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We performed single-photon interference experiments with neutral density filters and slow beam choppers to
confirm the difference between stochastic and deterministic absorption and obtained results that agreed with
the case of neutron-interference experiments and quantum theory.@S1050-2947~97!05810-1#

PACS number~s!: 42.50.Ct, 42.50.Ar
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I. INTRODUCTION

Quantum theory is composed of two fundamental pro
dures. Namely, between measurements an object is desc
by the Schro¨dinger time development, while in a measur
ment we have to apply the statistical formula to it. Wheth
these two procedures are consistently unified or not has b
a subject of debate since von Neumann’s theory of meas
ment @1#.

Recently, Rauch and Summhammer performed Ma
Zehnder–type interference experiments with a thermal n
tron beam to expose two types of interference patterns@2#.
They correspond to the two types of absorbers in one pat
the neutron interferometer and they are called stochastic
deterministic absorbers, respectively. Through the stocha
absorber where partially absorbing foils are used, the w
function of a neutron changes by the Schro¨dinger time de-
velopment. But through the deterministic absorber wh
slow beam choppers are used, the statistical formula ha
be used. Their experiments were made under the cond
that the probability of finding two or more neutrons insi
the interferometer is low enough that they could use a sin
particle wave function, and their result agreed with quant
theory. That is, the normalized interference amplitud
~NIAs! are the square-root dependenceAa for the stochastic
case and the linear dependencea for the deterministic case
on the same transmission probabilitya of each absorber
Here the slow beam chopper means that the open-closed
riod of the chopper is much longer than the coherence t
of the neutron’s wave packet. So there would occur a qu
tion what happens when the chopper becomes very fas
rotation. In fact, Summhammeret al. @2# inferred that a one-
dimensional macroscopic lattice could simulate the fast c
of a chopper. However, it is not self-evident whether the f
beam chopper can be simulated by a one-dimensional m
roscopic lattice or not.

To clarify this problem we have been making the sa
kind of experiment with the laser beam under the condit
where the average number of photons inside the interfer
eter is smaller than one. There have been various kind
photon interference experiments done that take advantag
lasers @3–8#. This paper gives a report on stochastic a
deterministic absorption in single-photon interference exp
ments. Our experimental results agreed with the case of
561050-2947/97/56~5!/4106~5!/$10.00
-
ed

-
r
en

re-

-
u-

of
nd
tic
e

e
to

on

e-

s

pe-
e
s-
in

se
t
c-

e
n

-
of
of

d
i-
he

neutron interferometer and quantum theory. Although the
sults can be described with a classical electric field, if
analyze the experiment in terms of photons, the interpre
tion is an interesting one and we have demonstrated v
simple experiment the difference between the slow chop
with mean transmissiona and a neutral density~ND! filter
with similar mean transmission.

II. THEORY

If one can approximately describe a system as a sin
photon state inside the interferometer, then the probability
detecting the single photon at (r ,t) on the detector is propor
tional to @9#

^CuÊ~2 !~r ,t !Ê~1 !~r ,t !uC& ~1!

because of the electric-dipole interaction on the photoelec
effect at the detector. HereÊ(1)(r ,t) andÊ(2)(r ,t) are posi-
tive and negative frequency parts of the electric-field ope
tor at (r ,t), and uC& is the initial photon state in the detec
tion process.

In the stochastic case where a ND filter is inserted as
absorber in Fig. 1, the photon state through the two be
splitters and the absorber~the ND filter! with the transmis-
sion probabilitya can be described as

uC&5~FA1FBAa!u0&Cu1&D1~FA81FB8Aa!u1&Cu0&D

1uo.s.& ~2!

by the Schro¨dinger time development~see the Appendix!.
HereFA andFB correspond to the wave functions that a
brought into the detector~beamD! through pathsA andB,
respectively, andFA8 and FB8 are the wave functions into
beamC through pathsA and B in the case of no absorbe
Photon stateun&X means that the number of photons in bea
X ~mode X! is n, where we use a fairly monochromat
incident beam. Anduo.s.& means the sum of all the othe
states that are removed from beamsC and D. In the mode
expansions ofÊ(1)(r ,t) and Ê(2)(r ,t) at the detector, we
may consider the annihilation and creation operators
single photons only on beamD ~modeD! for the detection.
Thus from Eqs.~1! and ~2!, the intensity at the detector is
4106 © 1997 The American Physical Society
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56 4107STOCHASTIC AND DETERMINISTIC ABSORPTION IN . . .
I 5uFA1FBAau25uFu2~11r2a12rAa cosx!,

where

FA[F, FB5reixF ~r,x real!.

