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We performed single-photon interference experiments with neutral density filters and slow beam choppers to
confirm the difference between stochastic and deterministic absorption and obtained results that agreed with
the case of neutron-interference experiments and quantum tH&41§50-2947P7)05810-1

PACS numbe(s): 42.50.Ct, 42.50.Ar

[. INTRODUCTION neutron interferometer and quantum theory. Although the re-
sults can be described with a classical electric field, if we
Quantum theory is composed of two fundamental proceanalyze the experiment in terms of photons, the interpreta-
dures. Namely, between measurements an object is describéi@n is an interesting one and we have demonstrated via a
by the Schrdinger time development, while in a measure-Simple experiment the difference between the slow chopper
ment we have to apply the statistical formula to it. Whetherwith mean transmissioa and a neutral densityND) filter
these two procedures are consistently unified or not has beawth similar mean transmission.
a subject of debate since von Neumann'’s theory of measure-
ment[1]. Il. THEORY
Recently, Rauch and Summhammer performed Mach- ) ) _
Zehnder—type interference experiments with a thermal neu- |f one can approximately describe a system as a single-
They correspond to the two types of absorbers in one path dfetecting the single photon at,{) on the detector is propor-
the neutron interferometer and they are called stochastic arfipnal to[9]
deterministic absorbers, respectively. Through the stochastic - -
absorber where partially absorbing foils are used, the wave (PIEC(r,HE(r,0)| W) 1)
function of a neutron changes by the Salinger time de-
velopment. But through the deterministic absorber wherdecause of the electric-dipole interaction on the photoelectric
slow beam choppers are used, the statistical formula has &ffect at the detector. Hete™)(r,t) andE(")(r,t) are posi-
be used. Their experiments were made under the conditiotive and negative frequency parts of the electric-field opera-
that the probability of finding two or more neutrons insidetor at (r,t), and|W¥) is the initial photon state in the detec-
the interferometer is low enough that they could use a singletion process.
particle wave function, and their result agreed with quantum In the stochastic case where a ND filter is inserted as the
theory. That is, the normalized interference amplitudesabsorber in Fig. 1, the photon state through the two beam
(NIAs) are the square-root dependerxﬁafor the stochastic splitters and the absorbéthe ND filter) with the transmis-
case and the linear dependeracéor the deterministic case, sion probabilitya can be described as
on the same transmission probabiliéy of each absorber.
Here the slow beam chopper means that the open-closed pe- | ¥)=(®,+ \/a)|0)c|1)p+ (P 4+ Dgya)|1)c|0)p
riod of the chopper is much longer than the coherence time
of the neutron’s wave packet. So there would occur a ques- +lo.s) @
tion what happens when the chopper becomes very fast in . )
rotation. In fact, Summhammet al.[2] inferred that a one- DY the Schrdinger time developmentsee the Appendix
dimensional macroscopic lattice could simulate the fast casg€"® ®a and @ correspond to the wave functions that are
of a chopper. However, it is not self-evident whether the fasProught into the detectaibeamD) through pathsA andB,
beam chopper can be simulated by a one-dimensional mafespectively, andb, and ®g are the wave functions into
roscopic lattice or not. beamC through pathsA andB in the case of no absorber.
To clarify this problem we have been making the samePhoton staten)y means that the number of photons in beam
kind of experiment with the laser beam under the conditionX (mode X) is n, where we use a fairly monochromatic
where the average number of photons inside the interferonincident beam. Ando.s) means the sum of all the other
eter is smaller than one. There have been various kinds &ttates that are removed from bea@sandD. In the mode
photon interference experiments done that take advantage ekpansions oE(*)(r,t) and E(*)(r,t) at the detector, we
lasers[3—8]. This paper gives a report on stochastic andmay consider the annihilation and creation operators of
deterministic absorption in single-photon interference experisingle photons only on beal (modeD) for the detection.
ments. Our experimental results agreed with the case of thEhus from Eqgs(1) and(2), the intensity at the detector is
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He-Ne laser NIA(D)=4pa|®|?/4p|®|*=a. (4)

