez~ligey (by P11 and (4.1))
=y tezmteyThexT (2T () (by (4.3)
=y~log~! (by P11 and (4.1)).

Q.E.D.
The identity (4.3) declares that the function - on a desirable pseudo-field is bijec-
tive and that the inverse function of it is itself. This character of the function ! is
desirable. We denote the class of all desirable fields and the class of all desirable
pseudo-fields by DF and DPF, respectively. It is easily known that Theorem 3.2,
Corollary 3.3 and Theorem 3.4 hold, even if we replace PF and F by DPF and DF,
respectively.

§5.. The independences of the axioms P10 and P11.

In §4, we have shown that P12 is independent of the axioms P1-Pl11. In this
section, we prove that the axion P10 is not derivoble from the axiom P1-P9 and
P11-P12, and the axiom P11 is not derivable from the axioms P1-P10 and P12.

Theorem 5.1. The axiom P11 is independent of the axioms P1-P10 and P12.

Proof. We define the functions 0, 1, —, +, and . on Z,={0, 1} as same as
usual functions on Z, (mod 2). We define the function ~' on Z, as follows: 0-'=0,
1-'=0. Then, it is easily shown that the axioms P1-P10 and P12 are valid in ZQ.
In the axiom P11, we substitute 1 for = and y. We have that the left side=1 and
the right side=0. Hence, the axiom P11 is not valid in Z,. Q.E.D.

Theorem 5.2. The axiom P10 is independent of the axioms P1-P9 and P11-P12.

Proof. We define the functions 0, 1, —, +, and - on Z,=1{0, 1, 2, 3, 4, 5} as
same as usual functions on Z;, (mod 6). We define the function ~! on Z; as follows:
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0-'=0, 1-'=1, 27'=2, 3~'=1, 4-'=1, 5-'=5. Then, it is easily shown that the axioms
P1-P9 and P11-P12 are valid in Z,. In the axiom P10, we substitute 3 and 0 for =
and y respectively. We have that the left side=1 and the the right side=3. Hence,
the axiom P10 is not valid in Z,. Q.E.D.

§6. The finite model property.

In the study of the intermediate logics, it has been known that many varieties
of pseudo-boolean algebras have the finite model property (fmp) and some varieties of
them have not fmp. (cf. [4], [5], [6].)

We will show that the varieties PF and DPF have not fmp. ,

Definition 6.1. A class K of algebras has fmp if for any identity ueId(K) there
exists a finite algebra A& XK such that ueld(A).

If K is a class of all infinite boolean algebras, then clearly K has not fmp. But,
in this case, the above definition is uninteresting. In the above definition, one of the
interesting cases is that K is a variety.

Theorem 6.2. The varieties PF and DPF have not fmp.

Proof. Suppose that PF has fmp. Since z-y=y.2x&1d(PF), there exists a finite
pseudo-field A such that z:y=y-x&ld(A). Then, there exists an assignment f of A
such that flz y)#fy-x). Let J be an ideal of A which is maximal with resprct to
fxy)—f(y-x2)#0. Then, A/J is an irreducible pseudo-field, that is, a field, and finite
and z-y=y-xEld(AlJ). Therefore, there exists a finite field in which z+y=y-z is not
valid. This is contrary to the well-known theorem that any finite field is commuta-
tive. The proof about DPF is entirely similar to the above. Q.E.D.

They are complicated, the examples of varieties without fmp of pseudo-boolean
algebras. The variety PF (or DPE) is one of the simplest examples without fmp.
Another simple example will be given in a subsequent paper.
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