When there is no absorber in the interferometer (a51), the
intensity is

I 05uFu2~11r212r cosx!.

Therefore we get the square-root dependence of the NIA
the stochastic case, such as

NIA ~S![@ I ~max!2I ~min!#/@ I 0~max!2I 0~min!#

54rAauFu2/4ruFu25Aa. ~3!

In the deterministic case where a slow beam choppe
inserted instead of the ND filter, we have to take the
semble average of the following two cases. When pathB is
open, the result is just the same asI 0 above. But when path
B is closed, the single photon is either completely absor
by the chopper or goes through pathA. This is the so-called
reduction of the wave packet and the probability of goi
into the detector through pathA is ufAu2 by the statistical
formula of quantum theory. Here the ratio between the op
ing and closing time of the chopper isa to 12a with the
transmission probabilitya of the chopper. So the intensity a
the detector is

I 5auFA1FBu21~12a!uFAu2

5uFu2~11r2a12ra cosx!.

When there is no chopper in the interferometer (a51), the
intensity is

I 05uFu2~11r212r cosx!.

Then we get the linear dependence of the NIA in the de
ministic case,

FIG. 1. Setup for the single-photon interference experime
with various kinds of absorbers in pathB.
in

is
-

d

n-

r-

NIA ~D !54rauFu2/4ruFu25a. ~4!

III. EXPERIMENT AND RESULTS

The experimental setup is shown in Fig. 1. We used
Mach-Zehnder interferometer, where the optical path len
of each arm is 40 cm. The light source was a TEM00 single
mode, average power 1 mW, He-Ne laser~Spectra-Physics
117A! with a wavelength of 632.8 nm. The coherence len
is longer than 5 km. The frequency stability
60.5 MHz/min. The incident beam intensity was reduced
a factor of 1027 by ND filters so that the mean number o
photons inside the interferometer is less than 0.4. If we ap
a Poisson distribution with the mean number 0.4 to the p
ton state of our experimental situation, the probability
finding two or more photons inside the interferometer
0.062. So the treatment of the system as a single-photon
is justified. In order to compare the results in stronger be
intensities with ones in single-photon states, we also m
experiments using a stronger incident beam increased
factor of 103.

A photomultiplier tube~HAMAMATSU Photonics R374!
cooled to230 °C was placed on pathD. The quantum effi-
ciency of the photomultiplier tube was 7%. The phot
pulses from the photomultiplier tube were led to a ga
counting board with 50-nsec temporal resolution. The g
time was set to 0.5 sec. The mean number of backgro
thermal pulses per 0.5 sec was 15 counts. A 632.8-nm in
ference filter with a peak transmission probability of 50
was placed in front of the photomultiplier tube. An optic
glass plate with 3 mm thickness was placed in pathB and
rotated by using a stepping motor as a phase shifter in
experiments.

The stochastic absorbers consisted of various ND filt
so that the transmission probability along pathB could be
varied between 1% and 80%. For deterministic absorb
various choppers with the transmission probability betwe
8% and 90% were used. The choppers consisted of rota
black disks where the necessary number of holes were m
The open-closed frequencies were between 100 and 300
This corresponds to the case of the slow chopper descr
above. Figure 2 shows typical interference patterns as a fu
tion of rotational angle of the phase shifter. The transmiss
probability along pathB was measured in the same way f
both kinds of absorbers: pathA was blocked and then th
intensities at the detector were recorded with the abso
present in pathB and without it.

