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Abstract—Root raised cosine roll-off (RRC) filter is one of the approximation for the impulse response of the RRC filter.
most fundamental elements in modern digital communications. Then, the approximated impulse response is realized by using
This paper proposes a new method to efficiently realize the RRC 5 ransyersal filter with a very small number of taps followed

filter. The method employs cubic Hermite interpolation to obtain by int t ith simpl . truct In thi
a piecewise-polynomial approximation for the impulse response °Y 'Ntegrators with simple recursive structures. In this paper
of the RRC filter. Then, the approximated impulse response is » We refer to this type of recursive FIR filters as cascaded

efficiently realized by using a transversal filter with a very small recursive FIR (CR-FIR) filters.
number of taps followed by integrators with simple recursive  Different types of recursive FIR filters have been proposed
structure, named cascaded recursive finite impulse response (CR- ¢ various applications. For example, E. B. Hogenauer pro-
FIR) filter. As an example, an RRC filter with roll-off factor 0.5 is . . .
constructed by using the CR-FIR filter with only nine multipliers. posed a recursive FIR f_||ter strucf[ure called cgscac_ied Integrator
Performance of the RRC filter in matched filtering is examined comb (CIC) filter for interpolation and decimation [3]. S.
by computer simulations. Then, it is shown that the constructed Chu and S.Burrus studied a class of recursive FIR filters
RRC matched filter has nearly the same performance as the ideal which can efﬁcienﬂy realize piecewise_po|ynomia| impu|se
filter. responses by using a series of recursive equations [6]. R.Lehto
Index Terms—Root raised cosine roll-off filter, recursive FIR et al. proposed another recursive FIR filter structure where the
Filter, Hermite interpolation, piecewise-polynomial approxima- desired impulse response is represented by overlapped sub-
tion. polynomials and realized by feedback loops with truncation
capability [7], [8].
|. INTRODUCTION The latter two filters and the CR-FIR filter can exactly
FFICIENT realization of pulse shaping filters ancIealize an arbifcraryimpulse response expressed bygpiecewise-
polynomial with integer coefficients. Hence, their perfor-

matched filters is one of the most elemental issues Th . .
. o . ances are the same in the sense that they can realize the
modern digital communications such as software radios [1.

Pulse shaping filters are used for limiting the bandwidth %t(\a/;vivillt;:;te tiaemsz;rr:;pzlf?iii;iipo?see. mgreg;ﬁr’cghne;?ugt?;se
transmitting signals in transmitters. Matched filters are useq - ency, 1.€., ey ¢ .
same number of multipliers in the optimized implementation.

for maximizing signal 10 noise Tatio (SNR) I 1eceVers. Thiyovvever, different from the other two filers, the CR-FIR filter
combined impulse response of the pulse shaping and matche

filters is required to satisfy the Nyquist criterion to avoi é:OI’]SIStS of completely separated sections: transversal part and

inter-symbol interference (ISl). It is well known that using éntegrator part, which is the same structure as the CIC filter

pair of root raised cosine roll-off (RRC) filters with the sam except that the transversal part in the CIC filter is restricted

roll-off factor meets the requirement in additive white nois(?a0 the f°rm of com_b filters. .
Recursive FIR filters have so far been applied to conven-

nvironment [2]. . . ; : S .
environme t[.]. . ' tional low pass filters (LPF), interpolation/decimation filters,
Truncated finite impulse response (FIR) filters are com- . ; . ; :
audio equalizers, and raised cosine roll-off (RC) filters, etc.

monly used to approximately realize the RRC filter Slr]Clgut not to RRC filters. In many practical cases, RRC filters

they can yleld_lmear phase f:har acteristics [3], .[4]' Howgveére commonly realized by direct-form FIR filters truncated by
conventional direct-form realization of the FIR filter requires ) ) .
o . using rectangular or other window functions [1]. Distributed

a large number of multipliers and adders, which results If. ) : S . )
. . . . arithmetic (DA) algorithm studied in [9] is also used to realize
increasing the system costs such as processing time, poywer : . :
. . . . € RRC filters. A method to directly synthesis the waveform
consumption and memory requirements. This problem is more . . -
roposed in [10] is very efficient way to generate RRC pulses,

serious in matched filtering since the input to the match (?[hough it can not be used for matched filtering. Moreover
filter is signals with high frequency components requiring hig ' '

. studies on the realization of root Nyquist filters other than the
sampling rate.

