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Abstract—Root raised cosine roll-off (RRC) filter is one of the
most fundamental elements in modern digital communications.
This paper proposes a new method to efficiently realize the RRC
filter. The method employs cubic Hermite interpolation to obtain
a piecewise-polynomial approximation for the impulse response
of the RRC filter. Then, the approximated impulse response is
efficiently realized by using a transversal filter with a very small
number of taps followed by integrators with simple recursive
structure, named cascaded recursive finite impulse response (CR-
FIR) filter. As an example, an RRC filter with roll-off factor 0.5 is
constructed by using the CR-FIR filter with only nine multipliers.
Performance of the RRC filter in matched filtering is examined
by computer simulations. Then, it is shown that the constructed
RRC matched filter has nearly the same performance as the ideal
filter.

Index Terms—Root raised cosine roll-off filter, recursive FIR
Filter, Hermite interpolation, piecewise-polynomial approxima-
tion.

I. I NTRODUCTION

EFFICIENT realization of pulse shaping filters and
matched filters is one of the most elemental issues in

modern digital communications such as software radios [1].
Pulse shaping filters are used for limiting the bandwidth of
transmitting signals in transmitters. Matched filters are used
for maximizing signal to noise ratio (SNR) in receivers. The
combined impulse response of the pulse shaping and matched
filters is required to satisfy the Nyquist criterion to avoid
inter-symbol interference (ISI). It is well known that using a
pair of root raised cosine roll-off (RRC) filters with the same
roll-off factor meets the requirement in additive white noise
environment [2].

Truncated finite impulse response (FIR) filters are com-
monly used to approximately realize the RRC filter since
they can yield linear phase characteristics [3], [4]. However,
conventional direct-form realization of the FIR filter requires
a large number of multipliers and adders, which results in
increasing the system costs such as processing time, power
consumption and memory requirements. This problem is more
serious in matched filtering since the input to the matched
filter is signals with high frequency components requiring high
sampling rate.

In this paper, we propose a novel method to efficiently re-
alize truncated RRC impulse response by using recursive FIR
filter structure. The method employs a piecewise-polynomial
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approximation for the impulse response of the RRC filter.
Then, the approximated impulse response is realized by using
a transversal filter with a very small number of taps followed
by integrators with simple recursive structures. In this paper
, we refer to this type of recursive FIR filters as cascaded
recursive FIR (CR-FIR) filters.

Different types of recursive FIR filters have been proposed
for various applications. For example, E. B. Hogenauer pro-
posed a recursive FIR filter structure called cascaded integrator
comb (CIC) filter for interpolation and decimation [5]. S.
Chu and S.Burrus studied a class of recursive FIR filters
which can efficiently realize piecewise-polynomial impulse
responses by using a series of recursive equations [6]. R.Lehto
et al. proposed another recursive FIR filter structure where the
desired impulse response is represented by overlapped sub-
polynomials and realized by feedback loops with truncation
capability [7], [8].

The latter two filters and the CR-FIR filter can exactly
realize an arbitrary impulse response expressed by a piecewise-
polynomial with integer coefficients. Hence, their perfor-
mances are the same in the sense that they can realize the
filter with the same impulse response. Moreover, these filters
have almost the same efficiency, i.e., they can construct the
same number of multipliers in the optimized implementation.
However, different from the other two filters, the CR-FIR filter
consists of completely separated sections: transversal part and
integrator part, which is the same structure as the CIC filter
except that the transversal part in the CIC filter is restricted
to the form of comb filters.

Recursive FIR filters have so far been applied to conven-
tional low pass filters (LPF), interpolation/decimation filters,
audio equalizers, and raised cosine roll-off (RC) filters, etc.
but not to RRC filters. In many practical cases, RRC filters
are commonly realized by direct-form FIR filters truncated by
using rectangular or other window functions [1]. Distributed
arithmetic (DA) algorithm studied in [9] is also used to realize
the RRC filters. A method to directly synthesis the waveform
proposed in [10] is very efficient way to generate RRC pulses,
although it can not be used for matched filtering. Moreover,
studies on the realization of root Nyquist filters other than the
RRC filters have been reported in a large number of papers,
e.g. [3], [4], [11]–[13].