In Fig. 3 the NIAs are plotted for the different kinds o
absorbers together with the theoretical predictions for
stochastic and deterministic cases. The solid circles and
angles are NIAs with absorbers of ND filters and slow be
choppers, respectively, in single-photon experiments. T
open circle and triangle are for the same kinds of exp
ments with the stronger incident beam by a factor of 13.
The solid and broken lines represent Eqs.~3! and~4!, respec-
tively.

IV. CONCLUDING REMARKS

The results obtained by single-photon experiments agr
with the theoretical predictions in quantum theory within o

ts
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4108 56KAYOKO AWAYA AND MAKOTO TOMITA
experimental errors. With the stronger incident beam,
results also lie on the corresponding theoretical lines. Thi
because the interference phenomena in the classical wav
formally the same as the case of the single-photon state@9#.
However, the interpretations when pathB is closed with the
chopper are completely different from each other. Clas
cally, the electric field is continuous and the compon
along pathB is absorbed by the chopper, and only the co
ponent along pathA is brought into the detector, resulting i

FIG. 2. Examples of the interference patterns as a function
the phase shift:~a! without absorber,~b! with a ND filter of the
transmission probability of 0.49, and~c! with a beam chopper of the
transmission probability of 0.50.

FIG. 3. Normalized interference amplitude~NIA ! as a function
of transmission probability through pathB. The solid circles and
triangles are with ND filters and choppers, respectively in
single-photon experiments. The open circle and triangle are for
same kinds of experiments with the stronger incident beam b
factor of 103. The solid and broken lines represent the theoret
predictions for the stochastic and deterministic absorbers, res
tively.
e
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no interference effect. But a single photon selects either p
A, resulting in the detection, or pathB, resulting in no de-
tection, and so a single photon displays particlelike behav
i.e., ‘‘which path’’ information. We get the same result as
classical wave only under the accumulation of many
peated single-photon measurements.

We should note that the reduction of the wave packet b
chopper cannot be described by the Heisenberg repres
tion where the wave packet never change in time. Nor doe
seem to be transformed to the Heisenberg representa
from the Schro¨dinger representation, because there is
Hamiltonian and therefore no unitary transformation desc
ing the reduction of the wave packet. We should also n
that actually the transmission probabilitya of a ND filter is
the ensemble average of many repeated measurements
the descriptionAa in Eq. ~2! can be justified only when the
fluctuation ofa is sufficiently smaller thana itself as in our
experiments; i.e.,Aa/a is smaller than 0.03.

In our experiments, the ratio of the open-closed period
the chopper to the photon coherence time is of the orde
103. In the neutron interferometer, the ratio is of the order
1010 and it looks difficult to get a faster chopper because
mechanical vibrations@2#. But it seems rather feasible for th
photon interferometer to get a faster beam chopper. The
of a fast chopper, i.e., the coherence time of a photon c
parable to or rather longer than the open-closed period of
chopper, is a subject planned to be studied.
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APPENDIX: QUANTUM THEORY
OF THE BEAM SPLITTER

We consider a single-photon state with monochroma
angular frequencyv and two modesa andb entering a beam
splitter shown in Fig. 4~a!. We treat this process by suppo

f

e
e
a
l
c-

FIG. 4. ~a! Beam splitter with two modesa and b. In the
Heisenberg representation, the time-dependent mode operatorsâ(t)
and b̂(t) for a single-photon develop by the interaction with th
beam splitter during the time duration for the photon to pa
through the beam splitter.~b! Beam splitter with the conventiona
mode operators.
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56 4109STOCHASTIC AND DETERMINISTIC ABSORPTION IN . . .
ing that the interaction between a single photon and the b
splitter is

ĤI52~ah/2p!~ â†b̂1b̂†â!,

wherea is a real coupling constant andh is Planck’s con-
stant, and the total Hamiltonian for the photon in the be
splitter is

Ĥ5Ĥ01ĤI ,

with

Ĥ05~vh/2p!~ â†â1b̂†b̂!.

