Improving xylitol production through recombinant expression of xylose reductase in the white-rot fungus Phanerochaete sordida YK-624

SURE 静岡大学学術リポジトリ Shizuoka University REpository

メタデータ	言語: eng
	出版者:
	公開日: 2015-01-05
	キーワード (Ja):
	キーワード (En):
	作成者: Hirabayashi, Sho, Wang, Jianqiao, Kawagishi,
	Hirokazu, Hirai, Hirofumi
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10297/8000

1 Note

2 Improving xylitol production through recombinant expression of xylose reductase

3 in the white-rot fungus Phanerochaete sordida YK-624

- 4 Sho Hirabayashi^{1,†}, Jianqiao Wang^{1,†}, Hirokazu Kawagishi^{1,2,3}, Hirofumi Hirai^{1,2*}
- ⁵ ¹ Graduate School of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka
- 6 422-8529, Japan
- ⁷ ² Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya,
- 8 Suruga-ku, Shizuoka 422-8529, Japan
- 9 ³ Graduate School of Science and Technology, Shizuoka University, 836 Ohya,
- 10 Suruga-ku, Shizuoka 422-8529, Japan
- 11 * Corresponding author. Department of Applied Biological Chemistry, Graduate School
- 12 of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
- 13 Tel. & fax: +81 54 238 4853
- 14 E-mail address: ahhirai@ipc.shizuoka.ac.jp (H. Hirai).
- 15
- 16 [†] These authors contributed equally to this work.
- 17 Keywords: white-rot fungi, Phanerochaete sordida YK-624, xylose reductase,
- 18 recombinant expression, xylitol
- 19 Running title: Improving xylitol production by XR gene expression

Abstract

We generated an expression construct consisting of the xylose reductase (XR) gene (xr) from *P. chrysosporium*. Transformant X7 exhibited increased xylitol production and markedly higher XR activities than the wild-type strain. RT-PCR analysis demonstrated that the increased XR activity was associated with constant expression of the recombinant xr gene.

25	Lignocellulosic biomass is the most abundant organic compound and has
26	therefore attracted worldwide interest as a feedstock for the production of bioethanol (1,
27	2). For the cost-effective production of value-added products from renewable
28	lignocellulosic resources, microbial bioconversion processes must effectively utilize the
29	pentose sugar xylose, as it is a major component of lignocellulose hydrolysates (3-5).
30	However, the yeast Saccharomyces cerevisiae, which is typically used in ethanol
31	production from hexoses, is unable to use pentose sugars such as a xylose (6, 7).
32	Therefore, the development of a microbial-based system that can directly utilize pentose
33	is necessary for the economic conversion of lignocellulose in biorefinery processes.
34	In yeasts and fungi, typically convert xylose to xylulose in a two-step reaction
35	mediated by two kinds of oxidoreductases. An NADPH xylose reductase (XR) first
36	reduces xylose to xylitol, which is then oxidized to xylulose by an NAD-linked xylitol
37	dehydrogenase. And, improvement of xylitol production by recombinant
38	microorganisms was received much attention (4, 8). Thus, the simultaneous production
39	of ethanol and xylitol would significantly increase the efficiency of bioethanol
40	production from lignocellulosic biomass.
41	The white-rot fungus Phanerochaete sordida YK-624, which was originally
42	isolated from rotten wood, exhibits greater ligninolytic activity and selectivity than