In this paper, we propose a novel method to efficiently réR-RC[;ilt?;j’ Tf\ll]e_ BZ?” reported in a large number of papers,

a_lllze truncated RRC impulse response b)./ using recursive F‘?F%Jn this paper, we focus on the RRC filter, the most popular
filter structure. The method employs a piecewise-polynomial

root Nyquist filter. We then develop a method to realize the
K.Mukumoto is with the Division of Technical Service, Shizuoka Uni-RRC filter by using the CR-FIR filter structure. In order to

versity, Johoku 3-5-1, Naka-ku, Hamamatsu, 432-8561 Japan (e-mail: t@¥gnstruct the CR-FIR filter, the impulse response needs to be
muku@ipc.shizuoka.ac.jp).

T.Wada is with the Graduate School of Engineering, Shizuoka Universit?,x_pressed by a p.ieceWise.'p()lynlomial' We u;e Hermite_ intgrpo-
Johoku 3-5-1, Naka-ku, Hamamatsu, 432-8561, Japan. lation [14] to derive the piecewise-polynomial approximating
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Fig. 1. Cascaded realization of the moving average filter.
Fig. 2. Approximation intervals for the piecewise-polynomial.

the RRC impulse response. The polynomial approximation
using Hermite interpolation is not optimum in the sense &y generalizing the number of derivations, we derive the CR-
minimizing approximation error. However, it is simple andFIR filter which can efficiently realize any impulse response
sufficiently accurate for making the matched filter by usingxpressed by a piecewise-polynomial with integer coefficients.
the CR-FIR filter structure. It is shown by computer simulaSpecifically, if the desired impulse response is expressed by a
tions that the constructed CR-FIR filter with the piecewisgpiecewise-polynomial with degree of at masf, it can be
polynomial impulse response has enough performance as talized by cascading a transversal filter with the impulse
RRC matched filter in spite of the fact that the number gesponse given by the)M + 1)-th derivative of the desired
multipliers in the filter is very small. impulse response ard/ + 1) stages of integrators. Note that
The rest of the paper is organized as follows: We firghe transversal filter can be realized by using a small number
present a method to construct the CR-FIR filter in Section Il. bf taps since the(A + 1)-th derivative of the piecewise-
Section Ill, we derive a piecewise-polynomial approximatiopolynomial becomes always zero except near the segment
to the impulse response of the RRC filter by using Hermite itpoundaries. In the following, we describe the method to
terpolation. In Section IV, it is shown by computer simulationsonstruct this CR-FIR filter in detail.
that the CR-FIR filter with the piecewise-polynomial impulse
response has enough performance as the RRC matched ﬁg‘?rFiIter construction

Conclusions are remarked in Section V. ) ) )
Let us assume that a discrete time impulse respaéifise

Il. CR-FIR FILTER of a desired filter is defined by a piecewise-polynomial with

A Basic idea (K + 1) intervals as shown in Fig. 2, i.eifn] is given by

To explain the basic idea of the CR-FIR filter, we begin with holn] =0 n <ug
examining a moving average filter with the impulse respong@i] = Zk[fb]] . Uk—1 §<“ <upfork=1toK-1.
n| = UK —
R L) " et (4)
0 otherwise We also assume for any that the impulse respongg,[n] in

where A is a constant representing the filter gain ant$ the  k-th interval is expressed by a polynomial with degree of at
number of averaging samples. As is well known, this filtefiost A/

is efficiently realized (as a recursive FIR filter) by using a When signalz[n] is input to the filter, the outpug[n] is

recursive equation: obtained by a convolution:
y[n] = yln — 1] + Alafn] - x[n — u]), @ st
wherez[ | and y[ ] represent input and output of the filter, yln] = Z hlilaln = . ®)

i=u0

respectively. S.Chu and C.S. Burrus [6] generalized this idea
to realize filters with an arbitrary impulse response representb@e number of product operations necessary to calculate this
by a piecewise-polynomial with integer coefficients. i.e., the§auation isux_1 — ug times per each sample. However, by
realize the piecewise-polynomial impulse response by using!®ing the CR-FIR filter structure explained in the followings,
series of recursive equations. we can significantly reduce the number of operations.