In this paper, we focus on the RRC filter, the most popular
root Nyquist filter. We then develop a method to realize the
RRC filter by using the CR-FIR filter structure. In order to
construct the CR-FIR filter, the impulse response needs to be
expressed by a piecewise-polynomial. We use Hermite interpo-
lation [14] to derive the piecewise-polynomial approximating
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Fig. 1. Cascaded realization of the moving average filter.

the RRC impulse response. The polynomial approximation
using Hermite interpolation is not optimum in the sense of
minimizing approximation error. However, it is simple and
sufficiently accurate for making the matched filter by using
the CR-FIR filter structure. It is shown by computer simula-
tions that the constructed CR-FIR filter with the piecewise-
polynomial impulse response has enough performance as the
RRC matched filter in spite of the fact that the number of
multipliers in the filter is very small.

The rest of the paper is organized as follows: We first
present a method to construct the CR-FIR filter in Section II. In
Section III, we derive a piecewise-polynomial approximation
to the impulse response of the RRC filter by using Hermite in-
terpolation. In Section IV, it is shown by computer simulations
that the CR-FIR filter with the piecewise-polynomial impulse
response has enough performance as the RRC matched filter.
Conclusions are remarked in Section V.

II. CR-FIR FILTER

A. Basic idea

To explain the basic idea of the CR-FIR filter, we begin with
examining a moving average filter with the impulse response:

h[n] =
{
A 0 ≤ n < u
0 otherwise

, (1)

whereA is a constant representing the filter gain andu is the
number of averaging samples. As is well known, this filter
is efficiently realized (as a recursive FIR filter) by using a
recursive equation:

y[n] = y[n− 1] +A(̇x[n]− x[n− u]), (2)

wherex[ ] and y[ ] represent input and output of the filter,
respectively. S.Chu and C.S. Burrus [6] generalized this idea
to realize filters with an arbitrary impulse response represented
by a piecewise-polynomial with integer coefficients. i.e., they
realize the piecewise-polynomial impulse response by using a
series of recursive equations.

On the other hand, the transfer function of the moving
average filter,H(z), is expressed as

H(z) =
A(̇1− z−u)

1− z
, (3)

and this can be realized as a cascade of a transversal filter and
an integrator as shown in Fig.1. It is worth noting here that
the CIC filters [5] used widely in interpolation/decimation are
derived by multiplying this cascaded structure.

In this paper, we generalize the structure in Fig.1 as follows:
We first recognize that the impulse response of the transversal
part is the derivative of the desired impulse response. Then,
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Fig. 2. Approximation intervals for the piecewise-polynomial.

by generalizing the number of derivations, we derive the CR-
FIR filter which can efficiently realize any impulse response
expressed by a piecewise-polynomial with integer coefficients.
Specifically, if the desired impulse response is expressed by a
piecewise-polynomial with degree of at mostM , it can be
realized by cascading a transversal filter with the impulse
response given by the(M + 1)-th derivative of the desired
impulse response and(M +1) stages of integrators. Note that
the transversal filter can be realized by using a small number
of taps since the(M + 1)-th derivative of the piecewise-
polynomial becomes always zero except near the segment
boundaries. In the following, we describe the method to
construct this CR-FIR filter in detail.

B. Filter construction

Let us assume that a discrete time impulse responseh[n]
of a desired filter is defined by a piecewise-polynomial with
(K + 1) intervals as shown in Fig. 2, i.e.,h[n] is given by

h[n] =

h0[n] = 0 n < u0

hk[n] uk−1 ≤ n < uk for k = 1 to K − 1
hK [n] = 0 uK−1 ≤ n

.

(4)
We also assume for anyk that the impulse responsehk[n] in
k-th interval is expressed by a polynomial with degree of at
mostM .

When signalx[n] is input to the filter, the outputy[n] is
obtained by a convolution:

y[n] =

uK−1−1∑
i=u0

h[i]x[n− i]. (5)

The number of product operations necessary to calculate this
equation isuK−1 − u0 times per each sample. However, by
using the CR-FIR filter structure explained in the followings,
we can significantly reduce the number of operations.

