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Superluminal to Subluminal Transition in the Pulse Propagation
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We have examined the propagation of femtosecond laser pulses in an absorbing dye solution through
a short to a long range of propagation distance. The transmitted pulses show strong spectral shift and a
superluminal to subluminal transition in the propagation velocity keeping its initial shape almost intact.
It is verified that the peak velocity is well described by a modified group velocity yS defined within
the framework of the saddle-point method as well as by a recent prediction of the net group delay of
surviving frequency.
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For a century, the problems surrounding the pulse propa-
gation through resonantly absorbing media have been leav-
ing the physicists to puzzle over the meaning of group
velocity. The study of light pulse propagation through
dispersive media started with a series of papers by Som-
merfeld and Brillouin [1,2]. They showed that the main
signal propagates through the medium with a velocity al-
ways less than the light velocity c in the vacuum, while
the front edges of the precursors can travel at c. Garret
and McCumber studied, both analytically and numerically,
the propagation of a Gaussian shaped light pulse through
a resonantly absorbing medium [3]. It was shown that,
when the optical thickness is very small, the pulse propa-
gation can be described by the conventional definition of
group velocity. The remarkable consequence from their
discussion is that, when the incident frequency lies in the
anomalous dispersion region, the superluminal or even the
negative pulse velocity can be possible. Although this con-
clusion seemed paradoxical at that time, it is asserted that
the Poynting vector is always directed to the forward direc-
tion and none of the superluminal and negative velocities
violate the causality [3,4].

Since the concept of wave packets propagation is
physically significant, the experimental verification of the
meaning of propagation velocity is very important. Chu
and Wong examined the pulse velocity in GaP:N with a
laser tuned to the bound A-exciton line using a picosecond
time-of-flight technique and observed that the pulse
propagates through the sample with little distortion in the
shape and with a velocity given by conventional definition
of group velocity even when the velocity exceeds c or
becomes negative [5]. The propagation of optical pulses
through one-dimensional photonic band gap materials [6,7]
and quantum controlled materials having a steep refractive
index profile [8–11] has also attracted fundamental
interest. It was found that the barrier traversal time of
electromagnetic wave packets becomes independent of
the barrier thickness [6]. The gain assisted superluminal
pulse propagation through the lossless anomalous dis-
persion region [12,13] and the ultraslow group velocity
0031-9007�01�86(16)�3546(4)$15.00
and enhanced nonlinear effects have been observed in
coherently prepared absorptive and dispersive atomic
gases [8–11].

It is true that the concept of the conventional group ve-
locity yg is able to give a good picture of the pulse velocity
in absorbing and gain media. However, it is limited to the
thin sample only; i.e., it loses its meaning for a long propa-
gation distance. In this Letter, we present our experimental
investigation of the propagation of optical pulses through
a resonantly absorbing dye solution from a short to a long
distance. The meaning of the group velocity is discussed
in terms of the propagation distance z relevant to the ab-
sorption length za , the spectral widths of the absorption
line g, and the incident laser pulses Dvc. The experimen-
tal results are well described by a modified group veloc-
ity yS , defined within the framework of the saddle-point
method. It also verifies the Peatross et al. prediction that
the concept of the conventional group velocity does not
break down if applied to the surviving spectrum instead of
the initial spectrum [14].

We used the optical pulses with a time duration
Dtp � 68 fs, spectral width Dvc � 13.2 nm, and with
the DtpDvc � 2.6 from a mode locked Ti:sapphire laser.
The pulses were led into a Michelson interferometer to
record the cross correlation signals between the incident
and the transmitted pulses through the sample. A solution
of IR125 in dimethyl sulfoxide (DMSO) in an optical cell
of a thickness of 1 mm was inserted into one of the arms of
the interferometer as the absorbing medium, while a ref-
erence cell containing the solvent only was inserted into
another arm to compensate for the dispersion effects
due to the glass cell and the solvent. The solid line in
Fig. 1 shows the absorption spectrum of the sample dye
measured with a scanning spectrophotometer, and the
dotted line is the dispersion spectrum calculated using
the Kramers-Kronig relation. In the pulse propagation
through absorbing medium, the length scale relevant to the
effective propagation distance is a product of the refractive
index and propagation distance while the refractive index is
linearly proportional to the dye concentration. To change
© 2001 The American Physical Society
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FIG. 1. Real and imaginary parts of the refractive index as a
function of wavelength for the sample with a concentration of
4 3 1025 M. Vertical arrows indicate the wavelengths where
the experiments are performed.