On the other hand, the transfer function of the moving Let us definem-th order difference by

average filter,H(z), is expressed as B n] = RV [p] — BV — 1] ©6)
H(2) = %7 (3) andh(®[n] = h[n]. Furthermore, we define
—Zz
and this can be realized as a cascade of a transversal filter and (m)p1 = (m)[; .
an integrator as shown in Fig.1. It is worth noting here that yinl = i;wh letn =l )

the CIC filters [5] used widely in interpolation/decimation are

derived by multiplying this cascaded structure. andy(©)[n] = y[n]. Note thaty("™)[n] defined by (7) represents
In this paper, we generalize the structure in Fig.1 as follows:-th order difference ofy[n] since substituting (6) into (7)

We first recognize that the impulse response of the transvergiglds

part is the derivative of the desired impulse response. Then, Y™ ) = y™m=Vn] — ™ Yn - 1]. (8)



As we have assumed that [n] is a polynomial with degree

(M+1)
: . y ] y[n]
of at mostM, if the length of the intervalNy, = uyx — ug_1, X[l. Hu1(2) N 1 L,
) M+1 (l_z-l)M+1
is greater than\/,
B[] = V0] = 0 ©
Fig. 3. Structure of the CR-FIR filter.
holds forug_1 + M +1 <n < ug(k =1,2,---,K), where
ug = oo. Moreover, it is obvious fon < ug that
h(M+1)[n] _ h(M“)[n] o for the case thaf( is even, and
0 M (K-1)/2
Therefore (M +1)-th order difference of[n] can be obtained ¥ ™) [n] = Z{ > nMED 4 uk,l]{m[n — i — up_1]

i=1 k=1

+ (=1)MHDg[p

as follows:

—M+Fu,}
YD Z BT+ [l — i] K]

1=—00

K ug—1+M

:Z Z MY [

+ RMIVG g gy o)zln — i — U(K1)/2]] (17)

— 1] for the case thaf is odd.
k=1 i=ug_1 Accordingly, we can reduce the number of multiplications
K M per sample taM K/2 times for the case thak is even and
=Y ) M ity ]aln—i—ug_1].(11)  M(K +1)/2 times for the case that K is odd.
k=1 1:=0
From the obtained,(™*+[n], we can get the filter output E. Issues in implementation
y[n] = y?[n] by applying the recursive equation derived from For a causal filter,z-transform functions of the discrete
8): time impulse response[n] and its m-th differenceh ("™ [n]

YD) =y Dn — 1] 4 y™[n], (12) are given by
repeatedly forn = M + 1, M, ---,1 z) = Z hin]z=" (18)
The number of multiplications necessary for this CR-FIR n=0
filter is only (M + 1)K times per sample, which is needed tand -
calculate (11) Z) — Z h(m) [n}z— (19)
n=0
C. Simplification in continuous impulse response respectively. Then, the relation
If adjacent piecewise impulse responggs ;[n] and hg[n] Ho(2) = H(z)(1 — 2~ )™ (20)
have the same value at their boundary, i.e., "
holds, so that, by substitutingg = M + 1, we can get
hi—1[uk—1] = hglug—1] (13) M4l
o H(z) = Hya(2)/(1—277)" T (21)
then . S .
RO [, 1] = 0 (14) This equation implies that the transfer functiéh>) can be

realized by cascading a filter with transfer functifin; 1 (z)
holds as is shown in Appendix A. Therefore, by omitting thend an (A7 + 1)-th order integrator as shown in Fig.3. In
case ofi = 0, (11) can be simplified to this CR-FIR filter structure, the filter with transfer function
Hyr41(2) is realized by a non-recursive filter and it has a
very small number of taps since the impulse respdrjs¢ is
assumed to be a piecewise-polynomial with degree of at most
M.
) S o As is seen from (21), in order that the CR-FIR filter has truly
D. Simplification in symmetric impulse response finite impulse response ;.1 [z] must be perfectly divisible
Linear phase filters require symmetric impulse responsésy, (1 — z~1)M+1, If all the coefficients of the piecewise-
so that the case of symmetric impulse response is particulgolylynomial h[n] are integer valuesH,.1[z] satisfying the
important in practice. If the discrete time impulse respons®ndition can be easily obtained by calculating (20) o=
h[n] is symmetric, (15) can further be simplified as is shown/ + 1.
in Appendix B. i.e., In practice, however, the impulse response of a desired filter
is rarely given as a piecewise-polynomial with integer coeffi-