Let us definem-th order difference by

h(m)[n] = h(m−1)[n]− h(m−1)[n− 1] (6)

andh(0)[n] = h[n]. Furthermore, we define

y(m)[n] =

∞∑
i=−∞

h(m)[i]x[n− i] (7)

andy(0)[n] = y[n]. Note thaty(m)[n] defined by (7) represents
m-th order difference ofy[n] since substituting (6) into (7)
yields

y(m)[n] = y(m−1)[n]− y(m−1)[n− 1]. (8)
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As we have assumed thathk[n] is a polynomial with degree
of at mostM , if the length of the interval,Nk = uk − uk−1,
is greater thanM ,

h(M+1)[n] = h
(M+1)
k [n] = 0 (9)

holds foruk−1 +M + 1 ≤ n < uk(k = 1, 2, · · · ,K), where
uK = ∞. Moreover, it is obvious forn < u0 that

h(M+1)[n] = h
(M+1)
0 [n] = 0. (10)

Therefore,(M+1)-th order difference ofy[n] can be obtained
as follows:

y(M+1)[n] =
∞∑

i=−∞
h(M+1)[i]x[n− i]

=

K∑
k=1

uk−1+M∑
i=uk−1

h(M+1)[i]x[n− i]

=

K∑
k=1

M∑
i=0

h(M+1)[i+uk−1]x[n−i−uk−1].(11)

From the obtainedy(M+1)[n], we can get the filter output
y[n] = y(0)[n] by applying the recursive equation derived from
(8):

y(m−1)[n] = y(m−1)[n− 1] + y(m)[n], (12)

repeatedly form = M + 1,M, · · · , 1.
The number of multiplications necessary for this CR-FIR

filter is only (M +1)K times per sample, which is needed to
calculate (11).

C. Simplification in continuous impulse response

If adjacent piecewise impulse responseshk−1[n] andhk[n]
have the same value at their boundary, i.e.,

hk−1[uk−1] = hk[uk−1] (13)

then
h(M+1)[uk−1] = 0 (14)

holds as is shown in Appendix A. Therefore, by omitting the
case ofi = 0, (11) can be simplified to

y(M+1)[n] =
K∑

k=1

M∑
i=1

h(M+1)[i+uk−1]x[n− i−uk−1]. (15)

D. Simplification in symmetric impulse response

Linear phase filters require symmetric impulse responses,
so that the case of symmetric impulse response is particularly
important in practice. If the discrete time impulse response
h[n] is symmetric, (15) can further be simplified as is shown
in Appendix B. i.e.,

y(M+1)[n] =
M∑
i=1

K/2∑
k=1

h(M+1)[i+ uk−1]
{
x[n− i− uk−1]

+ (−1)(M+1)x[n−M + i− uK−k]
}

(16)
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Fig. 3. Structure of the CR-FIR filter.

for the case thatK is even, and

y(M+1)[n] =
M∑
i=1

[(K−1)/2∑
k=1

h(M+1)[i+ uk−1]
{
x[n− i− uk−1]

+ (−1)(M+1)x[n−M + i− uK−k]
}

+ h(M+1)[i+ u(K−1)/2]x[n− i− u(K−1)/2]

]
(17)

for the case thatK is odd.
Accordingly, we can reduce the number of multiplications

per sample toMK/2 times for the case thatK is even and
M(K + 1)/2 times for the case that K is odd.

E. Issues in implementation

For a causal filter,z-transform functions of the discrete
time impulse responseh[n] and itsm-th differenceh(m)[n]
are given by

H(z) =
∞∑

n=0

h[n]z−n (18)

and

Hm(z) =

∞∑
n=0

h(m)[n]z−n, (19)

respectively. Then, the relation

Hm(z) = H(z)(1− z−1)m (20)

holds, so that, by substitutingm = M + 1, we can get

H(z) = HM+1(z)/(1− z−1)M+1. (21)

This equation implies that the transfer functionH(z) can be
realized by cascading a filter with transfer functionHM+1(z)
and an(M + 1)-th order integrator as shown in Fig.3. In
this CR-FIR filter structure, the filter with transfer function
HM+1(z) is realized by a non-recursive filter and it has a
very small number of taps since the impulse responseh[n] is
assumed to be a piecewise-polynomial with degree of at most
M .

As is seen from (21), in order that the CR-FIR filter has truly
finite impulse response,HM+1[z] must be perfectly divisible
by (1 − z−1)M+1. If all the coefficients of the piecewise-
polynomial h[n] are integer values,HM+1[z] satisfying the
condition can be easily obtained by calculating (20) form =
M + 1.

In practice, however, the impulse response of a desired filter
is rarely given as a piecewise-polynomial with integer coeffi-
cients. Thus, in order to realize a filter by using the CR-FIR
filter structure, we first need to find an appropriate piecewise-
polynomial with integer coefficients that can approximate the
desired impulse response or its constant multiple. Furthermore,
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all operations must be performed in integer arithmetic so as to
prevent the instability caused by rounding errors. Note that no
roundoff error is commonly required in recursive FIR filters
using integrators. This is because the integrator has a pole at
z=1 so that the output of the filter grows without bound if the
pole is not exactly canceled.