Bl N\
|_| Il. EXPERIMENT AND RESULTS

ND filter Absorber

The experimental setup is shown in Fig. 1. We used a
AY Mach-Zehnder interferometer, where the optical path length
Phase Shifter of each arm is 40 cm. The light source was a Tfgkingle
mode, average power 1 mW, He-Ne lagBpectra-Physics
E 117A) with a wavelength of 632.8 nm. The coherence length
- is longer than 5 km. The frequency stability is
D +0.5 MHz/min. The incident beam intensity was reduced by
v a factor of 107 by ND filters so that the mean number of
photons inside the interferometer is less than 0.4. If we apply
a Poisson distribution with the mean number 0.4 to the pho-
ton state of our experimental situation, the probability of
finding two or more photons inside the interferometer is
Detector 0.062. So the treatment of the system as a single-photon state
is justified. In order to compare the results in stronger beam
FIG. 1. Setup for the single-photon interference experimentintensities with ones in single-photon states, we also made
with various kinds of absorbers in paih experiments using a stronger incident beam increased by a
factor of 1G.
| =|dp+ Dg/al2=|P|%(1+p2a+2pa cosy), A photomultiplier tube HAMAMATSU Photonics R37%
cooled to— 30 °C was placed on pafb. The quantum effi-
where ciency of the photomultiplier tube was 7%. The photon
i pulses from the photomultiplier tube were led to a gated
Op=P, dg=pe*® (p,y real. counting board with 50-nsec temporal resolution. The gate
. . . time was set to 0.5 sec. The mean number of background
When.the',-re is no absorber in the interferometer(), the thermal pulses per 0.5 sec was 15 counts. A 632.8-nm inter-
Intensity 1s ference filter with a peak transmission probability of 50%
0_ |2 2 was placed in front of the photomultiplier tube. An optical
P=I @1+ p%+2p cosy). glass plate with 3 mm thickness was placed in pathand

Therefore we get the square-root dependence of the NIA ifotated by using a stepping motor as a phase shifter in all

the stochastic case, such as experiments. _ _ _
The stochastic absorbers consisted of various ND filters

NIA(S)=[1(max) — I (min)]/[1°(max — 1°(min)] so that the transmission probability along p&hcould be
varied between 1% and 80%. For deterministic absorbers,
=4p\/a|®|%/4p|®|?= a. (3  various choppers with the transmission probability between

o 8% and 90% were used. The choppers consisted of rotating
_In the deterministic case where a slow beam chopper ig|ack disks where the necessary number of holes were made.
inserted instead of the ND filter, we have to take the enpe gpen-closed frequencies were between 100 and 300 Hz.
semble average of the following two cases. When {8  Thjs corresponds to the case of the slow chopper described
open, the result is just the sameldsabove. But when path  ahove. Figure 2 shows typical interference patterns as a func-
B is closed, the single photon is either completely absorbegon, of rotational angle of the phase shifter. The transmission
by the chopper or goes through path This is the so-called  ropapility along patiB was measured in the same way for
reduction of the wave packet and the probability of goingpoth kinds of absorbers: path was blocked and then the

. . 2 . . . . A
into the detector through path is [$a|° by the statistical jntensities at the detector were recorded with the absorber
formula of quantum theory. Here the ratio between the Openpresent in pattB and without it.

ing and closing time of the chopper &to 1—a with the In Fig. 3 the NIAs are plotted for the different kinds of

transmission probabilitp of the chopper. So the intensity at gpsorbers together with the theoretical predictions for the

the detector is stochastic and deterministic cases. The solid circles and tri-
B 2 2 angles are NIAs with absorbers of ND filters and slow beam
|=a|®pt Pgl*+(1-2a)| Dy choppers, respectively, in single-photon experiments. The

open circle and triangle are for the same kinds of experi-
ments with the stronger incident beam by a factor of.10

When there is no chopper in the interferometer(L), the ~ The solid and broken lines represent E@.and(4), respec-
intensity is tively.

=|®|?(1+ p2a+2pa cosy).

0_ 2 2
1°=[®[*(1+ p®+2p cosy). IV. CONCLUDING REMARKS

Then we get the linear dependence of the NIA in the deter- The results obtained by single-photon experiments agreed
ministic case, with the theoretical predictions in quantum theory within our
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no interference effect. But a single photon selects either path
A, resulting in the detection, or paf, resulting in no de-
tection, and so a single photon displays particlelike behavior

FIG. 2. Examples of the interference patterns as a function of.e., “which path” information. We get the same result as in
the phase shift(a) without absorber(b) with a ND filter of the  classical wave only under the accumulation of many re-
transmission probability of 0.49, arid) with a beam chopper of the peated single-photon measurements.
transmission probability of 0.50. We should note that the reduction of the wave packet by a

chopper cannot be described by the Heisenberg representa-

experimental errors. With the stronger incident beam, thdion where the wave packet never change in time. Nor does it
results also lie on the corresponding theoretical lines. This iseem to be transformed to the Heisenberg representation
because the interference phenomena in the classical wave drem the Schrdinger representation, because there is no
formally the same as the case of the single-photon §¢dte Hamiltonian and therefore no unitary transformation describ-
However, the interpretations when pd&his closed with the ing the reduction of the wave packet. We should also note
chopper are completely different from each other. Classithat actually the transmission probabiliyof a ND filter is
cally, the electric field is continuous and the componenthe ensemble average of many repeated measurements and
along pathB is absorbed by the chopper, and only the com-the description/a in Eq. (2) can be justified only when the
ponent along path is brought into the detector, resulting in fluctuation ofa is sufficiently smaller tham itself as in our
experiments; i.e.,/a/a is smaller than 0.03.