The creation and annihilation operatorsâ†,b̂† andâ,b̂ for the
modesa andb satisfy the following equations:

@ â,â†#5@ b̂,b̂†#51,

@ â,b̂#5@ â,b̂†#50

for any given time. Then in the Heisenberg representat
we have

dâ/dt5~ i2p/h!@Ĥ,â#5 iab̂2 ivâ,

db̂/dt5~ i2p/h!@Ĥ,b̂#5 iaâ2 ivb̂.

So

â~ t !2b̂~ t !5$â~ t0!2b̂~ t0!%e2 i ~a1v!~ t2t0!,

â~ t !1b̂~ t !5$â~ t0!1b̂~ t0!%ei ~a2v!~ t2t0!,

resulting in

â~ t !5e2 iv~ t2t0!$â~ t0!cosa~ t2t0!1 i b̂~ t0!sina~ t2t0!%,

b̂~ t !5e2 iv~ t2t0!$ i â~ t0!sina~ t2t0!1b̂~ t0!cosa~ t2t0!%.

Thus if we suppose that the interactionĤI is switched on at
t5t0 and off at t5t01T, whereT is the time duration for
the photon to pass through the beam splitter, then,
for t,t0 ,

â~ t,t0!5e2 ivtâ0 ,

b̂~ t,t0!5e2 ivtb̂0

and for t.t01T,

â~ t.t01T!5e2 ivt$â0cosaT1 i b̂0sinaT%[e2 ivtâ1 ,

b̂~ t.t01T!5e2 ivt$ i â0sinaT1b̂0cosaT%[e2 ivtb̂1 .

This results in the conventional relations between the inco
ing and outgoing mode operators,â0 ,b̂0 andâ1 ,b̂1 shown in
Fig. 4~b!, i.e.,

â15â0cosaT1 i b̂0sinaT,
m

n,

-

b̂15 i â0sinaT1b̂0cosaT,

where (cosaT)2 and (sinaT)2 correspond to the transmissio
and reflection probabilities of the beam splitter, respective

In the Schro¨dinger representation, the photon state is d
scribed as

uC~ t !&5e2 iĤ ~ t2t8!2p/huC~ t8!&

5e2 iĤ I ~ t2t8!2p/he2 iĤ 0~ t2t8!2p/huC~ t8!&

because of@ĤI ,Ĥ0#50. When the initial state is a single
photon state in modea, it can be described as

uC~ t,t0!&5e2 ivtu1&au0&b

becauseĤI50 for t,t0 . Then

e2 iĤ 0~ t2t0!2p/huC~ t0!&5e2 ivtu1&au0&b

and

uC~ t01T!&5e2 iv~ t01T!e2 iĤ IT2p/hu1&au0&b5e2 iv~ t01T!

3$u1&au0&bcosaT1 i u0&au1&bsinaT%.

Thus

uC~ t.t01T!&5e2 iĤ 0~ t2t02T!2p/huC~ t01T!&

5e2 ivt$u1&au0&bcosaT1 i u0&au1&bsinaT%.

In a Mach-Zehnder interferometer shown in Fig. 1, w
have two beam splitters, and in general pathA and pathB
are not optically identical. So at the second beam splitter,
can write the initial state of the photon as

bAu1&Au0&B1bBu0&Au1&B

~from now on we neglect the common overall tim
dependent phase factore2 ivt!. Repeating the same discu
sion at the second beam splitter, for the initial statesu1&Au0&B
and u0&Au1&B , we get

u1&Au0&B→u0&Cu1&Dcosa8T81 i u1&Cu0&Dsina8T8,

u0&Au1&B→u1&Cu0&Dcosa8T81 i u0&Cu1&Dsina8T8

by the Schro¨dinger time development where (cosa8T8)2 and
(sina8T8)2 correspond to the transmission and reflecti
probabilities of the second beam splitter, respectively. T
the final state of the photon through the interferometer is

uC&5~FA1FB!u0&Cu1&D1~FA81FB8 !u1&Cu0&D

where

FA5bAcosa8T8,
FA85 ibAsina8T8,

FB5 ibBsina8T8,
FB85bBcosa8T8.

Here bA and bB , and soFA and FB include the effect
through pathsA andB with a phase shifter.
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