Now, let the impulse response of a desired filter in con-
tinuous system be represented byho(t). The discrete time
impulse responseho[n] corresponding toho(t) is given by
ho[n] = ho(n∆t)∆t when the sampling rate is1/∆t. In order
to realize the filter by using the CR-FIR filter structure, we first
approximateho(t) by a continuous time piecewise-polynomial
Pho(t) with real-valued coefficeints. Then,Pho(t) is sampled
at sampling rate1/∆t and multipled by an appropriate con-
stantKp to obtain a discrete time piecewise-polynomialPh[n]
with integer coefficients. Thus, the impluse response of the
CR-FIR filter becomesKp/∆t times larger than that of the
original filter, i.e.,

Ph[n] = Pho(n∆t)Kp≃ho(n∆t)Kp = ho[n]Kp/∆t. (22)

Therefore, in order to prevent the system overflow, the input
x to the CR-FIR filter is required to satisfy the condition:

x < ymax∆t
/{

Kp

∞∑
i=−∞

|ho(i∆t)∆t|
}
, (23)

whereymax represents the maximum number in the system.
In other words, smallerKp is required to enlarge the input
dynamic range.

III. ROOT RAISED COSINE FILTER

The impulse response of an RRC filter with roll-off factor
α is given by

h(t) =
1

1− (4αt)2

[ 1

πt
sin

(
(1−α)πt

)
+
4α

π
cos

(
(1+α)πt

)]
,

(24)
where t is normalized by the symbol period. Note that this
equation has the following singular points:

t = 0 and t = ±1/(4α). (25)

The values at these points are given by

h(0) = 1− α+ 4α/π (26)

and

h(± 1

4α
) =

1 + α

2
sin

( (1 + α)π

4α

)
+

2α

π
sin

( (1− α)π

4α

)
,

(27)
respectively.

In the followings, we will present a way to approximate
(24) by a piecewise-polynomial. There are various kinds of
methods to approximate a function by a polynomial. Among
such methods, in this paper, we choose to employ cubic
Hermete interpolation algorithm since it is simple and gives
sufficient approximation for use in the CR-FIR filter.

A. cubic Hermite polynomial approximation

In general, cubic Hermite polynomial interpolation imposes
conditions that the approximating polynomial and the ap-
proximated function have the same values and derivatives
at the both boundary points of the approximation interval.
That is, representing the approximated function asf(x) and
the approximation interval as(xL, xU ), we can obtain the
coefficients of the approximating polynomial

P (x) = ax3 + bx2 + cx+ d (28)

from conditions

P (xL) = f(xL) , P (xU ) = f(xU ),

P ′(xL) = f ′(xL) , P ′(xU ) = f ′(xU ). (29)

B. Deciding approximation intervals

The cubic Hermite polynomial interpolation uniquely de-
termines an approximate polynomial when its approximation
interval is decided. We thus consider in this section how to
decide the best approximation intervals to approximate the
impulse responseh(t) of RRC filter for an application to
the matched filtering. Sinceh(t) is symmetric with respect
to t = 0 and this is the constraint for the filter having linear
phase response, it is reasonable to assume that an approximate
polynomialPh(t) is also symmetric, i.e.,

Ph(t) = Ph(−t). (30)

We thus consider only non-negative region. Moreover, for
simplicity, we consider only the case that there are three
approximation intervals in the non-negative region, i.e., six
approximation intervals in all. Let us put the first boundary
point at t = 0 and denote the second and third points byt1
and t2, respectively. Then, the approximate polynomialPh(t)
is expressed by

Ph(t) =

Ph1(t) 0 ≤ t < t1
Ph2(t) t1 ≤ t < t2
Ph3(t) = 0 t2 ≤ t

(31)

wherePh1(t), Ph2(t), andPh3(t) represent approximate poly-
nomials for each region, respectively.