40	enner F. Chrysosportum of Trameles versicolor (9). In our previous studies, we
44	successfully developed a superior lignin-degrading strain of <i>P. sordida</i> YK-624 using a
45	molecular breeding approach with a homologous expression system (10, 11). Here, we
46	used a similar approach to generate high XR gene (xr) -expressing transformants of <i>P</i> .
47	sordida YK-624 and investigated whether xylitol production was improved in these
48	transformants.
49	Genomic DNA of P. chrysosporium ME-446 was extracted from mycelia using
50	ISOPLANT II (Nippon Gene, Tokyo) and was then used as template for the PCR
51	amplification of the full-length genomic xr gene (1144 bp) using the specific primers
52	PcXRF1 and PcXRR1. The obtained PCR product was ligated into the cloning vector
53	pMD20-T (Takara Bio, Shiga, Japan) and introduced into <i>Escherichia coli</i> DH5 α for
54	sequencing. Primers XRF1 and XRR1 were designed to amplify the xr gene and
55	introduce an Xba I site for cloning into the expression plasmid pPsGPD-pro, which was
56	generated in our previous study (12). The amplified DNA fragment was digested with
57	Xba I and cloned into Xba I-digested pPsGPD-pro, yielding plasmid pPsGPD-XR.
58	After pPsGPD-XR was sequenced to verify the absence of PCR errors, it was
59	co-transformed with pPsURA5 using the PEG method into UV-64 protoplasts that were
60	prepared by a standard technique using cellulases (13). Co-transformed clones (X

43 either *P. chrysosporium* or *Trametes versicolor* (9). In our previous studies, we

61	strains) were identified by PCR with the primers gpdF1 and XRR2, which were
62	designed to amplify the recombinant xr gene. A total of 13 strains (X1-13) that were
63	co-transformed with pPsGPD-XR and pPsURA5 were obtained.
64	The effect of recombinant xr expression on xylitol production by the X strains was
65	next investigated. P. sordida YK-624 (WT) and the X strains were incubated on PDA
66	plates at 30 °C for 3 days, and 10-mm diameter disks were then punched out from the
67	growing edge of the mycelia using a sterile cork borer. Two mycelial disks for each
68	strain were placed into a 100-mL Erlenmeyer flask containing 10 mL nitrogen-limited
69	Kirk medium (14) supplemented with 1.5% xylose as a carbon source, and the flask was
70	then statically incubated at 30 °C for 7 days. Xylitol and xylose concentrations were
71	determined using a high-performance liquid chromatograph equipped with a Shodex
72	SH1821 column (8.0 mm \times 300 mm, Showa Denko K.K., Tokyo, Japan) at 75 °C with
73	0.5 mM H ₂ SO ₄ as the mobile phase at a flow rate of 0.6 mL min ⁻¹ . Xylitol and xylose
74	were detected using an online refractive index detector. Transformant strain X7
75	exhibited the highest xylitol production among the 13 transformant strains (data not
76	shown) and was therefore selected for subsequent analyses.
77	We next analyzed the transcription levels of xr by RT-PCR and measured the XR
78	activity of strain X7 during 8 days of culture in nitrogen-limited Kirk medium. Mycelial

 $\mathbf{5}$

79	samples were collected and stored at -80 °C. Total RNA was isolated from the thawed
80	samples using an RNeasy Plant Mini kit (Qiagen, Valencia, CA). RT-PCR was
81	performed using 200 ng of total RNA with a PrimeScript RT-PCR Kit (Takara Bio) and
82	the gene-specific primer sets gpdF1-XRR2 and ActinF-ActinR.
83	For the measurement of XR activity, each mycelial sample was added to 2 ml of
84	250 mM phosphate buffer (pH 7.0) and was then homogenized using a Polytron
85	PT1200E (Kinematica, Canada) at 4 °C. The homogenate was centrifuged (4 °C, 10,000
86	x g , 10 min) and the obtained supernatant was used as a cell-free extract for the
87	measurement of XR activity, which was determined by monitoring the oxidation of
88	NADPH to NADP ⁺ (ϵ 340 = 6.22 mM ⁻¹ cm ⁻¹) (15). The reaction mixture (1 ml) consisted
89	of 10 mM 2-mercaptoethanol, 50 mM xylose, and 0.17 mM NADPH in 250 mM
90	phosphate buffer (pH 7.0).
91	The time course of xylitol production by strains X7 and WT over 2, 4, 6, and 8
92	days of incubation in nitrogen-limited Kirk medium was monitored. After 4 days of
93	incubation, xylitol production by strain X7 reached 1.39 g L ⁻¹ , whereas the WT strain
94	had only produced 0.61 g L^{-1} (Fig. 1). In contrast to the WT strain, the production of
95	xylitol by strain X7 continued to increase, reaching 3.61 g L^{-1} of xylitol after 8 days of
96	incubation (Fig. 1). We next evaluated the consumption rates by the xylose

97 consumption, and the xylose consumption rate of the strain X7 (31.8%) was higher than
98 that of WT strain (11.2%).