K M

ZZh(MH i+ug—1]zn—1i—ug_1]. (15)

k=11i=1

y M+

M K/2

(M+1) (M+1 { L cients. Thus, in order to realize a filter by using the CR-FIR
Y z; kz:l h [+ k] zln — 1= we] filter structure, we first need to find an appropriate piecewise-
’ (M41) _ polynomial with integer coefficients that can approximate the
+(-1) zln — M +1i— uK—k]} (16)  desired impulse response or its constant multiple. Furthermore,



all operations must be performed in integer arithmetic so asAo cubic Hermite polynomial approximation
prevent the instability caused by rounding errors. Note that no,, general, cubic Hermite polynomial interpolation imposes

roundoff error is commonly required in recursive FIR ﬁlter%onditions that the approximating polynomial and the ap-

using integrators. This is because the integrator has a pole,alyimated function have the same values and derivatives

z=1 so that the output of the filter grows without bound if thg; ihe both boundary points of the approximation interval.

pole is not exactly canceled. . - That is, representing the approximated functionfés) and
Now, let the impulse response of a desired filter in coRpe approximation interval agrz,z), we can obtain the

tinuous system be represented by(t). The discrete time .gefficients of the approximating polynomial

impulse responsé,[n] corresponding toh,(t) is given by

ho[n] = ho(nAt) At when the sampling rate i/ At. In order P(z) = ar® + br* + cx +d (28)

to realize the filter by using the CR-FIR filter structure, we first .

approximateh, (¢) by a continuous time piecewise-polynomialT®m conditions

P,(t) with real-valued coefficeints. Thet®,,(t) is sampled P(xr) = f(z1) , Plzv) = flav),

at sampling ratel /At and multipled by an appropriate con- , , , ,

stantK,, to obtain a discrete time piecewise-polynomil] Plar) = fzr) , Plav) = fav). (29)

with integer coefficients. Thus, the impluse response of the

CR-FIR filter becomesk, /At times larger than that of the B. Deciding approximation intervals

original filter, i.e., The cubic Hermite polynomial interpolation uniquely de-

_ ~ _ termines an approximate polynomial when its approximation

P = Pro(nAt)K,~h,(nAt)K, = ho[n|K,/At. (22) . 8 ) . . . .
hln] = Pho(nAt Kp=ho(nADK, I}/ (22) interval is decided. We thus consider in this section how to
Therefore, in order to prevent the system overflow, the inpfigcide the best approximation intervals to approximate the

z to the CR-FIR filter is required to satisfy the condition: impulse responsé:(t) of RRC filter for an application to
the matched filtering. Sincé(t) is symmetric with respect

> _ to t = 0 and this is the constraint for the filter having linear
T < y””‘“‘At/{KP Z |h°(2At)At|}’ (23) phase response, it is reasonable to assume that an approximate
T polynomial P (t) is also symmetric, i.e.,
where y.... represents the maximum number in the system.
In other words, smallefs, is required to enlarge the input
dynamic range. We thus consider only non-negative region. Moreover, for
simplicity, we consider only the case that there are three
approximation intervals in the non-negative region, i.e., Six
approximation intervals in all. Let us put the first boundary
The impulse response of an RRC filter with roll-off factopoint att = 0 and denote the second and third pointstly

Pu(t) = Pu(=t). (30)