the effective propagation distance in our experiment,
we controlled the dye concentration instead of the sample
thickness. The path length in one of the arms of the inter-
ferometer was modulated with a piezoelectric transducer
(PZT) at a frequency of 281 Hz. The output interference
signal was detected by a photomultiplier tube and fed
into a lock-in amplifier with the reference signal from the
PZT modulator. A reference autocorrelation trace was
monitored simultaneously to find the exact position of the
zero delay. The signal interference correlation trace was
squared to average out the interference fringe patterns,
and then the time delay at the pulse peak, tex, was
determined using a computational data processing routine.
The spectrum of the transmitted pulse also was fed into a
25 cm spectrometer and recorded using a charge-coupled
device camera.

Figure 1 shows the incident wavelengths of 816 and
849 nm which correspond to the anomalous dispersion re-
gion situated at the shoulder of the absorption line and the
normal dispersion region situated at the tail of the absorp-
tion line, respectively. The observed time delays tex and
the spectral peaks of the transmitted pulses are summa-
rized in Fig. 2. In Fig. 2(a), with the incident pulses at
816 nm, the peak position of the correlation trace moves
toward the negative delay at the low concentration of dye
indicating superluminal pulse propagation, and then turns
back and moves toward the positive delay with increasing
concentration of dye indicating subluminal pulse propa-
gation. Figure 2(b) shows a monotonical increase in the
positive delay in the normal dispersion region. It can be
noted that the transmitted pulses show almost no changes
to its initial shape. The dashed lines in Fig. 2 show the
expected time delays if the pulse would have propagated
with the conventional group velocity, yg. We see that the
conventional concept of the group velocity breaks down
for thick absorbing medium. In all figures, the transmitted
FIG. 2. Relative delays and peak wavelengths as a function
of dye concentration for the incident pulses at (a) 816 nm and
(b) 849 nm. In all graphs, solid and open circles correspond to
the experimental results for the delays tex and the peak wave-
lengths, respectively, while the dotted lines are calculated peak
wavelengths. Dashed lines are the expected delays if the pulse
would have propagated with yg. Solid lines and solid triangles
represent the expected delays tS1 and tS2, respectively. Vertical
bars indicate the experimental errors.

pulses show the spectral redshift with increasing dye con-
centration. It would be worthwhile to note that the changes
in the spectral widths of the transmitted pulses were very
small. For the experiments with pulses of 816 nm, the
initial spectral width (FWHM) 13.2 nm becomes 13.3 and
14.2 nm through 8 3 1025 and 5 3 1024 M of the sample
belonging to superluminal and subluminal stage, respec-
tively. Figure 3 shows the transmitted intensity as a func-
tion of propagation distance. It is seen that, in the normal
dispersion region, the transmitted intensity shows an ex-
ponential damping. But, in the anomalous dispersion re-
gion, a nonexponential decay can be seen, especially for a
short range of propagation distance in accordance with the
spectral redshift, due to the strong absorption, as shown
in Fig. 2.

The experimental results of the time delay as well as the
transmitted pulse spectrum indicate that the conventional
treatment of the group velocity fails rapidly with increasing
propagation distance. Temporal profile of the pulses at
a position z, f�z, t�, could be numerically calculated by
the integration of the initial Fourier spectrum A�v�, with
the frequency dependent phase delay associated with the
propagation,
3547
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FIG. 3. Normalized transmission as a function of dye concen-
tration for incident pulses at (a) 816 nm and (b) 849 nm. The
solid and open circles are the experimental results, while the
solid and dashed lines are from the numerical calculation using
Eq. (1).
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where n�v� is the frequency dependent refractive index.
In conventional treatment, the group velocity is intro-
duced in the expansion of n�v� as vn�v� � vcn�vc� 1