At t = 0, it is derived from (24) and (26) that

h(0) = 1− α+ 4α/π (32)

and
h′(0) = 0. (33)

For deciding t2, we begin by assuming thatPh(t) is
continuous att2. By this assumption,Ph2(t2) must be0 since
Ph(t) = Ph3(t) = 0 for t ≥ t2. Thus,t2 is selected from the
points satisfying

h(t) = 0. (34)

Among those points, in this paper, we choose the second
smallest positive point ast2 so that the curve ofh(t) in
region (t1, t2) can be sufficiently approximated by a cubic
polynomial.
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To determinet1, let us consider the case that an RRC pulse
pt(t) expressed by the same equation ash(t), namely (24), is
input to the filter. Then, the output is given by

y(t) =

∫ ∞

−∞
Ph(λ)pt(t− λ) dλ. (35)

Since we are assuming that the filter is applied to matched
filtering, t1 should be determined so that the filter output (35)
has minimum ISI at the Nyquist instants. For easily find such
a point, we ignore the case oft > 2 and adopt an evaluation
function:

J =
{
y2(1) + y2(2)

}
/y2(0). (36)

Then, t1 is decided as the point to minimize (36) by using
numerical calculation.

In practice, t1 and t2 are needed to be set to integer
multiples of the sampling period. Moreover, to avoid instability
caused by rounding errors, coefficients of the approximate
polynomial are required to be integer values. Therefore,t1, t2,
and the coefficients have to be adjusted to meet the conditions
in filter designing.

C. Example

As an example, we here consider an RRC matched filter
with roll-off factor α = 0.5 and sampling period∆t = 0.05.
For the case ofα = 0.5, although the second smallest positive
point among the points satisfying (34) is1.69· · ·, we choose
t2 = 1.7 so that it becomes integer multiples of∆t. On the
other hand, in order to determinet1, the point minimizing
(36) is obtained as0.87· · · by numerical calculation. Then, we
chooset1 = 0.85, the nearest value among integer multiples
of ∆t.

For these intervals, the cubic Hermite polynomial approxi-
mation yields

Ph(t) =

Ph1(t) |t| < 0.85
Ph2(t) 0.85 ≤ |t| < 1.7
Ph3(t) = 0 1.7 ≤ |t|

(37)

where

Ph1(t) = 2.03|t|3 − 3.26|t|2 + 0|t|+ 1.137, (38)

Ph2(t) = −1.08|t|3 + 4.97|t|2 − 7.26|t|+ 3.27. (39)

In order to use the polynomial as the impulse response
of the CR-FIR filter, we first discretize the time with∆t,
and then quantize the coefficients ofPh1(t) andPh2(t) after
multiplying an appropriate constant. We choose the constant
Kp = (1/∆t)3/1.015 so that the coefficients of the highest
order terms in (38) and (39) are to be small integers. Then,
we get

Kp·Ph(n∆t)∼=Ph[n] =

Ph1[n] |n| < 17
Ph2[n] 17 ≤ |n| < 34
Ph3[n] = 0 34 ≤ |n|

(40)
where

Ph1[n] = 2|n|3 − 64|n|2 + 0|n|+ 8958, (41)

Ph2[n] = −|n|3 + 98|n|2 − 2862|n|+ 25771. (42)

However, these polynomials do not satisfy the conditions
to simplify the CR-FIR filter structure, i.e., the continuous
conditions:

Ph1[t1/∆t] = Ph2[t1/∆t] (43)

and
Ph2[t2/∆t] = 0. (44)

We thus adjust the polynomials as follows: The coefficients
of |n|3 are fixed at the values in (41) and (42), respectively.
The coefficient of|n| in (41) is also fixed at0 to smoothly
connect the polynomials atn = 0. The other coefficients
are adjusted so as to satisfy the conditions of (43), (44), and
another additional condition:

P ′
h1[t1/∆t] = P ′

h2[t1/∆t] (45)

for smoothing the connection between the polynomials (41)
and (42). Among the piecewise-polynomials with the integer
coefficients satisfying the conditions, we search the one that
minimizes the evaluation function (36) by using numerical
calculation. The exact way to calculatey( ) in (36) is explained
in Section IV. By this operation, we obtain the following
adjusted piecewise-polynomial:

Pah[n] =

Pah1[n] |n| < 17
Pah2[n] 17 ≤ |n| < 34
Pah3[n] = 0 34 ≤ |n|

(46)

where

Pah1[n] = 2|n|3 − 62|n|2 + 0|n|+ 8092, (47)

Pah2[n] = −|n|3 + 90|n|2 − 2567|n|+ 22542. (48)

In Fig.4, the normalized form of this approximate piecewise-
polynomial given by

P̃ah(n∆t) = P̃ah[n] = Pah[n]

/√√√√ 34∑
i=−34

P 2
ah[i]∆t. (49)

is shown by a solid line together with the theoretical RRC
impulse response (24) depicted by a dashed line. We see
from the figure that the approximate piecewise-polynomial is
almost the same as the theoretical RRC impulse response in
the approximation interval(−1.7, 1.7).