1. ROOT RAISED COSINE FILTER

a is given by andt., respectively. Then, the approximate polynomialt)
1 1 4 is expressed by
. 6}
h(t) = T Taor 2 (Gat)? [E SlH((l*O&)Wf)‘i*? cos((1+oz)7rt>}, P (t) 0<t<t
(24) Ph(t) = Phg(t) t1 <t<ty (31)
wheret is normalized by the symbol period. Note that this Pr3(t) =0 to <t

equation has the following singular points:
q gsing P wherePy,1(t), Pra(t), and Py3(t) represent approximate poly-

t=0andt = +1/(4a). (25) nomials for each region, respectively.
At ¢t = 0, it is derived from (24) and (26) that
The values at these points are given by

h(0)=1-—a+4a/m (32)
h0)=1—-a+4a/m (26) and
b+ I, l14+a . /(14+a)r 2 . (1—-a)r For deciding t2, we begin by assuming thaP,(t) is
( @) D) Sm( dev ) T bm( dov )’ continuous at,. By this assumptionP;,»(t,) must be0 since
) (27) Pp(t) = Prs(t) = 0 for ¢ > to. Thus,ts is selected from the
respectively. points satisfying
In the followings, we will present a way to approximate h(t) = 0. (34)

(24) by a piecewise-polynomial. There are various kinds of

methods to approximate a function by a polynomial. Amongdmong those points, in this paper, we choose the second
such methods, in this paper, we choose to employ culimallest positive point ag, so that the curve ofi(¢) in
Hermete interpolation algorithm since it is simple and givaggion (¢1,t2) can be sufficiently approximated by a cubic
sufficient approximation for use in the CR-FIR filter. polynomial.



To determineg, let us consider the case that an RRC pulddowever, these polynomials do not satisfy the conditions
p(t) expressed by the same equatiom@s, namely (24), is to simplify the CR-FIR filter structure, i.e., the continuous
input to the filter. Then, the output is given by conditions:

[ee] Phl[tl/At} = th[tl/At] (43)
v0) = [ Pupele =N dn (35)

o and
Since we are assuming that the filter is applied to matched Phaltz/At] = 0. (44)
filtering, ¢; should be determined so that the filter output (35) We thus adjust the polynomials as follows: The coefficients
has minimum ISI at the Nyquist instants. For easily find sualf || are fixed at the values in (41) and (42), respectively.
a point, we ignore the case of> 2 and adopt an evaluation The coefficient of|n| in (41) is also fixed a0 to smoothly
function: connect the polynomials at = 0. The other coefficients
J={y(1) +y*(2)}/y*(0). (36) are adjusted so as to satisfy the conditions of (43), (44), and

Then, t; is decided as the point to minimize (36) by usinéijther additional condition:

numerical calculation. Py [t/ At = Pj ot/ At) (45)

In practice,t; and t, are needed to be set to intege . . .
multiples of the sampling period. Moreover, to avoid instabilitFor smoothing the connection between the polynomials (41)

caused by rounding errors, coefficients of the approxima gdﬁ(42).tAmotng t.he E);]ecemsde_t-.polynommls W':]ht;]he mteg;}art
polynomial are required to be integer values. Therefare.,, coefficients satisfying the conditions, we searc € one tha

and the coefficients have to be adjusted to meet the conditidgMmizes the evaluation function (36). by using numencal
in filter designing calculation. The exact way to calculate) in (36) is explained

in Section IV. By this operation, we obtain the following
adjusted piecewise-polynomial:
C. Example

) . Papi[n] In| < 17
As an example, we here consider an RRC matched filter Pan[n] = { Panaln] 17 < |n| < 34 (46)
with roll-off factor a = 0.5 and sampling period\t = 0.05. Papaln] =0 34 < |n]

For the case oft = 0.5, although the second smallest positive
point among the points satisfying (34) 169- - -, we choose Where
t2h: 1h7 sg that itdbecomdes integer rrr]]ultiplt_es dft. On the Panln] = 2nf* —62[n|? + 0ln| + 8092, (47)
other hand, in order to determing, the point minimizing 3 9
(36) is obtained a6.87- - - by numerical calculation. Then, we Papaln] - = —=[nf" + 90|n|" — 2567|n| + 22542. (48)
chooset; = 0.85, the nearest value among integer multiples In Fig.4, the normalized form of this approximate piecewise-
of At. polynomial given by

For these intervals, the cubic Hermite polynomial approxi-
mation yields

34
> PAliJAL (49)

1=—34

Pah(nAt) = Pah,[n] = Pah[n]/
P (t) [t] < 0.85
Pi(t) =\ Pa(t) 0.85 < |t] <1.7 (7 is shown by a solid line together with the theoretical RRC
Prs(t) =0 1.7 <[t impulse response (24) depicted by a dashed line. We see
where from the figure that the approximate piecewise-polynomial is
almost the same as the theoretical RRC impulse response in
Pu(t) = 2.03|t]* —3.26t|* + 0t + 1.137, (38)  the approximation interval—1.7,1.7).