�v 2 vc� �≠vn�v��≠v�jvc 1 � 1
2 � �v 2 vc�2�≠2vn�v��

≠v2�jvc 1 . . . , where vc is the central frequency of the
incident pulse. When the spectral width of the incident
pulse Dvc is narrow enough compared with that of the
absorption line g, as well as the propagation distance is
short, the expansion converges very rapidly and can be
terminated at the first order as �v 2 vc�2�≠2n�v�v�≠v2�
�z�c� ø 1. The conventional definition of group ve-
locity, yg � �≠v�≠k�jvc , then has a good meaning.
If we employ the Lorentzian absorption line, n�v� �
�1 1 v2

p��v2
0 2 v2 2 igv��1�2, where v0 is the reso-

nant frequency and vp the plasma frequency, this criterion
can be represented as z ø z2 � za�g�Dvc�2, which
is not so restrictive as long as g�Dvc . 1. In the
experiments by Chu et al., z��za�g�Dvc�2� 	 0.023 [5]
satisfies well the short propagation approximation.

In our case, using the femtosecond laser pulses with a
broad spectrum, z��za�g�Dvc�2� 	 0.438, we observed
the spectral shift in the transmitted pulse as shown in
Fig. 2. The Fourier components in the shorter wavelength
range experience stronger damping than those in the
longer wavelength region and cause the spectral shift,
dv � Dv2

c Im�≠n�v�v�≠v� �z�c�. When dv 	 Dvc,
that is, z . z1 � za�g�Dvc�, the predominant frequency
components contributing in the Fourier integration at z
are those which are drastically drifted during the pulse
propagation. For z1 , z , z2, it can occur that the
conventional group velocity yg could properly describe
the pulse velocity, even for the case of a considerable shift
in the transmitted spectrum. In our study, the experiments
done with the incident wavelength of 849 nm lie in this
3548
region for all examined dye concentration shown in Fig. 2,
whereas the concentrations below 	2 3 1025 M are in
this region for the incident pulses at 816 nm. One may
suggest the criterion at which the yg has good meaning as
dt ø t, where t � z�yg � �z�c� �Re�≠n�v�v�≠v��
and dt � �≠t�≠v�dv is the change in the time delay
due to the spectral dependent group velocity. This gives
the propagation distance under which the yg is good for
z��za�g�Dvc�2� ø 1, which essentially involves z in
terms of za , g, and Dvc is again the same condition as
the second order can be ignored in Eq. (1).

As the velocity at which a pulse travels a distance z
is physically very important, there have been several pro-
posals connected with the surviving spectrum to describe
the pulse velocity beyond the short propagation and its
narrow spectrum limits [14,15]. Tanaka et al. proposed a
modified definition of the propagation velocity in which
the path of integration in Eq. (1) is so chosen that it
passes through the appropriate saddle points on the com-
plex v plane suppressing the oscillations of the integrand
[15]. It has been pointed out that with an approxima-
tion, j≠2P�v��≠v2jvS � constant, the peak of the tem-
poral profile of the pulse is determined by the minimum of
P�vS�, ≠P�vS��≠t � 0. A significant result from this dis-
cussion is that, at z, the saddle point satisfies Im�vS� � 0
at the time when the peak of the wave packet passes the
point. With the definition of the saddle point,

Re

∑
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≠v

∏ Ç
vS

2
ct
z

� 0 , (2)

2Im

∑
≠vn�v�

≠v
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vS

1
c
z

≠ lnA�v�
≠v

Ç
vS

� 0 , (3)

one can obtain the velocity of the peak position as yS �
z�t � c�Re�≠vn�v��≠v�jvS � ≠v�≠kjvS from Eq. (2),
while the saddle points are obtained from Eq. (3). It is
clear from Eq. (3) that, in the case with very weak absorp-
tion, vS equals the incident frequency vc, and the pulse
velocity is described by the conventional group velocity
yg. When absorption becomes strong, the saddle points
move around on the complex v plane following Eq. (3)
with the complex n�v� shown in Fig. 1. This corresponds
to the observed spectral shift shown in Fig. 2. The solid
lines in Fig. 2 show the time delays, tS1, expected from
Eq. (2), where the saddle point frequencies vS are calcu-
lated using Eq. (3). Solid triangles in Fig. 2 show the time
delays, tS2, expected from the relation of Eq. (2), where
the saddle point frequencies vS are set to the peak posi-
tions of the observed transmitted spectra. The time delays
tS1 and tS2, calculated on the basis of the saddle-point
method, well describe the experimental results even where
the yg fails completely, showing the superluminal to sub-
luminal transition in the propagation velocity.