D. IMPLEMENTATION

By shifting Pah[n] by 34 samples, we can obtain a causal
impulse responsePc[n] represented by

Pc[n] =

Pc1[n] |n− 34| ≤ 17
Pc2[n] 17 ≤ |n− 34| ≤ 34
0 34 ≤ |n− 34|

(50)

where

Pc1[n] = 2|n−34|3−62|n−34|2 +8092, (51)

Pc2[n] =−|n−34|3+90|n−34|2−2567|n−34|+22542. (52)

The number of intervals for the piecewise-polynomial approxi-
mation isK+1 = 6, so thatK is an odd number. Then, setting
the boundary points asu0 = 0, u1 = 17, u2 = 34, u3 = 52,
u4 = 69, Pc[n] is symmetric with respect ton = u2 and
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continuous atuk−1(k = 1, 2, 3). Thus, (17) can be applied to
obtainy(4)[n]. The coefficients needed to calculatey(4)[n] are
Pc

(4)[i+ uk−1](k = 1, 2, 3; i = 1, 2, 3) and they are obtained
from (6) as

Pc
(4)[1] = −96, Pc

(4)[2] = 174, Pc
(4)[3] = −72,

Pc
(4)[18] = −2, Pc

(4)[19] = −12, Pc
(4)[20] = −4,

Pc
(4)[35] = 4, Pc

(4)[36] = 16, Pc
(4)[37] = 4.

Output of the filter,y(0)[n], is obtained by integratingy(4)[n]
four times by using the recursive equation (12).

IV. PERFORMANCE EVALUATION

The frequency response of the constructed CR-FIR filter is
depicted by a solid line in Fig.5, where thex-axis represents
the frequency normalized by the symbol rate. For the sake of
comparison, the frequency responses of the ideal RRC filter
and truncated FIR (TR-FIR) filter with rectangular window
of the length69 samples (the same response length as the
CR-FIR filter) are also shown by a dashed line and a dot-
dashed line, respectively. All the three filters are designed for
matched filtering the RRC pulse with roll off factor 0.5. We
see from the figure that the CR-FIR filter has better stop band
attenuation (i.e., in the sense that it has smaller side lobes until
the third one) than the TR-FIR filter although it is designed
to reduce the ISI. This is because the piecewise-polynomial
impulse response in the CR-FIR filter, derived by Hermite
polynomial approximation, is smoothly connected.

Next, we consider the ISI performance of the CR-FIR filter
in the matched filtering. For that purpose, an ideal RRC
pulse pt(t), which is equal toh(t) in (24), is assumed to
be fed to the filter. Then, let us denote the input and output
signals to the filter in the discrete time system bypt[n]
and y[n], respectively. In this case, by noting thatpt[n] and
y[n] respectively correspond to inputpt(n∆t)∆t and output
y(n∆t)∆t in the continuous time system, we can get

y(n∆t) = y[n]/∆t =
1

∆t

∞∑
i=−∞

pt[i]P̃h[n− i], (53)

whereP̃h[n] is the (non-causal) normalized impulse response
defined in (49). Thisy(n∆t) is used for calculating the
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Fig. 5. Frequency response.

1 2 3

0.5

1 

0 

|t| 

y(t), α =0.5

 Theor.

 CR-FIR

A
m

pl
itu

de
  

Fig. 6. Output of the matched filter.

evaluation function (36) to derive the adjusted piecewise-
polynomial (46).

In Fig.6, the output signaly(n∆t) from the CR-FIR filter is
depicted by a solid line together with the theoretical RC pulse
signal depicted by a dashed line, which represents the output
signal from the ideal RRC filter. We see that both curves are
very similar. Moreover, the curve with solid line also has1 at
t = 0 and almost0 at |t| = 1, 2, . . ., meaning that the ISI is
very small. In fact, the amount of ISI approximately evaluated
by substituting (53) into (36) is0.00019. The output signal
from the TR-FIR filter is not depicted in the figure since it is
almost the same as the solid line. The amount of ISI for the
TR-FIR filter evaluated by (36) is0.00023, a slightly larger
than that of the CR-FIR filter.