Puo(t) = —1.08|t|> +4.97|t|* — 7.26|t| + 3.27. (39)

In order to use the polynomial as the impulse respon?e IMPLEMENTATION
of the CR-FIR filter, we first discretize the time with¢, By shifting P,;[n] by 34 samples, we can obtain a causal
and then quantize the coefficients Bf;(¢t) and P,»(t) after impulse respons@.[n] represented by
multiplying an appropriate constant. We choose the constant Paln] |n—34 <17
K, = (1/At)?/1.015 so that the coefficients of the highest ol -

R P c = c < - <
order terms in (38) and (39) are to be small integers. Then, Feln] (I;ZM ;)Z - IZ _ gj{ 34 (50)
we get <
where
Ppy[n] In] < 17
Kp-Py(nAH)=Py[n] = { Pua[n] 17 < |n| < 34 P.1[n] = 2|n—34)> —62|n—34| +8092, (51)
Puz[n] =0 34 <|[n (40) Py[n] = —|n—34]3490|n—34|>— 256 7|n—34|4-22542. (52)
where The number of intervals for the piecewise-polynomial approxi-
5 ) mation isK +1 = 6, so thatK is an odd number. Then, setting
Puiln] = 2[n|[” = 64|n|” 4 O[n| + 8958, (41)  the boundary points asy = 0, u; = 17, us = 34, uz = 52,

Ppa(n] —|n|® + 98|n|* — 2862|n| + 25771. (42) wuy = 69, P.[n] is symmetric with respect ta = u, and
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Fig. 4. Comparison with the piecewise-polynomial and the RRC impulse f
response.

Fig. 5. Frequency response.
continuous atuy_1(k = 1,2,3). Thus, (17) can be applied to
obtainy ¥ [n]. The coefficients needed to calculaté)[n] are
P.W[i +up_1](k =1,2,3;i = 1,2,3) and they are obtained
from (6) as — CR-FIR
P.W[]=—-96, P.W[2] =174, P.YW[3=-72
P18 = -2, P.W[19 =-12, P.W[20] = —4,
P.W[35) =4, P.W[3e]=16, P.Y[37]=4.

Amplitude

Output of the filter,y(?)[n], is obtained by integrating®) [n]
four times by using the recursive equation (12).

IV. PERFORMANCE EVALUATION ] 1\\//2 It] 3

The frequency response of the constructed CR-FIR filter is
depicted by a solid line in Fig.5, where theaxis represents Frig. 6. Output of the matched filter.
the frequency normalized by the symbol rate. For the sake of
comparison, the frequency responses of the ideal RRC filter

and truncated FIR (TR-FIR) filter with rectangular windowsyajuation function (36) to derive the adjusted piecewise-
of the length69 samples (the same response length as thg|ynomial (46).

CR-FIR filter) are also shown by a dashed line and a dot-,, Fig.6, the output signal(nAt) from the CR-FIR filter is

dashed line, respectively. All the three filters are designed iggicted by a solid line together with the theoretical RC pulse

matched filtering the RRC pulse with roll off factor 0.5. Wejgna| depicted by a dashed line, which represents the output

see from the figure that the CR-FIR filter has better stop baglna| from the ideal RRC filter. We see that both curves are

attenuation (i.e., in the sense that it has smaller side lobes upd y similar. Moreover, the curve with solid line also haat

the third one) than thg TR-FIR filter althqugh iF is designegz 0 and almos® at || = 1,2, ..., meaning that the IS is

to reduce the ISI. This is because the piecewise-polynomialyy smal|. In fact, the amount of ISI approximately evaluated

impulse response in the CR-FIR filter, derived by Hermitgy ‘s hstituting (53) into (36) i9.00019. The output signal

polynomial approximation, is smoothly connected. __from the TR-FIR filter is not depicted in the figure since it is
Next, we consider the IS performance of the CR-FIR filtef),ost the same as the solid line. The amount of ISI for the

in the matched filtering. For that purpose, an ideal RReg kR filter evaluated by (36) i6.00023, a slightly larger
pulse p.(t), which is equal toh(t) in (24), is assumed to than that of the CR-FIR filter.