Recently, Peatross et al. have proposed an interesting
definition of propagation velocity based on the time ex-
pectation integral over the Poynting vector as the arrival
time of light pulse [14]. In their study, the time delay is
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separated into a sum of the net group delay and the re-
shaping delay due to absorption. This definition avoids
the difficulty of approximations in the Fourier integration.
As the reshaping delay before propagation for a well com-
pressed pulse is quite small only the net group delay is
relevant to describe the propagation velocity. The net
group delay is simply the average of the group delay of
each frequency component that survives the propagation
through distance z,

t �
z
c

R
dvjP�v�j2

≠ Re�n�v�v�
dvR

dvjP�v�j2
. (4)

Since jP�v�j2 is dominated by vS in our case, this net
group delay, Eq. (4), may be approximated as Eq. (2) in
this paper as a special case.

At the high concentration region in Fig. 2(a), one may
notice a very slight deviation between the delay, tS1, calcu-
lated from the saddle-point method and the experimentally
observed delay tex. This discrepancy could be attributed
to the approximation used in the present treatment of the
saddle-point method which is based on the approximation
in the expansion of P�v� assuming j≠2P�v��≠v2jvS �
constant. This approximation is valid when the spectral
width of the incident pulse is narrow. We have demon-
strated this point in Fig. 4 for a pulse propagating through
a medium with a Lorentzian absorption line. The solid
lines are time delays, tN , calculated from the numerical
integration of Eq. (1), while the dashed lines show tS1 cal-
culated from the saddle-point method using Eqs. (2) and
(3). When the spectral width is narrow, tS1 shows an ex-
cellent agreement with tN even for a very long propaga-
tion distance. In terms of the net group delay of Peatross
et al. [14], this discrepancy could be explained as a slight
failure of a single frequency vS to adequately represent
the spectral average of the survived frequency components.
The value of j�z�2pc� Re�v≠2n�v��≠v2�DvcjvS corre-
sponds to 	2.5 fs at a concentration of 2 3 1024 M for
the incident pulses at 816 nm, provides a good estimation
of the deviation between tS1 and tN in Fig. 4, and be-
tween tS1 and tex in Fig. 2. In Fig. 4, we also see that
the distance zT , at which the propagation velocity changes
form the superluminal to subluminal, can be estimated as
�vc 2 vT ��dv 	 1, zT ~ Dv22

c , where vT is the fre-
quency at which the refractive index curves shift from
anomalous to normal dispersion region.

A similar effect in the propagation of Alfvén wave pack-
ets in a dissipative plasma with an anomalous dispersion
relation has been reported [16]. The velocity of Alfvén
wave is much slower than that of light, so the superlu-
minal to subluminal transition is usually hard to be ob-
served. The optical experiments presented here are then
much more suitable for observing such a transition in an
absorbing medium.

In conclusion, we have observed the superluminal to
subluminal transition in the propagation velocity of op-
FIG. 4. Relative delay as a function of dye concentration for
incident pulses at 816 nm with the spectral widths of g�Dvc:
(a) 4.8, (b) 7.3, and (c) 9.7. Solid lines are the calculated delays
tN , using Eq. (1), while the dashed lines express the delays tS1,
expected from Eqs. (2) and (3).

tical pulses in an absorbing dye solution as a function of
propagation distance. The observed peak velocity as well
as the spectral shift in the transmitted pulses are well de-
scribed by the modified group velocity yS defined within
the framework of the saddle-point method. The results also
verify the predictions of Ref. [14].
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