Finally, we evaluate the performance of the CR-FIR filter in
the classical quadrature amplitude modulation (QAM) systems
[2] by computer simulations. In the QAM demodulator, perfect
carrier synchronization is assumed, so that the in-phase and
quadrature phase signals are independent series of RRC pulses
with different levels. Those pulses are applied to the matched
filter and the outputs of the each matched filter are assumed to
be sampled at perfect timing to decide the received symbol.
The average pulse energy per bit is denoted byEb and the
additive white gaussian noise (AWGN) with one sided power
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Fig. 7. SER performances of QAM demodulators.

spectral densityN0 is assumed.
In Fig.7, circles represent symbol error rates (SER) for the

QAM demodulators (4QAM, 16QAM, and 64 QAM) with
the in-phase and quadrature phase matched filters realized by
using the CR-FIR filter structure explained in III-D. Crosses
represent SER performances for the case that the TR-FIR
filters are used as the matched filters. The curves with solid
line represent the theoretical SER performances. As is seen
from the figure, the circles and crosses exhibit almost the
same performance in spite of the fact that the CR-FIR filter
requires only9 multiplications per sample whereas the TR-
FIR filter requires69 multiplications per sample. Moreover,
we see from the figure that both the simulation results exhibit
nearly the same performance as the theoretical curves although
they slightly degrade at higherEb/N0 in 64QAM.

In this section, we have demonstrated the performances of
the CR-FIR filter by using a concrete example constructed in
Section III. Then, it is shown that the CR-FIR filter realizing
piecewise-polynomial impulse response derived by Hermite
approximation has sufficient performances as the matched
filters in QPSK and 16 QAM demodulators. Here it is worth
noting that the performance of the CR-FIR filter is mostly
determined by the realizing polynomial impulse response
since the CR-FIR filter can exactly realize the polynomial
impulse response with integer coefficients. This implies the
possibility to further improve the performance by using more
sophisticated approximation methods instead of the Hermite
approximation. However, more easy way to improve the
performance is increasing the number of intervals for the
piecewise-polynomial since the Hermite approximation and
the CR-FIR filter structure can be straightforwardly extended
for realizing the piecewise-polynomial with lager number of
intervals.

V. CONCLUSION

In this paper, we have proposed a novel method to very
efficiently realize RRC filters by using recursive FIR filter
structure. The method assumes that the impulse response of
the filter is given by a piecewise-polynomial. Then, the filter
is realized by using a transversal filter with a very small

number of taps followed by integrators with simple recursive
structures. We have referred to this type of recursive FIR filters
as CR-FIR filters. The CR-FIR filter can further be simplified
when the piecewise-polynomial is continuous and/or symmet-
ric. To easily obtain a piecewise-polynomial that approximates
an RRC impulse response, we have proposed to take advantage
of Hermite interpolation. As an example, we have designed
an RRC filter with roll-off factor0.5. The RRC filter can be
realized by a CR-FIR filter with only nine multipliers. Then, it
is shown that the filter exhibits almost the same performance
to the ideal RRC filter when it is used as matched filters in
QPSK and 16QAM demodulators.

The advantage of recursive FIR filters such as the CR-FIR
filter to other FIR filters is the lower arithmetic complexity.
The number of required multipliers for the recursive FIR
filters is proportional to the number of intervals for the
piecewise-polynomial and the order of the polynomial rather
than the actual filter order, so that the recursive FIR filters
are particularly efficient for systems with high over sampling
factor. The advantage of the CR-FIR filter to other recursive
FIR filters is conceptual and structural simplicity. Due to the
completely separated filter structure, we can easily obtain the
filter tap gains only by calculating(M+1)-th order difference
of the desired impulse response.

Although in this paper we have focused on applying the
CR-FIR filter to matched filtering, it can clearly be used for
pulse shaping as well. Discussions on applying the CR-FIR
filter to pulse shaping are left for a future paper. Moreover,
studies on more efficient implementation of the CR-FIR filers
by taking the advantage of the completely cascaded structure
are also left as a future work. Practical issues such as effects
of analog front-end and influence of symbol timing jitter [15]
are also remained for future works.