be fed to the filter. Then, let us denote the input and output
signals to the filter in the discrete time system pyn]

and y[n|, respectively. In this case, by noting thafn] and
y[n] respectively correspond to inppf(nAt)At and output
y(nAt)At in the continuous time system, we can get

Finally, we evaluate the performance of the CR-FIR filter in
the classical quadrature amplitude modulation (QAM) systems
[2] by computer simulations. In the QAM demodulator, perfect
carrier synchronization is assumed, so that the in-phase and
guadrature phase signals are independent series of RRC pulses
with different levels. Those pulses are applied to the matched
filter and the outputs of the each matched filter are assumed to
be sampled at perfect timing to decide the received symbol.
wherePh[n] is the (non-causal) normalized impulse responséhe average pulse energy per bit is denotedHyyand the
defined in (49). Thisy(nAt) is used for calculating the additive white gaussian noise (AWGN) with one sided power

y(nAt) = y[n]/ At = Ait _Z pelilPu[n — i), (53)

1=—00



10° — T number of taps followed by integrators with simple recursive

— Theor.  a=05 structures. We have referred to this type of recursive FIR filters

° CR-FIR_ as CR-FIR filters. The CR-FIR filter can further be simplified

* TRFIR when the piecewise-polynomial is continuous and/or symmet-
10°2 ric. To easily obtain a piecewise-polynomial that approximates

o an RRC impulse response, we have proposed to take advantage

H 3 » 64QAM of Hermite interpolation. As an example, we have designed

107 an RRC filter with roll-off factor0.5. The RRC filter can be
realized by a CR-FIR filter with only nine multipliers. Then, it
7 is shown that the filter exhibits almost the same performance
® to the ideal RRC filter when it is used as matched filters in
. QPSK and 16QAM demodulators.

The advantage of recursive FIR filters such as the CR-FIR
filter to other FIR filters is the lower arithmetic complexity.
The number of required multipliers for the recursive FIR
filters is proportional to the number of intervals for the
piecewise-polynomial and the order of the polynomial rather
than the actual filter order, so that the recursive FIR filters

e particularly efficient for systems with high over sampling

QAM demodulators (4QAM, 16QAM, and 64 QAM) with actor. The advantage of the CR-FIR filter to other recursive

the in-phase and quadrature phase matched filters realized | fllltetrsl IS CO”CinU?:tandtStrlthturaI S|mp||c|ty__|Dueb tto_ thtﬁ
using the CR-FIR filter structure explained in IlI-D. Crosse Ompletely separated HIer Sructure, we can eastly obtain the

represent SER performances for the case that the TR- | tap gains only by calculating +1)-th order difference

filters are used as the matched filters. The curves with sof trllti desrllrgd [[r;'pulse responze. f d ving th
line represent the theoretical SER performances. As is se Fll?iufglt mt IS !{36;1pedr f\_/:{[e . ave_t ocusel oln zpp ylngf €
from the figure, the circles and crosses exhibit almost the,~ liter 1o matched hitering, 1t can clearly beé used for

same performance in spite of the fact that the CR-FIR filtﬁﬁlse shaping as well. Discussions on applying the CR-FIR

requires only9 multiplications per sample whereas the TR- er to pulse shapl.n.g are left for a f_uture Paper. Moreqver,
FIR filter requires69 multiplications per sample. Moreover,swd'es on more efficient implementation of the CR-FIR filers

we see from the figure that both the simulation results eXhil?IY taking the advantage of the completely cascaded structure

nearly the same performance as the theoretical curves althoﬂéﬁ also left as a future work. Practical issues such as effects

they slightly degrade at highe, /N, in 64QAM. of analog fron'F—end and influence of symbol timing jitter [15]
In this section, we have demonstrated the performancesacg? also remained for future works.