99	XR activity of strain X7 increased gradually for 8 days and was higher than that of
100	WT throughout the incubation period (Fig. 2a). The highest XR activity for strain X7
101	was 9.14 nkat flask ⁻¹ after 8 days of incubation, whereas that for WT was 6.54 nkat
102	flask ⁻¹ (Fig. 2a). The difference of fungal grown in WT strain and strain X7 was not
103	observed under glucose- or xylose-containing medium. Consistent with these findings,
104	RT-PCR indicated that strain X7 had constant xr expression between days 2 to 8 (Fig.
105	2b). Taken together, these results suggest that the increase of XR activity in strain X7
106	was due to constant expression of the recombinant xr gene, and that the recombinant
107	expression of xr in the white-rot fungus P. sordida YK-624 improves xylitol production.
108	To conclude, the recombinant expression of xr is effective for the improvement of
109	the xylitol production in white-rot fungi. Recently, direct ethanol production by the
110	white-rot fungus <i>Phlebia</i> sp. MG-60 in pure culture without the addition of exogenous
111	chemicals or enzymes was reported (16). In future studies, we intend to develop a
112	molecularly bred strain of white-rot fungus that can simultaneously produce ethanol and
113	xylitol from woody biomass with high yields.

114

 $\overline{7}$

115		This work was partially supported by Grants-in-Aid for Scientific Research (A)
116	(N	os. 21248023 and 24248030) from the Ministry of Education, Culture, Sports,
117	Science and Technology of Japan.	
118	Re	ference
119	1.	FitzPatrick, M., Champagne, P., Cunningham, M.F., and Whitney, R.A.: A
120		biorefinery processing perspective: treatment of lignocellulosic materials for the
121		production of value-added products, Bioresour. Technol., 101, 8915-8922 (2010).
122	2.	Lin, Y. and Tanaka, S.: Ethanol fermentation from biomass resources: current state
123		and prospects, Appl. Microbiol. Biotechnol., 69, 627-642 (2006).
124	3.	Sasaki, M., Jojima, T., Inui, M., and Yukawa, H.: Xylitol production by
125		recombinant Corynebacterium glutamicum under oxygen deprivation, Appl.
126		Microbiol. Biotechnol., 86, 1057–1066 (2010).
127	4.	Kötter, P., and Ciriacy, M.: Xylose fermentation by Saccharomyces cerevisiae, Appl.
128		Microbiol. Biotechnol., 38 , 776–783 (1993).
129	5.	Eliasson, A., Christensson, C., Wahlbom, C.F., and Hahn-Hägerdal, B.: Anaerobic
130		xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1,
131		XYL2, and XKS1 in mineral medium chemostat cultures, Appl. Environ. Microbiol.,
132		66 , 3381–3386 (2000).