In our experiments, the ratio of the open-closed period of

G the chopper to the photon coherence time is of the order of
08k o 10%. In the neutron interferometer, the ratio is of the order of
’ JRe 10 and it looks difficult to get a faster chopper because of
06l o /‘/ ] mechanical vibrationg2]. But it seems rather feasible for the
< X photon interferometer to get a faster beam chopper. The case
Z 04l e 2 J of a fast chopper, i.e., the coherence time of a photon com-
K parable to or rather longer than the open-closed period of the
0.2} e i chopper, is a subject planned to be studied.
0 A 1- L L L
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FIG. 3. Normalized interference amplituddIA) as a function

of transmission probability through paB. The solid circles and

triangles are with ND filters and choppers, respectively in the APPENDIX: QUANTUM THEORY

single-photon experiments. The open circle and triangle are for the OF THE BEAM SPLITTER

same kinds of experiments with the stronger incident beam by a

factor of 1¢. The solid and broken lines represent the theoretical We consider a single-photon state with monochromatic
predictions for the stochastic and deterministic absorbers, respe@ngular frequencw and two modes andb entering a beam

tively. splitter shown in Fig. &). We treat this process by suppos-
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ing that the interaction between a single photon and the beam

splitter is

H,=—(ah/27)(a'b+b'a),

where « is a real coupling constant ardis Planck’s con-

stant, and the total Hamiltonian for the photon in the beam

splitter is

ﬁ - |:|0+ H| y
with
Ho=(wh/27)(a'a+b'b).

The creation and annihilation operatéfsb' anda,b for the
modesa andb satisfy the following equations:

[4,a"]=[b,b"]=1,

[a,b]=[4,bT]=0

for any given time. Then in the Heisenberg representation,

we have

da/dt=(i2m/h)[H,a]=iab—iwa,

db/dt=(i2#/h)[H,b]=iad—iwb.
So
a(t) —b(t) ={a(t) ~ b(tg)}e =+ )10,
a(t) + b(t) ={a(to) +b(tg)}e(*~ 10,
resulting in
a(t)=e 1t fA(ty) cosr(t—to) +ib(tg)sina(t—to)},
b(t)=e 1@t tfja(ty)sina(t—to) + b(ty) cosx(t—to)}.

Thus if we suppose that the interactibl is switched on at
t=t, and off att=ty,+ T, whereT is the time duration for
the photon to pass through the beam splitter, then,

for t<tg,

é.(t<t0) = eiiwté.o,
E)(t<t0) = e_ith)O
and fort>ty+T,

A(t>ty+ T)=e YacomT +ibgsinaT=e '3, ,

b(t>te+T) =€ 1“Yid,sinaT+bocosaTt=e" 1t .

This results in the conventional relations between the incom-

ing and outgoing mode operatogs,,b, anda, ,b; shown in
Fig. 4(b), i.e.,

a;=agcosaT+ibgsinaT,

4109

b,=idgsinaT +bycosaT,

where (coaT)? and (simT)? correspond to the transmission
and reflection probabilities of the beam splitter, respectively.

In the Schrdinger representation, the photon state is de-
scribed as

|\If(t)> — e*iﬁ(tft')Zwlh“P(tr))

_ e—iﬁI(t—t/)zw/he—nio(t—t/)2v/h|q,(t/))

because o[l:l, ,I:|0]=O. When the initial state is a single-
photon state in moda, it can be described as
W (t<to)=e"'"|1)a|0)

becausé:h =0 fort<ty. Then

& Ho 027N (1)) = e1¢!|1),[O),
and
|\P(t0+T)>=e—iw(t0+T)e—iﬁ|,T2w/h|1>a|o>b=e—iw(to+T)

X{|1)4]0)pcosaT+i|0),|1)pSinaT}.
Thus
W (t>tg+ T)) =€~ Holt~to-T2m) (14 T))
=e 19Y|1),|0)p,cosaT+i|0)4|1),sinaT}.

In a Mach-Zehnder interferometer shown in Fig. 1, we
have two beam splitters, and in general pAttand pathB
are not optically identical. So at the second beam splitter, we
can write the initial state of the photon as

Bal1)al0)g+ Bsl0)a|1)g

(from now on we neglect the common overall time-
dependent phase facter '“!). Repeating the same discus-
sion at the second beam splitter, for the initial stileg|0)
and|0)4|1)g, we get

|1)al0)g—10)c|1)pcosa' T’ +i[1)¢|0)psina’ T,
|0)al1)g—[1)c[0)pcOs’ T’ +i]0)c|1)psina’ T’

by the Schidinger time development where (e63")? and
(sina’T’)? correspond to the transmission and reflection
probabilities of the second beam splitter, respectively. Thus
the final state of the photon through the interferometer is

|W)=(Pp+Dp)|0)c|1)p+(PA+DPR)1)c|0)p
where

O p=pacos’' T,
dp=iBpsina’T’,

(I)B:iBBSina’,TI,
dp=pgcox'T'.

Here B, and Bg, and so®, and ®g include the effect
through path®A andB with a phase shifter.
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