the CR-FIR filter by using a concrete example constructed in

Section Ill. Then, it is shown that the CR-FIR filter realizing APPENDIXA

piecewise-polynomial impulse response derived by Hermites'MP"”:'CAT'O'\I FOR CONTINUOUS IMPULSE RESPONSE

approximation has sufficient performances as the matchediere, we consider the case that

fllte_rs in QPSK and 16 QAM demodulators. nge |'§ is worth hpo—1 [tge—1] = o [uge—1] (A1)

noting that the performance of the CR-FIR filter is mostly

determined by the realizing polynomial impulse respong@duy_1—ug—2 > M +1 whereuy_» andu_, are arbitrary

since the CR-FIR filter can exactly realize the polynomiddjacent boundary points. In this case, we can write

impulse response with integer coefficients. This implies the (/11 M M

possibility to further improve the performance by using more nt )[uk—l] = hl(c—i[u —1] — hl(c—i[uk—l -1. (A2

sophisticated approximation methods instead of the Hermilaen, by repeatedly substituting (6) for the first term, it

approximation. However, more easy way to improve theecomes

performance is increasing the number of intervals for the M

piecewise-polynomial since the Hermite approximation andh®+(u, 1] = b\ [uy_ 1] — > W™ w1 — 1], (A3)

the CR-FIR filter structure can be straightforwardly extended m=0

for realizing the piecewise-polynomial with lager number o&jhce we can rewrite the second summation as

intervals. M M
m m m+1
> h™ fur—y — 1] > {hé_)l [ur—1] — A" )[ukfﬂ}
V. CONCLUSION m=0

m=0
In this paper, we have proposed a novel method to very W [uk—1) = B fug—1], (A4)
efficiently realize RRC filters by using recursive FIR f"teZA.?) becomes
structure. The method assumes that the impulse response o
the filter is given by a piecewise-polynomial. Then, the fitteh ™" [u, 1] = h\” [ux_1] — h\” fun—1] + B gy
is realized by using a transversal filter with a very small (A.5)

10 =

104

10°

Eb/NO [dB]

Fig. 7. SER performances of QAM demodulators.

spectral densityV, is assumed.
In Fig.7, circles represent symbol error rates (SER) for t



h[n] Equation (16) can be derived from this equation by changing
n the order of the summations and omitting the case tkat)
— —"* 0 > since the impulse response in (16) is assumed to be continuous
T
o U atup_1(k=1,2,---, K/2).

[The case thaf< is odd]

In the case thaf< is an odd number, (B.3) holds for any
k exceptk = (K — 1)/2 + 1. Therefore, in the calculation
The first term is canceled by the second term. Moreover, singethe outer summation in (11), we consider separately the
we have assumed thaj,_; [n] is a polynomial with degree of 555 wheré<(K —1)/2, k = (K +1)/2, or k>(K +3)/2.

at mostM anduy—1 — up—o > M + 1, the third term must Then, substituting (B.4) for the summation of the case where
be 0. Therefore, we derive the result: k>(K + 3)/2, it becomes

Fig. B.1. Symmetric impulse response.

h(MJfl)[uk,ﬂ =0. (A.6) (K-1)/2 M
(M+1) — h(M+1) i 4 3 o B
APPENDIXB Yy [] kZ::l ; [i + uk—1]z[n — i — up—_1]

SIMPLIFICATION FOR SYMMETRIC IMPULSE RESPONSE

Here, we consider the case thdh] is a symmetric impulse + (
response and assume that the start painand the end point
up_1 are located as shown in Fig. B.1. In this case, it holds
the following equation: + ) MG ey polaln — i — uge—1) /).
(B.1 =0

. . ] ~ Equation (17) can be derived from this equation by almost the
frqm the qssumpnon of symmetry. Then, by induction usinggme way as the case that is even, i.e., by replacing the
this equation and (6), we can derive variable, changing the order of the summations, and omitting

R g 4+ n] = (=1)™h ™ ug 1 —1 —n+m). the case thai = 0 since the impulse response in (17) is

(B.2)
) , assumed to be continuous@t_;(k =1,2,--- (K —1)/2).
In the followings, let us consider separately the cases where

K is even or odd.

K M

_p)MH Z Z AMAD [ e ] [n—MA4i—up_1]
k=(K+3)/2 i=0

(B.7)

hlug + n] = hlug—1 — 1 —n]
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