APPENDIX A
SIMPLIFICATION FOR CONTINUOUS IMPULSE RESPONSE

Here, we consider the case that

hk−1[uk−1] = hk[uk−1] (A.1)

anduk−1−uk−2 > M+1 whereuk−2 anduk−1 are arbitrary
adjacent boundary points. In this case, we can write

h(M+1)[uk−1] = h
(M)
k−1[uk−1]− h

(M)
k−1[uk−1 − 1]. (A.2)

Then, by repeatedly substituting (6) for the first term, it
becomes

h(M+1)[uk−1] = h
(0)
k−1[uk−1]−

M∑
m=0

h
(m)
k−1[uk−1 − 1]. (A.3)

Since we can rewrite the second summation as
M∑

m=0

h
(m)
k−1[uk−1 − 1] =

M∑
m=0

{
h
(m)
k−1[uk−1]− h

(m+1)
k−1 [uk−1]

}
= h

(0)
k−1[uk−1]− h

(M+1)
k−1 [uk−1], (A.4)

(A.3) becomes

h(M+1)[uk−1] = h
(0)
k−1[uk−1]− h

(0)
k−1[uk−1] + h

(M+1)
k−1 [uk−1].

(A.5)
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Fig. B.1. Symmetric impulse response.

The first term is canceled by the second term. Moreover, since
we have assumed thathk−1[n] is a polynomial with degree of
at mostM anduk−1 − uk−2 > M + 1, the third term must
be 0. Therefore, we derive the result:

h(M+1)[uk−1] = 0. (A.6)

APPENDIX B
SIMPLIFICATION FOR SYMMETRIC IMPULSE RESPONSE

Here, we consider the case thath[n] is a symmetric impulse
response and assume that the start pointu0 and the end point
uK−1 are located as shown in Fig. B.1. In this case, it holds
the following equation:

h[u0 + n] = h[uK−1 − 1− n] (B.1)

from the assumption of symmetry. Then, by induction using
this equation and (6), we can derive

h(m)[u0 + n] = (−1)mh(m)[uK−1 − 1− n+m]. (B.2)

In the followings, let us consider separately the cases where
K is even or odd.

[The case thatK is even]
In the case thatK is an even number,

uk−1 − u0 = uK−1 − uK−k (B.3)

holds for anyk. Thus, substituting this equation intouk−1

of (11) and calculating the internal summation of (11) using
(B.3), it becomes

M∑
i=0

h(M+1)[i+ uk−1]x[n− i− uk−1]

=(−1)M+1
M∑
i=0

h(M+1)[i+uK−k]x[n−M+i−uk−1]. (B.4)

Using this equation in the calculation of the summation for
k > K/2, we can derive

y(M+1)[n]=

K/2∑
k=1

M∑
i=0

h(M+1)[i+ uk−1]x[n− i− uk−1]

+(−1)M+1
K∑

k=K/2+1

M∑
i=0

h(M+1)[i+uK−k]x[n−M+i−uk−1]. (B.5)

In the calculation of the second term of this equation, by
changing the variable fromk to K+1−h and then replacing
h with k again, we can obtain

y(M+1)[n] =

K/2∑
k=1

M∑
i=0

h(M+1)[i+ uk−1]
{
x[n− i− uk−1]

+ (−1)M+1x[n−M + i− uK−k]
}
. (B.6)

Equation (16) can be derived from this equation by changing
the order of the summations and omitting the case thati = 0
since the impulse response in (16) is assumed to be continuous
at uk−1(k = 1, 2, · · · ,K/2).

[The case thatK is odd]
In the case thatK is an odd number, (B.3) holds for any

k exceptk = (K − 1)/2 + 1. Therefore, in the calculation
of the outer summation in (11), we consider separately the
cases wherek≤(K − 1)/2, k = (K +1)/2, or k≥(K +3)/2.
Then, substituting (B.4) for the summation of the case where
k≥(K + 3)/2, it becomes

y(M+1)[n]=

(K−1)/2∑
k=1

M∑
i=0

h(M+1)[i+ uk−1]x[n− i− uk−1]

+ (−1)M+1
K∑

k=(K+3)/2

M∑
i=0

h(M+1)[i+uK−k]x[n−M+i−uk−1]

+
M∑
i=0

h(M+1)[i+ u(K−1)/2]x[n− i− u(k−1)/2]. (B.7)

Equation (17) can be derived from this equation by almost the
same way as the case thatK is even, i.e., by replacing the
variable, changing the order of the summations, and omitting
the case thati = 0 since the impulse response in (17) is
assumed to be continuous atuk−1(k = 1, 2, · · · , (K − 1)/2).
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