133	6.	Vallet, C., Said, R., Rabiller, C., and Martin, M.L.: Natural abundance isotopic
134		fractionation in the fermentation reaction: influence of the nature of the yeast,
135		Bioorg. Chem., 24 , 319–330 (1996).
136	7.	Leticia, P., Miguel, C., Humberto, G., and Jaime, A.J.: Fermentation parameters
137		influencing higher alcohol production in the tequila process, Biotechnol. Lett., 19,
138		45–47 (1997).
139	8.	Harcus, D., Dignard, D., Lépine, G., Askew, C., Raymond, M., Whiteway, M., and
140		Wu, C.: Comparative xylose metabolism among the Ascomycetes C. albicans, S.
141		stipitis and S. cerevisiae, PLoS One, 8, DOI: 10.1371/journal.pone.0080733 (2013).
142	9.	Hirai, H., Kondo, R., and Sakai, K.: Screening of lignin degrading fungi and their
143		ligninolytic enzyme activities during biological bleaching of kraft pulp. Mokzai
144		Gakkaishi, 40 , 980–986 (1994).
145	10.	Sugiura, T., Mori, T., Kamei, I., Hirai, H., Kawagishi, H., and Kondo, R.:
146		Improvement of ligninolytic properties in the hyper lignindegrading fungus
147		Phanerochaete sordida YK-624 using a novel gene promoter, FEMS Microbiol.
148		Lett., 331 , 81–88 (2012).
149	11.	Sugiura, T., Yamagishi, K., Kimura, T., Nishida, T., Kawagishi, H., and Hirai, H.:
150		Cloning and homologous expression of novel lignin peroxidase genes in the

152	1793–1798 (2009).
153	12. Suzuki, T., Dohra, H., Omae, S., Takeshima, Y., Choi, J.H., Hirai, H., and
154	Kawagishi, H.: Heterologous expression of a lectin from Pleurocybella porrigens
155	(PPL) in <i>Phanerochaete sordida</i> YK-624, J. Microbiol. Methods, 100 , 70–76
156	(2014).
157	13. Yamagishi, K., Kimura, T., Oita, S., Sugiura, T., and Hirai, H.: Transformation by
158	complementation of a uracil auxotroph of the hyper lignin-degrading basidiomycete
159	Phanerochaete sordida YK-624, Appl. Microbiol. Biotechnol., 76, 1079–1091

white-rot fungus Phanerochaete sordida YK-624, Biosci. Biotechnol. Biochem., 73,

160 (2007).

151

161 14. Tien, M., and Kirk, T.K.: Lignin peroxidase of *Phanerochaete chrysosporium*,

- 162 Methods Enzymol., **161**, 238–249 (1988).
- 163 15. Yokoyama, I., Suzuki, T., Kawai, K., Horitsu, H., and Takamizawa, K.: Purification,
- 164 characterization and structure analysis of NADPH-dependent d-xylose reductases
- 165 from *Candida tropicalis*, J. Ferm. Bioeng., **79**, 217–223 (1995).
- 166 16. Kamei, I., Hirota, Y., and Meguro, S.: Integrated delignification and simultaneous
- 167 saccharification and fermentation of hard wood by a white-rot fungus, *Phlebia* sp.
- 168 MG-60, Bioresour. Technol., **126**, 137–141 (2012).

Idole	ongonacieonaes used as primers in this study.
Primer name	Nucleotide sequence (5'-sequence-3')
PcXRF1	ATGCTTTCTTCGCCAACCCTC
PcXRR1	TCAGCATTCACGGAGAAAGTACG
XRF1	AATCTAGAATGCTTTCTTCGCCAACCCTC
XRR1	AATCTAGATCAGCATTCACGGAGAAAGTACG
gpdF1	AAGCAGCGAGGATTGTACC
XRR2	GATGGAAGGTGTTCCACAG
ActinF	AGCACGGTATCGTCACCAAC
ActinR	AGCGAAACCCTCGTAGATGG

Table 1Oligonucleotides used as primers in this study.

Fig. 1 Time course of xylitol production by the wild-type (WT) strain (closed diamonds) and strain X7 (closed squares). Values are the means \pm SD of triplicate samples. Asterisks indicate values that were determined by the Student's t-test to be significantly different from WT (**P*<0.05, ***P*<0.01).

Fig. 2 XR activity and expression of the *xr* gene by strain X7. a) Time course of XR activities in the wild-type strain (closed diamonds) and strain X7 (closed squares). Values are the means \pm SD of triplicate samples. Asterisks indicate values that were determined by the Student's t-test to be significantly different from WT (**P*<0.05, ***P*<0.01). b) RT-PCR analysis of *xr* gene transcription in strain X7. The expression of *actin* was used as an internal control.